CHALMERS

UNIVERSITY OF TECHNOLOGY

AUTOBargeSim: MATLAB® toolbox for the design and analysis of the
guidance and control system for autonomous inland vessels

Downloaded from: https://research.chalmers.se, 2026-01-13 12:38 UTC

Citation for the original published paper (version of record):

Dhyani, A., Mojaveri, A., Zhang, C. et al (2025). AUTOBargeSim: MATLAB® toolbox for the
design and analysis of the guidance and control system

for autonomous inland vessels. IFAC-PapersOnLine, 59(22): 818-823.
http://dx.doi.org/10.1016/j.ifacol.2025.11.736

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 59-22 (2025) 818-823

AUTOBargeSim: MATLAB® toolbox for the
design and analysis of the guidance and
control system for autonomous inland

vessels *

Abhishek Dhyani* Amirreza Hagshenas Mojaveri **
Chengqian Zhang *** Dhanika Mahipala ****
Hoang Anh Tran **** Yan-Yun Zhang ** Zhongbi Luo **
Vasso Reppa*

* Delft University of Technology, The Netherlands.
** Katholieke Universiteit Leuven, Belgium.
*** Chalmers University of Technology, Sweden.
% Norwegian University of Science and Technology, Norway.

Abstract: This paper introduces AUTOBargeSim, a simulation toolbox for autonomous inland
vessel guidance and control system design. AUTOBargeSim is developed using MATLAB and
provides an easy-to-use introduction to various aspects of autonomous inland navigation, including
mapping, modelling, control design, and collision avoidance, through examples and extensively
documented code. Applying modular design principles in the simulator structure allows it to be
easily modified according to the user’s requirements. Furthermore, a GUI interface facilitates
a simple and quick execution. Key performance indices for evaluating the performance of the
controller and collision avoidance method in confined spaces are also provided.

Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: Guidance, navigation and control (GNC) of marine vessels; Nonlinear and optimal
control in marine systems; Modeling, identification, simulation, and control of marine systems

1. INTRODUCTION

The guidance, navigation, and control (GNC) system plays
a crucial role in the safe and reliable operation of ASVs.
This system comprises technologies ranging from modern
sensors to complex algorithms and software that enable
the ASV to perceive its environment and have situational
awareness and decision-making capabilities. Furthermore,
simulation-based testing of the GNC system is an essential
step in the design process. A few freely available scien-
tific simulation software/ toolboxes have been proposed
for maritime simulation (See e.g., Perez et al. (2006);
Sukas et al. (2019); Blindheim and Johansen (2021); Kra-
sowski and Althoff (2022); Tengesdal and Johansen (2023);
Clement et al. (2024)). Arguably, the marine systems sim-
ulator (MSS) (Perez et al. (2006)) is the most popular
and widely used MATLAB® -based toolbox, consisting
of various classes of models, transformation functions,
guidance and control algorithms, among others. More re-
cently, simulation toolboxes focusing on evaluating colli-
sion avoidance algorithms have also been proposed (see

* Corresponding author’s e-mail: a.dhyani-1@tudelft.nl

The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant agreement No
955.768 (MSCA-ETN AUTOBarge). This publication reflects only
the authors’ view, exempting the European Union from any liability.
Project website:http://etn-autobarge.eu/.

All authors contributed equally.

Krasowski and Althoff (2022); Tengesdal and Johansen
(2023); Clement et al. (2024)).

While the existing simulation platforms are well-equipped
with many of the necessary functionalities for autonomous
vessel simulation, the majority of these platforms consider
open-sea simulation only. However, confined waterways
such as inland waterways, ports and canals, which are key
use cases for the deployment of autonomous vessels, are
not considered. Operating vessels in confined waters is par-
ticularly challenging as they are constrained by several fac-
tors, such as canal width, infrastructures, dynamic water
levels, river currents, and riverbed variations. The existing
platforms rely on mathematical models to simulate vessel
maneuvers that mimic the characteristics of a seagoing
vessel. The hydrodynamic forces generated due to shallow
water depth in inland waterways can significantly impact
the vessel’s motion and maneuverability. By default, these
platforms do not offer quantitative performance indicators
for the evaluation of guidance and control algorithms.
These metrics provide useful benchmarking data for com-
paring various algorithms to state-of-the-art methods.

