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Abstract: We present a comparative study of vertical and lateral loss estimation in photonic-
crystal surface-emitting lasers (PCSELSs), focusing on how finite-size effects depend on the choice
of infinite-structure band model. To analyze these effects, we introduce a k-space weighted loss
estimation (kSWLE) framework that can be applied to any infinite-structure band model, and we
contrast its predictions with those of finite coupled-wave theory (finite-CWT), which inherently
relies on the infinite-CWT bandstructure. The kSWLE approach provides a semi-analytical
means of estimating radiative and lateral losses by integrating band-dependent quantities over a
Gaussian k-space envelope determined by the device size. We apply kSWLE using both CWT
and guided-mode expansion (GME) bandstructure models, enabling a direct comparison of how
different infinite-structure descriptions influence the predicted losses and spectral properties.
In regimes where the lasing mode is dominated by a single band and has a spectrally compact
k-space distribution, kSWLE reproduces similar scaling trends as finite-CWT. However, for small
devices or at specific fill factors, the mode has a broader k-space distribution with contributions
from multiple bands, leading to ambiguous mode classification and increased deviation between
models. These results highlight the strengths and limitations of each modelling strategy and
establish KSWLE as a practical tool for evaluating finite-size effects in PCSELSs.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Photonic-crystal surface-emitting lasers (PCSELs) are an emerging class of lasers capable of
delivering high output power with high beam quality from a compact, monolithic chip [1]. Their
distinguishing feature is the use of a two-dimensional photonic crystal to provide distributed
in-plane optical feedback as well as out-of-plane (vertical) coupling to radiative modes, enabling
large-area single-mode operation and narrow beam divergence: features typically associated
with bulkier laser systems such as gas or solid-state lasers [2]. These attributes make PCSELSs
highly attractive for a wide range of applications across different wavelength regimes, including
laser-based displays, automotive headlights and machining of difficult-to-process materials in the
visible range [3], remote sensing and free-space communication in the near-infrared [4], and for
disinfection of water, air, and surfaces [5].

The fundamental operating principle of PCSELSs relies on coherent coupling of multiple
in-plane Bloch waves near the photonic band edge, typically at the I'-point [6], where the group
velocity vanishes. The band-edge effect enables strong in-plane feedback, while the photonic
crystal also allows for vertical outcoupling [2]. The resulting modal field forms a standing wave
distributed across the photonic-crystal region, enabling high-brightness operation over a large
lateral area. While the modal properties of infinite periodic structures can be calculated using
coupled-wave theory (CWT) [7,8], guided-mode expansion (GME) [9], rigorous coupled-wave
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analysis (RCWA) [10], effective-index methods [11], or finite-difference time-domain (FDTD)
method [12], it is important to note that in infinitely large PCSELS vertical outcoupling is mainly
determined by the symmetry of the unit cell. For highly symmetric unit cells (e.g., circular
holes), vertical outcoupling at the I'-point mode is symmetry-forbidden for the low-loss modes,
so vertical losses vanish to first order. However, real devices are finite in extent, and the resulting
truncation perturbs the field and breaks this symmetry, leading to vertical outcoupling even
for symmetry-protected structures [7,8], while at the same time giving rise to additional losses
through energy leakage at the lateral device boundaries.

Capturing these finite-size effects is essential to accurately predict the lasing mode and modal
discrimination [7,8]. While FDTD can capture these effects, the computational cost increases
steeply with device size, making them impractical for realistic PCSEL apertures with diameters
of typically several hundred lattice periods [13,14]. An alternative is three-dimensional finite
coupled-wave theory (finite-CWT), which accounts for both surface radiation and in-plane losses
[7,8]. The method separates the problem into two domains: a reciprocal-space (k-space) unit
cell analysis for calculating mode properties near the I' point, and a real-space finite-difference
scheme on a hexagonal grid to capture finite-size effects such as threshold gain, field intensity
distributions, and far-field patterns. Being semi-analytical, finite-CWT is highly efficient, with
simulations typically completing in a few seconds. This method has been successfully applied to
both square- and triangular-lattice PCSELSs [7,8,15]. More recently, probabilistic Markov chain
(PMC) modeling has also been introduced, where the photonic crystal is represented as a network
of scattering sites that redistribute light according to coupling probabilities [16—19]. While this
approach can capture redistribution effects, it does not directly track the phase of propagating
waves and therefore cannot model interference effects.

In this work, we introduce a semi-analytical framework, k-space weighted loss estimation
(kSWLE), as an alternative to finite-CWT for estimating modal losses in finite-size PCSELs.
The kKSWLE method leverages the observation that for moderately large PCSELs, the k-space
distribution of the lasing mode is approximately Gaussian, centered at the I"-point, with a width
determined by the device diameter. This enables vertical and lateral losses to be estimated by
integrating the infinite-structure loss and group velocity (band curvature) over the relevant k-space
area. KSWLE enables the use of arbitrary infinite-structure models to evaluate finite-size effects.
In this work, we apply kKSWLE using both CWT- and GME-derived bandstructures, allowing
us to examine how the choice of infinite model influences loss predictions. We benchmark
kSWLE against finite-CWT simulations and compare both approaches in terms of their ability to
predict vertical and lateral losses, as well as the dominant lasing mode. Our goal is to clarify
the strengths, limitations, and practical implications of both methods for PCSEL design and
optimization. Although we study a UV-C PCSEL operating near 275 nm, with a structure similar
to devices recently demonstrated by our groups [20-22], the modeling frameworks used here,
finite-CWT and kSWLE, are general and applicable to other lattice geometries and emission
wavelengths.

