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Abstract 
Artificial intelligence (AI) is increasingly introduced into scientific 
practices, including NASA’s missions that explore conditions for life and 
habitability on other planets and moons. How does the development of new 
AI tools within these missions transform scientific knowledge production? 
	 Drawing on theories from Science and Technology Studies (STS), 
this dissertation analyzes science as a cultural practice. It is based on 
ethnographic research conducted at NASA and within the wider community 
of planetary scientists and astrobiologists, including interviews and 
documentary materials. 
	 The dissertation demonstrates how efforts to realize visions of 
autonomous science beyond Earth already reshape the everyday work of 
scientists on the ground. It shows how AI is shaped by organizational 
structures, knowledge infrastructures, and scientific cultures at NASA, 
while simultaneously feeding back into these dimensions. Boundary work 
to sustain the legitimacy of planetary missions influences the purposes for 
which AI can be developed – to identify organic molecules, to explore 
habitability and potential biosignatures. 
	 The study further shows how field sites, laboratories, and national 
databases together constitute a knowledge infrastructure that shapes AI by 
determining which data are available for training. Choices of field sites are 
influenced by accessibility and symbolic value, rendering some places more 
popular than others, which skews knowledge production. Digital databases 
and AI training datasets serve as libraries of knowns against which the 
unknown is identified. Decisions about anomalies, artifacts, and novelty in 
data are central to both AI design and scientific discovery. The study 
highlights the limits of performance metrics and the importance of 
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negotiations with domain experts, particularly in the emerging use of 
synthetic data. 
	 Although AI remains at an early stage of development in the cases 
studied, it already reshapes power relations in scientific knowledge 
production by introducing new ideals of epistemic order and altering who 
determines the value and usability of data. 
	 By providing an empirical account of AI development in one of the 
most impactful scientific institutions, this dissertation contributes to 
discussions about data-driven solutions in science, and the epistemic 
consequences of using AI in science on Earth and beyond. 

Keywords: space explorations, NASA, AI in science, machine learning, 
synthetic data, science and technology studies, social studies of outer space, 
epistemic cultures, epistemic responsibility, truth-spots 
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Chapter 1 Introduction – Ways of Knowing 
Other Worlds 

This thesis is about how the ways of knowing other worlds change with  the 
introduction of new technological tools. Based on fieldwork at NASA 
Goddard Space Flight Center, I analyze science behind the scenes at a point 
in time where new AI tools are introduced for the purposes of “science 
autonomy” – the ability of scientific instruments to analyze their own data 
onboard missions to other planets and moons. These missions are one of the 
ways in which NASA explores conditions for past, present, and future life 
in the universe. Although these subjects concern intimidatingly big 

1

Figure 1. An image of Titan from Cassini-Huygens 
mission. Source: NASA/JPL/Space Science Institute



questions, this dissertation focuses on the practices of scientists and 
engineers, with the hope to make the cosmic, and molecular scales more 
approachable. The point of departure in this study is that scientists and 
engineers, as any other groups of people, share a culture – a particular set of 
meaning-making activities, which constitutes the ways in which they 
produce knowledge (Knorr Cetina, 1999). Based on this premise, scientific 
claims about other worlds, and the place of life in the universe, are results 
of negotiations within, and between particular cultures at NASA. This 
dissertation discerns these cultures alongside scientists and engineers in the 
laboratories, during meetings, and breaks, as well as in interviews, strategic 
documents, and scientific publications.  
	 As we consider science as a cultural practice, we must also keep in 
mind that science is not just any kind of domain, but a very powerful one. 
Scientific knowledge claims have an authority in informing and 
legitimizing future courses of action by individuals, organizations, and 
states. The purpose here is to make visible how NASA’s aspirations to 
comprehend life as a universal phenomenon derive from local places, and 
practices that entail particular ways of knowing.  
	 This dissertation provides an empirical account and theoretical 
formulations about the major actor in explorations of outer space. It offers 
insights about scientific knowledge production, and more specifically, 
scientific knowledge production with AI. It does so by showing how the 
introduction of new AI tools for science autonomy changes the ways in 
which life is made known in science at NASA. 

New Tools To Produce Knowledge about Life 
Since the ancient times, humans have gazed up to the sky in wonder about 
the universe, telling each other stories about our origins and futures. The 
big questions, previously posed by humans looking up with the naked eye, 
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are rephrased in the scientific objectives of NASA missions. Are other 
planets habitable? Could they sustain life? One of the destinations of 
NASA’s missions is the largest moon of Saturn, Titan (Figure 1). Beneath a 
thick orange-brown haze, Titan’s surface is covered with dark sand dunes. 
The temperature is -179 degrees Celsius. Under its icy crust, there might be 
a liquid ocean of water. Beyond the possible presence of water, often 
considered one of the necessary conditions for life, Titan is also full of 
organic molecules – the building blocks of life. To explore environments 
such as Titan, which is around 1.5 kilometers billions away from Earth, 
NASA scientists and engineers send robotic missions that collect samples 
and conduct scientific experiments at the site. In most cases, the robots 
never come back to Earth. Nor do they send back the samples of rocks, or 
gases. What they do send back is information. Scientists gaze on the 
computer screen and the data, which shape the stories about the origins, 
present, and futures of life on our planet. 
	 Transfer of scientific data across the universe is reminiscent of the 
science fiction tales, like Star Trek, where objects and people can become 
immaterialized and teleported from one place to another. Some of the 
scientists and engineers at NASA are inspired by these imaginaries. 
However, the material world is posing severe challenges for sending 
scientific data between planets. First, the amount of data that can be 
transferred is limited. Because of that, although the miniaturized laboratory 
instruments on other planets can produce enormous amounts of data with 
very detailed information, not all of it can be sent back to Earth. Second, 
throughout the interstellar journey at the speed of light, the signal becomes 
weaker and weaker, the farther away the planet is. Some of the data become 
lost on the way. Third, sending data through the immense distances to other 
planets and moons takes time. The transfer of data between Earth and Titan 
will take 70 to 90 minutes, which significantly prolongs decision making 
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for teams of scientists and engineers, who operate the spacecraft from 
Earth.  While the data is being transferred between planets, the billion 1

dollar mission stands still and awaits commands. 
	 The solution to the challenges of data transfer, according to a group 
of scientists and programmers at NASA Goddard Space Flight Center, is 
what they refer to as “science autonomy.” This group posits that to 
“maximize” science, data should be analyzed in real-time onboard the 
instrument, rather than sent back to the human scientists on Earth for 
review. They suggest that scientific instruments should operate, analyze, 
tune and direct themselves autonomously. Their idea was acknowledged in 
the most important strategic document (NASEM, 2023) defining the future 
activities of NASA, which paves the way for a fundamental shift in 
decision making in NASA missions. The plan is to train algorithms – AI, 
machine learning, deep learning, etc – to prioritize which data is valuable in 
searching for signs of life and habitability on other planets and moons. In 
future missions, algorithms might make decisions about what is worth 
knowing about the universe.  
	 The term autonomy comes from the Greek autonomía, meaning 
self-governance. In philosophy, autonomy refers to the capacity of an agent 
to act on the behalf of their own will. In the case at NASA, autonomy 
figures as a property of technological systems. Autonomy differs from 
automation.  Automated systems can act on their own, based on 2

predetermined rules. Autonomous systems can be understood as an 

 This can be compared to data transfer between Earth and Mars. Mars is on 1

average 225 million kilometers away from Earth. The data transfer takes from just 
a few up to 20 minutes, depending on where the planet is in its orbit. The moon 
Titan is much farther away – around 1.5 billion kilometers – which prolongs the 
data transfer.

 Although these terms are used interchangeably by my informants at NASA in 2

their everyday practice.
4



extension of that – besides acting on their own, they can dynamically 
“perceive”, “learn,” and “adapt to” their environment. Anthropologist Lucy 
Suchman has argued that such vocabulary contributes to the enchantment of 
these technologies, and it masks the labour it takes to produce them 
(Suchman, 2007; 2023).  
	 This study makes visible the efforts it takes to develop AI tools, and 
the ways in which this development alters how scientific knowledge is 
produced. More specifically, this dissertation asks how the introduction of 
new AI tools for science autonomy changes the ways in which life is made 
known in planetary science. To address this question, I conducted an 
ethnography at NASA Goddard Space Flight Center. Programmers and 
scientists who suggest the idea of more science autonomy, and their closest 
colleagues, became my interlocutors. I accompanied them in the 
laboratories, during meetings, and the breaks in-between, which allowed 
me to analyze science in the making at NASA. Scientists and engineers 
whom I observed, speak of the algorithms they develop as “intelligence”, 
“machine learning,” “networks,” and sometimes, “AI.” In this thesis, I use 
AI as an umbrella term for the various kinds of autonomous technologies. 

Technology, Science, Society, and Change 
Previous studies in history of science have demonstrated how the societal 
context and the technological tools available shape life as a research subject 
in different ways (Dick, 1996; De Chadarevian & Kamminga, 2003; 
Reinecke & Bimm, 2022). With new technologies, such as the radio or the 
microscope, emerged new disciplines, and new ways of studying life – 
through radio waves, or molecular analysis.  
	 New tools open up new ways of knowing, but also, new 
understandings of what it means to know. Philosopher and historian of 
science Evelyn Fox Keller articulates this in her book Making Sense of Life, 
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where she studies the changes with adoption of computational methods in 
biology. 

Everyone recognizes that scientific understanding depends on 
the techniques available for analysis. But the very meaning of 
understanding also depends on available techniques, albeit less 
evidently so. Both what counts as knowledge and what we 
mean by knowing depend on the kinds of data we are able to 
acquire, on the ways in which those data are gathered, and on 
the forms in which they are represented. Usually, however, we 
become aware of this dependence only in times of change, 
when new techniques noticeably alter our styles of knowing 
(Keller, 2002, p. 199). 

We know little about how the scientific study of life shifts in practice, and 
ethnography can play an important role here (Praet & Salazar, 2017, p. 
317). Anthropologist Sophia Roosth have brought attention to how 
emergence of the new field of synthetic biology entailed a particular way of 
studying life, namely, as being made and improved (Roosth, 2019).  
Anthropologist Stefan Helmreich observed how researchers in the field of 
Artificial Life make artificial systems in cyberspace, and articulate them as 
being alive (Helmreich, 1999). Development of new tools – AI – to study 
life and habitability as universal phenomena is something that calls for 
ethnographic attention.  
	  

Why Study AI at NASA? 
Introduction of AI tools in science is part of a larger transformation in 
society. Autonomous technologies are often spoken of as revolutionizing 
the world, the ways in which we know things, and how we relate to each 
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other. Since the beginning of the 2020s, AI has been on everyone’s lips. 
Proponents of this technology bring big promises into numerous areas in 
society. From better car drivers and more accurate medical diagnosis, to 
liberation from labour-intensive work tasks in general. The rhetoric is often 
that AI can do more and better.  
	 Nonetheless, AI is also spoken of in terms of problems. Exploitation 
of workforce to develop AI, the environmental costs it entails, and biased 
datasets amplifying injustice in society, are among the main issues being 
raised (Benjamin, 2019; Bolukbasi et al., 2016; Buolamwini & Gebru, 
2018; Crawford, 2021; Sumpter, 2018). Although the risks have prompted 
certain degree of legislation of AI, the technological development keeps 
accelerating. 
	 As AI tools are being introduced to new areas, there is an urgent 
need to empirically explore how AI is made, and what consequences this 
development has in particular contexts (Suchman, 2023) – what can be 
gained, and what can be lost. It is especially crucial to scrutinize the 
consequences of introducing AI by powerful actors. NASA is the largest 
organization exploring outer space, which entails a profound impact on the 
ways in which humans form an understanding of the world. 
	 Another recent development is that explorations of outer space has 
gained a new currency. The potential for private companies to extract 
resources from outer space and the spectacular aspirations of billionaires to 
establish space tourism has caught a lot of attention. Although the revival of 
the Space Race emerged out of the competition between a few privileged 
individuals, NASA remains as the main actor exploring the universe.  
	 Along with detecting more planets outside of our Solar System, 
NASA has continued the quest to search for life and habitable 
environments, meaning preconditions for life. This field of research is 
referred to as astrobiology, which draws on several disciplines, such as 
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astronomy, biology, and chemistry to mention a few. In strategic 
documents, NASA articulates a link between the missions to other planets, 
the field of astrobiology, and the big questions. 

Given NASA’s focus on the search for planets and life, 
astrobiology will be the focus of a growing number of Solar 
System exploration missions. Astrobiology research sponsored 
by NASA will continuing pushing science closer to answering 
the Big Questions in space science: Where did we come from? 
Where are we going? And are we alone? (Hays, 2015, p. xii) 

Addressing the big questions captures the outreach rhetoric of astrobiology 
at NASA, which I focus on in the first empirical chapter. Searching for 
signs of life is, however, a subject that has a history of struggling with 
legitimacy. This was evident during my fieldwork at NASA Goddard Space 
Flight Center. One of my informants used to say humorously that “You’ll 
not find any UFOs at NASA.” Yet, during my visit in June 2022, the agency 
announced a commission dedicated to study unidentified anomalous 
phenomena (UAPs, previously termed as UFOs, unidentified flying 
objects), meaning objects that cannot be identified as human-made 
technology, or natural known phenomena. The regained currency of outer 
space explorations has revived the interest in posing questions about our 
place in the universe.  
	 Development of new AI tools at NASA can reshape the knowledge 
production and impact future discoveries. However, previous works in 
Social Studies of Outer Space (SSOS) have shown how space explorations 
shape not only knowledge about outer space, but also social orders on Earth 
(Armstrong & Klinger, 2025; Salazar & Gorman, 2023). Space activities 
depend on material infrastructures on Earth, from data centers, and 
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laboratories, to sites for testing robots and launching rockets. Therefore, it 
is also important to pay attention to how space explorations affect the labor, 
and distribution of resources, as well as visions of the future that orient 
current actions on our own planet. 

