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ABSTRACT: This paper presents a numerical study of a novel method for auto-calibration of scattering-parameter measurements in a near-
field microwave sensor system. The here proposed method is applied to estimation of the average complex permittivity in a measurement
domain from scattering parameters, corrupted by gain uncertainties in the measurement instruments. Simultaneously with the average
complex permittivity, the gain uncertainties are also estimated. The characteristic property of the proposed method is that no simplified
mathematical model of the measurement domain is assumed, and instead a set of a-priori calibrated observations is used. Numerical
studies demonstrate the performance of the method in noiseless and noisy settings with and without nuisance stochastic perturbations
in the measurement domain. An approach to compensate for the stochastic perturbations in the measurement domain permittivity is
proposed, and it demonstrates an improved performance of the method in numerical examinations.

1. INTRODUCTION

An inseparable problem of microwave sensor and measure-
ment systems is the decalibration, caused by drifts of pa-

rameters in a system [1, 2]. Calibration becomes a challeng-
ing task in particular in systems that operate in the near field,
where simple mathematical models of electromagnetic interac-
tion are typically unavailable [3, 4]. Calibration techniques that
use calibration standards may suffer from non-ideal calibration
standards which cause deviations in measurements [5]. Addi-
tionally in many practical uses, performing reference measure-
ments for calibration during systems’ operation is either infeasi-
ble or highly undesirable, and calibration performed simultane-
ously with measurements — so-called auto-calibration [6–10]
— is preferable. The auto-calibration method proposed in this
article addresses the calibration problem in such cases, while
requiring calibrated measurements only on the systems’ manu-
facturing stage. We consider average complex permittivity es-
timation in the measurement domain as an application example
for the proposed method.
The microwave sensor systems operating in a near-field do-

main are key components in application areas ranging from
healthcare [11, 12] to food industry [13] to automotive en-
gines diagnostics [14]. A continuous drift of sensor parameters
in these applications deems calibration performed separately
from taking measurements unacceptable, as measurement er-
rors gradually grow until calibration is repeated again. At the
same time, calibration methods that continuously trace the pa-
rameter drift are inconvenient when a system is periodically
kept idle or switched off. In some of the applications, such as
in sensor systems inside automotive engines, no access to the
measurement domain is available for performing a reference
calibration.

* Corresponding author: Thomas Rylander (rylander@chalmers.se).

The largest and most dynamic contribution to the drift of sys-
tems’ parameters is typically due to phase and amplitude errors
in sensors’ amplifiers. The recent widespread availability of
computational resources set a trend on compensating imperfec-
tions of low-cost hardware (sensors, amplifiers) by signal pro-
cessing algorithms. This, while allowing to reduce the manu-
facturing costs of sensor systems, puts additional requirements
on processing algorithms, among which calibration plays a cru-
cial role and is essential for the correct operation. Such setup,
however, allows us to identify the largest error contribution to
be located in the sensors.
Complex permittivity estimation has a longstanding re-

search history [15, 16] with a series of methods focusing on
calibration-independent scattering-parameters measurements,
see e.g., [17–20]. These methods rely on measurements of
dielectric samples in a waveguide using a two-port setup,
and require dielectric sample displacement, connection of
removable waveguide sections or measurement of additional
dielectric samples with different sizes. Another approach is
to use a probe to measure the complex reflection coefficient
of the material under test, which requires careful calibration
of the measurement system [21]. Our proposed method,
on the contrary, performs estimation from raw uncalibrated
scattering parameters of a multiport without any additional
manipulations.
The here proposed auto-calibration method operates with un-

calibrated scattering-parameters of a multi-port sensor system.
The a-priori knowledge, available to the method, is a (possi-
bly approximate) mapping between the complex permittivity
of the medium under test and the calibrated scattering parame-
ters. From uncalibrated observations of scattering parameters,
the method jointly estimates the unknown value of the parame-
ter of interest and the complex amplification factors at the sen-
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sors. We validate and investigate the proposed method by nu-
merical studies, where an estimation of a complex permittivity
in a closed circular domain from uncalibrated scattering param-
eters is considered. Additionally, we consider an approach to
compensate stochastic perturbations of the complex permittiv-
ity, also validated by numerical examples.
The rest of this article is organized as follows. In Section 2,

the considered model of a sensor system is described, and the
challenges related to calibration and stochastic perturbations in
the system are identified. The auto-calibration method and the
approach to compensate the stochastic perturbations are pre-
sented in Section 3. Numerical tests on an example application
of complex-permittivity estimation for a stochastic medium in
a circular cavity are given in Section 4. Section 5 summarizes
and concludes the article.

2. MEASUREMENT SYSTEM MODEL AND AUTO-
CALIBRATION PROBLEM
We consider a model of a near-field microwave measurement
system that operates at a single frequency ω. The model is
shown in Fig. 1 and consists of

• An N -port network Ω that includes the measurement do-
main with the medium under test and antennas with their
feeding transmission lines terminated at the ports.

• N two-port microwave instruments I1, . . . , IN , one for
each port of the network Ω. The microwave instruments
are connected with their measurement ports to the ports of
the network Ω. This construction, terminated at the ob-
server ports of the microwave instruments, constitutes an
N -port network Θ.

In this paper, the considered medium under test is a dielectric
medium in the measurement domain, and we aim to estimate
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FIGURE 1. Near-field microwave measurement system with N ports.
The p-th port is equipped with a two-port microwave instrument Ip,
where p = 1, . . . , N .

the average complex permittivity in the measurement domain.
We only have access to the observer ports of Θ, while the mi-
crowave instruments I1, . . . , IN have unknown complex am-
plification factors. The goal of the auto-calibration algorithm
is to, given observations of scattering parameters at the observer
ports of Θ, compensate the unknown amplification factors and
thus reconstruct the scattering parameters as seen at the ports
of Ω. We assume that a-priori observations of the scattering
parameters at the ports of Ω are available for a set of complex
permittivity values of the medium under test. This set should
cover the range at which we intend to estimate the complex per-
mittivity from the observations of Θ.