2. PCSEL structure and lattice geometry

This section describes the PCSEL structure used in our simulations. We define the real
and reciprocal lattice vectors of the hexagonal photonic crystal and specify relevant material
parameters. These definitions establish the foundation for the coupled-wave and guided-mode
simulations presented in subsequent sections.

2.1.  Photonic crystal lattice and reciprocal vectors

The device structure used in this work is based on the optically pumped UV-C PCSELSs recently
demonstrated by our groups [20]. A schematic of the PCSEL structure and hexagonal lattice is



Research Article Vol. 33, No. 25/15 Dec 2025/ Optics Express 53100 |

Optics EXPRESS :

shown in Fig. 1(a). The hexagonal lattice is defined by the real-space primitive lattice vectors

() ()

22 2’2

where a is the lattice constant, see Fig. 1(b). The corresponding reciprocal lattice vectors are
G, = mb; + nby, 2

where m, n are integers, b; = Bo(1/2,—V3/2) and b, = By(1/2, V3/2) are the primitive reciprocal
lattice vectors, and By = 47/(V3a). The six fundamental in-plane wavevectors with magnitude
|Gmn| = Bo correspond to (m,n) = (1,0),(-1,0),(0,1),(0,-1),(1,1), and (-1,—-1), and are
denoted as Ri, Si, Ry, S2, R3, and S3, respectively, following the convention of [8]. These
wavevectors define the first-order in-plane waves used in the coupled-wave theory and are
illustrated in Fig. 1(c). The hexagonal lattice is chosen for its high in-plane symmetry and large
two-dimensional coupling coefficients [3,23], which enhance in-plane feedback and facilitate
low-threshold two-dimensional lasing. While the modeling in this work focuses on this specific
structure, the simulation frameworks developed in the following sections are general and can be
applied to other photonic-crystal geometries, including square lattices.
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Fig. 1. (a) Schematic of the UV-C PCSEL structure with a hexagonal photonic crystal
etched into the top AIN cladding layer. (b) Real-space diagram of the hexagonal lattice
with primitive lattice vectors @ and @,, where a is the lattice constant. (c) Corresponding
reciprocal lattice showing the six second-order I'-point wavevectors Ry, Sy,.. ., S3, used in
coupled-wave theory. These wavevectors define the dominant in-plane components of the
lasing mode and form the basis for the bandstructure models discussed in this work. The
high-symmetry directions I' — X and I' — J in reciprocal space are indicated.

2.2. Structural parameters and refractive index modeling

The lattice constant is @ = 136 nm, corresponding to a target lasing wavelength of approximately
275 nm. Hole fill-factors, i.e. hole to unit cell area, between 10% and 25% are considered in
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the simulations. For a given fill-factor, the average refractive index in the photonic crystal layer

N where

FF is the fill-factor, ng;, = 1 and ngy = 2.28. The vertical layer structure is summarized in
Table 1. The device consists of a vertically symmetric AIN/AlGaN waveguide stack, with three
AlGaN quantum wells in the active region. The design of the active region and waveguide was
developed in conjunction with active regions for UV-C VCSELs and in-plane laser diodes [5,24].
For modeling purposes, the active region is assumed to have the same refractive index as the
surrounding waveguide layers when pumped to transparency, since the carrier-induced refractive
index change largely removes the index contrast under these conditions. All simulations use
refractive indices evaluated at the design wavelength of 275 nm.

is obtained using the effective medium approximation, ng,, = \/FF niir +(1 - FF)n?

Table 1. Layer structure and refractive indices used in simulations at 2 = 275 nm.

Layer Thickness [nm] | Refractive index
Photonic crystal (AIN/air) 300 Nayg
Cladding (AIN) 20 2.280
Waveguide (Al;9GazoN) and active region (AlsoGagoN) 76 2.458
Cladding (AIN) 1000 2.280

3. Infinite PCSEL dispersion models

In this section, we present two models used to describe the infinite PCSEL structure: the three-
dimensional coupled-wave theory (CWT) developed by Liang et al. [8], and the guided-mode
expansion (GME) method [9]. These models provide the modal inputs to the k-space weighted
loss estimation (kSWLE) framework introduced later in Section 5. While CWT also forms
the basis of the finite-CWT method, GME includes a more rigorous physical treatment of the
bandstructure.

3.1. Coupled wave theory

The CWT approach expands the electromagnetic field inside the photonic crystal using six
dominant in-plane waves R; to S3, as defined in Fig. 1(c). They share the same vertical mode

profile Egmded(z), which is taken from the fundamental mode of the effective waveguide [25].
The total field of any one of the six modes u € {A, By, Bz, C, D1, D,} can be written as
Ej(r) = Z c’é’ke"r'k | O ided(2) ™G + Higher order, (3)
G eGfund

where c’(‘;’k are the in-plane mode amplitudes and G™™ denotes the six fundamental wavevectors
fulfilling |G| = Bo. The coupling between these first-order waves is induced by the periodic
modulation of the refractive index. The corresponding coupling coefficients are determined
by the Fourier components of the spatial dependency of the permittivity (r) = n*(r), where
n(r) is the refractive index, and by the modal overlap between the interacting waves. These
coeflicients are organized into a 6x6 coupling matrix Cr, which reflects the in-plane feedback in
the hexagonal structure. In addition, a vertical loss term C, accounts for vertical outcoupling
losses introduced through perturbation theory, and a perturbative term Cj, accounts for the
influence of higher-order waves generated by the scattering from the first-order waves [8]. Finally,
a diagonal term djg,,, represents the detuning of the individual basic wavevectors from the
second-order I'-point. Taking these contributions together, and inserting the ansatz in Eq. (3)
into Maxwell’s equations, the coupled eigenvalue problem describing the optical modes in the
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PCSEL of infinite extent is obtained as