Aim and Research Questions 
The aim of this thesis is to understand how scientific knowledge is 
produced in NASA missions to explore life and habitability on other planets 
and moons, and how development of new AI tools changes these practices. 
More specifically, the aim is to understand how the new AI tools change the 
ways in which life is made known, by scientists and engineers. 
	 The framework for this study is to approach science as a cultural 
practice, by drawing on theories from Science and Technology Studies 
(STS). This enables analyzing the process of mutual shaping of the research 
subject, technological tools, scientific cultures, and the organization in 
which these are situated. The focus in this study is on investigating which 
ways of knowing are considered as legitimate, how knowledge claims are 
accomplished, and how epistemic concerns shift with the development of 
AI. Therefore, the study analyzes which practices are enabled and not, as 
well as what is included and excluded, in the context of scientific practice 
at NASA Goddard. 
	 The analysis is based on material from ethnography at NASA 
Goddard, and the wider scientific community of planetary scientists and 
astrobiologists, including interviews and documentary material. Studying 
the practices ethnographically at the stage of early development of AI tools 
makes it possible to show the process of science and technology in the 
making. This research provides an empirical account and theoretical 
formulations about the major actor in explorations of outer space. It also 
provides insights to studies about scientific knowledge production, and 
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more specifically, scientific knowledge production with AI. It does so by 
addressing the following overarching question: 

• How does development of AI change the ways of producing scientific 
knowledge at NASA Goddard? 

To address this overarching question, I focus on how development of AI at 
NASA Goddard is shaped by, and reshapes, the organization, knowledge 
infrastructure, and scientific culture. I analyze these three dimensions 
through the following research questions: 

1) How does NASA engage in boundary work to sustain legitimacy for 
missions investigating life and habitability on other planets and moons? 

2) How do different knowledge infrastructures enable and constrain data 
that can be used to train AI? 

3) How are AI data practices integrated into scientific cultures at NASA 
Goddard? 

In the following sections, I provide a technical and organizational 
background for the reader with descriptions that facilitate understanding of 
the empirical chapters. I describe where it took place and which NASA 
missions are in the focus of this thesis. 

Where This Study Takes Place 
In 1958, a year after the launch of Sputnik, the US established a new 
agency to keep up in the Space Race with the Soviet Union. NASA 
(National Aeronautics and Space Administration) is the US agency 
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responsible for the national civil space program, aeronautics and space 
research. It has ten centers across the country and at the time of doing 
fieldwork, around 18,000 employees.  NASA Goddard Space Flight Center 3

(figure 2), which is where I conducted fieldwork, is the largest of the NASA 
centers, with over 10,000 employees.  It is named after Robert H. Goddard, 4

who constructed the first rocket using liquid fuel. NASA Goddard – as I 

 This number includes both civil servants and contractors, as off 2023 (National 3

Aeronautics and Space Administration, 2023). However, by 2025, the number is 
estimated to have decreased by around 20 % due to the Trump Administration 
resignation program to reduce federal workforce, as part of the DOGE initiative 
(The Department of Government Efficiency).

 This number includes both civil servants and contractors, as off 2023 (NASA 4

Goddard Space Flight Center, 2024), which is when the field work was conducted. 
As mentioned above, these numbers have been reduced due to the DOGE 
initiative. 
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Figure 2. Aerial view of the NASA Goddard Space Flight Center in 
Greenbelt, Maryland, US. Credit: NASA.



will refer to the location from now on – was established in 1959 as the first 
NASA space center. The large complex is in Greenbelt, a small city with 
24,000 inhabitants. It is around 30 minutes car ride away from Washington 
DC, which is the location of NASA Headquarters. 
	 During fieldwork at Goddard, I followed programmers and 
scientists working at the Planetary Environments Laboratory, which is 
dedicated to studying “the chemistry and astrobiology of the atmospheres 
and surfaces of planetary bodies (NASA Goddard Space Flight Center, 
n.d.a).” In this thesis I refer to (AI) programmers, and (software) engineers 
interchangeably. Among scientists, many informants identify themselves as 
planetary scientists or astrobiologists. “Planetary scientists” is a more 
general and representative term, since not all of the scientists identify 
themselves as “astrobiologists.” I use the term “astrobiologist” only when it 
is relevant, and if the scientist in question has explicitly identified 
themselves as such. These fields, according to NASA’s narrative, aspire to 
understand life and its origins in the universe. Its large aspirations are 
reflected in the resources dedicated to this NASA center. The Planetary 
Environments Laboratory is part of The Sciences and Exploration 
Directorate, which according to NASA, is the “largest Earth and space 
science research organization in the world (NASA Goddard Space Flight 
Center, n.d.b).” In chapter 4, I discuss the history of astrobiology and the 
politics of its scientific objectives. 

What This Study Observes 
This thesis concerns robotic missions (not crewed). While the robots 
conduct scientific experiments in situ autonomously, scientists interpret the 
results and direct the robot in terms of where it should go or what it should 
do. Three missions, which I will describe in the following sections, were 
especially relevant for my interlocutors in regard to the development of AI 
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tools for autonomous decision making onboard. All three missions have the 
same ultimate goal. Namely, to search for signs of life and habitability on 
other planets and moons.  

Mars and Titan as Destinations 
One of the destinations for these missions is Mars. It is often called the 
“Red Planet” because of its surface color. Rather than searching for signs of 
present life there, scientists search for signs of past life that might have 
existed billions of years ago, when Mars was wetter and warmer. 
Observations of river valleys and lakebeds, as well as particular rocks and 
minerals imply that Mars has a history of liquid water. Currently, the 
atmosphere of Mars is too thin to sustain liquid water. The only place 
beyond Earth with bodies of liquids on its surface – that scientists know of 
– is the moon Titan, which is another destination of the missions I observed. 
Titan is the largest moon of Saturn. It has rivers, lakes and seas of methane 
on its surface. However, previous missions have also detected signs of a 
potential ocean of liquid water under the surface of ice. This is among the 
criteria that makes it a candidate for a habitable environment. Since NASA 
scientists study conditions for life and habitability in these conditions, the 
descriptions of these places have focused on how they resemble our 
environment on Earth. However, to keep in mind is that the atmospheres on 
Mars and Titan are very different from ours, which makes design of 
instruments that can manage these conditions a very complex task. This is 
reflected in the mission timelines, spanning over decades, at times 
involving several space agencies where each delivers different parts or 
services. 
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Experiments with Mass Spectrometry 
NASA missions searching for life and habitability in outer space build on 
the assumption that life on other planets and moons will most likely be 
microbial. Scientists believe that molecules can provide important cues 
about life and habitability. Space robots (for instance, rover in figure 3) are 
designed to explore molecular composition of samples. Robotic “arms” 
collect samples from the surface and put it inside its “belly” (space robots 
are usually spoken of in anthropomorphic terms by NASA mission 
members).  
	 The instrument in the “belly” of the space robot is a miniaturized 
version of a mass spectrometer (see figure 4). Scientists and engineers 
whom I followed at NASA Goddard design and work with this instrument, 
which plays a central role onboard these missions. Mass spectrometers are 
used to identify organic molecules and their structure in a sample. In simple 
terms, mass spectrometers can be explained as a tool that smashes 
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Figure 3. Mars Science Laboratory (MSL) Curiosity rover taking an 
image of itself on Mars. Credit: NASA/JPL-Caltech/MSSS



something into pieces in order to understand it. There are different kinds of 
mass spectrometers. However, regardless of their type, the process occurs 
in three stages. First, the sample is converted into ions (charged particles). 
Second, these ions are sent to a mass analyzer that separates them based on 
their mass-to-charge ratio (m/z), which means the weight of an ion divided 
by how many charges it has. Third, the separated ions hit a detector that 
counts them and produces a mass spectrum image with peaks (Figure 5). 
Each peak is a group of ions with the same mass-to-charge ratio – the 
height of the peak indicates how much of this group is present in the 
sample. To summarize, scientists use mass spectrometers to identify 
molecules in a sample, which produce images with peaks that scientists 
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Figure 4. The copy of Sample Analysis on Mars (SAM) instrument at 
NASA Goddard Space Flight Center. The instrument is behind a so called 
“clean tent” that protects it from contamination. Photo from fieldwork.



interpret with their naked eye, or with the help of an algorithm. The peaks 
indicate what kind of chemical elements are present in the sample – carbon, 
oxygen, sulfur or something else – and the present molecular structures. 
Potential signs of life or habitability in outer space are anticipated to appear 
as peaks in a mass spectrum. 
	 Scientists and engineers from Goddard design mass spectrometers 
for NASA missions to outer space. Each of these instruments is unique, as it 
is constructed to work in a particular extraterrestrial environment. The 
conditions on Mars for instance, are not the same as on Venus or Titan. To 
identify as many different kinds of organic molecules as possible, the mass 
spectrometers in the space instruments discussed here are combined with 
other techniques, however, these are outside of the scope of this study. 
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Figure 5. Mass spectrum image of Toluene from National 
Institute of Standards and Technology (NIST).



The Role of AI in Mass Spectrometry Experiments 
The AI being developed at NASA Goddard will make decisions about 
which mass spectrum data are the most interesting to send back to Earth. In 
the following, I will briefly describe each mission and its stage of 
development during fieldwork, and specify how it relates to the 
development of AI. 
	 The first of the three missions that I will touch on below, has the 
goal to explore the habitability of Mars. After landing on Mars in 2012, the 
Mars Science Laboratory (MSL) mission was still in operation during my 
visits at NASA Goddard in 2022 and 2023. MSL can be described as a large 
mobile laboratory. The 899 kilogram, three meters long rover with six 
wheels, drives across the surface of Mars to conduct experiments (figure 3). 
It is equipped with ten scientific instruments. One of them, Sample Analysis 
at Mars (SAM, figure 4) has been developed and tested by researchers at 
NASA Goddard Space Flight Center. Its role is to investigate the chemistry 
of Martian surface and atmosphere, which helps scientists to assess the 
habitability of Mars. SAM (figure 4) is a complex laboratory suite 
consisting of three miniaturized instruments located inside the Curiosity 
rover (figure 3). The three instruments, a Gas Chromatograph (GC), a 
Quadrupole Mass Spectrometer (QMS) and a Tunable Laser Spectrometer 
(TLS), analyze gases from the atmosphere or powdered rock samples. My 
informants use the Mars data from SAM to train their AI tools for future 
missions to Mars and Titan, which I describe below. 
	 The second mission, Exobiology on Mars program (ExoMars), is in 
collaboration with the European Space Agency (ESA). The aim of the 
mission is to explore the habitability of Mars. It is the first mission that will 
be able to drill two meters below the surface, which makes it possible to 
gather samples that have not been exposed to the radiation and extreme 
temperatures. NASA Goddard Space Flight Center is providing ExoMars 
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with an instrument for scientific analysis of the samples - Mars Organic 
Molecule Analyzer (MOMA). It was planned to launch in 2022 but got 
suspended because of the conflict with Russia, which was supposed to 
deliver a lander for the mission. A new estimated date for the launch is 
2028. The delay provided my informants more time to work on AI tools. 
They aim to develop a tool that will help scientists on Earth to analyze data 
from MOMA.  
	 The third mission, Dragonfly, is developed to explore the 
habitability of Titan. It will consist of a rotorcraft that weights 875 
kilograms and is 3.85 meters long. The rotorcraft lander is a new approach 
to planetary exploration that will allow it to travel and gather samples from 
diverse sites. NASA Goddard Space Flight Center is providing DraMS, 
which is a mass spectrometer analyzing chemical components. During my 
fieldwork, the Dragonfly mission was at the development stage, with an 
estimated launch in 2028. The billion kilometers distance to this moon 
poses difficulties for data transfer between the spacecraft and scientists on 
Earth. Instead of operating the rover by sending all the data back and forth 
between the spacecraft and scientists on Earth, the plan is to automate 
decision making onboard the mission, with AI. The AI being developed at 
Goddard will make decisions about which mass spectra are the most 
interesting to send to Earth. 
	 To summarize, I have observed work on three NASA missions that 
search for, or will search for, signs of life and habitability on other planets 
and moons. Each mission was at a different stage of development. First, the 
MSL on Mars was still in operation during my fieldwork at NASA 
Goddard. Second, ExoMars was developed but delayed due to an 
international conflict. Third, the Dragonfly mission to Titan was at the 
development stage. 
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	 AI for science autonomy has a different role in each of these 
missions. The MSL mission has operated on Mars for over a decade and 
programmers use data collected by MSL to train their AI algorithms. For 
the ExoMars mission, once the data from the space instrument has reached 
Earth, AI tools will analyze it to facilitate decision making of human 
scientists, to operate the mission more efficiently. In other words, AI will 
work on Earth, to help scientists analyze data from Mars. Both missions 
have Mars as its destination.  
	 Dragonfly will travel all the way to Titan, 1.5 billion kilometers 
away, which poses challenges for data transfer. Therefore, the plan for 
Dragonfly is to apply AI tools that will make decisions onboard the 
spacecraft, autonomously. The last case is a pivotal step in a shift of 
autonomy in decision making. In future missions, algorithms will be 
making decisions impacting what we can know about other planets and 
moons. 
	 AI for science autonomy was still at the development stage during 
my fieldwork. This means that it has not been used in any missions yet. To 
become part of a mission, the AI tool has to reach a higher level of maturity, 
which is estimated in a measurement system called Technology Readiness 
Level (TRL). A tool is assigned a rating from 1 to 9 TRL by NASA, where 
1 refers to the initial research stage and 9 to a tool that has been 
successfully operated in a mission to space – “flight proven.” During 
fieldwork at NASA, the programmers leading this project estimate the stage 
of AI development as TRL 3, which means that the technology is feasible 
based on an experiment on a small scale. 
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Chapter Outline 
How does development of integrate AI change the ways of producing 
scientific knowledge at NASA Goddard? This dissertation addresses this 
question by following the practices of planetary scientists and software 
engineers at NASA Goddard, when they work with missions to other 
planets and moons in search of signs of life and habitability. Chapter 2 
delves into previous studies, and chapter 3 is about the method and 
material that constitute this study. 
	 Addressing the aim and research questions based on the empirical 
material generated at NASA Goddard required a diverse set of theoretical 
tools. Therefore, the varying theoretical outlooks are presented in each of 
the four empirical chapters. AI does not emerge from a blank slate. 
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Figure 6. The dimensions foregrounded in the empirical chapters.



