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Quadratic Equality Constrained Least Squares:
Low-Complexity ADMM for Global Optimality

Tong Wei”, Member, IEEE, Huiping Huang
Chong-Yung Chi

Abstract—This letter addresses the quadratic equality con-
strained least squares (QEC-LS) problem, a class of non-convex
optimization problems that arise in various signal processing and
communication applications. We revisit the alternating direction
method of multipliers (ADMM) approach to QEC-LS problem
and investigate its convergence and efficiency. Despite the inher-
ent non-convexity, the proposed ADMM algorithm is proved to
converge globally only requiring the quadratic term equal to a
positive constant. Numerical results demonstrate that our method
achieves global optimality with significantly reduced complexity
compared to existing approaches such as semidefinite relaxation
and primal-dual methods.

Index Terms—ADMM, global optimality, non-convex quadratic
equality constraint.

I. INTRODUCTION

UADRATICALLY constrained quadratic programming

(QCQP) problems with inequality constraints have been
extensively studied in the literature [1], [2], [3]. In this paper,
we focus on a special case of QCQP known as the quadratic
equality constrained least squares (QEC-LS):

minimize ||y — Ax||3, subjecttox”x = P, (1)
xeCN

where y € CM, A € CM*N is of full column rank, C denotes
complex numbers, M and N are positive integers, (-) is the
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Hermitian transpose of a matrix or vector argument, and P > 0
is a given parameter. Problem (1) aims to solve a least square
problem on an ¢5-norm sphere, which has been investigated
in [4], [5], [6] among others. This QEC-LS problem arises in
a wide range of applications including radar systems [7], [8],
wireless communications [9], integrated sensing and commu-
nication (ISAC) [10], array signal processing [11], and image
processing [12], [13], where finding efficient and accurate solu-
tions is critical.

Despite its broad applicability, solving the QEC-LS problem
poses significant challenges due to the non-convex quadratic
equality constraint. As an early investigation, [5] showed that
strong duality can still hold for the non-convex problem (1) under
mild conditions. Following this statement, the projection method
proposed in [6], [14] is introduced as a numerical approach to
solving problem (1). However, this method does not always guar-
antee global optimality unless the problem is well-posed. To ad-
dress these challenges, semidefinite relaxation (SDR), which has
been widely adopted as a convex reformulation technique, can
recover globally optimal solutions to the QEC-LS problem [15],
[16]. Despite its theoretical appeal, SDR requires lifting the
original problem into a higher-dimensional semidefinite form,
leading to a significant increase in computational burden. This
becomes especially prohibitive for large-scale problems and
real-time applications. Alternatively, the primal-dual method
(PDM) offers iterative schemes that directly handle constraints
through dual variable updates [10]. Although the PDM (based
on the Karush—Kuhn-Tucker (KKT) conditions) offers a theo-
retically sound approach to the QEC-LS problem, it still requires
determining the Lagrange multiplier via iterative methods, such
as bisection or Newton’s method. This process involves solving a
nonlinear scalar equation to satisfy the power constraint, which
becomes increasingly time-consuming in large-scale settings;
see [2]. Moreover, the convergence speed of bisection depends
on selecting a valid initial range for the dual variable, which is
not always straightforward and may even require the eigenvalue
decomposition. These practical limitations motivate the devel-
opment of a more computationally efficient approach, especially
for large-scale systems.

Recently, alternating direction method of multipliers
(ADMM) has emerged as a powerful tool for constrained op-
timization, owing to its decomposition capability and empirical
success in various non-convex settings [2], [17]. Although orig-
inally designed for convex problems, ADMM and its variants
have been successfully extended to certain classes of non-convex
problems with provable convergence guarantees under mild
assumptions [18]. However, the analysis is used for non-convex

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
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objectives over convex feasible sets which can not be applied to
problem (1).