2.1. Scattering-Parameter Model
The multiportΩ is associated with a scattering matrix S defined
by its elements

Spq =
u
(−)
p

u
(+)
q

∣∣∣∣∣
u
(+)
r =0 for r ̸=q

, (1)

where (u
(+)
p , u

(−)
p ) are incident and reflected voltage ampli-

tudes at the p-th port of Ω, see Fig. 1.
In a similar fashion, we introduce a data matrix D associated

with the multiport Θ. The elements of the data matrix D are
defined by

Dpq =
v
(−)
p

v
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q
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v
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(2)

where (v
(+)
p , v

(−)
p ) are incident and reflected voltage ampli-

tudes at the p-th port of Θ, see Fig. 1.
Each two-port microwave instrument Ip is described by a

scattering matrix that relates its incident voltage amplitudes
u
(−)
p and v(+)

p to its reflected voltage amplitudes u(+)
p and v(−)

p

according to[
u
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p
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(−)
p

]
=

[
0 tp
rp 0

] [
u
(−)
p

v
(+)
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]
, (3)

where tp, rp are the complex-valued amplification factors on
transmitting and receiving respectively. Here, we assume that
(i) the instrument ports are impedance-matched such that reflec-
tions at the ports are negligible; and (ii) cross-talk between the
instruments is negligible. These amplification factors, in addi-
tion to the amplification errors in the instruments, can model
unknown imperfections in the transmission lines and antennas.
In the following, we assume that the parameter drift is suffi-
ciently slow for rp and tp to be considered quasi-stationary and,
hence, constant during the auto-calibration process.
In the noise-free case, the scattering and data matrices are

related as
D = RST, (4)

where we have the unknown diagonal matrices

R = diag(r1, r2, . . . , rN ) and (5)
T = diag(t1, t2, . . . , tN ). (6)
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2.2. Noise Model
We assume the noise in the microwave instruments to be
additive. The relation between the complex amplitudes
(assembled here in vectors) u(±) = (u

(±)
1 , . . . , u

(±)
N ) and

v(±) = (v
(±)
1 , . . . , v

(±)
N ) are

u(+) = Tv(+) + n(+)

v(−) = Ru(−) + n(−).

Here the noise voltage vectors n(+) and n(−) are complex ran-
dom variables with a zero mean. Then, we have

v(−) = Dv(+) + RSn(+) + n(−).

We get the data matrix D̃ subject to noise associated with the
microwave instruments as

D̃ = D+ RSN(+) + N(−), (7)

where N(+) and N(−) are noise voltage matrices with columns
n(+) and n(−) associated with different realizations and nor-
malized to the incident amplitudes v(+).

2.3. Measurement-Domain Parametrization
The scattering parameters of the multiport Ω depend on the
dielectric properties of the medium under test. The dielec-
tric medium is characterized by the complex permittivity ϵ(r⃗),
where we refer to a particular realization of ϵ(r⃗) as a permittiv-
ity profile. The dielectric medium is assumed to be linear and
isotropic. Since the proposed method is applied to a single fre-
quency, it allows for dispersive media. Hence, we consider the
scattering parameter matrix to be a deterministic function S(ϵ)
of a measurement-domain permittivity profile ϵ(r⃗) ∈ E . The
set E includes all the measurement-domain permittivity profiles
that support a solution to Maxwell’s equations.

2.4. Problem Formulation
Let the function S(ϵ) be known on a subset E0 ⊂ E that contains
only homogeneous permittivity profiles ϵ(r⃗) = ϵ̄. An unknown
homogeneous permittivity ϵ̄ ∈ E0 is altered by an inhomoge-
neous stochastic perturbation δϵ(r⃗) such that (ϵ̄+ δϵ) ∈ E .
We work with K samples D̃(k) (indexed by k = 1, . . . ,K)

that depend on (i) the constant amplification-factor matrices R
and T, unperturbed permittivity ϵ̄ and (ii) different realizations
of stochastic perturbations δϵ of the permittivity profile together
with the noise N(+) and N(−):

D̃(k) = RS(ϵ̄+ δϵ(k))T+RS(ϵ̄+ δϵ(k))N(+,k) +N(−,k) (8)

Given the samples D̃(k), we wish to jointly estimate

1) the unknown homogeneous permittivity ϵ̄ ∈ E0 and

2) the amplification-factor matrices R and T.

The stochastic model of the perturbation δϵ is application-
specific. Reasonable assumptions here include E{δϵ(r⃗)} = 0
and a finite point-wise variance of δϵ. The operator E{·} de-
notes the expectation of a random variable.
As evident from (8), the estimation problem has two noise

contributions: the additive noise, as given in (7), and the
stochastic permittivity perturbations δϵ, that equivalently can

be seen as noise. In this paper, we focus on the latter contribu-
tion and hence consider the low additive noise scenarios.

2.4.1. Identifiability in R, T

It is not possible to uniquely determine R and T since RST =
R̃ST̃ for the case R̃ = ξR, T̃ = ξ−1T for any complex scalar
ξ ̸= 0. Here, ξ represents a (simultaneous) change in both mag-
nitude and phase for the amplification factors (rp, tp) of all the
instruments Ip. However, in many applications it is not neces-
sary to know ξ in order to infer the quantities of interest that
describe the medium under test. In the rest of the paper we as-
sume r1 = 1 to resolve this ambiguity.
Here, we wish to determine (2N − 1) unknowns in R and

T. Given that the electromagnetic field problem in Ω fulfills
reciprocity, we require at least that

• N ≥ 3 if all (unique) scattering parameters are used to
give N(N + 1)/2 equations, and

• N ≥ 5 if all (unique) transmission parameters are used to
give N(N − 1)/2 equations.

2.4.2. Identifiability in ϵ

We refer to the problem as identifiable in set E0 if the data equal-
ity S(ϵ̄1) = R̃S(ϵ̄2)T̃ holds only if ϵ̄1 = ϵ̄2 for some diagonal
matrices R̃, T̃.