In this work, we address these gaps by introducing AUTO-
BargeSim, a MATLAB®-based simulation toolbox for the
design and evaluation of guidance and control algorithms
for autonomous inland navigation. AUTOBargeSim has
been created with a focus on modularity, reproducibility,
and ease of use as the key design principles and is freely
available for research and educational purposes. It allows
the users to visualize inland map features, set up scenarios

2405-8963 Copyright © 2025 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2025.11.736

Abhishek Dhyani et al. / IFAC PapersOnLine 59-22 (2025) 818-823 819

System Input
(Map selection, start and

end positions, other
parameters)

Update Map !

Calculate
Model
Parameters

[Environmental
Disturbances
Plan Desired Detect AAre obstacles’
—Ye
e es—»{Adjust Path
o
reached?

MMG Inland
Vessel Model
Ean. (1)

Model

Modules

Guidance

Generate
Control
Commands

Control !
e ey
1
T
i
i
i
1
1
]
i
]
i
]
i
1
i
i
]
i
]
i
1
i
]
i
]
]
i
]
i
]
i
]
i
1
i
]
]
i
T
]

Fig. 1. Flowchart depicting the various modules and the
flow of control

for vessel navigation, select various parameters, simulate
the vessel motion, and evaluate the performance of vessel
path following and collision avoidance algorithms. Vari-
ous examples provide an introduction to applying specific
classes and methods from the toolbox based on the user’s
requirements.

The remainder of the paper is organised as follows: in
Section 2, instructions for installing and using the sim-
ulator toolbox are given. Its design and structure as well
as the comprising methods and parameters, are detailed
in Section 3. Further, qualitative metrics for performance
evaluation are presented and described in Section 4. Fi-
nally, the conclusions and scope for future development
are discussed in Section 5.

2. INSTALLATION AND USAGE

AUTOBargeSim can be downloaded from its GitHub
repository . The toolbox includes several tutorials for
easily customizing the methods included in the modules.
These tutorials can be found in the respective module
directories. Furthermore, the GUI allows a simple and fast
execution of the toolbox, with the possibility to adjust
some critical inputs, such as the map area, controller gains,
etc. It can be executed by running the script main_gui.m,
selecting between various options in the GUI window and
pressing the Ezecute button. It should be noted that the
GUI currently has a limited number of inputs; however,
the underlying methods allow far more input flexibility.

3. DESIGN AND STRUCTURE

The simulator follows a modular design. Based on func-
tionality, it is divided into several modules, and under
each module, various algorithms and demos are provided.
The overall structure and the connection between various
modules are illustrated in Fig. 1. The mathematical model
describing the IWV dynamics and the actuators is defined
in the Model module while considering environmental dis-
turbances, including currents and shallow-water effects.
Static environmental data, including waterway boundaries
and the locations of static objects along the path, is

L https://github.com/AUTOBarge/autobargesim

extracted from chart files within the Map module. The
map module also provides a set of initial waypoints and,
subsequently, a desired path between two selected points
on the map, which serve as the inputs to the Guidance
module. The Guidance module employs a guidance law
to compute the desired/ reference course angles for vessel
navigation. Next, the reference course angles are provided
to the Control module, and a control law computes the
desired rudder angle for steering the vessel (Zhang et al.
(2025)). In the case of a collision avoidance scenario, the
motion of a target vessel is also simulated, and the own
vessel performs a collision avoidance maneuver if required.
The simulation terminates when the vessel successfully
reaches the provided endpoint. Finally, all the processed
data is used to update the map visualization, and the
various performance metrics are displayed. Each module
is explained in detail in the subsections that follow.