In this letter, we propose an ADMM-based algorithm to solve
the QEC-LS problem. Our method reformulates the original
problem into an amenable form for the efficient ADMM updates.
Despite the non-convexity, we show that the proposed algorithm
converges to a globally optimal solution under specific, but prac-
tical, conditions. Global convergence of the ADMM algorithm
is rigorously proven. Compared to the existing approaches, the
proposed method achieves competitive performance with signif-
icantly reduced computational burden, i.e., orders of magnitude
faster than the SDR and three times faster than the primal-dual
method.

II. GLOBAL ADMM SOLUTION

We can first reformulate problem (1) equivalently as

p* : minimize ||y — Ax||3
X,Z

subjectto z —x =0, zllz = P, 2)

where z is the additional variable. We introduce the following
theorem' to reveal the duality property of (2).

Theorem 1: The strong duality holds for non-convex problem
(2) under the mild condition P > 0.

Proof: The Lagrangian of problem (2) is

Lo(x,z,u,v) =yly - yTAx —xT Ay + x"AH Ax
+v(zfz — P) + R(u¥ (z — x)), 3)

where v and u denote the dual variables, and R(-) denotes the
real part of the complex argument. If v =0 and u = 0, the
minimization of Lagrangian (3) reduces to the unconstrained
least-squares problem, whose solution generally does not satisfy
the constraint ||x||? = P. Therefore, we focus on the non-trivial
case of v # 0 and u # 0. Let the complex gradient of (3) w.r.t.
x*, and z*, respectively, equal to zero:

Vilo(x,z,u,v) = —2A7y + 2A"Ax —u =0, (4a)
V2Lo(x,z,u,v) = 2vz+u=0. (4b)
Based on (4), the optimal solutions w.r.t. x, and z are
1
x* = (ATA)! (AHy + 2u) , (5a)
1
[ 5b
z o (5b)

Then, we can define the dual function of (3) by (6) shown at the
bottom of this page. Further, the dual problem of (2) is given by

d* : maximize g(v,u). @)
v,u

'Even though the strong duality holds for problem (1), see [5], the duality
property of problem (2) is still unexplored.
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Let the complex gradient of objective function in (7) w.r.t. v and
u’ to zeros, i.e.,

uHu

Tz =0

vVg(V7 u) = 4V

1 1
Vug(v,u) = ——u - 5(AHA)—lu —(AfA)TAfy = 0.

Then, we conclude that the optimal solutions w.r.t. v and u
should follow

uu
*
V= =+ 1P (8a)
1 1
- 5u* — §(AHA)’1u* = (APA) A"y, (8b)

Substituting (8a) into (5b), we have z*'z* = P which causes

the term v*(z*z* — P) in Lagrangian function (3) to vanish,
where z* denotes the optimal solution of problem (3). Combin-
ing (5) and (8), we can derive

1

2%

z" —x" = —

ut — (ATA)! (AHy + ;u> =0. (9

Note that (9) makes the term R(u*¥ (z*
function (3) vanish. Then, we have

— x*)) in Lagrangian

&* = gl )
_ yHy _ yHAX* —X*HAHy—FX*HAHAX* :p*' (10)

Based on (10), the strong duality holds for the problem (2). This
completes the proof. O

Remark 1: For non-convex optimization problems, KKT
conditions are generally only necessary for global optimality.
However, for quadratic optimization problems with spherical
constraints (e.g. the trust-region problem, a hard case), the
dual problem is convex with a concave objective, and strong
duality holds, implying that the KKT conditions are necessary
and sufficient for global optimality, which is not necessarily
unique [19].

Remark 2: If the strong duality holds, i.e., the duality gap is
zero, and the dual problem is convex, then the saddle point for
the Lagrangian is the global optimal solution of the problem (2).

Remark 3: Theorem 1 differs from [1] in two aspects: (i)
In [1], the authors considered a single inequality constraint over
the real field, while we address least squares with two equality
constraints over the complex field [20], [21]. (ii) Their proof
uses the S-procedure, whereas ours relies directly on the KKT
conditions.