3. METHOD
The approach proposed here utilizes the diagonal structure of
amplification matricesR,T, and the function S(ϵ) is known for
ϵ ∈ E0. We attempt to calibrate the data matrix D so that it fits
one of the known values of the scattering matrix S(ϵ). This is
performed by solving the following optimization problem

ϵ̂ = argmin
ϵ∈E0

g(ϵ) (9)

g(ϵ) = min
R,T∈D

||S(ϵ) − < RD̃T > ||2F, (10)

where D denotes the diagonal matrices, and < · > denotes a
sample average, which is applied to the sequence of the real-
izations (w.r.t. perturbation δϵ and the noise) of the modified
data matrix RD̃T. ||.||F denotes the Frobenius norm. For the
case when only transmission parameters are used, the diagonal
elements of S and D̃ are set to zero.
The inner optimization problem (10) performs the auto-

calibration given a particular value of the permittivity profile
ϵ ∈ E0. The diagonal matricesR and T are used to compensate
for the amplification matrices R and T.
In the outer optimization problem (9), we estimate the per-

mittivity profile ϵ̂ that belongs to the domain E0, which is typ-
ically approximated by a set of grid points that resolves the
domain of interest sufficiently well. In such cases, Eq. (9)
amounts to a search in E0 given the objective function g(ϵ).
The solution {ϵ̂, R̂ = R−1, T̂ = T−1} to the joint parame-

ter estimation and calibration problem (9)–(10) minimizes the
misfit ||S(ϵ) − < RD̃T > ||2F. The estimates are ideal when
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the noise matrices N(+), N(−) and the perturbations ||δϵ|| tend
to zero and the problem is identifiable (see Section 2.4.2).

3.1. Averaging Operators

Here, we consider averaging operators suitable for < RD̃T >
in (10). We denote RD̃T as S̃, and the individual realizations
by superscript as S̃(k).

3.1.1. Arithmetic Average

We use the arithmetic average of the individual scattering pa-
rameters as

< S̃pq >aa=
1

K

K∑
k=1

S̃(k)
pq (11)

where we haveK samples that are indexed by k = 1, . . . ,K .

3.1.2. Generalized Average

For the cases when E{S(ϵ̄+ δϵ)} ̸= S(E{ϵ̄+ δϵ}) the arith-
metic average provides a biased estimate of the unperturbed
scattering matrix. In this case, the space E0 can be used as a
proxy for averaging:

< S̃pq >ga = Spq

(
1

K

K∑
k=1

S−1
pq

(
S̃(k)
pq

))
. (12)

Here, the functions Spq : E0 → C denote the pq-components
of the matrix-valued function S(·) and and S−1

pq : C → E0
are the corresponding inverse functions. The inverse of an iso-
lated component Spq(·) can be uniquely determined only in a
local neighbourhood of some permittivity value ϵ ∈ E0. For the
samples S̃(k)

pq corresponding to inhomogeneous perturbations,
we apply a heuristic, according to which the function S−1

pq as-
signs a homogeneous permittivity for the averaging. The point
of operation, which determines the local neighbourhood where
S−1
pq is evaluated and chosen in connection with the optimiza-

tion problem (10) to be the argument ϵ of g(ϵ).

3.2. Solving the Auto-Calibration Problem
The combined optimization problem (9), (10)

ϵ̂, R̂, T̂ = argmin
ϵ∈E0,R,T∈D

||S(ϵ) − < RD̃T >ga ||2F (13)

is in general non-convex in ϵ. For an efficient search for the
global minimum, we propose a two-step optimization process:
(i) computing initial estimates of g(ϵ), see Eq. (10), on a fi-
nite grid in E0 using arithmetic average and alternating-least-
squares calibrator; and (ii) optimizing (13) starting from the
initial estimate with lowest misfit ||S(ϵ) − < RD̃T >aa ||2F us-
ing generalized average and a general-purpose nonlinear-least-
squares optimizer.

3.2.1. Initial Estimate Using Alternating-least-Squares Calibrator

For the initial estimate, we solve (10) for ϵ on the grid, resolving
E0 sufficiently well. Moreover, the arithmetic average is used,
which allows < RD̃T >aa = R < D̃ >aa T. The optimiza-
tion problem (10) in this case becomes a linear-least-squares
problem in R when T is fixed and vice versa. This and a di-
agonal structure ofR,T allow for an efficient optimization ap-
proach, that alternates between optimizations with respect toR
and with respect to T.
The alternating-least-squares estimator operates as follows.

If the data matrix D̄ =< D̃ >aa is subject to measurement er-
rors, a possible estimator is to minimize the sum of the squared
errors between the model and the measurements. This can be
formulated as minimizing the loss function

L(R,T) = ∥S−RD̄T∥2F (14)

From the diagonal structure ofR and T, it is easy to see that

L(R,T) =

N∑
i=1

∥S•,i − (RD̄)•,iTii∥2F

=

N∑
i=1

∥Si,• −Rii(D̄T)i,•∥2F. (15)

Here, the subscript notations S•,i and Si,• are used to represent
respectively the i-th column and row of a matrix. WithR fixed,
the minimizing argument of (15) is given by

T̂ii =
(RD̄)H•,iS•,i

(RD̄)H•,i(RD̄)•,i
, i = 1, . . . , N (16)

and when T fixed, the minimizing argument of (15) is

R̂ii =
Si,•(D̄T)Hi,•

(D̄T)i,•(D̄T)Hi,•
, i = 1, . . . , N (17)

Here, the superscript (.)H denotes the Hermitian transpose.
In an attempt tominimize (14), we can employ the alternating

least-squares method by iterating between (16) and (17).

1) Initialize T and R with unit diagonal entries

2) Solve (16) for T with fixed R

3) Solve (17) for R with fixed T

4) Assess the residual:

• Go back to step 2 if the change in the residual is larger
than the tolerance set by the user

• Otherwise, stop iterating and accept T and R as an
approximate solution.

Note that in this article, we consider low additive noise levels.
For the cases with high levels of the additive noise, the data
matrix D̄ (and hence the additive noise) enter expressions (16)–
(17) nonlinearly. This may result in large calibration errors.
There, the minimization of a loss function ∥D̄ − RST∥2F with

49 www.jpier.org



Ludvig-Osipov et al.

respect to R,T can be performed and heuristically accepted as
an approximate solution to (10). In the minimization of ∥D̄ −
RST∥2F using the alternating least squares, the additive noise
enters linearly in the counterparts of expressions (16)–(17).