3.1 Model Module

Inland vessels frequently operate on confined waterways in
the presence of dynamic traffic and hydraulic structures
such as bridges and locks. Therefore, a reliable maneuver-
ing model for accurately predicting the vessels’ dynamics
is critical for safe navigation.

The maneuvering model follows the popularly known Ma-
noeuvring Modelling Group (MMG) model (Ogawa and
Kasai (1978)) architecture, where the hydrodynamic forces
and moments are derived into individual components. The
original MMG model was developed for classic commercial
vessels in open water. Due to its flexible and modular
structure, the model can be extended by incorporating
shallow water effects to account for the influencing factors
of inland waterways. The rigid body dynamics can be
represented as:
(m +mg)i — (m +my)vr —zegmr® = Xy + Xp + Xg,

(m +my)0 — (m+ mg)ur + zegmi- =Yy + Yz,

(Iz —|—1:2Gm+ Jz) 7+ zem(0 +ur) = Ng + Ng,

(1)
where the left side contains the mass (m,mg, m,) and
inertia terms (I,,J,); (u,v,r) represent the surge, sway
velocity and the yaw rate; (X, Y, N) denote the summation
of the surge force, the sway force, and the yaw moment.
The subscripts (H, P, R) represent the hydrodynamic force
of the individual components acting on the hull, propeller,
and rudder, respectively. Therefore, the model is divided
into two classes: modelClass.m calculates the hydrody-
namic forces acting on the hull, and actuatorClass.m
calculates the propeller thrust and rudder forces (see Fig.
2). It should be noted that the shallow water effect is
included by the modified terms acting on the ship hull
(X, YH, Nir), including the added resistance and sway
force due to the reduced under-keel clearance.

Hydrodynamic Forces on the Hull
The force and moment acting on the hull can be calculated
as:
Xy = 0.5pLTU* X}y,
Yy = 0.5pLTU?YY,, (2)
Ny = 0.5pL*TU?N},,
where p is the fresh water density, L is the vessel length,
T is the vessel draught, U is the total speed, and

820 Abhishek Dhyani et al. / IFAC PapersOnLine 59-22 (2025) 818-823

Ship_params_calculator
Ship dimensions

hydrodynamic derivatives —|

Environment

Water depth
Current velocity

Manoeuvring model
Actuator model
Hull force
get_prop_force -|
J External force
get_rud_force
Relative velocity

Vessel motion update

Fig. 2. Architecture of manoeuvring and actuator module.

(Xy,Y{, Ny;) are non-dimensional forces and moment,
given as:

Xy =—-R) cos? B + X/ﬁﬁﬂgz + Xérﬁmr/ + X;r/2

+ Xpps60m: (3)
Vi =YiBm + Y1 + YigpB0 + Vg, Bt

+ Vi Bt + V1", (4)
Nip = NpBm + N’ + NjgaB + Njg,Bor’

+ Ny Bt + Ny, (5)

where —R{, is the resistance coefficient including shallow
water effect (Zhang et al. (2023)), and (Xgg, ..., Ny,
are the so called hydrodynamic derivatives which can be
calculated from the function ship_params_calculator

using empirical formulas based on ship dimensions.

Propeller and Rudder Forces

The actuator module (actuatorClass) is based on a
conventional propeller-rudder configuration. The thrust of
a ducted propeller can be calculated using the function
(get_prop_force) based on the equation:

Xp = (1=)pnd Db Kr(J), (6)
where t is the thrust deduction, np is the propeller rpm,
Dp is the propeller diameter and Kr(J) is the thrust
coefficient as a function of advanced ratio J. In this work,
the open water coefficient is derived from the open-source
propeller design tool OpenProp (Epps et al. (2009)). The
rudder steering force and moment are calculated using
function (get_rud_force) as follows:

Xp=—(1—tg)(FE + F{)sing,

Yr = —(1+ag)(Ff + F§)cos?, (7)