Development of AI at NASA Goddard takes place in a particular 
organization, knowledge infrastructure, and scientific culture. Each of these 
dimensions enables and constrains particular courses of action, which 
shapes development of AI. The development of AI in turn, has 
consequences on these dimensions. Each of the four empirical chapters in 
the dissertation foregrounds a particular dimension (figure 6). 
	 Chapter 4 situates the search for signs of life in outer space in the 
organizational context of astrobiology at NASA. It shows what kinds of 
practices and research subjects are considered as legitimate in life detection, 
and what kinds of practices and objects are excluded from the spectrum of 
what potential life elsewhere could be. This process is analyzed in terms of 
boundary work (Gieryn, 1983). The ways in which NASA demarcates 
astrobiology enables and constrains actions of scientists and engineers in 
life detection. This chapter shows how development of AI for life detection 
can be designed to search for not just any signs of life, but very particular 
ones, which are considered as legitimate at NASA. 
	 The idea that AI could facilitate the search for life in outer space in 
NASA missions is the point of departure in chapter 5. To develop AI, 
programmers need large amounts of data. Chapter five is about the 
knowledge infrastructure it takes for scientists to produce the data, which 
programmers use to train AI tools to operate on other planets and moons. 
The focus is on how scientists accomplish credibility in claims about other 
planets and moons by drawing on different places on Earth – from the 
Atacama desert and Svalbard, to meteorites, and digital databases. This 
process is analyzed in terms of truth-spots (Gieryn, 2006; 2018). I argue 
that digital databases figure as important truth-spots in scientific knowledge 
production, alongside the laboratory and the field site. Then, the chapter 
demonstrates how the epistemic concerns shift when programmers take 
over these data to train AI. 
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	 Selection of which data to include and exclude from training AI is a 
matter of negotiations between planetary scientists and programmers. 
Chapter 6 analyzes this in terms of negotiations between two different 
epistemic cultures (Knorr Cetina 1999; 2007). The chapter shows how each 
culture has its own way of approaching life detection, and ascribing value 
to data, which can be challenging to bridge. It shows how presence versus 
absence of negotiations between the cultures has consequences for what I 
call epistemic responsibility. I argue that organizational arrangements can 
inscribe data with a biography, or make it ahistorical, which can foster, or 
hinder, preconditions for epistemic responsibility in programming. 
	 The negotiations discussed above play a crucial role in development 
of AI. However, the data from the scientists are not enough to train these 
tools. In chapter 7, we find out how programmers make AI work. 
Production of scientific data moves into the realm of programming, where 
larger amounts of synthetic data are computationally simulated, in the hope 
of better algorithmic performance. Based on ethnographic material from 
NASA Goddard, this chapter provides insights about the creation of 
synthetic data – a practice that has seen little empirical study in STS. The 
chapter shows what is at stake in the production of synthetic data in 
planetary science. 
	 In the final and concluding chapter 8, I return to the dimensions 
illustrated in figure 6, and articulate the main findings of this study. This 
dissertation demonstrates how AI is shaped by organizational structures, 
knowledge infrastructures, and scientific cultures. The development of AI, 
in turn, reshapes these dimensions and the ways in which life is made 
known in science. 
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Chapter 2 Previous Works – Scientific 
Knowledge Production About Life on Earth 
and Beyond 
How life is made known in science, has been a prevalent topic in many 
disciplines across social science and humanities. In history of science, we 
can learn about how life has been studied and imagined by astronomers and 
biologists (De Chadarevian & Kamminga, 2003; Dunér et al., 2013; Kay, 
1995; Leicester, 1974; Tirard, 2010). In philosophy, there are vivid 
discussions about how to define life (Cleland et al., 2002; Gayon, 2010), 
and the politics of which lives have the conditions to flourish (Arendt, 
1958; Agamben, 1998; Butler, 2009; Canguilhem, 2008; Coccia, 2021; 
Foucault, 1994). In sociology, life has been approached as a subject of 
political and economic management (Rose, 2006). The discussions in these 
fields have informed my work. However, the approach I have in this study 
is closest to anthropology, by observing the work of scientists and engineers 
in laboratories, to understand how life is shaped in practice (Helmreich, 
2009; Roosth, 2019).  
	 Studying science and technology in the making has been one of the 
main topics of study in Science and Technology Studies (STS), a field at the 
intersection of sociology, anthropology and history of science. Therefore, 
STS provides well established theoretical tools to achieve the aim of this 
study – to understand how scientific knowledge at NASA is produced, and 
how it changes with the development of AI. The tradition within STS that I 
draw on – laboratory studies – emerged in the 1970s. Laboratory studies are 
ethnographic accounts from laboratories, which means that the author 
observes the work of scientists and engineers. This approach makes it 
possible to open up the stabilized notions of facts by showing what actions, 
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and assumptions are inscribed in them (Latour & Woolgar, 1986 (1979); 
Latour, 1987), and how the ways in which knowledge is produced varies, 
depending on the local culture (Knorr-Cetina, 1999). Following these 
insights, the point of departure in this study is that scientists and engineers, 
as any other group of people, share a culture – a particular set of meaning-
making activities, which constitutes the ways in which they produce 
knowledge. Consequently, scientific claims are a result of negotiations 
within, and between particular cultures. They are not given, but 
accomplished.  
	 Another key point in STS concerns how knowledge is always 
situated – scientific claims are made from a particular position (Haraway, 
1988). Making scientific claims depends on the laboratory, the instruments 
needed to conduct experiments, as well as the human bodies who construct 
these tools and operate them. However, once scientific claims are made, the 
craftwork and the material dependencies tend to fade away and become 
transformed into ideas and theories. This paradox – on the one hand 
dependency and on the other hand forgetfulness, about the material 
circumstances of knowledge production – is a central feature of science 
(Latour & Woolgar, 1986 (1979), p. 69). Bruno Latour articulates how the 
degree of objectivity in science depends on the cascades of transformations 
from one stabilized object to another. “The more steps there are in between 
the objects and those who make judgments about them, the more robust 
those judgments will be.” (Latour, 2014, p. 347) In this project, I pay 
attention to how the material objects are transformed to form chains of 
references that constitute: scientific knowledge at NASA, and the objects 
that AI tools are trained on. Although the tradition which I described here is 
referred to as laboratory studies, my analysis is not limited to what happens 
within the four walls of the laboratory. I return to this subject in the 
following sections.  
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AI as Data with Attachments to Places 
To construct AI, large amounts of data are required. The quality and 
quantity of the data used for training determine how well the AI tools 
perform. Selecting the right data for training, and having sufficient amounts 
of them, are among the main challenges in development of AI at NASA. 
Therefore, to understand the development of AI, we must understand the 
data it is trained on. This dissertation scrutinizes the process of making and 
using the objects referred to as data. Data, in the modern understanding of 
the term, stands for information that can be stored and analyzed. It can 
serve as evidence to generate knowledge. In that sense, data figure as facts. 
The etymology of the term from Latin dare, “to give”, implies that data is 
something given (Kitchin, 2021, p. 25-26). But data are not given – they are 
made. 
	 In social studies of data, the point of departure is that data are made 
across different times and places, and they are enshrined with assumptions 
stemming from particular situations and their past (Douglas-Jones et al., 
2021; Gitelman, 2013; Loukissas, 2019). With access to closely observe the 
knowledge infrastructure at NASA where data used for training of AI is 
produced, I illuminate what attachments to people and places are embedded 
in the data that constitutes these tools. Data is just one part of the process of 
scientific knowledge production, however, a crucial part. Based on the data, 
scientists make interpretations, and based on these, scientific facts. 
	 After noticing how the notion of place has been overlooked in social 
studies of data, scholar Yanni Loukissas has argued for bringing back the 
focus on attachment of data to places. As Loukissas put it, instead of relying 
on the terminology of “data sets” implying something stable, contained and 
portable, we should study the shaping power of “data settings” meaning the 
local social life of data and their attachments (Loukissas, 2019, p. 1-2, 10). 
Data emerges from local sites, and is therefore embedded with local values 
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and assumptions, but it can serve to form relations with distant entities. The 
attachments of data to places “invisibly structure their form and 
interpretation” (Loukissas, 2019, p. 3). In a world where data is often 
granted a status of universalism or objectivity, attention to the local settings 
of data is a crucial sensibility. In the case of NASA, scientific data used to 
train AI, to interpret unknown phenomena on other planets and moons, stem 
from numerous local places on Earth. To understand how the data used to 
train AI are made, it is necessary to analyze these attachments beyond the 
walls of the laboratory, for instance, by looking at where the laboratory 
samples come from. 
	 To make the complex attachments of scientific data and places 
visible, I analyze how certain places serve as truth-spots that lend 
credibility in making claims about the world. Sociologist Thomas Gieryn 
describes the concept as follows: 

Truth-spots are ‘places’ in that they are not just a point in the 
universe, but also and irreducibly: (1) the material stuff 
agglomerated there, both natural and human-built; and (2) 
cultural interpretations and narrations (more or less explicit) 
that give meaning to the spot. (Gieryn, 2006, Footnote 3) 

Gieryn has illustrated the concept of truth-spots with diverse cases, in 
science and beyond. For instance, governmental buildings, like the White 
House, can serve as a truth-spot, as well as religious sanctuaries, like the 
oracle in Delphi. In science, Linnaeus could draw upon field visits in 
Lapland, Sweden, and botanical collections in Netherlands, to render 
authority to his claims of a classification system for nature in 1700s that 
stands to this day (Gieryn, 2018). In chapter 5, I analyze how certain field 
sites on Earth are used as truth-spots to make claims about other planets, for 
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instance, how places like the Atacama desert are narrated as analogous to 
Mars. 
	 In STS, two places have been identified as especially important in 
scientific knowledge production: laboratories and field sites (Gieryn, 2006; 
Knorr-Cetina, 1992; Latour, & Woolgar, 1986 (1979)). Both play an 
important role in astrobiology and planetary science (Marcheselli, 2022; 
Messeri, 2011; Vertesi, 2015; 2020). Nevertheless, I argue that digital 
databases are another important place in scientific knowledge production, 
which are at least as important as the laboratory and the field site. I build 
this argument upon Gieryn’s concept of “truth-spots,” (Gieryn, 2006; 2018) 
and expand its use to the realm of the digital. I illustrate it in chapter 5, with 
the case of digital databases, which play just as important a role as 
laboratories or field sites for lending credibility to scientific claims at 
NASA. 
	 The role of place-making in planetary science has been studied 
before. Anthropologist Lisa Messeri has conducted an ethnography of the 
everyday practices of scientists and engineers across different sites – MIT, 
NASA, Chile observatory, and a field site in Utah. Messeri shows how 
making objects in outer space into places is a tool for knowing. For 
instance, scientists frequently refer to planets as “worlds,” which Messeri 
notes is a more emotive term implying notions of human habitation, in 
comparison to the technical term “planet.” Messeri also provides rich 
ethnographic illustrations of how scientists use different kinds of proxies – 
from terrestrial field sites, to digital images – to make sense of 
extraterrestrial objects and make them into places (Messeri, 2011). As these 
themes are also present in my ethnographic material, the analysis of how 
data are made, in the laboratory and beyond, is in close conversation with 
Messeri’s work. 
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Tools Shaping Knowledge About Outer Space 
There is a substantial body of work on the scientific knowledge production 
about outer space. Many studies have focused on instruments that provide 
visual depictions: telescopes (Kessler, 2012; Lynch & Edgerton, 1987), 
cameras taking images of Mars (Vertesi, 2015), or 3D mapping to create a 
virtual experience of being on Mars (Messeri, 2011). These studies have 
demonstrated how pictures from a telescope, or a camera on a Mars rover, 
do not merely show us what outer space looks like. Instead, the images are 
carefully crafted in line with particular aesthetic ideals. Art historian 
Elizabeth A. Kessler has studied how the spectacular images of deep space 
from the Hubble telescope are produced by astronomers who adjust colors, 
contrast and compose the images – and how they need to balance between 
creating representations that are scientifically valid, as well as aesthetically 
pleasing (Kessler, 2012). This can be tied to the seminal work on the history 
of objectivity, by historians of science Lorraine Daston and Peter Galison, 
who showed how production of scientific images has been permeated by 
different epistemic virtues, meaning particular values that scientists adhere 
to when they produce and evaluate knowledge (Daston & Galison, 1992).  
	 Studies in STS have recognized the power of visual representations 
in science (Coopmans, Lynch & Woolgar, 2014). With one image, scientists 
can capture an idea that can travel across different settings. The power of 
images in scientific knowledge production can also be understood in a 
wider societal context in the West, where vision serves as the primary 
source of evidence, over evidence of sound, touch, smell, and taste (Ong, 
1991). This indicates how scientific work must be understood as both 
shaping, and being shaped by, the societal context. 
	 Nevertheless, if we turn to life detection, historical accounts make it 
clear that scientists searching for extraterrestrial life have not only looked 
for signs of life in images – they have also listened to radio signals (Dick, 
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1996; Webb, 2020). What these studies demonstrate is how the object of 
research in life detection is shaped by the scientific disciplines, their 
methods and technologies. Historian Steven Dick identifies connections 
between how the discovery of radio waves and radio communication 
shaped the development of radioastronomy and SETI (Search for 
Extraterrestrial Intelligence, described in chapter 4). Microscopes and 
discovery of DNA shaped the development of origins of life studies. Dick 
identifies the following shifts in what scientists searched for in life 
detection: from intelligence (artificial canals), vegetation (dark spots), 
microbes (extreme environments), to organic molecules (DNA) (Dick, 
1996, p. 60-61). The approach to searching for signs of life as organic 
molecules can be tied to wider developments in life sciences, which has 
been referred to as the “molecularization of life,” a change resulting from 
technologies working on a new scale (De Chadarevian & Kamminga, 2003; 
Rose, 2006). Sociologist David Reinecke and historian of science Jordan 
Bimm (2022) point to the emergence of environmental science and its 
impact on how astrobiologists at NASA have shifted the methods, scale and 
object of study, to maintain legitimacy for life detection. To summarize, 
historical accounts have shown how the societal context and the 
technological tools available, shape the object of research in the scientific 
study of life. This implies that the introduction of new AI tools in life 
detection at NASA is intertwined with new ways of producing knowledge 
about life as a research subject. 
	 With ethnography at NASA Goddard, I contribute to a deeper 
understanding of how scientists develop and use two particular instruments 
in life detection – mass spectrometry and AI. Mass spectrometry plays a 
central role in generating evidence about the chemistry of other planets in 
NASA’s missions. Despite its central role, in previous ethnographic 
accounts of scientific knowledge production, mass spectrometry resides 
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rather in the periphery. Mass spectrometry images, which I described in 
chapter 1, are not as spectacular as images from the Hubble telescope – 
they do not work for outreach activities but for scientific purposes. To be 
interpreted, the peaks and numbers in mass spectra images require expertise 
in chemistry. Due to the importance of this tool in NASA’s production of 
knowledge about other worlds, mass spectrometry needs to be put under the 
microscope.  
	 Another tool for life detection being developed for future NASA 
missions is AI for autonomous analysis onboard the scientific instrument. 
Its novelty resides in that it will make real-time decisions about scientific 
analysis autonomously onboard the missions, without communicating with 
scientists on Earth. While there are works studying the decision making 
involving robotics, software, and communication between human teams 
and rovers (Mazmanian, Cohn & Dourish, 2014; Mirmalek, 2019; Vertesi, 
2015, 2020), to my knowledge, the impact of AI tools on how scientists and 
engineers explore outer space has not been studied by other social 
scientists. Given previous discussion on how shifts in life detection are tied 
to development of new technologies (telescopes, radio, and microscopes), it 
is crucial to study how the new AI tools can change the ways in which 
scientists explore life in outer space. 