R R

N S
R, a |Ra
(dkO,mn + Cf +Cr +Cy) =(0+ 15) s 4)
So SH
R3 R3
S3 S3

where ¢ denotes the spatial frequency detuning from the Bragg condition, and « represents the
vertical loss. The explicit 6x6 forms of the matrices dyo i, Cr, Cy, and Cy, are given by Liang et
al. [8]. The physical mode frequency w is related to ¢ through the relation

0+ ﬁo

w=c , (®)]
Neff

where neg is the effective index of the guided mode and 3y is the corresponding propagation
constant at the Bragg resonance.

3.2. Guided mode expansion

The optical modes in a photonic crystal slab can also be analyzed using the GME method, which
solves Maxwell’s equations in a periodic multilayer slab by expanding the electromagnetic fields
in a bases of guided modes of an effective homogeneous waveguide [9]. The eigenvalue problem
for the magnetic field is
V x (Lv N H(r)) = (w/c)*H(r), (6)
e(r)

where H(r) is the magnetic field, £(r) is the position-dependent dielectric function, w is the
angular frequency, and c is the speed of light in vacuum.

In this method, the in-plane periodicity of the structure is treated using Bloch’s theorem, and
the fields are expanded as

ided i .
H(r) = > o HEE () 00T, )
Gu

where k is the in-plane Bloch wavevector, G are the reciprocal lattice vectors, and v indexes the

uided modes of an effective homogeneous slab waveguide. The functions HE"% (7) are the
g g g k+G.v

vertical profiles of these modes, and Cl(l},u,k are the expansion coefficients.

The method assumes that the dielectric structure can be approximated by a homogeneous slab
in vertical direction for the computation of the guided modes. The photonic crystal modulation
is treated perturbatively, and the basis set is truncated at a chosen maximum |k + G|. Vertical
losses are introduced by perturbative coupling to radiation modes, and the imaginary part of the
frequency is computed using time-dependent perturbation theory.

In contrast to coupled-wave theory, which expands the fields in terms of six in-plane wavevectors
in the case of a hexagonal lattice, GME uses a large number of in-plane guided modes and
reciprocal vectors. Note that GME is capable of simulating higher order vertical modes, e.g.
those caused by the substrate or thick cladding layers. However, in this paper we used only
the fundamental vertical mode (v = 1) to be compatible with standard literature. In this work,
we only consider TE-like modes for compatibility with the implementation of CWT in [7] and
because optical gain is higher for TE polarization for the investigated UV-C PCSEL structures, as
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shown theoretically [26] and experimentally [27] for similar AlGaN active regions. While there
are implementations of GME which account for polarization mixing, such effects are neglected
in this comparison [9], to ensure a fair TE-only comparison with the CWT model, which does
not include polarization mixing. The same vertical slab and refractive index profile are used for
both methods to ensure consistency.

3.3.  Photonic band structure, group velocity and vertical loss

We now compare the photonic properties derived from the CWT and GME methods, focusing
on how their respective approximations influence computed eigenfrequencies, group velocities,
and vertical losses. Before doing so, it is helpful to summarize the modeling assumptions and
features of the two methods (see Table 2), since these choices directly influence the bandstructure,
group velocity, and vertical loss predictions discussed below. As previously discussed, CWT
uses a minimal set of six plane waves and treats higher-order effects perturbatively, whereas
GME includes a much larger reciprocal-space basis and solves the full-wave problem. These
distinctions affect not only the calculated bandstructures but also derived quantities such as group
velocity and vertical radiation loss. In this section, we evaluate and compare results from both
methods while varying the number of included wavevectors.

Table 2. Comparison of modeling assumptions and features of CWT and GME.

Feature CWT GME

Field expanded in

First order in-plane waves of E field
(R1-53)

Guided-mode basis for H field in slab

Vertical field profile

Fixed single profile ®(z) from TMM

Full set of guided modes (fundamental
TE only used here)

In-plane wavevectors

6 first-order wavevectors + higher-order
treated perturbatively

Arbitrary number of reciprocal vectors
G (plane-wave basis)

Permittivity expansion

&(r) expanded directly

1/£(r) inside the Hermitian operator

Vertical loss

Included directly in the eigenvalue
problem via radiation coupling terms,
Cr

Computed after solving the eigenvalue
problem using time-dependent
perturbation theory

Numerical truncation

6 first-order waves always; higher-order

Allows inclusion of any number of basis

waves are treated as a perturbation and functions

expressed in terms of first-order waves

Figure 2 shows the calculated band structures using both methods for two cases: (a) when a
minimal set of six in-plane wavevectors (Ng = 6) is used, and (b) when a more extended basis of
81 wavevectors is included (Ng = 81). When Ng = 6, the band structures obtained from CWT
and GME agree closely across most bands near the I'-point, especially for A, B, B, and C modes.
A larger discrepancy is observed for the D bands, where the GME solutions exhibit a minimum at
wavelengths shorter than the CWT counterparts. When Ng = 81 is used, the deviation between
the two methods becomes more pronounced and the separation of the bands are larger for the
GME method as compared to CWT. This reflects the more complete basis set used in GME
and its ability to account for modal interactions beyond the basic six-wave approximation. The
change in the band structure for GME in the two cases is large, and the convergence analysis for
these two methods shown in Fig. 3(a) shows that both methods are well converged for N = 81.