Ngp = 7(‘TR + OéHLL‘H)(FII\; + F]?/) cos 0,
where Fy is the rudder normal force, the superscript
P and S denote the rudder at port side and starboard
side, tp denotes the steering resistance deduction factor,
apg represents the rudder force increase factor, xg is the
relative location of rudders and keeping identical at each
side, x g is the relative acting point of the additional lateral
force, and ¢ is the rudder angle. Here, Fy is given as:

6.13A

Fn = 0.5pARU% (A+225 sinaR) , (8)
where Ap is the rudder area, Ugr is the incoming flow
velocity at the rudder (Ur = \/u% + v%), A is the rudder
aspect ratio and ap is the effective inflow angle at the
rudder during manoeuvring (see Ogawa and Kasai (1978)).

Planner

Processor

G(Graph)

PK l Nodes: Table

[\
| |
| PK | Edges: Table |
| |
| |
| I
|

sourcefile: String

boundingbox: Array
SOUACC: Double

Segments (Pgon_info: water axis)
VERDT: Double

Input:
Shapefiles

PK
= ‘Output:
|waypoints

polygon: Polyshape

FK2| region: String [LN
Pgon_memory -,

PK | Pgon_memory id: int

Start_poini
End_point

name: String

polygons: Polyshape

Unique_Coords

points: Array Unique Coords id: int

lines: Array X, Y: Array

|
|
|
|
|
|
|

Fig. 3. Entity Relationship Diagram (ERD) shows the
relationship between different data in each submodule
of the map module.

3.2 Map Module

The Map module processes Inland Electronic Navigational
Chart (IENC) data to provide essential environmental
information for path planning and collision avoidance. It
comprises two main submodules: the Processor and the
Planner. The Processor converts input shapefile (. shp)
data into a structured format called pgon_memory, while
the Planner uses this data to generate waypoints with
associated depth information, as shown in Fig. 4. Fig. 3
illustrates the relationships between data entities in these
modules. Due to MATLAB’s inability to decode S-57 stan-
dard ENC files (.000 files), which contain standardized
navigational data with semantic tags and attributes, we
employ a preprocessing step using (GDAL/OGR contribu-
tors (2020)) Python library. By extracting specified regions
and attributes from the IENC and structuring them into
spatial data, compatibility with the simulator is ensured.

Processor

The Processor reads shapefiles generated from the .000
ENC files and categorizes them based on predefined navi-
gational features. Users are allowed to add predefined fea-
tures from the S-57 standard as needed. The following are

Navigation Map with Graph

5126 M e Ty (e 7

51.24 77 X 3.5641
Y: 51.0979
|| Depth: 1.6

X: 3.5622
Y: 51.0948
Depth: 2.7

1

1

1

1

51.22 F :
5121 :
1

51.18

Latitude

51.16

5114

5112

511F

51.08

51.06 L L L N L L L
3.45 3.5 3.55 3.6 3.65 3.7 3.75 3.8
Longitude

Fig. 4. The navigation map for the Ghent area includes
the starting point (green), end point (red), the way-
points (black), and the graph composed of nodes and
edges. An attached, localized, zoomed-in view of the
navigation map, displaying the coordinates and depth
information of waypoints within the waterway.

Abhishek Dhyani et al. / IFAC PapersOnLine 59-22 (2025) 818-823 821

the main features: Depth Areas (depare): Polygons with
attributes such as Sounding Accuracy (SOUACC), Vertical
Datum (VERDAT), and polygon extent (boundingbox),
providing essential depth and positional data. Waterway
Axes (wtwaxs): Polylines indicating central navigational
paths within waterways. Bridges (bridge): Polygons rep-
resenting bridge locations and dimensions, important for
height restrictions. Land Areas (1lndare): Polygons de-
noting non-navigable regions.

For each category, the Processor reads geometric data
and attributes from the shapefiles, constructing the
pgon_memory structure with fields: name: Category
name (e.g., depare, wtwaxs). points: Coordinates of
point features. lines: Coordinate arrays of line fea-
tures. polygons: polyshape objects of polygon fea-
tures. info: Attributes for each geometric entity.