Practices at NASA as Culture 
I am not the first to analyze the practices at NASA in terms of a culture 
(Vaughan, 1996). In her book “Shaping Science”, sociologist Janet Vertesi 
shows how organizational circumstances shape the knowledge produced in 
NASA laboratories (Vertesi, 2020). Based on observations of two missions 
with different organizational structures, Vertesi demonstrates how 
organizational aspects shape scientific knowledge through three principles. 
The first is that science is produced by organizations with local practices, 
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norms and structures of authority. Second, these organizational practices 
shape the scientific outcomes, such as data, scientific publications and 
scientists’ careers. It does not necessarily mean that scientific knowledge is 
foreordained by the organization - but considering that the knowledge is 
produced in a particular organization, it provides “a texture and contour that 
is isomorphic with the organization” (Vertesi, 2020, p. 6) from where the 
knowledge emerges. Third, scientific outcomes feed back into the 
organization by stabilizing its elements (Vertesi, 2020, p. 5-6, 26-27). My 
approach to observe the process of mutual shaping between the 
organization and data is aligned with Vertesi’s work. Vertesi’s earlier work 
focuses more on the role of technology, more specifically rovers, in the 
process of shaping scientific knowledge production (Vertesi, 2015). This 
dissertation is also focused on the technological tools, as one of the key 
elements in the shaping of scientific knowledge production. However, it 
focuses on a particular area of scientific knowledge production at NASA – 
life detection. 
	 Previous studies by Vertesi and social scientist Zara Mirmalek show 
that the concepts of life and aliveness at NASA are not reserved to biology 
– rovers on missions are ascribed agency to see and lead missions on Mars 
(Mirmalek, 2019; Vertesi, 2015). Anthropomorphizing laboratory 
equipment is not unique to NASA scientists – it is a common practice in 
other laboratory settings (Knorr-Cetina, 1999; Kruse, 2006; Suchman, 
2007). While these themes were prevalent in my material, the focus in this 
study is less on anthropomorphism, and more on how scientific cultures 
shape life as a research subject. Similarly to Vertesi’s and Mirmalek’s 
ethnographic studies, my work is also based on observations of the 
interactions between scientists and engineers who work on NASA missions. 
	 However, previous ethnographies of NASA were conducted before 
the era of “science autonomy,” which was introduced with promises of 
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revolutionizing explorations of other planets. At this stage, the robots on 
distant planets are provided instructions from scientists and engineers on 
Earth. This loop is about to be broken by inscribing the decision making 
about scientific analysis to an autonomous system, onboard distant robots. 
In this work, I show how realizing the dream of autonomy of scientific 
work on other planets is bringing actual changes to the work of scientists on 
the ground. Even though “science autonomy” is at the stage of early 
development (so called proof of concept), it already shapes the scientific 
work in new ways and by that, it changes the way the knowledge is 
produced. I contribute to previous studies of scientific practice at NASA by 
illuminating how the anticipated autonomy of scientific analysis changes 
knowledge production about other planets and moons. 

Exploring Outer Space, Shaping Conditions on 
Earth 
With the increased interest in outer space in society, and commercialization 
of space, social scientists have turned more attention to the cultural role of 
outer space. This study is informed by and contributes to the emerging field 
of Social Studies of Outer Space (SSOS), which is concerned with how 
space activities shape and are shaped by social orders on Earth (Armstrong 
& Klinger, 2025; Salazar & Gorman, 2023). 

Future-Oriented Discourse 

One significant theme in this body of work is to study the space 
explorations in terms of a future-oriented discourse. In the context at 
NASA, Messeri and Vertesi showed how NASA missions that applied for 
support but were never flown impact anticipation of the future (Messeri & 
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Vertesi, 2015). Messeri and Vertesi suggest the concept of “sociotechnical 
projectory”, to show how anticipation of a future and shared goals plays an 
important “material-discursive role in the production of actors’ cohesive 
social worlds”, which shapes “technological development, career paths, and 
community membership.” (Messeri & Vertesi, 2015, p. 56) These 
theoretical formulations can be tied to work in the sociology of 
expectations, focusing on innovation and the role of expectations in how 
they shape change in science and technology (Borup et al., 2006; Brown et 
al., 2003). Messeri and Vertesi observe how missions are also a part of a 
larger projectory. For instance, the mission to return samples from Mars is 
positioned as the next step toward flying humans to Mars, since it enables 
technological development needed for that. The imagined future plays an 
important role in shaping scientific communities as well as imposing 
material constraints for action (Messeri & Vertesi, 2015, p. 74-77). 
Development of AI at NASA Goddard can be understood in similar terms, 
as an anticipated tool to be used in the future, while already shaping the 
current actions of scientists and engineers. 

NewSpace, and Distribution of Resources on Earth 

Another significant theme in SSOS is studying the impact of private actors 
in the space domain, also referred to as NewSpace. In their studies of 
national space activities, space scientist Temidayo Isaiah Oniosun and 
geographer Julie Michelle Klinger show how space explorations continue to 
be for the purposes of research or socioeconomic development. However, 
the distinction between public and private actors in space explorations can 
be blurry. Agencies outsource parts of space research to private companies 
(Oniosun & Klinger, 2022; Oniosun, 2025). NASA is engaged with 
outsourcing certain parts of knowledge production, therefore, it is 
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worthwhile to delve into previous studies about the private actors in space 
research, to get an idea about the organization and culture in these work 
environments, as compared to a state agency. 
	 Since the Cold War, state agencies have been leading the space 
explorations. However, in the early 1990s, entrepreneurs, primarily in the 
US, entered this arena. Space companies, also called NewSpace, like 
SpaceX and Blue Origin were formed (Valentine, 2012). Although referred 
to as “private,” these companies are dependent upon governmental 
contracts. Based on ethnographic fieldwork in the context of NewSpace, 
anthropologist David Valentine observes how the government figures as an 
economic enabler, and the outer space as an enabler of profit. The logic of 
their business is to work more efficiently to reduce the enormous costs of 
launches (Valentine, 2012, p. 1055). Drawing on SpaceX as an example, 
sociologist Richard Tutton brings attention to how faster space exploration 
occurs at the expense of humans working long hours to meet the deadlines 
of resolving complex engineering tasks (Tutton, 2021). These conditions 
are driven by Elon Musk’s vision of changing the world and humans to 
become a “multi-planetary species.” This future, according to Musk and 
other Silicon Valley entrepreneurs, are to be led by charismatic individuals 
inspiring people through techno-optimistic visions, rather than by public 
institutions (Tutton, 2021, p. 435). 
	 The anticipatory discourse of life as multi-planetary is often 
understood as future-oriented. But David Young and Niall Docherty point 
specifically to how these discourses are “also dependent on configurations 
of power rooted in the past,” and nostalgic narratives where great men and 
disruptive enterprises figure as heroic protagonists (Young & Docherty, 
2024, p. 21). As these narratives succeed in turning the attention of the 
audience toward the future, Mars, and Man’s mastery over nature, they are 
also turning the attention away from the present concerns about the 
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environmental state of our own planet. Young and Docherty point to how 
making life multi planetary is marginalizing questions about distribution of 
wealth on Earth (Young & Docherty, 2024). This argument echoes public 
debates from the beginning of the establishment of space program in the 
US. At the time, public figures questioned whether spending such large 
amounts of money on space exploration is justifiable in the face of poverty 
and inequality on Earth (Dick, 1996; Tutton, 2021). 
	 Social scientists have also attended to the injustices tied to 
production of data about outer space. James Merron and Siri Lamoureaux 
studied a radio telescope in Ghana used for satellite data transfer (Merron & 
Lamoureaux, 2024). Drawing on STS, they questioned the narratives of 
technoscientific modernity for the “common good,” given the material 
infrastructure required for data to be stored and transferred. The demands 
for cables, servers and bandwidth, the authors argue, compete with 
satisfying the everyday needs of population in Ghana, such as electricity, 
clean water and health care (Merron & Lamoureaux, 2024). 
	 Outer space is not just a geographical territory, but a social realm 
onto which human ideas are projected. It is crucial to study who projects 
which ideas, since exploration of outer space does affect both material (i.e. 
labor, distribution of resources) and discursive (visions of the future that 
orient action) conditions of life on Earth. 

Conclusion 
Historical accounts have shown how the societal context and the 
technological tools available, shape the object of research in the scientific 
study of life. For instance, tools such as the telescope and microscope 
created new ways of knowing. This implies that introduction of new AI 
tools in life detection at NASA is intertwined with new ways of producing 
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knowledge about life. This calls for ethnographic attention, to understand 
how this change occurs in practice.  
	 To address this, this study approaches science and technology as a 
cultural practice. Drawing on previous work in STS, especially laboratory 
studies (Knorr Cetina, 1999; Latour & Woolgar, 1986 (1979)), this study 
will observe the practices of scientists and engineers, to understand science 
and technology in the making. Nonetheless, the study is not limited to the 
laboratory – insights from social studies of data underline that 
understanding data requires an analysis of their attachments to places and 
people (Loukissas, 2019). I operationalize the attachment to places through 
the concept of truth-spots (Gieryn, 2006; 2018), and make a theoretical 
contribution by expanding it to the digital realm. 
	 Studies in the field of SSOS have scrutinized the actors in 
NewSpace and visions of entrepreneurs for the future of Earth, as they play 
a powerful material and discursive role in shaping society (Tutton, 2021; 
Valentine, 2012; Young & Docherty, 2024). Nonetheless, previous studies 
also show that space explorations continue to be for purposes of research or 
socioeconomic development (Oniosun & Klinger, 2022). NASA remains as 
the major actor in exploration of outer space, producing scientific 
knowledge about the universe. This organization has a profound impact on 
the ways in which humans imagine the universe and our place in it. It has 
global impact, and universal aspirations, but as any knowledge claim, it 
emerges from a particular place (Haraway, 1988). In future missions, 
knowing might be increasingly mediated through AI. Considering NASA’s 
role in knowledge production, it is crucial to study what is made (un)known 
and what is (not) inscribed in the algorithms that constitute this knowledge. 
	 In the next chapter, I introduce the method and material used in this 
study. Subsequently, I turn to the empirical chapters, where I introduce the 
theoretical tools used for analysis. 
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Chapter 3 Method and Material – Life in 
Planetary Science and at NASA 
Studying development of AI ethnographically opens up a window to the 
negotiations, uncertainties and instabilities involved in its development. I 
am fortunate to have access and have closely observed a group of scientists 
and engineers at NASA Goddard Space Flight Center, who work with AI 
for NASA missions searching for life and habitability in outer space. These 
observations have become the core material of this dissertation.  
	 In this chapter, I provide a thorough discussion of the methods as 
well as the material generated in this study. I start with briefly describing 
what is at stake in the ethnographic method. Then, the discussion is 
organized in accordance with the steps I took during the research process. 
Beginning with the choice of research problem, I continue with formation 
of a field site and how I went about generating material for this study. 
Throughout the chapter, I reflect on the choice of research subject, 
participants and field sites, my role in the field and the problem of access. 