3.2.2. Refined Estimate with Nonlinear Least Square Estimator

After applying the alternating-least-squares estimator to all
permittivity values ϵ on the grid (a finite subset of E0), the
permittivity value giving the smallest residual (14) and its
estimates of R, T are picked as initial values for the opti-
mization problem (13). This problem is consequently solved
by a general-purpose optimizer (e.g., nonlinear least squares)
with generalized-average operator to obtain the final estimates
ϵ̂, R̂ = R̂−1, T̂ = T̂−1. This optimization is performed over a
continuous set E0, where S(ϵ) is interpolated between the grid
points. We use Möbius transformations for the interpolation, as
discussed in the following section.

3.3. Local Approximation Functions
Within the permittivity estimation problem, a suitable class of
local approximation functions are Möbius transformations. We
use the Möbius transformations (i) to interpolate S(ϵ) between
the grid points in the permittivity estimation problem, see Sec-
tion 3.2.2 and (ii) to compute a generalized average, see Sec-
tion 3.1.2. TheMöbius transformations can be seen as reduced-
order Padé approximants. For a homogeneous permittivity ϵ
that can be represented by a complex scalar, a Padé approxima-
tion is

Spq(ϵ) ≃
∑
m

rpq,m
ϵ− ϵm

. (18)

Here, rpq,m denote residues, and ϵm denote complex poles in
the ϵ-space. In the proximity of a pole ϵn, the variation of the
corresponding n-th term is dominant, and hence the residue-
pole representation can be further reduced to

Spq(ϵ) ≃ Cpq,n +
rpq,n
ϵ− ϵn

=
(−Cpq,n/ϵn)ϵ+ (−Cpq,n − rpq,n/ϵn)

(−1/ϵn)ϵ+ 1

=
αϵ+ β

γϵ+ 1

∆
= M(ϵ), (19)

where we assume that

Cpq,n =
∑
m ̸=n

rpq,m
ϵ− ϵm

(20)

is approximately a constant. One advantage of the Möbius
transformation as an approximation function is the simplicity
of its inverse

M−1(Spq) =
Spq − β

−γSpq + α
. (21)

In practice, parameters α, β, and γ are determined by a least-
squares fit of the scattering parameters to its Möbius approx-
imations in a neighborhood of some permittivity value. That

is, for every scattering matrix component Spq(ϵ) we look for a
Möbius transformationMpq(ϵ) parametrized by αpq, βpq, γpq:

{αpq, βpq, γpq}

= argmin
αpq,βpq,γpq∈C

∑
i

|Spq(ϵi)−Mpq(ϵi)|2

= argmin
αpq,βpq,γpq∈C

∑
i

∣∣∣Spq(ϵi)−
αpqϵi+βpq

γpqϵi+1

∣∣∣2. (22)

with a finite set of points ϵi ∈ E0 taken in proximity of
an approximation point. The optimization problem (22)
is recasted as a linear least squares problem minimizing∑

i |Spq(ϵi)(γpqϵi + 1)− αpqϵi + βpq|2.

4. NUMERICAL EXAMPLES
We consider auto-calibration for estimation of mean complex
permittivity in an enclosed circular region.

4.1. Geometry
A two-dimensional circular measurement domain of radius
0.0301m filled with a stochastic inhomogeneous complex per-
mittivity ϵ(r⃗) = ϵ′(r⃗)− jϵ′′(r⃗) is connected toN = 6 parallel-
plate waveguides of width 0.0047m and uniform permittivity
ϵwg = 38, see an example in Fig. 2. This geometry models
a type of microwave sensor system that is intended for an in-
homogeneous dielectric medium that is transported through a
metal pipe [22, 23]. Each waveguide is terminated with a mea-
surement port of a corresponding microwave instrument. In all
the numerical examples here, the frequency ω/2π is 2.5GHz.
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FIGURE 2. Example of the relative permittivity in the measurement
domain Ω for µ′ = 50, σ′ = 1, µ′′ = 16, σ′′ = 0.32. PEC walls are
in red, waveguides are in gray and waveguide ports are in yellow.

The real and imaginary parts of permittivity follow normal
distributions ϵ′(r⃗) ∼ N (µ′, σ′) and ϵ′′(r⃗) ∼ N (µ′′, σ′′) for
every coordinate r⃗ in the measurement domain. Here, µ′, σ′,
µ′′, and σ′′ are the expected values and standard deviations of
the real and imaginary parts of the stochastic permittivity re-
spectively. Their auto-covariances are given by

cov[ϵ′(r⃗ ), ϵ′(r⃗ + δr⃗ )] = (σ′)2 exp
(
−|δr⃗ |2

ϱ2

)
, (23)
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cov[ϵ′′(r⃗ ), ϵ′′(r⃗ + δr⃗ )] = (σ′′)2 exp
(
−|δr⃗ |2

ϱ2

)
. (24)

where ϱ = 0.01m is the correlation length of the stochastic
permittivity. We assume ϵ′ and ϵ′′ to be indepedent and hence
cov[ϵ′(r⃗), ϵ′′(r⃗+δr⃗)] = 0. The variance σ′′ is normalized with
respect to the expected values:

σ′′ = σ′µ
′′

µ′ . (25)

In connection to the problem formulation in Section 2.4, the
stochastic permittivity ϵ(r⃗) here can be seen as a sum of a homo-
geneous permittivity ϵ̄ = {µ′− jµ′′} and a stochastic non-zero
inhomogeneous perturbation. All the homogeneous permittiv-
ities in this case belong to E0, while the perturbed ones are in
E .

4.2. Signal-to-Noise Ratio
By treating D in (7) as a signal and the rest of the terms{
RSN(+) + N(−)

}
as noise, we define the signal-to-noise ratio

as

SNR =
||D||2F

E{||RSN(+) + N(−)||2F}
. (26)

Furthermore, in the numerical examples, we assume that all the
microwave instruments contribute the same noise level, both on
the receiving and transmitting. Hence, all the entries in N(+)

and N(−) are independent normally distributed random vari-
ables with zero mean and variance σ2

N. This assumption entails
that the total noise level equates to

E{||RSN(+) + N(−)||2F}
= E{||RSN(+)||2F}+ E{||N(−)||2F}
= N ||RS||2Fσ2

N +N2σ2
N. (27)

To see that, consider

E{||RSN(+)||2F} =

N∑
i=1

N∑
j=1

E{|(RSN(+))ij |2}

=

N∑
i=1

N∑
j=1

E


∣∣∣∣∣

N∑
k=1

(RS)ikN(+)
kj

∣∣∣∣∣
2


=

N∑
i=1

N∑
j=1

N∑
k=1

|(RS)ik|2E
{
|N(+)

kj |2
}

= N ||RS||2Fσ2
N,

where the cross-terms in the summation over index k have van-
ished due to independence of random elements in matrix N(+).
The term in (27) associated with N(−) is treated similarly, with
RS replaced with the identity matrix.
The signal-to-noise ratio then becomes

SNR =
||RST||2F

Nσ2
N(N + ||RS||2F)

. (28)

The signal-to-noise ratio (26), in the case of stochastic per-
turbations of the scattering matrix S(ϵ̄+ δϵ) due to a stochastic
δϵ, is computedwith respect to the deterministic value S(ϵ̄)with
ϵ̄ ∈ E0.