For depth areas, the Processor constructs polyshape
objects and extracts depth attributes like SOUACC and
VERDAT, as well as the boundingbox and the unique
identifier of the source .000 file (sourcefile or
region), storing them in depare.info. For processing
waterway axes, it extracts coordinates, removes redundant
points to maintain data integrity, and splits the data
into multiple segments, associating each line with relevant
metadata (region).

Planner

The Planner uses pgon_memory to perform path planning
by constructing a navigational graph denoted as G illus-
trated in Fig. 4. This graph comprises nodes and edges
derived from wtwaxs. Nodes are derived from unique
coordinates (unique_coords) at segment endpoints of
waterway axes, and edges represent connectivity between
nodes. Disconnected components are linked by connecting
the nearest nodes.

To ensure the graph G is fully connected, the Plan-
ner checks for disconnected components using functions
conncomp and connects them by identifying the clos-
est nodes between components. Depth information from
depth areas (depare) is associated with the nodes and
edges of the graph by spatial queries. Specifically, the
Planner performs a hierarchical search from region to
boundingbox to polygon to determine if nodes or path
points are within depth polygons and assigns depth values
from attributes SOUACC and VERDAT to the corresponding
nodes and edges.

Path planning is performed by finding the shortest path
in the graph G that satisfies depth constraints using
the Dijkstra algorithm (Dijkstra (2022)). The Planner
considers the given starting point (given_ pointl) and
ending point (given_point?2), locating the nearest nodes
in unique_coords and planning a path between them.
The resulting path is stored in path_points, with the
corresponding depth information saved as path_depths.

To refine the path for practical navigation, the Planner
removes duplicate points and smooths the trajectory. The
final output is a series of waypoints in path_points
with corresponding depth information in path_depths,
ensuring the planned path is safe and efficient given the
vessel’s draft and environmental constraints.

3.8 Guidance Module

The main goal of the Guidance module is to fulfil two
tasks: Track Keeping and Collision Avoidance. The Track
Keeping submodule ensures that the ship sails toward
the next waypoint. The Collision Avoidance submodule
adjusts the speed and course angles provided by the Track
Keeping submodule of the ship to avoid obstacles.

Track Keeping

The Track Keeping submodule receives the waypoint list
from the map class and provides a course angle and speed
reference for Collision Avoidance to ensure that the ship
follows the desired waypoints. In this submodule, we define
the track-keeping class as a superclass containing a
common function that can be used by subclasses created
for specific track-keeping controllers. In this class, we
provide a function to find the current active waypoint
in the waypoint list and the position of the ship. The
key properties are the radius of acceptance, R,, and
pass_angle_threshold, which are used to identify if
the ship passed a waypoint.

The default track-keeping controller is the Line-of-Sight
(LOS) steering algorithm (Fossen (2011)). The only prop-
erty of this subclass is the proportional gain of the LOS
steering law K, . = 1/Djos, with Djos being the look-
ahead distance. The main function is compute_LOSRef,
which receives the current state of the vessel, a waypoint
_list containing the coordinates of the waypoints, and
the expected nominal speeds at each waypoint. It then
returns the reference course angle, yq.

Collision Avoidance

The collision avoidance submodule is responsible for mod-
ifying the course and speed commands provided by the
Track Keeping submodule to avoid collisions. This sub-
module contains two main classes: a superclass named
colav and a subclass named sbmpc. The colav class
includes common methods necessary to implement any
collision avoidance algorithm, such as internal kinematic
models for trajectory prediction. Users are encouraged to
use these methods to implement custom collision avoid-
ance algorithms in this simulator. End-users interact with
the application layer of the module, which includes classes
related to specific collision avoidance algorithms. Cur-
rently, only one such class is available in this simulator: the
class implementing the Scenario-based Model Predictive
Control (SBMPC) algorithm (Johansen et al. (2016)). The
SB-MPC algorithm presents a proactive collision avoid-
ance strategy based on simulation and receding horizon
optimization. It guarantees compliance with COLREGS
Rules 6, 8, and 13-19 and mitigates collision risks by eval-
uating a cost function that also accounts for maneuvering
effort. The exact details and components of the algorithm
are provided in Mahipala and Johansen (2023).