In contrast, CWT yields a nearly constant mode position across all bands regardless of Ng>6,
showing that the impact of higher-order components, which are treated as a perturbation, has a
small impact. It is interesting to note that for CWT, the degeneracy of the B and D modes is
lifted for small Ng, as can be seen in Fig. 3(a). For example, the two gray crosses for D and D,
are slightly shifted in wavelength. This is due to the fact that the higher-order perturbative terms,
Cyp, are calculated for wavevectors lying in a thombus which lacks the hexagonal symmetry [8].
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Fig. 2. Dispersion relations A(k) near the I'-point computed using GME (solid lines) and
CWT (dotted lines). Results are shown for two different basis sizes: (a) a minimal set of six
wavevectors (Ng = 6), and (b) an extended basis including 80 wavevectors (Ng = 80), plus
the radiative mode. The CWT model includes only six first-order in-plane plane waves in
the field expansion; higher-order wavevector effects are included perturbatively (see Section

3.1).
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Fig. 3. (a) Modal wavelengths at the I'-point for the six lowest-order modes, computed
using CWT (gray crosses) and GME (blue circles), as a function of the number of in-
plane components or modes used in the expansion. (b) Group velocity dispersion dw/dk,
normalized to the speed of light ¢, along the I' — J and I" — X directions for each mode,
computed using GME (solid lines) and CWT (dotted lines) for Ng = 81. CWT results
include only six first-order waves, while higher-order effects are incorporated perturbatively
(see Section 3.1).

This effect can be eliminated by calculating the higher-order waves for wavevectors lying within a
circle. However, in practice it does not make a big difference as it is easy to include many waves
in the CWT formulation without sacrificing computation time.

From the bandstructure, the group velocity can be extracted as the gradient of the dispersion
relation. Figure 3(b) shows the group velocity along the I' — X and I" — J directions using N = 81.
Since group velocity is proportional to the gradient of the bandstructure, the differences observed
in Fig. 2(b) between the CWT and GME models result in corresponding deviations in the group
velocity. This quantity is directly related to lateral energy transport and thus plays a critical role
in determining lateral losses, as discussed in Section 5.

The group velocity is zero not only at the I'-point, but also at maxima or minima of the
dispersion at avoided crossings. This is the case at k ~ 0.33 um™! in I’ — X direction in Fig. 2(b)
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for GME, where the B, and C branches approach without touching, forcing their curvature to
change sign and the group velocity to vanish as shown in Fig. 3(b). By contrast, when the
branches touch, the group velocity becomes undetermined. These avoided crossings occur at
Dirac points in k-plane [28], and the individual branches of the dispersion are continuous in the
vicinity of the crossing point. Therefore we label the branches according to the respective leaf.
This has the consequence that the group velocity is discontinuous at those points, as observed in
Fig. 3(b) at k ~ —0.42 um™~! in T’ — J direction for GME. Also note that the modal composition
changes character from B; to C and vice versa, when crossing the Dirac point along this I' — J
direction. On a path encircling the singularity, this change is gradual and continuous, justifying
our choice to label the branches.

The vertical losses for both methods are shown in Fig. 4. As expected, the vertical loss of
the A, By, B> and C modes vanishes at the I" point due to symmetry of the electric field around
a photonic crystal hole. However, outside the I'-point, significant differences emerge. In the
minimal Ng = 6 case, both methods predict similar qualitative features, but with noticeable
quantitative discrepancies in peak loss values and positions. With Ng = 81, GME predicts much
sharper features and stronger dependence on in-plane momentum. In contrast, CWT continues
to yield smoother loss trends, reflecting its inability to fully resolve the high-order scattering
channels captured by GME.

Ng=6+1 — Ng=80+1 —

G £ G £

o L g _8&
o 8 ket 10.0 A 8 -_— A
= = 6: B1
= sk 7] s B

c | 4 €
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9 O W 2.5 dunnunds s SILITT F2 o
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Fig. 4. Vertical loss rates a(k) obtained using GME (solid lines) and CWT (dotted lines)
along I' - J and I" — X directions in reciprocal space. Results are shown for two different basis
sizes: (a) a minimal set of six wavevectors (Ng = 6), and (b) an extended basis including 80
wavevectors (Ng = 80), plus the radiative mode. In the CWT model, the field expansion
includes only the six first-order in-plane waves; higher-order wavevector contributions are
treated perturbatively via the Cj, coupling matrix (see Section 3.1). Note that the D modes
for the GME lie outside of the shown region in (b).