Ethnography as a Method 
Ethnography is a method where the researcher spends a period of time with 
a group of people, observing their daily lives. These observations, inscribed 
in a notebook or recorded through a digital device, constitute the data that 
the ethnographer generates. Data generation is mostly unstructured, 
meaning that there is no fixed research design applied from the start. In 
order to facilitate an in-depth understanding, it is common to focus on a 
single setting. During the process of analysis, the ethnographer interprets 
the “meanings, sources, functions, and consequences of human actions and 
institutional practices, and how these are implicated in local, and perhaps 
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also wider, contexts” (Hammersley and Atkinson, 2019, p. 3-4). The 
ethnographic method is an activity of decoding, recoding, distinguishing 
between order and diversity, as well as inclusion and exclusion. The aim is 
to study powerful meaning systems and question the boundaries of 
classifications (Clifford & Marcus, 1986, p. 2). The final product is often a 
verbal description or explanation of a particular phenomena (Hammersley 
and Atkinson, p. 22). 
	 The ethnographer is not only describing what is out in the field - the 
ethnographer is continuously a part of it (Clifford & Marcus, 1986, p. 2). As 
a fellow human, studying other humans in their natural habitat, the 
ethnographer entering the field becomes part of the social world being 
studied. Analysis  of a culture is never complete (Geertz, 1973, p. 322). The 
subjects being studied are not static still lifes and do not live up to the 
portrait painted by the ethnographer. It is necessary to be conscious of what 
one includes in and excludes from the picture. Reflexivity about how the 
ethnographer affects the field, generation of data and analysis, are 
fundamental in this method (Schwartz-Shea & Yanow, 2012, p. 100). 
	 The ethnographic method is often described as either “emic” or 
“etic”. The aim of “emic” ethnography is to understand the informants’ own 
perspective of the world. On the other hand, the aim of ’etic’ ethnography is 
to explain why people live in a certain way, drawing on theories, history 
and other empirical studies (Fortun, 2024, p. 126). In this project, I use a 
combination of emic and etic analysis, by both seeking to understand how 
my informants understand the world but also seeking for explanations of 
why they act in certain ways. To do that, I have complemented careful 
analysis from observation of informants with strategy documents and 
historical context. This approach draws on Science and Technology Studies, 
where science is understood as practice shaped by “historical, 
organizational and social context” (Law, 2004, p. 8). 
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From the Problem to the Field 
Ethnographic research starts with an interest, question or issue that emerges 
from the literature or other sources (Hammersley & Atkinson, 2019, p. 22). 
This is what Malinowski referred to as “foreshadowed problem”, stressing 
it as an essential part in the research process (Malinowski, 1922, p. 8-9). 
Ethnography is an open-ended approach that initially explores a subject 
quite broadly and throughout the process, becomes more focused 
(Hammersley & Atkinson, 2019, p. 4). During the investigation, the 
“foreshadowed problem” is continuously revisited and reformulated 
(Hammersley & Atkinson, 2019, p. 22). 
	 The initial curiosity guiding this study was about how AI changes 
the understanding of life. During 2020, in the beginning of this project, AI 
was on the rise in society. How AI affects society became an urgent 
question to study for social scientists. This spurred my earlier interest in the 
effects of digitalization on society. The choice of focusing on how AI 
changes the understanding of life was due to both professional and personal 
experiences. During the Syrian war in 2015, I was working with immigrants 
in Sweden and volunteering at a refugee camp on Lesbos, an island in 
Greece. Witnessing the misery in the camp was indescribable – but what I 
found most striking was how human lives have such different conditions to 
flourish depending on their passport. I recall how I did not take any images 
of humans in the camp because of the risk that the images could be used for 
autonomous tools, used to identify humans by their appearance, with 
potentially harmful consequences for the legal status of the refugees. Five 
years later, in the beginning of this research project, I was concerned about 
how AI technologies would affect our understanding of different kinds of 
lives. 
	 While designing the research project, I was inspired by the approach 
of Mette Svendsen, Laura Navne, Iben Gjødsbøl and Mia Seest Dam, who 
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studied caregiving in Denmark by looking at lives across different 
categories. From newborns at neonatal intensive care units and piglets at a 
research laboratory to elderly people in a dementia nursing home, the 
authors showed what it takes to constitute “beings with worthy lives” 
(Svendsen et al., 2018). This shaped my analytical attunement to how 
entities are made into worthy of care or not.  
	 Following this, I was interested in lives across different categories, 
staying open to study contexts such as border control offices or bioscience 
laboratories. Drawing on my training in political science, I was inclined to 
study power relations by looking at decision making in the process of 
designing AI technologies as well as the organizations where they are 
implemented. However, in studying powerful institutions or corporations, 
access can be a major obstacle (Gusterson, 1997; Nader, 2018). I will return 
to this subject later in the chapter and describe the problem of gaining 
access to NASA, the largest space agency in the world.  
	 Another challenge that appeared already at the initial stage of the 
study was the state of the world, being locked down due to Covid-19 
pandemic. This posed a severe challenge for getting access to fieldwork 
beyond the virtual format. In order to adjust to these circumstances, I 
searched for other sites to observe the astrobiology community. In times of 
difficulties to get access, “polymorphous engagement” (Gusterson, 1997, p. 
116) can be a fruitful strategy. The term derives from anthropologist Hugh 
Gusterson, who studied the nuclear weapons laboratory. Without having 
access  to the laboratory building, he had to engage in other settings where 
his participants were present, such as local clubs, bars, churches, and 
complementing it with reading the newspapers and following the popular 
culture. This approach, which he referred to as “polymorphous 
engagement”, means that the ethnographer interacts “with informants 
across a number of dispersed sites, not just in local communities, and 
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sometimes in virtual form; and it means collecting data eclectically from a 
disparate array of sources in many different ways.” (Gusterson, 1997, p. 
116) In line with this strategy, due to lack of access to a physical field site, I 
engaged with searching for other sites to observe. In the following, I 
discuss the steps I took to generate material for this dissertation. 
	 Searching for a case study quite broadly brought me to a particular 
field of study within biosciences: astrobiology. I immediately got curious 
about its attempts to answer the big, unresolved questions (What is life? 
How did life emerge?). Intrigued by how AI plays a role in addressing the 
big questions about life and its origins, I started fieldwork by exploring the 
scientific community in the field of astrobiology. By then, the aim of the 
research narrowed down to focus on the field of astrobiology. 

Observation of Scientific Conferences 
I started to collect material by attending conferences, seminars and lectures. 
The main purpose was to get insights about astrobiology by paying 
attention to the currently discussed topics, research questions and methods. 
Guided by the previously described “foreshadowed problem”, I was 
specifically interested in the use of novel technological tools such as AI or 
other autonomous systems. Between 2021 and 2022, I observed five online 
conferences and three online seminars on the subjects related to 
astrobiology, space research and planetary science. Three of these 
conferences were the main global conferences in the following research 
fields: astrobiology, origins of life studies and planetary science. I contacted 
the organizers to receive permission to observe the events, however, most 
of the events were publicly accessible online. The majority of the 
participants were scientists within these fields, some were engineers. Some 
of the events involved presentations by politicians or were aimed at laymen 
audience. The events were of varying duration – from a half-day seminar to 
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a two-week-long conference. The majority took place online, during the 
Covid-19 pandemic. During observations of the conferences and seminars, I 
generated field notes and photographs. This material has served as an 
important background for understanding the epistemic community, that my 
main interlocutors at NASA are situated in.  
	 In May 2021, after the pandemic restrictions were lifted, I joined a 
summer school in astrobiology, organized by the European Astrobiology 
Institute. I participated in the summer school in order to experience the 
community of astrobiology and establish relations with people in the field, 
both junior and senior researchers, whom I am still in touch with today. The 
summer school took place at Ven. It is a small island in Sweden, with great 
historical importance to astronomy – it was the home of Tycho Brahe, 
whose measurements of stars were the most accurate before the invention 
of the telescope. Compared to the virtual settings which I explored 
previously, socializing with researchers was much helped by the physical 
setting at Ven, the picturesque island in full bloom of May. Nor should the 
locally brewed beverages be underestimated as a glue in bonding between 
researchers. This was acknowledged among researchers at several 
occasions during fieldwork. In an interview with one of the most influential 
researchers in the origins of life studies, he stated that research happens at 
the pub. During the pandemic, at a virtual conference in planetary science, 
the host was explicitly mentioning how unfortunate it is to miss out on the 
gatherings around dinner and wine with colleagues. Throughout fieldwork, 
participation in casual settings showed to be important to understand the 
social world of my informants. 

Interviews with Scientists and Engineers 
Dependence on the virtual context during the pandemic made it possible to 
access researchers around the world. Observations of conferences and 
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seminars related to astrobiology enabled me to find relevant interlocutors 
for initial interviews. Later, I continued with snowball sampling. During the 
period between fall 2020 and the beginning of 2022, I conducted 21 
interviews with one participant at a time. An exception was one interview 
conducted with two planetary scientists who were working on a project 
together. Among the 22 participants, 20 were scientists, and two were 
software engineers. The scientists I reached out to were in some way 
contributing to the field of astrobiology. The majority of my requests, sent 
to potential participants through e-mail, led to an interview.  
	 Given that informed consent is a fundamental initial step in 
conducting interviews (Flick, 2018, p. 140), I informed the participants 
about the objectives of the study, their right to withdraw from the study at 
any point, and confidentiality. I also asked for the consent for recording 
audio. In line with ethical standards of qualitative research to not cause 
harm to the participants (Flick, 2018, p. 136), I have been considerate about 
how the data will affect the social situation of the informants. In order to 
mitigate causing harm by accident, I have involved my informants in the 
review of quotes and observations, and opened up for revising the material 
and use of their real names, or pseudonyms before publication. I have not 
collected any sensitive personal data, such as health condition, religion, etc. 
	 Interviews were semi-structured, in order to balance between 
allowing participants to express their viewpoints, yet steering the interview 
in a direction related to the aim of the study (Flick, 2018, p. 216). During 
interviews, I asked about the researcher’s scientific background, their work 
with astrobiology and their thoughts or work on AI. Interestingly, several 
interviewees clearly articulated that they are not astrobiologists per se, 
rather, they contribute to the field of astrobiology. This turned out to be a 
key point in my material. It made me wonder why informants working with 
astrobiological research prefer to call themselves biologists, chemists, 
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physicists, or astronomers. Throughout fieldwork, I noticed that researchers 
with ties to NASA were more inclined to call themselves astrobiologists. 
Reading accounts about the history of life detection provided me with 
explanations to this, which I intertwine with my observations from NASA 
in the first empirical chapter. 
	 The majority of the interviewees were based in Europe and the US. 
This reflects the global asymmetry in the infrastructure of knowledge 
production in astrobiology – rocket launch sites, telescopes and testbeds are 
often situated in the global South, and used for generation of scientific 
knowledge in the global North. The choices of sites and languages (English 
and Swedish) were based on temporal and economic convenience, as well 
as linguistic abilities. However, the “smoothness” of studying English-
speaking and Northern contexts is problematic from the perspective of 
knowledge production. Being aware of the colonial history and cognitive 
injustice, it is crucial to remain attentive to how different sites are affected 
and whose interests are served by particular endeavors. I address these 
aspects in chapter 5, by folding in alternative narratives of places used by 
NASA, and engaging with previous studies on sociopolitical consequences 
of space explorations. 
	 Some interviews turned out as interviews, some as conversations, 
some were more of me being lectured. By the time of starting this study, I 
did not have any experience of astrobiology, beside reading a few books 
and listening to lectures. Pursuing the semi-structured interviews by asking 
questions with such limited experience of the subject was initially 
challenging. I was veering between feelings of incompetence, awe and 
humility. To get rid of the uncomfortable feeling of incompetence, I 
dedicated a lot of effort to learn the jargon, terminology and the social 
norms in the field of astrobiology. The fact that the pandemic restrictions 
resituated my field to the virtual part of our world could have been an 
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advantage in allowing me to learn and increase my competence in 
astrobiology, thus, entering the physical field with more confidence. 
Downsides of the virtual format are that some understandings might have 
got lost in translation - communication with new people can be more 
challenging when mediated through a flat screen. The mediation can make 
it difficult to show the participants that they have my full attention - it is 
impossible to establish eye contact and one does not know what the other 
looks at or expresses with the body. Nevertheless, post-interview 
communication with the participants showed that they did have a positive 
experience. Several participants were grateful and curious about my 
research, and one even sent me a book with a greeting by post. These 
gestures became gentle reminders that it is worthwhile to show the 
authentic self during field work, showing empathy toward the participants. 
Being challenging, even in difficult situations, is not a good strategy in 
trying to establish trust with participants (Lähdesmaki, 2020, p. 156). 

Literature Review – What Is the Role of AI in Astrobiology? 
In order to get a systematic overview of the role of AI in astrobiology or life 
detection specifically, I conducted a literature review in the spring of 2021. 
I collected 82 scientific publications of which 62 were from the last ten 
years. Most of the publications were collected through search engines 
(Scopus and Google Scholar) and a smaller number directly from journals 
(Astrobiology Journal and Journal Origins of Life and Evolution of 
Biospheres). After exploring numerous keyword entries, the combinations 
that generated the most relevant results for the aim of this study involved 
“artificial intelligence”, “machine learning”, “neural networks”, 
“astrobiology”, “origin of life.” At the stage of collecting 82 papers, I 
reached a level of saturation. The literature review was conducted with the 
software NVivo. Initially, I coded the themes manually. Some of the 
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prevalent themes were: “AI as a tool to find life”, “AI as unbiased with 
minimal assumptions”, “machine learning for prediction”, “questioning 
Earth-centrism”, “microbial life in outer space”, “life as biology”, “life as 
carrying information”, “life as ET civilization-intelligence”. Successively, 
after getting an increased insight about the material, I was able to search for 
certain keywords that were important.  
	 The most important keyword turned out to be “intelligence,” as it 
illuminated the multiple understandings of life, as biology or technology. 
Based on that, I identified multiple roles of AI in the context of 
astrobiology and life detection. A common depiction of AI within 
astrobiology, is as a tool to enhance search for life and habitability. 
However, another narrative prevalent in life detection is understanding of 
AI as a potential post-biological life form that could be detected in outer 
space. This finding proved to be crucial for understanding the multiplicity 
of approaches in life detection. I complemented these insights with 
historical accounts about how search for life in outer space has been a 
subject struggling with legitimacy. This opened up important questions 
about what kinds of life NASA considers as legitimate to search for and 
with what tools. This topic is discussed in the first empirical chapter and 
provides an important context for understanding what is at stake for 
practitioners at NASA. 
	 The steps described above, including observations of conferences, 
interviews and literature review, provided a solid background for 
understanding the role of AI in the field of astrobiology. However, access to 
the field to conduct participant observations of scientists’ everyday work 
has been difficult due to several reasons. First, it was difficult to interpret 
the research among natural scientists and decide whether their work is 
aligned with my research questions. For instance, I got invited to join 
scientists working with drones in planet analogs on Iceland, but had to 
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kindly decline after a reconsideration. The purposes of their study did not 
overlap sufficiently with the aim of my research. Second, the pandemic 
restrictions have limited my possibilities to build relationships with 
astrobiologists which otherwise might have helped me to navigate through 
the field. An example of the difficulty of getting access to the field is a 
conference organized by NASA that I registered for but only got limited 
access to. I was not able to use the conference material, since I did not 
apply for a particular consent in time. Instead, I used this as an opportunity 
to learn about the field of astrobiology, before conducting more in-depth 
ethnography of conferences later on. 