4.3. Amplification Matrices
The amplification matrices R,T are diagonal with their ele-
ments being random variables with amplitude uniformly dis-
tributed in the range [1, 2] and with phase uniformly distributed
in the range [0, 2π].

4.4. Error Assessment
To evaluate the accuracy of the estimate, the relative estima-
tion error of the expected value of the permittivity |ϵ̂− ϵ̄|/|ϵ̄| is
considered.
The calibration accuracy is evaluated via∑N

p=1

∑N
q=1 |R̂ppT̂qq − RppTqq|2∑N

p=1

∑N
q=1 |RppTqq|2

. (29)

Note that this metric is invariant to the scalar ambiguity ξ, see
Section 2.4.1.

4.5. Numerical Tests

4.5.1. Least-Square Estimator

The least-squares estimator (Section 3.2.1) has been used to
solve the minimization problem (10), and the results are plot-
ted in Fig. 3. In this example, the data matrix is D = RS(ϵ̄ =
60− j12)T, withR,T unknown random amplification matrices
of a diagonal form. A noise-free scenario σN = 0 is considered
in this case. Each point (ϵ′, ϵ′′) in Figs. 3(a), (c) correspond
to testing the data matrix D against a hypothetical scattering
matrix S(ϵ′ − jϵ′′) in the alternating-least-squares procedure,
described in Section 3.2.1. Fig. 3(a) depicts the misfit (14) af-
ter the alternating-least-squares procedure, and Fig. 3(c) depicts
the corresponding calibration error (29).
The cross-sections of the misfit (at dashed-dotted lines A,B

in Fig. 3(a)) are shown in Fig. 3(b). Additionally, Fig. 3(b)
contains the cross-sections for the cases, when the permittiv-
ity in the data matrix is perturbed according to Section 4.1
with the standard deviations of the real part of permittivity
σ′ = {2.5, 5.0}. The standard deviations of imaginary part
of permittivity σ′′ are given according to (25). In the cases of
non-zero perturbations, an arithmetic average of the data matrix
for 100 realizations of stochastic permittivity has been used.
This result demonstrates that the misfit is a non-convex func-

tion of the search permittivity variable (ϵ′, ϵ′′)with clearly pro-
nounced global minimum, which needs to be taken into account
when choosing an optimization method for (9)–(10). Presence
of the permittivity perturbations in the data matrix D results in
a shift of the minimum from the true permittivity value in the
misfit, hence an approach to combat such a bias — the use of
generalized average — needs to be used in such cases. From
Fig. 3(c) we note that slight inaccuracies in the permittivity es-
timation lead to a drastic increase of the calibration error.
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FIGURE 3. (a) Example of the calibrated misfit (14) as a function of
a complex minimization variable ϵ = ϵ′ − jϵ′′. The true permittivity
value is ϵ̄ = 60− j12, the observed sample corresponds to the uniform
permittivity with random calibration error and frequency is 2.5GHz.
(b) Cross-sections of the colormap plot. Crosses on the horizontal axis
show the true permittivity value. (c) Normalized calibration error as a
function of the minimization variable.

4.5.2. Estimation and Calibration for Unperturbed Permittivities

The permittivity estimation and calibration errors of the pro-
posed approach, described in Section 3.2, are plotted in Fig. 4.
For each point in these graphs, a data matrix D = RS(ϵ̄ =
ϵ′ − jϵ′′)T is generated without noise and permittivity pertur-
bations. First, the initial estimate of ϵ,R,T is obtained, us-
ing alternating-least-squares on a discrete permittivity grid with
steps 0.31 both in ϵ′ and in ϵ′′. Then, the initial estimate is used
to solve (13) with a general-purpose nonlinear-least-squares al-
gorithm and a generalized average. The Möbius transforma-
tions, used for interpolation of E0 in the optimization over ϵ and
for the generalized averages, are computed according to (22)
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FIGURE 4. Normalized permittivity-estimation and calibration errors
as functions of the true permittivity ϵ̄ = ϵ̄′ − jϵ̄′′. The permittivity
is homogeneous (σ′, σ′′ = 0) in the measurement domain, and no
instrument noise is present.

with an approximationwindow of 5×5 grid points. The relative
permittivity error, Fig. 4(a), and the calibration error, Fig. 4(b),
are plotted as functions of the true permittivity ϵ̄ = ϵ′ − jϵ′′.
The results indicate that the method provides relative permittiv-
ity estimation error lower than 10−3 and calibration error lower
than 10−2 for all considered true permittivity values. A some-
what lower accuracy in the low-loss region (ϵ′′ < 5.0) is related
to a lower accuracy of approximation with Möbius transforma-
tions in that region. This numerical test indicates that permit-
tivity is identifiable (as per Section 2.4.2) for the considered
numerical example.

4.5.3. Additive Noise and Stochastic Permittivity

In Fig. 5, the dependence of estimation and calibration errors
on standard deviation of permittivity is shown. The depicted
curves are average performance over 100 Monte Carlo itera-
tions. On each iteration, the estimation and calibration were
performed using K = 50 realizations of the data matrix. The
values of R and T are the same for allK realizations. The true
mean permittivity is ϵ̄ = {60.4 − j13.2}, and two cases, with
and without usage of reflection parameters of D̃ in the auto-
calibration process, are considered. The generalized average
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demonstrates an overall superior performance over the arith-
metic average for the case when the reflection parameters are
used. When the reflection parameters are not used, the per-
mittivity estimation is better with the generalized average for
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and a series of values of standard deviation of permittivity σ′. 6-port
no reflection coefficient.