Although the CWT model provides an approximate description of PCSELs, it has been
shown to agree well with experimental results for hexagonal lattices [8]. This is somewhat
surprising, given that the method only includes six in-plane wavevectors and treats higher-order
interactions perturbatively. In contrast, GME allows for the coupling between an arbitrary number
of reciprocal lattice vectors, enabling a more complete representation of the mode structure and
associated losses. Nonetheless, the predictive accuracy of CWT remains high. One possible
reason is that a deviation of the photonic crystal from the ideal geometry, which is inherent
to fabricated devices, tends to suppress coupling to higher-order wavevectors, an effect not
explicitly captured in the idealized models but one that naturally limits their influence in practice.
Consequently, the coupling strength to the photonic crystal may be weaker than assumed, due to
shallow etch depths, tapered holes, partially filled holes, or a spatial variation of the hole diameter,
all of which can weaken higher-order coupling. Another potential explanation is polarization
mixing, which is not included in our CWT formulation. When TM polarization is also included in
GME, six additional bands appear near the original TE modes, and the resulting 12 bands are no
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longer purely TE or TM. This mixing shifts the overall bandstructure, particularly the nominally
TM-like D bands, closer to the TE-like modes predicted by CWT, making the dispersion more
similar to the uncoupled TE bandstructure assumed in CWT. As a result, although CWT models
only six in-plane components and a single polarization, it may still capture the dominant lasing
modes in real devices, where structural disorder and fabrication imperfections limit the excitation
of higher-order and polarization mixed components.

The quantitative differences observed here between CWT and GME predictions suggest that
the choice of a bandstructure model can significantly affect lateral and vertical loss estimates.
This motivates the development of a general framework that enables loss estimation based on
arbitrary infinite-structure band information, a topic discussed in Section 5 with the introduction
of the k-space weighted loss estimation (kSWLE) model.

4. Finite-size calculations and mode decomposition

To account for finite-size effects in PCSELs, the CWT formalism described in the previous
section can be extended by incorporating the spatial variation of the lateral field through spatial
derivatives of the first-order wave amplitudes. This results in a generalized eigenvalue problem
defined on a hexagonal grid, as discussed in Ref. [8]. For band-edge modes (k = 0), the
discretized form leads to the generalized eigenvalue equation

ro|  [R@] [ 1orijox- Farijay]
$i(r) Sir)|  |-Lasi/0x+ Las, /oy
(5.4 g% [0 _ o |Re)] 19R/0x + Loy /0y | ©
270 m| (S| |-1982/0x - $os,/0y
Rs(r) R3(r) dR3/0x
S| (S —~0S3/0x

Here, the 6x6 matrix C = dioun + Cr + C, + Cy, is the same as in Eq. (4) and contains the
coupling coefficients between these waves and incorporates vertical radiation losses. The real
part of the eigenvalue corresponds to the frequency detuning ¢ from the Bragg condition, and the
imaginary part a,,, represents the modal loss, including both vertical loss and lateral leakage.
This framework can be used to calculate field profiles, far-field patterns, and lasing thresholds,
and has been shown to agree well with experimental observations [8]. In Section S1 of the
Supplement 1, we show how the computed total loss can be decomposed into a vertical and
lateral loss part.

To understand how the resulting finite-size solutions relate to the modes of an ideal infinite
PCSEL, we perform a mode decomposition. The spatially varying first-order wave amplitudes
(R1(x, y)—S3(x,y)) of the finite structure are at first Fourier transformed to obtain their spectral
components in reciprocal space. For each wavevector k, the corresponding six-component
Fourier vector is then expanded in the basis of the infinite-system eigenvectors at that k-point.
This yields the contribution of each infinite-system band (A, By, By, C, D1, D») to the finite
structure’s fields. A more detailed description of this process is provided in Section S2 of the
Supplement 1. For illustration, we focus on the C-mode, which is identified as the lowest-loss
mode in the finite-CWT model for a fill factor of 15%. Figure 5 shows the mode decomposition
of the C-mode for a finite PCSEL with a radius of L = 100 pm. It is seen that the C-mode of the
finite system has a predominant contribution from the C-mode of the infinite system. Figure 6(a)
shows the corresponding 1D intensity profile in the vicinity of the I"-point, which matches closely
with a Gaussian distribution with standard deviation o = 7/(2L).
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Fig. 5. (a) Absolute values of the 2D discrete Fourier transforms of the six in-plane field
components R through S3, extracted from the finite-size C-mode solution for L = 100 um
and fill-factor FF = 15%. This shows the raw spectral content of the finite mode in reciprocal
space. (b) Modal decomposition showing contributions from the six infinite-system bands
(A — D»), obtained by projecting the Fourier-transformed finite field in (a) onto the infinite-
system eigenvectors at each k-point. The decomposition shows that the finite C-mode is
dominated by the infinite C-band with only weak mixing from other bands.
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Fig. 6. (a) Normalized intensity distribution of the finite C-mode along ky, = 0, obtained
by Fourier transforming (FT) the real-space field from finite-CWT simulations for a device
with a radius L = 100 um and fill factor FF = 15% (orange). The overlaid curve (gray)
shows a Gaussian fit with standard deviation oy = 7/(2L), which is used to approximate
the spectral weighting in the kSWLE model. (b) Modal contributions from each of the six
infinite-system bands (A — D») to the finite C-mode, extracted via mode decomposition as a
function of device radius L at a fixed fill factor FF = 15%.
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To explore how this modal composition evolves with device size, we repeat the decomposition
for a varying lateral radius L (used to be consistent with [8]), as shown in the example for the
finite-sized C-mode in Fig. 6(b). For large devices, the optical mode is spatially broad, while its
k-space distribution is narrow, leading to strong overlap with a single infinite-system band. In
contrast, for small devices, the field varies more rapidly, resulting in broader k-space components
and significant contributions from multiple bands. This behavior can be understood from the
finite-CWT formulation: as the device size increases, the spatial derivatives in Eq. (8) become
negligible (0/0x ~ 1/L), and the coupling term involving the C matrix dominates. Consequently,
the coupling between components resembles that of the infinite system. In smaller systems,
however, the derivative term becomes significant, causing stronger perturbations and greater
deviation from the ideal infinite-system mode structure. As a result, the mode can no longer be
uniquely associated with a single infinite-system band, making its classification ambiguous. In
some cases, no clear C-like mode exists at all, emphasizing the importance of caution when
extrapolating band-based intuition to strongly confined systems.