Participant Observation at NASA Goddard Space Flight 
Center 
Now, I will turn to what constitutes the core material for this dissertation – 
participant observations at NASA Goddard Space Flight Center. Among my 
interviewees were scientists and engineers at NASA. Two software 
engineers were working at NASA with developing AI tools for life 
detection in outer space. Given my “foreshadowed problem” being how AI 
changes the understanding of life, this was an ideal case. After a period of 
negotiation, I was able to get access from my interlocutors who let me 
conduct participant observation of their work at NASA Goddard Space 
Flight Center in Greenbelt, Maryland.  
	 Being considerate about ethical dilemmas is crucial to legitimate 
qualitative research. This involves the balance between generating new 
scientific knowledge and maintaining the dignity and rights of participants. 
Ethical committees can work as an instrument to assess if a project is 
complying with good ethical practice (Flick, 2018, p. 139, 147). To conduct 
ethnography at NASA Goddard Space Flight Center, I applied to NASA’s 
ethical review board. I submitted a plan of the study, focusing on protection 
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of individuals and mitigating risks of causing harm. After making minor 
adjustments to the plan, based on several rounds of comments from 
NASA’s ethical review board, I received ethical approval to conduct 
fieldwork. The process of applying for ethical approval entailed passing 
NASA’s course on studies of human subjects. 
	 The main participants in the study have formally consented to be 
part of the study. All participants were informed about the study in 
accordance with the guidelines in NASA’s ethical approval. They have been 
introduced to the objectives of the study and their right to withdraw from 
the study at any point. I have not recorded any sensitive personal data, such 
as health condition, religion, etc. Throughout the process of collection of 
the material as well as analysis and writing up, I have been considerate 
about not causing harm to the participants. Nevertheless, in order to 
mitigate causing harm by accident, I have involved my informants in the 
review of quotes. This opened up for revising whether the material contains 
any information that could potentially cause discomfort for their social 
situation at work, as well as discussing concealing their identity in different 
ways. To summarize, I have taken all the promises made to NASA’s ethical 
review board and each participant very seriously. 
	 As a foreign national (Swedish and Polish citizenship) at a 
governmental US agency, I was excluded from witnessing or registering 
certain information. US regulations do not permit foreign nationals to 
access technical details about the missions. I complied with these rules and 
did not witness or record such information. This limitation did not impact 
the results of the study. Furthermore, in accordance with guidelines for 
foreign nationals, I was escorted by NASA personnel at all times. In most 
cases, I was escorted by participants in the study. Instead of being an issue, 
being escorted was a great opportunity to shadow my informants at all 
times. 
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	 I conducted participant observation at NASA Goddard Space Flight 
Center on two occasions. First, in June 2022, for four weeks. Then, a 
follow-up visit with the same interlocutors in July 2023, for three weeks. 
The length of the visits to the field site were limited by policies at NASA, 
which allowed me to visit for a maximum of one month. Due to these 
formal restrictions, the ethnography was executed in what previous 
ethnographers have termed “compressed time mode”, meaning “a short 
period of intense ethnographic research in which researchers inhabit a 
research site almost permanently for anything from a few days to a month” 
(Jeffrey & Troman, 2004, p. 538). In contrast to ethnographies that span 
over longer periods of time, the “compressed time mode” makes it less 
likely for researchers to be selective about how they spend time at the field 
site. Instead, the researcher is fully engaged in the daily routines and has to 
soak up “every tiny detail” because it might be relevant for later analysis.  
	 The question of time in ethnography regards not only how long the 
researcher is engaged with the field. It is also a question of choosing the 
right timing. Dismissing the temporal structures of the social context being 
studied can lead to misleading conclusions (Hammersley & Atkinson, 2019, 
p. 39). The right period for fieldwork at NASA was decided based on 
consultation with informants, in order to choose relatively busy periods at 
work and at the same time avoid periods when practitioners are away for 
conferences, field trips or vacation. My first fieldwork was conducted a few 
weeks after pandemic restrictions were lifted. Practitioners just started to 
get back to the office. This was celebrated with beer and snacks at a 
gathering after work during the first week of fieldwork, which was a great 
opportunity to get acquainted with potential informants. 
	 I spent the majority of fieldwork with one software engineer and 
accompanied him in meetings with scientists and engineers. I have also 
spent a substantial amount of time with scientists while they were 
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conducting experiments in laboratories at Goddard, as well as in their 
meetings. While I have observed dozens of scientists and engineers in their 
everyday work, a handful were my main interlocutors. They are all engaged 
in the work with AI for “science autonomy” in different ways (which I 
described in the introduction chapter). Some are the leading figures 
introducing the idea to NASA, while others have more of a collaborative 
role. During my visit, different kinds of AI tools were in development. 
However, my observations encompassed much more than just AI 
development, which has provided important insights about the 
infrastructure of knowledge production at NASA that makes AI possible (or 
at times impossible, which I will unfold throughout the upcoming chapters). 
During the visits at Goddard, I wrote field notes, as well as took 
photographs and made audio and visual recordings, given participants’ 
consent. I have also received additional material from interlocutors, such as 
presentations, drafts of applications and datasets for AI.  
	 During fieldwork at Goddard, I conducted interviews with six 
software engineers and eight scientists. Besides that, I interviewed three 
persons holding managerial positions at Goddard, of which two were 
scientists and one was an engineer. The majority of the participants were 
interviewed on several occasions during fieldwork. The boundary between 
interview and participant observation can be blurry, and moreover, 
interviews do not always go as planned (Hammersley & Atkinson, 2019, p. 
113, 115). In some cases, interviews were successful in terms of being 
semi-structured and informative, while others were interrupted. 
Interruptions were not uncommon, as the interviews occurred at the office, 
in the middle of a workday. On the other hand, having interviews at the 
office could allow participants to feel comfortable in a familiar setting, in 
contrast to arranging an interview elsewhere (Hammersley & Atkinson, 
2019, p. 122). Each interview with a new participant involved a 
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presentation of the research project, information about the conditions of 
being studied, such as the right to confidentiality and withdrawal at any 
point. The interviewees have formally consented to participate in the study 
and the majority consented to be recorded. Recording has great advantages 
for the research, by providing accurate data and freeing the researcher to 
focus on listening and asking questions. However, an over-emphasis on 
recording audio can turn the attention of the ethnographer toward data that 
is recordable, focusing on spoken words rather than other forms of action 
(Hammersley & Atkinson, 2019, 160-1). Bearing in mind that scientific 
practice is more than what people say, I used other means than audio-
recording. This draws on insights from sensory ethnography, as explored in 
Lähdesmaki and others (2020), who emphasize how the ethnographer is 
situated in the materialities of the environment through the sensing body. 
By attending to various sensory experiences, these undermined modes of 
knowing can become a source of non-verbal notions that play a meaningful 
role in our everyday lives and interactions (Lähdesmaki, et al., 2020, p. 21, 
22). I explored these notions by being present, observing, writing, taking 
pictures, making videos, registering temperatures, distances versus 
closeness between entities and aesthetic impressions. 
	 During the fieldwork, at the end of my workdays at NASA, I 
dedicated some time to write down reflections about what I observed and 
how it relates to certain theoretical concepts but also, about my role in the 
field. This part of the process was vital, in order to maintain focus on the 
aim of the study and plan how I should continue fieldwork – what and 
whom to observe, what kind of follow-up questions to pose, whom to 
interview. 
	 My role in the field can be described as coming across as young 
(28-29 years old) and incompetent, which is common in ethnography and 
can be an advantage (Hammersley & Atkinson, 2019, p. 80). It is a common 

51



practice at NASA to hire interns, who are usually young students. Because 
of the prevalence of interns during the periods of doing fieldwork, I might 
have blended in more easily among other young and unexperienced peers. 
Moreover, due to the character of social research being radically different 
than practitioners’ at NASA, I was less likely to be considered as a threat in 
the competitive environment at NASA. This identity, of being young and 
incompetent, allowed me to ask naive questions and search for 
clarifications without awkwardness. As an example of this role, in post-
fieldwork correspondence with one of my main informants, the person 
described how I have become internalized as a someone who asks 
questions: 

Or sometimes I sit in my office and think, “How would I explain this to 
Alicja?” 

I arrived at NASA, curious about how scientists and engineers generate 
knowledge about the world. Once I met them in the field, they turned out to 
be as curious about my research methods as I was about theirs. While 
introducing myself as a social scientist and explaining my research, it 
became evident that our ways of producing knowledge differ. In spite of 
these differences, I needed to establish a common ground with practitioners 
in order to build trustworthy relationships with participants, which is a 
central point in ethnography. As Hammersley and Atkinson stress, ordinary 
topics of conversation can help to establish an identity of a decent person 
that can be trusted (Hammersley & Atkinson, 2019, p. 70). I engaged in 
conversations on topics beyond the aims of the study, such as hobbies, 
family life, pets and references in popular culture. During fieldwork, I 
developed closer relationships with core participants. Together, we hosted a 
celebration upon my departure. I brought with me a selection of beverages 
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and was surprised upon receiving some gifts and a card, which my 
participants have signed with expressions of gratitude for my visit. After 
my departure, one of the participants shared that they wish I would work 
with them at NASA. While staying in touch with my main informant 
through correspondence, I get updates and pictures about work as well as 
personal life.  
	 Developing close relationships with informants has the advantages 
of being able to immerse the self in the social world of others, which helps 
to unfold an in-depth understanding. On the other hand, the process of 
disengagement from the field – when sympathetic humans become research 
material to analyze – can be emotionally difficult (Gobo, 2008). At some 
points I had to remind myself that I was not one of the astrobiologists, 
rather, I was studying them. This was difficult due to two reasons. First, as I 
mentioned, I developed a strong sympathy toward my informants, who 
turned out to be very likable. Second, I shared the curiosity that my 
informants have in relation to the big questions that are central in 
astrobiology. With time passing since my field visit, I was able to get 
distance and revise my role as an ethnographer, not an astrobiologist 
addressing the big questions. Anthropologist Clifford James Geertz 
summarizes this distinction well in the conclusion of his article on thick 
description: 

The essential vocation of interpretive anthropology is not to 
answer our deepest questions, but to make available to us 
answers that others, guarding other sheep in other valleys, have 
given, and thus to include them in the consultable record of 
what man has said (Geertz, 1973, p. 323). 
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Access to NASA Revisited 
Access to the field site was not something that I could take for granted. 
During the first visit in Greenbelt, upon my arrival, I still had not got “the 
badge” – the permission to enter NASA facilities – despite submitting 
applications long in advance. Fortunately, this issue resolved quickly and I 
soon got the right papers in place. My second visit was planned to be for a 
period of two months. While standing in line to show my passport, just a 
moment after my flight arrived to the airport in Washington DC, I received 
an email from my informant. “I just went back and checked the start date 
and found a terrible mistake. It has you starting AND FINISHING on 
3/31/23.” This meant that my permit to access NASA facilities was issued 
for one day, instead of two months. Hoping that the issue would get 
resolved quickly, with help of my interlocutors, we attempted to get the 
right papers in place. After almost two weeks of staying in Greenbelt and 
trying to get access without success, I returned back home to make up a 
new plan. A few months after, I was in Greenbelt once again, this time for a 
period of three weeks. The following are my field notes from the first day 
of returning to NASA. 

Monday 3rd of July 2023 
Went through the formalities without any issues. (…) Long and 
intense first day. I feel even more grateful to get in, now when I 
know how bad it can be, after last time. Me and Eric laughed 
that it might have happened since I applied for a visit starting 
1st of April. A very cruel April’s fool joke. He’s said how sorry 
he is but I prefer to laugh at the situation by now. Otherwise, it’s 
unbearable. I haven’t re-read the notes from the days when I 
wasn’t able to get in, staying in the limbo. Speaking of 
hardships, me and Eric talked about not only life detection 
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missions and AI but turned to our common topic of discussion – 
running. And family. After having a lunch with a small beer to 
celebrate my first day in, we continued to talk about Eric’s 
work. I think we were in a constant conversation from 9 AM at 
his office, until 2 PM after lunch, when I had to go to the 
bathroom. 

The above illustrates the intensity of doing fieldwork and its ad hoc nature. 
Access to the field can be difficult to get to begin with, and it can also 
easily be taken away. Access can not be taken for granted. Therefore, once 
getting in, as ethnographer, one has to adjust to the circumstances.  
	 The experience of being denied access was indeed challenging. 
However, interruptions in fieldwork, such as lack of access, do not have to 
be dismissed as failures (Fortun, 2024, p. 129). In this case, lack of access 
generated important analytical points for this dissertation. I was not the 
only one at NASA without a “badge”. Once I conducted fieldwork at 
Goddard, a frequent problem echoing in the hallways was how X researcher 
is still waiting to get a “badge” and can therefore not access facilities. 
Bureaucracy at NASA is impacting preconditions for scientists and 
engineers to do their work. However, programmers that do not rely on 
laboratories do not need a “badge” – they can do their work from anywhere. 
This has two consequences for the infrastructure of knowledge production. 
First, being able to do the work regardless of the “badge” gives 
programmers an advantage in comparison with other professions. The work 
of scientists and engineers is dependent on having access to the unique 
instruments at NASA laboratories. Programmers can mobilize resources 
from anywhere in the world. All they need is a computer. Second, access to 
the facilities and insight into the material work of scientists and engineers at 
NASA generate a sense of epistemic responsibility. Lack of access to the 
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context of knowledge production does not create a precondition for 
epistemic responsibility, but rather, for accountability according to metrics. 
This vantage point is explored further in chapters 6 and 7. 