σ′ < 8, while the calibration accuracy is similar with both av-
eraging methods for σ′ ≤ 6.
Figures 6 and 7 show dependence of relative permittivity es-

timation and calibration errors as functions of signal-to-noise
ratio respectively with and without the usage of reflection co-
efficient in the auto-calibration process. The noise has been
added to the data matrices according to the model (7) and the
signal-to-noise ratio is evaluated according to (28). In the high-
SNR regime the performance agrees with the one that is ob-
served in Fig. 5. The permittivity estimation and calibration
errors saturate at SNR around 30 dB and above, which indi-
cates that the stochastic components of permittivity act as an
effective noise, which dominates at this SNR range.

5. DISCUSSION
Fully automatized online-monitoring of product quality is im-
portant in many process industries. In principle, the auto-
calibration approach proposed in this article can be altered to
estimate other measurement-domain parameters instead of or
in combination with the mean permittivity, as long as the over-
all model of the measurement system follows (4) and the other
prerequisites stated throughout the article are met. The mi-
crowave instruments Ip are assumed to be impedance-matched,
and we assume that the crosstalk between instruments is negli-
gible, which are standard issues to be addressed in the design
of most microwave systems. To be able to identify the amplifi-
cation matrices, the number of ports must be at least three if all
(unique) scattering parameters are used and five if all (unique)
transmission parameters are used, where a large number of ports
may be challenging to fit for applications where space is lim-
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ited. The question of identifiability for the parameters of in-
terest is generally a complicated question in inverse scattering
problems [24] and must be addressed for each new and unique
application, where other issues such as ill-posedness also must
be considered. It should be emphasized that the grid search on
E0 provides a robust approach to the outer optimization prob-
lem (9), as long as the parameter domain of interest is properly
resolved.

5.1. Computational Complexity

For an application with Dg parameters in (9) and a grid with
Ng,i grid points for the i-th parameter, the number of entries in
the grid necessary to represent E0 is Ng,tot =

∏Dg
i=1 Ng,i. De-

pending on application, this may imply major memory require-
ments and possible alternatives are discussed in Section 5.3.
For each grid point, the alternating-least-squares calibrator

in Section 3.2.1 is applied, which involves O(N2) floating-
point operations (flops) per iteration. The number of iterations
required for convergence is denoted Nit. Thus, the computa-
tional complexity of determining the initial estimate of the so-
lution {ϵ̂, R̂ = R−1, T̂ = T−1} is O(Ng,totNitN

2). To refine
this initial estimate, a nonlinear least square estimator is applied
as discussed in Section 3.2.2. Typically, the initial estimate is
sufficiently close to the sought optimum to make a nonlinear
least-squares estimator converge in a few iterations and, in ad-
dition, this estimator only needs to be applied once (i.e., not
for all grid points). Thus, the computational cost for this last
step is expected to be negligible as compared to the determina-
tion of the initial estimate. In conclusion, the overall computa-
tional complexity in terms of flops is O(Ng,totNitN

2) and the
memory requirements scale asO(Ng,tot). Since the alternating-
least-squares is applied independently for each grid point, the
grid-search ismassively parallelizable whichmakes it attractive
for implementation on specialized hardware such as a graph-
ics processing unit (GPU). Moreover, in applications where the
calibration and material parameters drift slowly in comparison
to the time required to perform an estimation, the outer opti-
mization problem (9) can use the previous solution as a good
initial guess, which presents the opportunity for a significant
reduction in overall computational cost.

5.2. Comparison with Other Methods

There are many well-known calibration techniques, such as
TRL (Though-Reflect-Line) [25] and SOLT (Short-Open-
Load-Through) [26], that assume that the measurement setup
can be modified during calibration. For calibration procedures
performed offline at scheduled intervals, measurement system
issues may remain undetected until the next calibration,
potentially compromising product quality. This article aims at
applications that require online calibration concurrently with
the intended material estimation and, thus, offline calibration
methods are considered unattractive or impossible to use.
Estimation methods in the literature typically require special

conditions to be fulfilled, such as the Nicolson-Ross-Weir al-
gorithm [27, 28] that require that the material under test is a
planar material slab (in combination with that the material is

linear, isotropic and homogeneous). Other estimation methods
provide useful information on the relation between the material
parameters and the observed scattered field but typically at the
expense of simplifying assumptions such as electrically small
problems [29] or impenetrable scatterers [30]. Again, such es-
timation algorithms can rarely be directly used in industrial ap-
plications that typically feature complicated geometries, inho-
mogeneous media, large contrasts and other circumstances that
are not compatible with the prerequisites of such specialized
methods.

5.3. Extensions and Future Work

Some applications may require broad frequency-band data for
a successful material estimation and sensor calibration. In such
cases, the sensor system must operate over a large frequency-
band, where ultra wide-band (UWB) antennas may be a crucial
component [31, 32].
For high-dimensional problems in terms of permittivity

and/or other parameters, it can be prohibitively expensive
to create, store, and use a set of a-priori observations for
the entire parameter domain E0 in terms of computational
resources and/or memory requirements. Here, an attractive
alternative is to train and use a computationally efficient
surrogate model [33] for the mapping from E0 to the scattering
parameters, where some alternatives are (i) deep neural
networks [34, 35] and (ii) polynomial-based surrogate mod-
els [36]. Such surrogate models can also account for frequency
variations, which may be important in wide frequency-band
applications. Moreover, a surrogate model that is not restricted
to a grid eliminates the need for local interpolation functions.
However, since the generalized average (12) exploits the
inverse S−1

pq , it is desirable that the surrogate model is at least
locally invertible. Here, one possible approach is to exploit
invertible surrogate models such as invertible neural net-
works [37, 38]. Equipped with powerful surrogate models to
represent mapping from E0 to the scattering parameters, it may
be possible to approach applications with more complicated
constitutive relations for the media involved such as dispersive
and anisotropic [39, 40] media, which would require more
parameters to represent the constitutive relation.