A. ADMM Solution

To improve the convergence properties, ADMM generally
updates the variables based on the augmented Lagrangian. The

g(v,u) = inf Lo(x,z,u,v) = Lo(x*,2",u,v)

1 1
=yfly —yTAA"A) ATy - 4—uHu —vP — iuH(AHA)’lu — R (ATA) A y). (6)
v
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augmented Lagrangian of problem (2) is

£1(x,2,1) = [y — Ax[3+R(u" (2—x))+ Eflz—x[3. (1)
where z7z = P denotes the constraint for variable z, u denotes
the dual variable, and p > 0 is the penalty parameter. Define
v = %u, we have R(uf(z — x)) + 4|z — x||3 = 5|z — x +
v||3 — £||v||3. Then, we can rewrite the scaled augmented La-
grangian (11) as

P P
Lr(x,z,v)= Hy—AXII§+§IIZ—X+VII§—§HVII§- (12)

Within the ADMM framework, each iteration involves mini-
mizing the augmented Lagrangian Lo(x,z,v) with respect to
the primal variables, followed by an update of the dual variable
using the dual ascent method [22]. Specifically, ADMM updates
the primal and dual variables sequentially as follows:

k+1

xt 1 = argmin|ly— Ax|3+ £llz" —x+vF3 (130)

k+1

z argmin g||z —xM 4 vF2 st 2z = P; (13b)

v = argmax g”z’€+1 —xM v - g||v||§ (13¢c)
v

Subsequently, the solutions for the subproblems in (13) are,
respectively, given by

xFHl = (AHA + gI)i1 (AHy + g(zk + vk)) ;o (14a)

Y 2
R =]

S

zk}"rl k)"rl _ Vk)7 (14b)

v (14c)

Note that a set of closed-form solutions are achieved for the
subproblems in (14a) and (14b) which highlights the efficiency
of proposed method.

B. Convergence Analysis of ADMM

In this subsection, we present essential analyses regarding
both the performance and convergence of the proposed ADMM
algorithm. KKT conditions of problem (2) is equivalent to [22]

2AT Ax* — 2A My + px* — p(z* +v*) = 0; (15a)
pz* — p(x* —v*) —vz* = 0; (15b)
2z = P, (15¢)
x*—z"=0. (154d)

Note that the ADMM updates in (14) are exactly solving the
KKT conditions in (15) sequentially. Importantly, the z-update
in (14b) is jointly solving (15b) and (15c), and v-update is
gradually leading to the satisfaction of (15d). Then, we conclude
that the proposed ADMM algorithm can converge to a stationary
point at least, even if it is non-convex [23]. To further discuss
the convergence performance, problem (2) can be reformulated
as the general case

minimize f(x) + g(z), subjecttox —z =0, (16)

TABLE I
COMPLEXITY COMPARISON

Method Complexity
SDR O(N®)
PDM O(2N3 + Nlog(1/e) + MN?)
ADMM O(N3+ K(MN + N? +2N))
15 +X,Ip: 0_05',9,2‘ P :I 0.05

~ X, p=0.1 -ez,p=0.1

% 1 x,p=02 z,p=02

B i =X, p=04 -z, p=04

= X, p=06 -°7,p=06

Z 05 X,Z:O.S 1,2:0.8

S =x,p=1 ezp=1

g o X, p=2 4z,p=2

E “x,p=4 -+z,p=4

o —PDM 1.2

é 0.5 -1215

g% 8 Lurgr P % \
s Small o

L L L L L L L
0 10 20 30 40 50 60 70 80 90 100
Number of Iterations

Fig. 1. Objective versus the number of iterations, M = 4000, N = 1000,

and e = 1076,

where f(x) = ||y — Ax||3 is closed, smooth, bounded, and
convex, and the function

9(z) = {(J)r’oo’

is the indicator function of the non-convex set {z : ||z/|3 = P}.
It is proper and closed, but non-convex, which is different
from [22]. Similarly, the augmented Lagrangian of (16) is given
by

Ep(x,LU):f(X)ng(Z)Jr?R(uH(Z*X)HgHZ*XH% (a7

ifzflz = P,
otherwise.