5. Loss estimation for finite devices using dispersion

Optical modes in finite-size PCSELs are not confined to the I'-point but span a distribution of
in-plane wavevectors due to diffraction, as shown in Section 4. This motivates a dispersion-based
approach in which modal losses are estimated by weighting the vertical loss and group velocity
of the infinite structure across this k-space distribution. An example of the underlying band
dispersion, vertical loss, and group velocity surfaces, computed using CWT, is shown in Fig. 7. In
this section, we formalize this concept by introducing the kKSSWLE framework; a semi-analytical
method that enables loss evaluation based on the infinite-structure bandstructure alone. We then
apply kSWLE to both CWT and GME input data to evaluate its performance and compare it with
results from finite-CWT simulations.

5.1.  Framework of k-space weighted loss estimation (kKSWLE)

The k-space weighted loss estimation (kSWLE) model provides a semi-analytical way to estimate
modal losses without solving the full field distribution in a finite geometry. Because the real-space
mode profile and its reciprocal-space representation are related through the Fourier transform, the
in-plane optical mode of a sufficiently large PCSEL becomes naturally localized near the I'-point
in reciprocal space. In Section 4, we showed using finite-CWT simulations that the fundamental
mode possesses a Gaussian-like spatial envelope, and correspondingly a Gaussian-shaped k-space
intensity profile /(k), which is well approximated by

K?

I(k) = —
(k) 207

e (- L) o= oL, ©)
27r0'k2
where L is the PCSEL radius. While the Gaussian approximation in Eq. (9) is well-justified for
moderately large apertures, it becomes less accurate when the device radius is small or when the
bandstructure contains strongly overlapping modes. In such cases, the finite-size lasing mode
may draw significant spectral weight from multiple bands, violating the assumption that it can be
represented by a single Gaussian envelope in k-space. As shown in the mode decomposition
analysis in Section S3 of the Supplement 1, these effects can lead to spectral shapes and band
mixing that are not captured by the Gaussian approximation. Under such conditions, kKSWLE
may not provide accurate loss estimates. A quantitative analysis in Section S3.1 shows that, for
the device considered here, the Gaussian approximation is accurate to within 3% of the finite-size
C-mode for radii L > 60 pm.

When the optical mode in reciprocal space can be approximated by a single Gaussian
distribution, the total vertical loss @yt can be estimated as a weighted average of the vertical loss
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Fig. 7. Two-dimensional maps of the six fundamental PCSEL modes computed using the
infinite-CWT method for a fill factor of 15%. (a) Wavelength dispersion surfaces A(ky, ky),
(b) dispersion in the vicinity of a Dirac-like crossing point at {k, ~ 0.078 urn_l;ky ~
0.043 um_l} from (a), (c) vertical loss rate a(ky, ky), and (d) group velocity normalized to
the speed of light, v, (ky, ky)/c. For visual clarity, the surfaces in (c) and (d) are vertically
offset by 50 cm™! and 0.2¢, respectively, between subsequent branches.

rate Im[w(k)] obtained from the infinite system, as shown in Fig. 7(c)
1
Qyert = — / I(k)2Im[w(Kk)]dk.dk,, (10)
Vph

where the loss rate is converted to a spatial decay rate using the phase velocity of the guided mode
Vph = Co/Refr, and neg is the effective index of the mode. This captures the fact that finite-size
modes contain components away from the I'-point, where vertical outcoupling is nonzero, even
for antisymmetric modes (A, By, B, and C) that are symmetry protected at k = 0.

The lateral loss ajy is similarly estimated by assuming that energy escapes from the device
over a characteristic time scale determined by the group velocity vg (k) = |Viw(k)|, as shown in
Fig. 7(d), and the device radius. Under this assumption, the lateral loss is

1 |Viw(K)|
= — [ I(K)——————dk,dk,. 11
Qat Vph / ( ) 2L y ( )
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The underlying idea behind the approximation originates from the fact that the term 2L/|vg|
constitutes a characteristic time scale for a wave-packet to transverse the diameter of the devices.
Therefore, the inverse of this time constant is assumed as loss rate. The choice of 2L for the
characteristic length scale is somewhat heuristic, as the mode is not homogeneous across the
PCSEL area. However, this length only enters Eq. (11) as an overall prefactor: replacing 2L with,
for example, L or 1.5L would uniformly rescale @y, without modifying its dependence on device
size or the trends discussed in Section 5.3.

Using the vertical and lateral loss components defined in Egs. (10) and (11), the total modal
loss is then

ot = Qvert + Alat- (12)

The kSWLE approach retains physical interpretation of modal losses in terms of band curvature
and outcoupling strength, quantities which are readily accessible from dispersion simulations of
the infinite PCSEL.