Post-Fieldwork: Transcription, Analysis, Writing Up 
After conducting fieldwork, I transcribed the field notes entirely, which 
entailed two notebooks of 200 A5-pages each. Regarding audio- and video-
recordings, I listened through each of them and kept a separate notebook 
where I identified themes, wrote summaries or noted down relevant quotes. 
I transcribed only parts of the recordings that were essential in relation to 
the study. A risk in doing so is missing out what might turn out to be 
relevant material at an unexpected point. Nonetheless, due to time 
constrains, full transcription of almost hundred hours of recordings was not 
feasible (for reference, transcription of one interview can take an entire 
workday). To prevent overlooking relevant material, I repeatedly revisited 
the notes with themes, summaries and quotes, and returned to the 
recordings. 
	 As you may have noticed in the earlier sections of this chapter, the 
analysis is not a separate period of work, beginning after collection of all 
material. Analysis occurs throughout the entire research process. 
Identifying prevalent themes took place already during generation of 
material and continued afterwards, by revisiting the field notes and 
transcriptions. In the notebook for field notes, where I already started to 
inscribe analytical ideas, I clearly separated my analysis from the 
observations and participants’ own descriptions of events by using different 
colors. 
	 The process of analysis shares traits with the logic of abduction. It is 
an approach to qualitative data analysis “aimed at generating creative and 
novel theoretical insights through a dialectic of cultivated theoretical 
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sensitivity and methodological heuristics.” (Timmermans & Tavory, 2012, 
p. 180) Here, the dialectic relates to the notion of continuously revisiting 
the empirical material and theoretical assumptions, trying out alternative 
ways of analyzing material. The fundamental aspect of abductive logic that 
proved to be fruitful in the process of analyzing this project has turned out 
to be revisiting the phenomena being studied throughout different periods 
of time. Data that did not appear to be important during fieldwork can 
become valuable after a period of time, including new empirical and 
theoretical insights (Timmermans & Tavory, 2012, p. 176). This process 
made it possible to reevaluate the material and its relevance. 
	 Since the beginning of this research project, I kept an analytical 
notebook where I noted down ideas throughout the research process. 
However, after completing participant observation at NASA, I shifted to 
working closely to the empirical material. After conducting fieldwork, I 
revised the aim of the study and narrowed it down, from astrobiology to 
NASA specifically. I continuously revisited the material from participant 
observation at NASA and searched for themes that related to my research 
interest, looking for patterns and anomalies in the practices that I observed. 
After getting a good insight into this core material, I was able to incorporate 
the earliest interviews and observations from conferences to the analysis, as 
they provided valuable context to understand the scientific community that 
my informants are part of. Having qualitative data from a range of different 
sources enabled triangulation during the analytical process (Flick, 2018, p. 
196-197). I was searching for patterns, anomalies and discrepancies 
between the material generated during conferences, interviews, literature 
review and the visit at NASA. The data from different levels, such as 
documents versus everyday practices at a laboratory, showed interesting 
discrepancies. The outreach rhetoric at NASA and its claims about what 
kind of knowledge is produced, compared to the everyday practices of 
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researchers and their hesitation in making knowledge claims has constituted 
a significant theme in the thesis (discussed in chapter 4). Furthermore, by 
looking at the published literature in the field of astrobiology and 
comparing it to the practices at NASA, I was able to show how certain 
actors are excluded from the governmentally funded organization, due to 
arguments of illegitimacy.  
	 Rather than analyzing the computational code itself, I have focused 
on what each profession considers crucial to maintain, or change, in 
negotiations about the data used for training AI. This has enabled me to 
generate insights about the epistemic concerns, and how they change in 
development of AI. I have observed the practices of producing scientific 
knowledge in laboratories at NASA but not beyond – such as field work to 
collect samples which are analyzed in the laboratories. I rely on interviews, 
scientific articles, conferences, and other documents, to complement the 
analysis of how scientists produce data without limiting it to what happens 
in the laboratory.  
	 At the stages of writing up the dissertation, I realized that I should 
get more insight into how popular culture impacts the social world at 
NASA. To do so, I watched movies, TV shows and documentaries about 
NASA, space research and sci-fi, such as Star Trek, which I observed has 
had a significant influence on how NASA researchers imagine space 
exploration.  
	 An important stage for the process of analysis of the material has 
been a visit with the research group who spiked my initial analytical 
interest in looking at lives across categories (Svendsen et al., 2018). I am 
indebted to the MeInWe research group at Copenhagen University for being 
an extremely stimulating intellectual community to think together with, 
during the fall term of 2023. Furthermore, I am fortunate to have had a 
group of researchers whose wisdom, anchored in different scientific 
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backgrounds, has pointed my analytical attention in new directions. My 
supervisors (STS-scholar Francis Lee and sociologist Shai Mulinari), my 
mentors (historian of science Sven Widmalm and anthropologist Mette 
Svendsen) and my final seminar opponent (anthropologist Klaus Høyer) 
have played important roles by providing invaluable feedback. 
	  

Following up with Participants 
During the last months of this project, I got back to the participants 
individually with the material – quotes and descriptions – that I plan to use 
in the dissertation. Participants were re-informed about their rights as 
participants in the study, and provided the opportunity to review the 
material. Some of the participants provided feedback with minor revisions. 
Most of the comments aimed at achieving more accurate descriptions of the 
scientific terminology. In two instances, the participants asked to withdraw 
a particular section of the material. In one case, it was to mitigate the risk of 
social discomfort. In another case, it was to not reveal data used for AI 
training which has not been published. Beside these examples, participants 
provided confirmed consent to use the material for this study. Some of the 
names of participants are real, and in some cases, they are referred to with 
pseudonyms. The choices were made based on individual consultation with 
participants. In some instances, titles or other characteristics that might 
reveal the identity of a participant are concealed. 
	 I include a list of the participants who figure in the thesis, in the 
approximate order of how frequently they appear (Figure 7). Two of the 
participants explicitly identify themselves as astrobiologists, while others 
prefer other labels (planetary scientists, chemists, geologists). What unities 
these scientists, and engineers, is that they have in different ways 
contributed to research on the main questions addressed in astrobiology. 
Although 14 participants explicitly figure in the thesis, the descriptions of 
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scientific practices are informed by participant observation and interviews 
with four participants who do not figure in the dissertation – two scientists 
and two programmers. All participants have ties to NASA, either as present 
or past employees, or as collaborators.  
 	 Regarding interview material used in the dissertation, the quotes 
that are italicized indicate my own emphasis. When an informant put an 
emphasis through intonation, I use capital letters. In documents and 
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Participant Profession

Eric Software engineer

Victoria Software engineer

Lu Scientist

Jason Scientist

Samantha Scientist

Michelle Software engineer

Walter Scientist

Ryan Scientist

Sandra Scientist

Michael Scientist

Paul Scientist

David Scientist

Caroline Scientist

Ashley Software engineer

Figure 7. Participants who are referred to in the 
dissertation.



previous studies cited in the thesis, I include a parenthesis to clarify if parts 
of the text are italicized by me. 

Limitations 
The two major strengths of ethnography – appropriateness and 
methodological flexibility – have enabled me to adapt to the research 
subjects throughout the process (Flick, 2018, p. 335). However, the use of 
this method has limitations, such as finding the right timing for 
observations of events. Even though I have done my best to plan for a 
fruitful period to visit NASA, “the best period” can never be fully 
anticipated in advance. Another limitation is my relation to the informants 
at NASA, whom I avoided challenging, to not come across as a difficult 
person to be around. During fieldwork, I have aimed for acting respectfully 
and approach informants with kindness. I already mentioned that I did have 
a strong feeling of sympathy toward my participants – however, not being 
challenging during fieldwork was also because my access to the field was 
dependent on them. 
	 The study provides insights about the development of AI in society 
in general. However, the implications of this study do not necessarily 
translate to other contexts and domains where AI is being developed. This 
dissertation concerns AI tools in the making, at a particular place and point 
in time, and a particular example in planetary science at NASA Goddard. 
	 Cultures are not a static phenomenon. Along with rapid 
technological development of AI tools, it is likely that a lot has changed at 
NASA since the fieldwork was conducted. This is also implied in recent 
follow-up correspondence with participants. For instance, one participant 
notes that they currently work with a team that has a different attitude than 
a few years ago. Furthermore, they state that there are now new kinds of AI, 
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and new ways of simulating data, which contribute to increased robustness 
and trust in these tools. 

62



Chapter 4 Drawing Boundaries Around 
Astrobiology to Sustain Legitimacy at NASA 
225 million kilometers away from Earth, a three-meters-long, 899-kilogram 
rover with six wheels drives around on the surface of Mars. It is a dusty, 
cold desert world. The rover is on a NASA mission to explore whether 
Mars has ever been capable of supporting life. Through a camera, the rover 
looks for an interesting spot, drills a hole, picks up a sample with its robotic 
arms and puts it inside its “belly.” It is designed to resemble a human body 
and do experiments like a human astrobiologist. A human astrobiologist 
might not put a sample in their belly – but the rover does. To digest the 
samples, the rover uses several scientific instruments. One of them is called 
SAM (Sample Analysis at Mars), already introduced in the first chapter. It 
is a miniaturized laboratory that analyses gases and powdered rock to 
identify which organic molecules are present on Mars. Scientists at NASA 
believe that organic molecules can provide important cues about the 
possibility of life on other planets. 
	 Unlike the Red Planet, the city of Greenbelt is, as the name 
suggests, full of vegetation. Parts of the green area are framed in a window 
behind Walter, at his office at NASA Goddard Space Flight Center. I enter 
his room and ask if he has some time to talk. Sure, he says, after which I sit 
down on the chair at the other side of his desk. Walter is one of the 
scientists who developed SAM, the instrument operating on Mars. Given 
that Walter is engaged in development and operation of the main laboratory 
instrument on a mission exploring possibilities for life on another planet, I 
wonder how he understands what life is. In one of my questions, I take 
NASA’s working definition of life as a point of departure. Derived by a 
panel of scientists in 1992, it reads:  
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Life is a self-sustaining chemical system capable of Darwinian evolution. 

I ask Walter about the notion of Darwinian evolution, “since it is in NASA’s 
working definition of life.” Walter raises an eyebrow and asks “Oh, really?” 
His slightly surprised reaction makes us both amused. But for me, this was 
also quite stressful. I went into Walter’s office with an assumption that he is 
engaged in a mission for life detection. Yet, he is not even familiar with the 
official NASA definition of life. I clarify what I refer to by NASA’s 
working definition of life, and then give the question another try by asking 
Walter if Darwinian evolution is something that he considers in his work. 
“No, I think that’s many, many layers away from us. Like I said, we’re 
looking at not even progenitor molecules of these things, we’re just looking 
at byproducts and fragments.”  Walter describes the mission that he is 5

engaged in as “not really looking for life, but looking for the byproducts of 
the progenitor molecules you need, to get to life.” He says that the mission 
he is part of is exploring habitability – not life. He emphasizes that NASA 
is careful about the distinction between life and habitability. I find this 
puzzling. In outreach activities, NASA proudly promotes their missions as 
searching for life in the universe. 
	 The discrepancy in the articulation of what NASA does in their 
missions is at the heart of the argument in this chapter. The articulation of 
the research subject at NASA shifts depending on the source of legitimacy. 
	 Life detection at NASA has a history of struggling with legitimacy. 
Previous studies have shown how scientists adopt different strategies to get 
continued support, despite the absence of signs of extraterrestrial life (Dick, 
1996; Reinecke & Bimm, 2022). Based on documentary and ethnographic 

 Progenitor means an ancestor/parent from which something originates. In this 5

case, a progenitor molecule refers to the parent/main molecule from which the 
fragments measured with SAM came from.
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material from NASA, this chapter contributes a more nuanced picture of 
how NASA draws boundaries to maintain legitimacy for their life detection 
missions among the public and the scientific community. I unfold how 
NASA draws the boundaries around astrobiology, shapes life detection as a 
research subject, and the tools to detect it. As I alluded to in the vignette, 
these articulations are sometimes in conflict – I argue that the articulation of 
life detection shifts depending on the source of legitimacy. I also draw 
attention to how NASA excludes particular approaches from astrobiology to 
maintain legitimacy for their activities. 
	 To analyze this, I use concepts from previous studies of scientific 
knowledge production. First, I analyze how scientists construct doable 
problems through the everyday processes of organizing their work 
(Fujimura, 1987). I focus on how the work of scientists and engineers at 
NASA is situated in two social worlds, that serve as sources of legitimacy 
for NASA: the general public, who (financially) support their activities, and 
the scientific community, who authorize their knowledge claims. I pay 
attention to how these social worlds play a role as NASA’s sources of 
legitimacy and how it in turn shapes the everyday work of practitioners. I 
conceptualize this mutual process of shaping as the rightness of the 
research subject, practitioners, and their tools. The rightness refers to 
appropriateness in a particular social context (Clarke & Fujimura, 1992). 
	 To understand how astrobiology at NASA maintains legitimacy, I 
also analyze it in terms of boundary work that the institution and its 
practitioners do, meaning the practices demarcating science in ways that 
justify their “claims to authority or resources” (Gieryn, 1983, p. 781). 
Demarcation is performed through inclusion and exclusion of particular 
approaches. In this chapter, I discuss the processes of shaping a doable 
research subject and the rightness of the tools in astrobiology at NASA, in 
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the light of performing boundary work to maintain legitimacy for their 
activities.  
	 The chapter begins with a description of the most significant 
strategies to maintain legitimacy in astrobiology, identified by previous 
studies. It is followed by an analysis based on documentary and 
ethnographic material from NASA Goddard. The ways in which NASA 
demarcates astrobiology enable and constrain actions of scientists and 
engineers in life detection. Consequently, this chapter provides an important 
foundation to understand for what purposes AI can be developed – to search 
for very particular kinds of signs of life. 