From Theorem 1, it is seen that strong duality holds for problem
(2). Hence, there exists at least one saddle point for (17), and
‘CP(X*a Z*a u) S L/J(X*v Z*a U*) S Lp(xa z, u*)

Proposition 2: For solving problem (2), ADMM in (14) it-
eratively satisfy: (1) Residual convergence; (2) Objective con-
vergence; (3) Dual variable convergence; (4) Stationary point
convergence.

Proof: Please see the supplemental materials. ]

Remark 4: Theorem 1 establishes strong duality and Propo-
sition 2 shows that the ADMM iterates converge to a stationary
point of problem (2). Thus, we conclude that ADMM for solving
QEC-LS can converge globally under the mild condition, see
Theorem 1 and Corollary 2 in [23].

C. Complexity Analysis

We summarize the complexity of the proposed ADMM and
some benchmarks in Table I, in which € denotes the accuracy
level of PDM and K denotes the total iteration number of
ADMM.

III. SIMULATION RESULTS

Simulations are conducted on a Dell laptop equipped with
an Intel Core i7-10610 U CPU (1.80 GHz, 2.30 GHz Turbo)
and 16 GB RAM, running MATLAB R2023b. We compare the
performance of proposed ADMM algorithm with SDR [15] and
primal-dual method [10], in terms of solution accuracy, objective
value, and running time. Throughout the simulations, the data
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TABLE II
PERFORMANCE AND COMPUTATIONAL COMPLEXITY COMPARISON WITH STATE-OF-THE-ART METHODS

Method, P =0.1, p = 0.2 N =200 N =250 N = 300 N = 350 N =400 N =450
SDR, time cons. (s) 4.1197 6.4038 10.2645 15.1859 28.8541 55.7395
Primal-dual method, time cons. (s) 0.0155 0.0199 0.0295 0.0410 0.0570 0.1158
ADMM, time cons. (s) e = 10~° 0.0125 0.0139 0.0188 0.0251 0.0382 0.0451
ADMM, time cons. (s) e = 10~ 10 0.0107 0.0119 0.0152 0.0223 0.0390 0.0384
ADMM, time cons. (s) e = 1014 0.0111 0.0126 0.0139 0.0203 0.0349 0.0377
SDR, solution err. 0 0 0 0 0 0
ADMM, solution err., e = 10—© 0.1195¢—6 0.1160e—% 0.1080e—6 0.1027¢~6 0.0969¢ =6 0.0897¢—6
ADMM, solution err., e = 10~ 10 0.1827¢= 10 | 0.1593e 10 | 0.1524e= 10 | 0.1651e~ 10 | 0.1417e~ 19 | 0.1477¢~ 10
ADMM, solution err., e = 10~ 14 4.6610e— 1 | 0.3080e—12 | 0.2158¢—12 | 0.5260e—12 | 0.3312¢—12 | 0.6218e 12
Primal-dual method, solution err. 4.1898¢~ 13 9.2742e~ 0.0274e=1 0.1349¢—7 0.2781e~1 0.4323¢= %
N T T T T T T T T T 20039 of T T T T T B
- ST — 42 E:
215 e - | 100 o SR P03 o SDR P03 | g
5| i = SDR, P=0.5 -o-SDR, P =05 . 15=
- > —SDR,P=1  -o-SDR,P=1 —3 ‘:
31 70.02 5 4:'%}\{(‘;’: 201 »»;lr))i.\{i.[;': 201 £
’zﬁ 'z PDM, P =02 PDM, P =02 1 é
= 0039 Z oM. Pt e EDM Pt =
g ) 0 F:E::inm 0.01 5. PDM, P=2 - PDM, P=2 - 3
= QT N T " ok [P p 202 <+ Apar P02 ) v
97 98 99 100 ADMM, P = 0.5 4-ADMM, 5 -6 2
0 ADMM, P=1 —4-ADMM, P = o
N N N N N N N N N MM, P =2 —-ADMM, P =2

0 10 20 30 40 50 60 70 80 90 100
Number of Iterations

Fig. 2.
p=0.2.