5.2.  Parabolic-band approximation

In the large-radius limit, the mode becomes strongly localized in k-space near the I'-point, where
both the band dispersion and the vertical loss can be approximated as parabolic

Re[w(K)] = wy + gk{ Im[w(k)] = yo + ékz, (13)

where k = |k|. The constant b describes the curvature of the real part of the band dispersion,
while [ characterizes the curvature of the imaginary part, which corresponds to the vertical loss
rate. These parameters are obtained from the infinite-system bandstructure near the I'-point.
The term g accounts for vertical losses at k = 0; it is zero for non-radiative A — C modes, but
positive for D modes, which are radiative at the ['-point. Using the parabolic approximation of
the dispersion and vertical loss in Eq. (13), together with the Gaussian k-space mode profile in
Eq. (9), the integrals in Egs. (10) and (11) can be evaluated analytically. This yields closed-form
scaling laws for the lateral and vertical loss contributions

Uy & DL, @ryery o IL72 (14)

This L2 scaling behavior is confirmed in our numerical results, as shown in Fig. 8(a), and
provides intuitive understanding of how confinement influences losses: both vertical and lateral
losses decreases with increasing aperture size, as the optical mode becomes more localized in
k-space. These expressions provide intuitive understanding of how the modal losses evolve with
device size, particularly in the large-area limit where the Gaussian envelope assumption is well
justified.

5.3. Scaling behavior of finite-CWT, KSWLE:CWT, and kKSWLE:GME

We apply the kSWLE framework using dispersion data from both CWT (kKSWLE:CWT) and
GME (kSWLE:GME), and compare the results with finite-CWT. This comparison allows us
to assess the influence of both the infinite-structure model and the evaluation method on the
predicted losses. Figure 8 shows vertical, lateral, and total modal losses as a function of device
radius for the six fundamental bands.

For vertical losses, see Fig. 8(a), the kSWLE:CWT and kSWLE:GME models yield qualitatively
similar trends for the B-, C-, and D-modes (except for the A-mode at large device radii) but
differ quantitatively, especially for the D modes, which exhibit stronger radiation in GME due
to this method’s more complete treatment of radiative channels. The B and C modes both
follow the expected trend of L~2, consistent with the parabolic-band approximation in Eq. (14).
Compared with finite-CW'T, both kKSSWLE approaches reproduce similar scaling behavior but
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D, modes as a function of device radius L, for a fill factor of FF = 15%. Each subplot
compares finite-CWT results (blue line) with kSWLE predictions based on CWT (gray
circles) and GME (orange crosses), as well as the parabolic band approximation (PBA) based
on GME (red dashed line). The double-logarithmic scale reveals the power-law scaling of
radiative and lateral losses with device radius and enables comparison of trends across a
wide range of radii.
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yield systematically different absolute loss values, which reflects differences in the loss evaluation
method. Interestingly, the A-mode shows a significant deviation from this behavior: both
kSWLE:CWT and kSWLE:GME predict that its vertical loss, Im[w(K)], scales approximately
as k* near k = 0, rather than the assumed k>. This leads to a stronger-than-expected scaling
of @, With device size, approximately L™, deviating from the L™ trend implied by Eq. (14).
Although we do not derive this behavior analytically, it can be interpreted based on symmetry.
The hexapole symmetry of the A-mode [8] appears to suppress first-order coupling between the
in-plane electric field and the radiative plane waves, resulting in a k> dependence of the coupling
amplitude. Since the radiated power is proportional to the square of this overlap, the resulting loss
scales as Im[w(k)] o k*. In contrast, the B and C modes, which have dipole- and monopole-like
symmetry, allow for nonzero first-order overlap, yielding Im[w(k)] o k2.

For lateral losses, see Fig. 8(b), both models again predict similar L™ scaling as obtained
with the parabolic band approximation (PBA), but with different prefactors. These discrepancies
reflect differences in band curvature and group velocity dispersion between the CWT and GME
calculations. Since lateral losses in kSWLE are sensitive to the slope of the band curvature
near I, even modest differences in curvature lead to different estimates. The D modes again
show the largest differences, consistent with the deviations observed in their group velocities
in Fig. 2. For lateral losses, see Fig. 8(b), finite-CWT predicts a steeper scaling with radius,
approximately L2, while both kSWLE:CWT and kSWLE:GME predict L2 decay, consistent
with the parabolic-band approximation. The steeper decay in finite-CWT likely reflects a
fundamental difference in how lateral leakage is modeled. In kKSWLE, lateral losses are estimated
by assuming that energy escapes from a spatially localized mode at a constant group velocity,
following a wave-packet-like picture. In contrast, finite-CWT treats lateral losses as steady-state
outcoupling, where the leakage depends on the modal amplitudes at the device boundary. These
different assumptions lead to distinct scaling behavior that persists across all device sizes. This
is also evident in the total modal losses shown in Fig. 8(c). For the A-C modes, where lateral
losses dominate, finite-CWT predicts higher losses than both k<SWLE:CWT and kSWLE:GME at
small radii, with the difference gradually diminishing at larger radii due to the steeper L-scaling.
In contrast, the D-modes are primarily limited by vertical losses, and differences in lateral loss
scaling become visible only at small device sizes, where lateral leakage becomes comparable to
the large vertical losses of the D-modes.