6. CONCLUSION
In this article, a method for auto-calibration of a multiport sen-
sor system is presented. The method is independent of the
sensor system geometry and operates with scattering-parameter
observations. It jointly calibrates the scattering parameters and
estimates the average complex permittivity in the measurement
domain. For the operation of the method, a-priori calibrated ob-
servations for a set of the permittivity values are required. This
set of observations should cover the permittivity space to a de-
sired accuracy. The only assumptions of the method are that
the calibration error follows the model (4), and that the identi-
fiability conditions are satisfied.
The proposed method has demonstrated good calibration and

mean-permittivity-estimation accuracies for all values of the
permittivity region considered in the numerical studies, where
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a complex-permittivity estimation in a cylindrical region has
been considered. The non-uniformity of estimation and cali-
bration errors in the complex-permittivity domain indicates that
the proposed method’s accuracy is affected by the properties of
the scattering-parameters matrix as a function of a complex per-
mittivity. In the majority of applications, the permittivity esti-
mation is important, while the gain matrices R,T are nuisance
parameters; and the proposed method demonstrates stable and
high permittivity estimation accuracy.
Additionally, we consider stochastic perturbations of the

dielectric medium in the measurement domain and propose a
heuristic approach to compensate the reduction in the method’s
performance caused by the perturbations. The stochastic
perturbations manifest themselves in systematic permittivity-
estimation and calibration errors. The proposed compensation
approach introduces an averaging operator for observed
samples of scattering-parameter observations, and noticeably
improves estimation and calibration accuracies for moderate
values of standard deviation of stochastic perturbations and
high signal-to-noise ratio. At the low signal-to-noise levels, the
simple arithmetic averaging performs well in both permittivity
estimation and calibration accuracies.

ACKNOWLEDGEMENT
This work was supported by (i) the Swedish Governmen-
tal Agency for Innovation Systems (VINNOVA) under Grant
2016-00460 and (ii) Chalmers University of Technology. The
computations were enabled by resources provided by Chalmers
e-Commons at Chalmers.

REFERENCES
[1] Teppati, V., A. Ferrero, and M. Sayed, Modern RF and Mi-

crowave Measurement Techniques, Cambridge University Press,
2013.

[2] Fraden, J., Handbook of Modern Sensors: Physics, Designs, and
Applications, Springer, 2004.

[3] Hislop, G., C. Craeye, and D. G. Ovejero, “Antenna calibra-
tion for near-field material characterization,” IEEE Transactions
on Antennas and Propagation, Vol. 64, No. 4, 1364–1372, Apr.
2016.

[4] Liu, Y., X. Xu, and G. Xu, “MIMO radar calibration and im-
agery for near-field scattering diagnosis,” IEEE Transactions on
Aerospace and Electronic Systems, Vol. 54, No. 1, 442–452, Feb.
2018.

[5] Zhao, W., C. Cheng, C. Yang, J. Xiao, Y. Wang, and Y. Huo,
“Influence of non‐ideal line‐reflect‐match calibration standards
on vector network analyzer S‐parameter measurements,” IET
Science, Measurement & Technology, Vol. 17, No. 6, 257–268,
2023.

[6] Lipor, J. and L. Balzano, “Robust blind calibration via total least
squares,” in 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 4244–4248, Florence,
Italy, 2014.

[7] Bilen, Ç., G. Puy, R. Gribonval, and L. Daudet, “Convex opti-
mization approaches for blind sensor calibration using sparsity,”
IEEE Transactions on Signal Processing, Vol. 62, No. 18, 4847–
4856, 2014.

[8] Wei, Z., W. Wang, F. Dong, and P. Liu, “Self-calibration algo-
rithm with gain-phase errors array for robust DOA estimation,”
Progress In Electromagnetics Research M, Vol. 99, 1–12, 2021.

[9] Yuan, B., Z. Jiang, J. Zhang, Y. Guo, and D. Wang, “Sparse self-
calibration for microwave staring correlated imaging with ran-
dom phase errors,” Progress In Electromagnetics Research C,
Vol. 105, 253–269, 2020.

[10] Ayestaran, R., J. A. Lopez-Fernandez, and F. L. H. Andres, “Self-
calibration for fault or obstacle correction in continually rotating
array antennas,” Progress In Electromagnetics Research, Vol.
111, 365–380, 2011.

[11] Blakey, R. T., A. Mason, A. Al-Shamma’a, C. E. Rolph, and
G. Bond, “Dielectric characterisation of lipid droplet suspensions
using the small perturbation technique,” inAdvancement in Sens-
ing Technology: New Developments and Practical Applications,
81–91, Springer-Verlag, Heidelberg, Germany, 2013.

[12] Korostynska, O., A. Mason, and A. Al-Shamma’a, “Microwave
sensors for the non-invasive monitoring of industrial and medi-
cal applications,” Sensor Review, Vol. 34, No. 2, 182–191, Mar.
2014.

[13] Stenmark, S., T. Rylander, and T. McKelvey, “Neural networks
for the estimation of low-order statistical moments of a stochas-
tic dielectric,” in 2021 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC), 1–6, Glasgow,
United Kingdom, May 2021.

[14] Andria, G., F. Attivissimo, A. D. Nisio, A. Trotta, S. M. Campo-
reale, and P. Pappalardi, “Design of a microwave sensor for mea-
surement of water in fuel contamination,” Measurement, Vol.
136, 74–81, Mar. 2019.

[15] Chen, L. F., C. K. Ong, C. P. Neo, V. V. Varadan, and V. K.
Varadan, Microwave Electronics: Measurement and Materials
Characterization, John Wiley & Sons, 2004.

[16] Buckmaster, H. A., “Precision microwave complex permittivity
measurements of high loss liquids,” Journal of Electromagnetic
Waves and Applications, Vol. 4, No. 7, 645–659, 1990.

[17] Hasar, U. C. and O. Simsek, “A calibration-independent mi-
crowave method for position-insensitive and nonsingular dielec-
tric measurements of solid materials,” Journal of Physics D: Ap-
plied Physics, Vol. 42, No. 7, 075403, Mar. 2009.

[18] Wan, C., B. Nauwelaers, W. D. Raedt, and M. V. Rossum, “Two
new measurement methods for explicit determination of com-
plex permittivity,” IEEE Transactions onMicrowave Theory and
Techniques, Vol. 46, No. 11, 1614–1619, Nov. 1998.