Residual versus the number of iterations, M = 4000, N = 1000, and

fory € CM and A € CM*N are generated randomly, where
the entries of y follow a zero-mean complex Gaussian distribu-

tion with covariance ﬁ, i.e., CN(0, ﬁ), and the entries of A

follow CN (0, ﬁ) Meanwhile, we generate the initial value
z € CN(0, +) and dual variable u = 0 for ADMM. Finally, we
terminate ADMM algorithm when the iteration number reaches
the maximum iteration K = 100 or both the primal residual
|zF+! — x**1|2 and the dual residual ||p(z"+! — 2z")||3 less
than the threshold e.

Fig. 1 illustrates the convergence of the objective function over
iterations. We observe that as the penalty parameter p decreases,
the proposed ADMM method tends to converge faster. However,
if p becomes too small, convergence performance can no longer
be guaranteed, which is consistent with the previous discus-
sions [3], [18]. Meanwhile, the proposed algorithm demonstrates
fast and stable convergence across a wide range of p values. For
instance, when p = 0.2, the algorithm typically converges within
11 iterations, highlighting its practical efficiency in solving
large-scale QEC-LS problems.

Fig. 2 shows the evolution of the primal and dual residuals
versus iteration number. The residual decreases monotonically
to zero, indicating stable convergence of the ADMM updates.
This aligns with the theoretical convergence properties discussed
earlier. Thus, we chose the penalty value as p = 0.2 and the
threshold € = 1074 to achieve a fast convergence and accurate
solution, simultaneously, in the sequel. To evaluate the perfor-
mance and the stability of the proposed ADMM algorithm,
hereafter, we run the algorithm with 30 times Monte Carlo
simulations and then calculate the average running time and
objective function value.

Fig. 3 presents the running time and objective function value
versus the number of variables, i.e., N ranging from 150 to
450. We observed that to achieve the same objective value,
SDR requires the most time consumption compared to PDM
and ADMM. Meanwhile, the ADMM method runs twice faster
than PDM when N = 350.

L ; L
150 200 250 300 350 400 450
Number of Variables

Fig. 3.  Running time and objective function value versus the number of
variables, M = 400, p = 0.2 and ¢ = 10714,

350 T T T T T T T 0

300

250

PDM, P
PDM, P =02 o PDM
PDM, P =05 -o-PD! 5
i PDM, P =10 -o-PDM, P =1
150F L _PDM, P=20 -o-PDM, P=2
-~ ADMM, P = 0.1+ ADMM, P = 0.1
100 |- - ADMM, P = 0.2 - ADMM, P = 0.2
- ADMM, P = 0.5 4-ADMM, P = 0.5|
- ADMM, P = 1.0 -ADMM, P = 1
| - ADMM, P = 2.0 4-ADMM, P =2

200

Running Time (s)

50

0 —— ra f s s L L
1000 2000 3000 4000 5000 6000 7000 8000
Number of Variables

-12
9000

Fig. 4. Running time and objective function value versus the number of
variables, M = 4000, p = 0.2 and € = 10714,

Fig. 4 shows the running time and objective function value
versus the number of variables, i.e., [N ranging from 1000 to
9000. Again, to achieve the same objective value, ADMM can
run fater than PDM, i.e., three times faster when N = 7000,
which indicates the computational efficiency of ADMM. Table I
shows the performance under different threshold values of €. It is
observed that as ¢ decreases, the solution error between ADMM
and SDR decreases without a significant increase in running
time.

IV. SUMMARY

We investigated the QEC-LS problem and presented a low-
complexity ADMM-based algorithm that achieves global op-
timality under mild condition, i.e., P > 0. Unlike traditional
approaches such as SDR and primal-dual methods, which either
suffer from high computational cost or require careful tuning, the
proposed method offers a simple yet effective iterative scheme
with guaranteed convergence. Numerical results validate the
efficiency and accuracy of the proposed approach, highlighting
its potential for large-scale and real-time applications in signal
processing and communications.
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