The sbmpc class contains the methods and properties
related to the use of the SBMPC algorithm. Its key prop-
erties include T and dt, which represent the prediction
time horizon and the algorithm sample time, respectively.
Furthermore, a property named tuning.-param contains
the constant tuning parameters listed in Johansen et al.
(2016) as subproperties, which can be modified using op-
tional arguments when initializing the sbmpc object. The

822 Abhishek Dhyani et al. / IFAC PapersOnLine 59-22 (2025) 818-823

class only has one public method that is accessible to the
user, which is named run_sbmpc (). The function takes
the current state of the vessel, the course and the speed
commands from the Track Keeping submodule, course,
and speed modifications from the previous time step, and
the states of one or more target vessels as input. The out-
puts of the function are the course and speed modifications
for the current time step.

3.4 Control Module

The Control module provides two low-level controllers,
namely Proportional-Integral-Derivative (PID) control and
Model Predictive Control (MPC), to calculate the re-
quired rudder angle for navigating the vessel and en-
suring that it tracks the desired heading angle. The
Control module is defined as a class containing several
properties and methods. The properties include num_st,
num_ct, and Flag_cont, which represent the number
of state variables, the number of control variables, and
the selected control method, respectively. It also includes
pid._params, a structure data type containing the PID
controller’s parameters including K,: proportional gain,
T;: integral time-constant, Ty: derivative time-constant,
and psi_d_old, error_old for storing the desired head-
ing angle and heading angle error from the last iteration.
Finally, the structure mpc_params contains the MPC con-
troller’s parameters including T: sampling time, N: pre-
diction horizon, headingGain: weighting gain for head-
ing angle, rudderGain: weighting gain for rudder angle,
max_iter: maximum number of iterations for the MPC
and deltaMAX: maximum value for rudder angle. The
methods within this class manage tasks such as handling
the state variables and updating the control parameters.
The property states represents the controlled state vari-
ables of the system, s = [r, 1/1]T. Further, the variables 14
and 74 stand for the desired heading angle and turning
rate, which are the outputs of the Guidance module, and

form the reference input vector, sef = [r4, wd]T. A detailed
explanation follows in the respective subsections below.

PID Controller

The PID controller is a classical control technique popular
for its simplicity and ease of implementation. Within the
Control module, the PID controller is the default controller
choice. It determines the rudder angle by minimizing the
error between the desired and actual heading angles. The
control law can be stated as:

5c(t) = pre(t)+Td(¢e(t)*¢e(t71))+% (Z ¢e¢> ’ (9)
" \i=0

where 1. (t) = ¥(t) — ¥4(t) is the heading angle error, and
K, T; and T, are the controller’s proportional gain, the
integral and derivative time constants, respectively. The
method LowLevelPIDCtrl computes and outputs the
desired rudder command ¢, by using the i variable from
states and the reference heading angle 14 as inputs,
respectively.

Model Predictive Control (MPC)

This subsection describes the implementation of MPC
within the Control module. The MPC determines the
rudder control input for the vessel based on the desired

heading angle and turning rate. The Control module in-
cludes multiple methods for formulating the MPC for
rapid implementation. These methods include init_mpc,
initial_guess_creator, constraintcreator and
LowLevelMPCCtrl. The init_mpc method employs
CasADi (Andersson et al. (2019)) as the backbone to
formulate a graph stored in mpc_nlp for solving the con-
strained Nonlinear Programming (NLP) problem defined
within the MPC. The initial_guess_creator method
requires two inputs, the initial states and the initial control
input, to construct the initial guess vectors and store
them in an internal structure. The constraintcreator
obtains its necessary information from mpc_params and
generates a built-in structure for storing all the needed ar-
guments to be passed on to the NLP solver created by the
init_mpc. The method for building the MPC controller
is LowLevelMPCCtrl, which uses states, S.f, args,
initial_guess and mpc_nlp as its inputs. The variable
args is the output of the constraintcreator method
and presents the NLP arguments. Note that this method
is required to be called at each iteration of the simulation
and solves the following optimization problem:

rr;in J (8, Sref, Oc, k)

subject to s [k + 1] = f(s[k], d.[k]),
s[0] = s,
s € Us,
where f(s[k],d.[k]) denotes the prediction model describ-
ing the relation between the states and the input, and U, C
R? represents the set of permissible states (Fossen (2011)).
Moreover, J represents the cost function and can be for-

N
= Zi:l [(5 - STEf)a+i)Q(S -
Sref) (ki) T (§C(k+i_1))2p], where Q € R? and p € R are

(10)

mulated as J(s, Sref, ¢, k)

the state- and control- weights, respectively, and they are
chosen by the designer. Solving the optimization problem
(10) yields the optimal rudder angle for the time instance
k+1.

4. PERFORMANCE EVALUATION

The guidance and control module includes functions used
to evaluate the controllers, namely the track-keeping and
path-following controllers.

4.1 Track-keeping Control

The perf function under track-keeping class provides
the following indices:

(1) Nominal distance (Dpom): The cumulative dis-
tance between waypoints from the start point to the
endpoint, and is computed as:

N—-1
Dhom = Z \/(xq;ufl
i=1
where [2;"7y;"?] is the position of i*" waypoint, and N
is the number of waypoints.

(2) Nominal navigation time (Thom): The “unreal”
time it takes for the vessel to sail from the start
point to the endpoint with the nominal speed, vyet.
The nominal navigation time is calculated as Tyom =
Dnom/vrcf~

=z)+ (i —)%

Abhishek Dhyani et al. / IFAC PapersOnLine 59-22 (2025) 818-823 823

(3) Actual navigation distance (Dactual): The actual
navigation distance that the vessel sails from the start
point to the endpoint and is computed as:

Z \/($z+1 —2i)? + (Yit1 — ¥i)?,

where [z;, y;] is the position of the ship at time 4, and
7 is the total simulation iteration taken for the vessel
to reach the endpoint.

(4) Actual navigation time (Tactual): The “unreal”
time that it takes for the vessel to sail from the start
to the endpoint and is calculated as Tactual = AT X Z,
with AT is the sampling period of the simulation.

actual

4.2 Path Following Control

To evaluate the controller’s performance for the vessel’s
path following control, the following key performance
metrics have been utilized:

(1) Cumulative Heading error (E): The cumulative

heading error . . is calculated as Ey = ftjll(zp(t) -
Yq(t))dt, where 14(t) is the desired heading angle at
the time instant t.

(2) Cumulative cross-track error (Ey;): The Cumula-
tive cross-track error is calculated by

Xt—/ J T = @),

where (a:cl(t), Yel (t)) are the points of the desired
path that are at the closest distance from the vessel’s
position at the time instant t.

- ajcl

In addition, metrics for the rudder angle fluctuation rate
and energy consumption can also be incorporated, and are
planned for future work.

5. CONCLUSION AND FUTURE WORKS

This paper presented AUTOBargeSim, a toolbox for sim-
ulating autonomous inland vessels. AUTOBargeSim pro-
vides a vital environment for testing various aspects of
autonomous vessel navigation in inland waterway envi-
ronments. Its modular design provides improved flexibil-
ity, allowing users to easily modify or replace individual
modules without impacting the functionality of others.
Further, AUTOBargeSim is extensively documented and
openly available, promoting reproducibility in the design
and development of marine navigation systems.