To further investigate these differences, Fig. 9 shows the modal wavelength and loss values
from both finite-CWT and kSWLE:CWT across a range of device radii. The wavelength in
kSWLE was calculated by weighting the real part of w(k) in analogy to Eq. (10). As expected,
both methods converge toward the infinite-system values as L increases from 10 pm to 500 pm.
However, the convergence trajectories differ. Finite-CWT exhibits systematically higher losses at
small radii, reflecting differences in lateral loss modeling, deviations from the Gaussian mode
assumption, and the increasing influence of mode mixing on the field composition. While
both methods capture the same asymptotic behavior in larger devices, their treatment of lateral
confinement leads to significant differences in the finite-size regime for small L.

5.4. Threshold gain predictions for finite devices

In this section, we extend the comparison between kKSWLE (with CWT and GME input) and
finite-CWT to predictions of the total modal loss for finite devices, which directly determines
the required threshold gain. To achieve this, we examine how modal losses and lasing mode
selection depend on device radius and fill factor, and how different treatments of finite-size effects
influence these predictions.

Figure 10 illustrates how the predicted lasing mode changes with radius for several fill factors.
Discrepancies occur over the whole length scale. In the small-radius regime, mode mixing and
deviations from the Gaussian envelope assumed in kKSWLE play a larger role. These effects are
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input, KSWLE using CWT input, and full finite-CWT simulations.

implicitly modeled in finite-CW'T, which solves for the full spatial field using a finite-difference
approach on a hexagonal grid. For larger radii discrepancies arise from the different band
structures of the infinite system, as predicted by the respective model.

Figure 11 compares total losses as a function of fill factor for a fixed radius of L = 100 um.
The C mode exhibits a monotonic increase in loss with increasing fill factor across all methods,
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while the A mode shows a monotonic decrease. The B modes show a more complex behavior.
In finite-CWT, B; and B, remain degenerate and exhibit a broad minimum in losses around
FF ~ 16%. In contrast, both kKSWLE:CWT and kSWLE:GME predict a non-degenerate behavior:
B, exhibits a similar broad minimum near FF ~ 16% to that seen in finite-CWT, while B shows
a steady increasing loss with increasing fill-factor.
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Fig. 11. Total modal loss, @, as function of fill factor FF, at a fixed device radius of
L = 100 um, using different modelling approaches: (a) finite-CWT, (b) kKSSWLE with GME
input, and (c) kKSWLE with CWT input. Each panel shows how the predicted total loss varies
with FF, and how the dominant low-loss mode may differ depending on the underlying
bandstructure model and approximation method.

These differences arise from the directional dependence of dispersion and vertical loss away
from the I"-point, which influences the kSWLE estimates. Since kKSSWLE integrates over these
properties, it is more sensitive to anisotropies in the bandstructure, especially in GME, which
includes a more complete representation of higher-order effects. As a result, even within the
same kSWLE framework, the choice of dispersion model (CWT or GME) significantly influences
the predicted lasing behavior.

We note that while kKSWLE provides a computationally efficient way to estimate losses
based on infinite-structure data, its validity is limited to regimes where the finite mode can be
clearly associated with a dominant band. As shown in Section S3 of the Supplementary, mode
decomposition reveals that for small radii or specific fill factors, multiple bands may contribute
significantly to a single mode. In such cases, the Gaussian spectral assumption breaks down, and
neither kKSSWLE nor conventional finite-CWT can unambiguously separate vertical and lateral
losses. These limitations highlight the need to validate loss estimates in regions where modal
overlap is strong.

Overall, this comparison shows that kKSSWLE and finite-CWT offer complementary insights.
The kSWLE model provides a transparent framework for estimating losses and exploring the
impact of different bandstructure models. Finite-CWT, meanwhile, captures the full spatial
complexity of the lasing mode and includes important finite-size effects such as mode-mixing and
lateral field truncation. The observed differences between the two approaches do not imply that
one is superior, but rather emphasize the importance of understanding the assumptions inherent
in each model — especially when interpreting experimental results or designing PCSELs with
small or intermediate aperture sizes.

6. Conclusions

We have presented a detailed comparison of methods for modeling finite-size effects in photonic-
crystal surface-emitting lasers (PCSELSs), focusing on how the choice of infinite-structure band
model influences the estimation of vertical and lateral losses. Our work builds on the finite
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coupled-wave theory (finite-CWT), which is the established simulation method for realistically
sized PCSELs. However, its reliance on the simplified infinite-CWT model, which only includes
a small subset of reciprocal lattice vectors, motivates the need for a more flexible framework.

To address this, we introduced the k-space weighted loss estimation (kSWLE) approach, which
enables lateral and vertical loss contributions to be estimated from the bandstructure of any
infinite model. We applied kKSWLE using both CWT and GME bandstructures, and demonstrated
that the predicted losses depend significantly on the choice of underlying model. This underlines
the importance of accurate infinite-structure modeling, especially for strongly leaky modes or
devices with small lateral size.

Comparison with full finite-CWT simulations shows that both finite-CWT and kSWLE agree
well in many cases, despite the simplified assumptions of CWT. However, in parameter regimes
where multiple bands contribute significantly to the lasing mode, the spectral distribution becomes
ambiguous and mode classification breaks down. Mode decomposition analysis highlights this
ambiguity, showing that in such cases, neither KSWLE nor finite-CWT can reliably isolate vertical
and lateral losses.

Overall, kKSWLE provides a computationally efficient alternative for estimating losses and
exploring design trends. Its main strength lies in its flexibility: it can be used with any infinite-
structure model and offers a straightforward way to connect bandstructure features to finite-size
effects. While it does not replace finite-CWTT, it serves as a valuable tool for parametric studies
and model benchmarking.
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