[19] Lanzi, L., M. Carlà, C. M. C. Gambi, and L. Lanzi, “Differential
and double-differential dielectric spectroscopy to measure com-
plex permittivity in transmission lines,” Review of Scientific In-
struments, Vol. 73, No. 8, 3085–3088, 2002.

[20] Hasar, U. C. and J. J. Barroso, “Electrical characterization of 3-
D periodic microwire media using calibration-independent tech-
niques,” Journal of Electromagnetic Waves and Applications,
Vol. 25, No. 14–15, 2110–2119, 2011.

[21] Xing, L., J. Zhu, Q. Xu, Y. Zhao, C. Song, and Y. Huang, “Gen-
eralised probe method to measure the liquid complex permittiv-
ity,” IET Microwaves, Antennas & Propagation, Vol. 14, No. 8,
707–711, 2020.

[22] Nohlert, J., T. Rylander, and T. McKelvey, “Microwave mea-
surement system for detection of dielectric objects in pow-
ders,” IEEE Transactions onMicrowave Theory and Techniques,
Vol. 64, No. 11, 3851–3863, 2016.

[23] Winges, J., L. Cerullo, T. Rylander, T. McKelvey, and
M. Viberg, “Compressed sensing for the detection and position-
ing of dielectric objects inside metal enclosures by means of mi-
crowave measurements,” IEEE Transactions onMicrowave The-

55 www.jpier.org



Ludvig-Osipov et al.

ory and Techniques, Vol. 66, No. 1, 462–476, 2018.
[24] Aster, R. C., B. Borchers, and C. H. Thurber, Parameter Estima-

tion and Inverse Problems, 2nd ed., Academic Press, 2013.
[25] Engen, G. F. and C. A. Hoer, “Thru-reflect-line: An improved

technique for calibrating the dual six-port automatic network
analyzer,” IEEE Transactions on Microwave Theory and Tech-
niques, Vol. 27, No. 12, 987–993, 1979.

[26] Agilent Technologies, “Applying error correction to network an-
alyzer measurements,” Agilent AN 1287–3, 2002.

[27] Nicolson, A. M. and G. F. Ross, “Measurement of the intrinsic
properties ofmaterials by time-domain techniques,” IEEE Trans-
actions on Instrumentation and Measurement, Vol. 19, No. 4,
377–382, Nov. 1970.

[28] Weir, W. B., “Automatic measurement of complex dielectric
constant and permeability at microwave frequencies,” Proceed-
ings of the IEEE, Vol. 62, No. 1, 33–36, 1974.

[29] Valagiannopoulos, C. A., “A novel methodology for estimating
the permittivity of a specimen rod at low radio frequencies,”
Journal of ElectromagneticWaves and Applications, Vol. 24, No.
5–6, 631–640, 2010.

[30] Kress, R. and W. Rundell, “Inverse scattering for shape and
impedance revisited,” Journal of Integral Equations and Appli-
cations, Vol. 30, No. 2, 293–311, 2018.

[31] Balanis, C. A., Antenna Theory: Analysis and Design, John Wi-
ley & Sons, 2016.

[32] Jaglan, N., B. Kanaujia, S. D. Gupta, and S. Srivastava, “Triple
band notched UWB antenna design using electromagnetic band
gap structures,” Progress In Electromagnetics Research C,
Vol. 66, 139–147, 2016.

[33] Koziel, S. and L. Leifsson, Surrogate-Based Modeling and Op-
timization, Springer, 2013.

[34] Jin, J., C. Zhang, F. Feng, W. Na, J. Ma, and Q.-J. Zhang, “Deep
neural network technique for high-dimensional microwave mod-
eling and applications to parameter extraction of microwave fil-
ters,” IEEE Transactions on Microwave Theory and Techniques,
Vol. 67, No. 10, 4140–4155, Oct. 2019.

[35] Sahu, K. C., S. Koziel, and A. Pietrenko-Dabrowska, “Surrogate
modeling of passive microwave circuits using recurrent neural
networks and domain confinement,” Scientific Reports, Vol. 15,
No. 1, 13322, Apr. 2025.

[36] Chávez-Hurtado, J. L. and J. E. Rayas-Sánchez, “Polynomial-
based surrogate modeling of RF and microwave circuits in
frequency domain exploiting the multinomial theorem,” IEEE
Transactions on Microwave Theory and Techniques, Vol. 64,
No. 12, 4371–4381, Dec. 2016.

[37] Ardizzone, L., J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini,
R. S. Klessen, L. Maier-Hein, C. Rother, and U. Köthe, “Ana-
lyzing inverse problems with invertible neural networks,” ArXiv
Preprint ArXiv:1808.04730, Feb. 2019.

[38] Radev, S. T., U. K. Mertens, A. Voss, L. Ardizzone, and
U. Köthe, “BayesFlow: Learning complex stochastic models
with invertible neural networks,” IEEE Transactions on Neu-
ral Networks and Learning Systems, Vol. 33, No. 4, 1452–1466,
2022.

[39] Valagiannopoulos, C., “On measuring the permittivity tensor
of an anisotropic material from the transmission coefficients,”
Progress In Electromagnetics Research B, Vol. 9, 105–116, 2008.

[40] Nilsson, F., U. W. Gedde, and M. S. Hedenqvist, “Modelling the
relative permittivity of anisotropic insulating composites,” Com-
posites Science and Technology, Vol. 71, No. 2, 216–221, 2011.

56 www.jpier.org


	Introduction
	Measurement system model and auto-calibration problem
	Scattering-Parameter Model
	Noise Model
	Measurement-Domain Parametrization
	Problem Formulation
	Identifiability in R,T
	Identifiability in 


	Method
	Averaging Operators
	Arithmetic Average
	Generalized Average

	Solving the Auto-Calibration Problem
	Initial Estimate Using Alternating-least-Squares Calibrator
	Refined Estimate with Nonlinear Least Square Estimator

	Local Approximation Functions

	Numerical examples
	Geometry
	Signal-to-Noise Ratio
	Amplification Matrices
	Error Assessment
	Numerical Tests
	Least-Square Estimator
	Estimation and Calibration for Unperturbed Permittivities
	Additive Noise and Stochastic Permittivity


	Discussion
	Computational Complexity
	Comparison with Other Methods
	Extensions and Future Work

	Conclusion