The future developments of the simulator will aim to incor-
porate additional aspects of autonomous vessel operations,
such as considering sensor characteristics and abnormal
events. A communication module will be developed to
allow information exchange between vessels, providing col-
laborative navigation capabilities. Moreover, the collision
avoidance system will be evaluated against metrics suit-
able for inland waterway scenarios. Currently, the toolbox
supports only constant-speed vessel simulations; however,
it is planned to include variable-speed maneuvering capa-
bilities to reflect real-world operational characteristics.

REFERENCES

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., and
Diehl, M. (2019). CasADi — A software framework for

nonlinear optimization and optimal control. Mathemat-
ical Programming Computation, 11(1), 1-36.

Blindheim, S. and Johansen, T.A. (2021). Electronic
navigational charts for visualization, simulation, and
autonomous ship control. IEEE Access, 10, 3716-3737.

Clement, B., Chaffre, T., Sarhadi, P., and Dubromel,
M. (2024). Colsim, a simulator for hybrid navigation
acceptability and safety. IFAC-PapersOnLine, 58(20),
147-152. 15th IFAC Conference on Control Applications
in Marine Systems, Robotics and Vehicles CAMS 2024.

Dijkstra, E.W. (2022). A Note on Two Problems in Con-
nexion with Graphs, 287-290. Association for Comput-
ing Machinery, New York, NY, USA, 1 edition.

Epps, B., Chalfant, J., Kimball, R., Techet, A., Flood,
K., and Chryssostomidis, C. (2009). Openprop: An
open-source parametric design and analysis tool for
propellers. In Proceedings of the 2009 grand challenges
in modeling & simulation conference, 104-111.

Fossen, T.I. (2011). Handbook of marine craft hydrody-
namics and motion control. John Wiley & Sons.

GDAL/OGR contributors (2020). GDAL/OGR Geospa-
tial Data Abstraction software Library. Open Source
Geospatial Foundation. URL https://gdal.org.

Johansen, T.A., Perez, T., and Cristofaro, A. (2016). Ship
Collision Avoidance and COLREGS Compliance Us-
ing Simulation-Based Control Behavior Selection With
Predictive Hazard Assessment. IEEE Transactions on
Intelligent Transportation Systems, 17(12), 3407-3422.

Krasowski, H. and Althoff, M. (2022). Commonocean:
Composable benchmarks for motion planning on oceans.
In 2022 IEEFE 25th International Conference on Intelli-
gent Transportation Systems (ITSC), 1676-1682. IEEE.

Mabhipala, D. and Johansen, T.A. (2023). Model Predictive
Control for Path Following and Collision-Avoidance of
Autonomous Ships in Inland Waterways. In 2023 31st
Mediterranean Conference on Control and Automation
(MED), 896-903. ISSN: 2473-3504.

Ogawa, A. and Kasai, H. (1978). On the mathematical
model of manoeuvring motion of ships. International
shipbuilding progress, 25(292), 306-319.

Perez, T., Smogeli, O., Fossen, T., and Sorensen, A.J.
(2006). An overview of the marine systems simulator
(MSS): A simulink toolbox for marine control systems.
Modeling, identification and Control, 27(4), 259-275.

Sukas, O.F., Kinaci, O.K., and Bal, S. (2019). Theoretical
background and application of mansim for ship maneu-
vering simulations. Ocean Engineering, 192, 106239.

Tengesdal, T. and Johansen, T.A. (2023). Simulation
framework and software environment for evaluating au-
tomatic ship collision avoidance algorithms. In 2023
IEEE Conference on Control Technology and Applica-
tions (CCTA), 186-193. IEEE.

Zhang, C., Dhyani, A., Ringsberg, J.W., Thies, F., Ne-
genborn, R.R., and Reppa, V. (2025). Nonlinear model
predictive control for path following of autonomous in-
land vessels in confined waterways. Ocean Engineering,
334, 121592.

Zhang, C., Ringsberg, JJW., and Thies, F. (2023). De-
velopment of a ship performance model for power esti-
mation of inland waterway vessels. Ocean Engineering,
287, 115731.