Previous Studies About the Strategies to Sustain 
Legitimacy for Life Detection at NASA 
Life detection and the field of exobiology – today’s astrobiology – emerged 
during the Space Race in the 1950s. It was mobilized at NASA by Joshua 
Lederberg, a Nobel-Prize winning molecular biologist. Initial life detection 
campaigns at NASA were driven by the fear of potential microbes in outer 
space. However, the field of exobiology struggled with scientific credibility 
and legitimacy to receive governmental support. In a comprehensive 
historical account of astrobiology at NASA, Steven Dick depicts how 
prioritization of life detection got criticized by prominent scientists who 
argued that the scientific goals presuming life in outer space were 
unreasonable. Moreover, they questioned the extent of public fundings 
dedicated to explorations of life in outer space, in light of unresolved issues 
of poverty on Earth (Dick, 1996, p. 143).  
	 To legitimize exobiology, NASA adopted several strategies. Dick 
(1996) points to how the interest in search for life detection was maintained 
by creating a link to the big questions of the nature of life in the universe. 
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Implications of extraterrestrial life for the place of humans in the universe 
were positioned in line with how Copernicus and Darwin previously redrew 
the position of Earth and living beings (Dick, 1996, p. 141-142). 
Sociologist David Reinecke and historian of science Jordan Bimm (2022) 
bring attention to two other strategies through which exobiologists sought 
credibility. First, exobiologists drew upon the threat of biological weapons 
during the Cold War, to legitimize the research on microbial contamination 
from outer space. The second way of managing credibility was by making 
connections to existing sciences, such as astronomy and biochemistry, to 
borrow their scientific legitimacy. To demarcate this image of the field, in 
the 1990s, NASA changed the name of the field from exobiology to 
astrobiology. These strategies were used to increase the interest and 
legitimacy of life detection among the public as well as within the scientific 
community. 
	 There is one more, and for the sake of this chapter, the most crucial 
strategy that must be mentioned. Based on documentary material, Reinecke 
and Bimm (2022) have identified that exobiologists at NASA maintain 
credibility through purposeful use of ambiguity. By ambiguity, the authors 
refer to resisting “closure or an experiment’s premature end by creating 
doubt in negative findings and fostering hope for future positive results.” 
(Reinecke & Bimm, 2022, p. 1) This mechanism, they argue, has served to 
sustain the legitimacy of astrobiology through the periods of non-detection. 
It takes the shape of different scientific strategies: shifting methods, scales 
and object of research. For instance, the example of shifting mission 
objective from “life” to “habitability” that I introduced in the vignette 
illustrates what Reinecke and Bimm refer to as the strategy of shifting the 
object of research (Reinecke & Bimm, 2022). Throughout the chapter, I 
will show how these strategies are present among the practitioners working 
with life detection missions at NASA. Moreover, I provide insights that add 
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complexity to Reinecke and Bimm’s argument, by showing how 
maintenance of ambiguity can clash with other kinds of boundary work 
performed by NASA. To make this point, I turn to strategic documents and 
ethnographic material from fieldwork at NASA Goddard Space Flight 
Center, and begin by showing how NASA makes life detection into a 
“publicly appealing” subject. 

Shaping the Public Appeal to Maintain 
Legitimacy for Life Detection 
Scientist Paul was previously a director of the Planetary Environments 
Laboratory, and afterward, a director of the Solar System Exploration 
Division at Goddard. Even though he just retired, after 43 years of studying 
other planets in our Solar System, he still comes to the office. Each day 
since 1979, he has taken a five minute drive to work. Paul lives in 
Greenbelt, right outside of the vast NASA complex. During our interview, 
he articulates why NASA is searching for life in outer space. 

The possibility of life outside the Solar System, the discovery of 
such would be a very profound discovery of course, because 
you know, many people wonder if life is unique to Earth or 
developed somewhere else, so it engages a lot of people and has 
kind of turned into many drivers of the exploration themes of 
NASA, so it gets a lot of support. 

Paul proclaims that NASA’s explorations of life in outer space are 
motivated by the interest of the people. This line of argument echoes the 
rhetoric prevalent in NASA’s strategic documents, where “public appeal” of 
searching for life in the universe is used as a rationale to support NASA’s 
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activities. I exemplify this with an excerpt from the preface of an 
astrobiology strategy document published in 2019. 

Combining inherent scientific interest and public appeal, the 
search for life in the solar system and beyond provides a 
scientific rationale for many current and future activities carried 
out by the National Aeronautics and Space Administration 
(NASA) and other national and international agencies and 
organizations. (NASEM, 2019, p. vii) 

The “public appeal” of life detection figures as a justification to support 
NASA’s activities, both in strategic documents and among practitioners. To 
keep in mind is that life detection endeavors have a history of fluctuating 
reputation and that NASA is a publicly funded organization. Thus, the 
public image plays a crucial role in maintenance of NASA’s legitimacy and 
continued support. 
	 I identify maintenance of “public appeal” in life detection as an 
important strategy in NASA’s boundary work. Instead of assuming public 
appeal as a resource that NASA has, I interpret the public appeal as 
something that is made and managed. It is an asset managed intensely by 
NASA through promotion and outreach activities. Online, NASA’s 
astrobiology program is promoted as addressing the big questions – 
understanding life and its origins in the universe – complimented with 
romanticizing sublime images of outer space.  In popular culture, NASA 6

astronauts are portrayed as brave national heroes. In classrooms, NASA 
researchers give talks about their work to inspire children to pursue a career 

 For a more elaborate discussion on the production of images of outer space 6

drawing upon American romanticism, see previous study by Kessler (2012). For a 
discussion about the production of images of Mars for the public, see Vertesi 
(2015) or Messeri (2011).
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as rocket scientists – a term that has come to stand for the ultimately 
intelligent person. In fashion, merchandising with large NASA-logotypes is 
popular among young people. Given these examples, it is apparent that 
NASA has managed to produce an image of scientific excellence and 
national pride. I understand these practices as the making and managing of 
the “public appeal” to legitimize NASA’s activities. “Public appeal” is a 
crucial resource for maintenance of legitimacy, considering that NASA is a 
publicly funded organization and has a history of struggling with legitimacy 
for research on life detection. As the fore mentioned efforts illustrate, 
“public appeal” is not something that NASA has – rather, it takes a lot of 
work to make and maintain it. 
	 Now, I turn to how NASA’s strategy to maintain its appeal for life 
detection is translated into what is perceived as supported practices, but 
also how the institutional incentives are translated into abstaining from 
certain practices. This addresses the aim of the study by analyzing what 
epistemic practices are included and excluded in the process of shaping life 
detection in astrobiology at NASA. 

Aiming for the Nobel Prize – Shaping Practitioners to 
Search for Life in Outer Space 
Many scientists and engineers whom I interviewed at NASA Goddard 
Space Flight Center want to be the first to detect life in outer space. The 
search for life on other planets is expressed as a prestigious endeavor 
among the practitioners. This is evident when I shadow the software 
engineer and manager Eric, who develops AI tools for NASA missions to 
outer space. In meetings with colleagues as well as in our conversations, he 
frequently refers to detection of life as finding the “Nobel Prize.” 
	 The prestige of life detection is also reflected in how practitioners 
perceive their funding opportunities. I will illustrate this with an account 
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from shadowing astrobiologist Lu. She is very passionate about life 
detection. At the stage of being an early career researcher, she is very 
mindful of her future as an astrobiologist. I accompany her during a 
workday at NASA Goddard Space Flight Center. We enter one of the large 
buildings and Lu sees a colleague in the hallway. They talk for a moment. 
Small talk at Goddard spans from catching up on each other’s missions, 
lamenting launch delays, to asking how one’s pet is doing. I introduce 
myself to the colleague and talk about the purpose of my research 
(observing development of AI for life detection). Then, Lu says to her 
colleague how “life detection is the sexy stuff” if you want to get funding.  7

On another occasion, Lu refers to life detection as a “hot research topic.”  8

This illustrates how searching for life in outer space is a research subject 
that practitioners are passionate about, while also being perceived as a 
fundable career strategy. 
	 Besides the choice of career and research subject, the appeal of life 
detection also has implications for knowledge production about the 
universe. In an online interview with Sandra, an astrobiologist working 
with NASA, she says that biological phenomena are surrounded by more 
prestige than non-biological phenomena. 

There’s more prestige in studying the biological, rather than the 
abiotic cell-like structures. 

 To emphasize here: my research project is not funded by NASA and I have not 7

applied for such support.

 Planetary science division concerned with explorations of life and habitability 8

does receive a significant share in NASA budgets. However, the NASA budgets 
are outside of the scope of this study. For a ’follow the money’ account of NASA’s 
planetary science, see Reinecke (2021).
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In our interview, Sandra maintains that this asymmetry is a problem. She 
says that if we do not study the abiotic entities, we will have a difficult time 
to distinguish which objects in outer space are biological. She continues to 
explain that we can not understand life if we do not study non-life. Sandra’s 
critique shows how knowledge production can be skewed toward studying 
life, at the expense of making non-living phenomena less interesting as a 
research subject, which in turn becomes understudied. This becomes a 
problem in life detection especially in the case of so called “life-like” 
objects that resemble life but are abiotic – I return to this subject in a later 
section. 
	 To summarize the discussion so far, after a history of struggling 
with legitimacy (Dick, 1996; Reinecke & Bimm, 2022), life detection at 
NASA has re-established prestige. To legitimize their research, NASA 
makes and maintains “public appeal” through outreach activities. These 
practices generate interest in the potential of life in outer space, which can 
shape personal motivations, career choices, and formulations of scientific 
objectives. Planetary scientists at NASA Goddard consider life detection 
and the search for biology in outer space as a popular, prestigious and 
fundable research subject (in contrast to non-biological phenomena). Life 
detection constitutes the right research subject for planetary scientists at 
NASA Goddard. Scientists and engineers need to align their practices with 
the right research subject – life detection and biology – to receive NASA 
funding. This in turn, feeds into reproduction and maintenance of the 
attention on studying biology in outer space. 
	 In the above sections, I have discussed how NASA and its 
practitioners (re)produce the attention on life and biology in outer space. 
But how do the scientists and engineers study life detection in practice? In 
the following, I discuss the process of constructing a doable research 
problem (Fujimura, 1987) in NASA missions. This unfolds how NASA 
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performs boundary work (Gieryn, 1983), and what epistemic consequences 
it has in terms of what is included and excluded from the study of life at 
NASA. 

Habitability – Constructing the Objectives of NASA 
Missions 
In the vignette, I introduced scientist Walter working with SAM, the 
instrument identifying molecules on Mars. Walter was clear in stating that 
the mission he works with is not searching for life. It is exploring 
habitability. This distinction is reproduced among other scientists and 
engineers working on NASA missions. One of the scientists is Lu, who 
works with the data from Mars produced by SAM. In an interview, Lu 
states that life detection is her “personal desire for any missions but life 
detection is NOT one of the science objectives” for the missions she works 
with. When Lu says that “they’re not allowed to call it life detection 
mission,” she refers to an organizational imperative. In the history of NASA 
missions, there has been only one mission designed for the purpose of 
detecting signs of microbial life. 

In fact, the only life detection mission that we’ve ever sent to 
another planet is the Viking mission. That was considered life 
detection because the instruments were literally designed to 
look for microbes, look for metabolism and all those things. But 
the mission objectives of Curiosity [current rover on Mars] is to 
characterize the habitability of Mars.  

Launched in 1975, Viking is the first NASA mission that landed on Mars. It 
was designed to search for life and equipped with a biological laboratory. 
Biological experiments did not provide any evidence of life at the landing 
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sites. Given its scientific objective to search for signs of life on Mars, the 
absence of evidence of biology deemed this mission as a failure. As a 
consequence, during the following two decades, there was no funding for 
further missions to Mars (NASEM, 2019, p. 9). Viking was the first and last 
NASA mission officially searching for signs of life.  
	 In Janet Vertesi's ethnographic study of practitioners at NASA, the 
Viking mission and its failure to find evidence of biology on Mars figure as 
an important reference point in development of new missions (Vertesi, 
2019, p. 479). In their historical account of astrobiology, Reinecke and 
Bimm have observed post-Viking shifts of methods, scope, and object of 
study, to maintain legitimacy in astrobiology at NASA (Reinecke & Bimm, 
2022). Viking’s failure has shaped how scientific objectives of NASA 
missions are articulated. Since Viking, NASA missions are articulated as 
exploring habitability. I ask astrobiologist Lu about the crucial difference 
between searching for life and habitability. 

So searching for habitability or habitable environments can help 
you understand the potential for life. But you could have a 
habitable environment and no life in it because life never began, 
or life was never put there or brought there or whatever. So 
understanding habitability allows us to know what are the 
environments that could harbor life, whereas life detection is 
actually looking for those signatures, so you have already a 
predisposed notion, or presumption, that the environment 
you’re going to is habitable. You could try to do life detection 
on the Moon but there’s much lower probability that it would 
exist on the Moon or Mercury or whatever. But if you go to a 
place like Mars or Europa, or Enceladus, because of our 
knowledge of life on Earth and our knowledge of extreme 
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environments and extreme life, or just basically normal life, 
normal for the microbes. Our understanding of those 
environments has pointed us to this increased probability that 
those places might have life.  

When labeling a mission as exploring habitability, the scientific objective 
turns away from the question whether there is life on Mars or not. Instead, 
the question is whether Mars is, or ever has been, a planet with an 
environment that can, or ever could have sustained microbial life. Mission 
objectives have shifted from life detection to a question of potential or 
probability of life, which is a much wider scope. The shift from search for 
life to habitability can be read as a strategy to construct a more doable 
research problem. To do that, scientists must convince colleagues that the 
results of one’s experiments solve a shared problem (Fujimura, 1987, p. 
261). Since the Viking mission, finding signs of life on Mars has been 
considered as a less credible problem to solve.  
	 This is in line with Reinecke and Bimm’s account, who observe 
how the scope of astrobiology shifted after Viking – from searching for life 
on Mars to an exploration of planetary conditions for life. In the 1980s, 
astrobiology aligned with the emerging ecological and environmental 
sciences, which shifted the position of Mars from a destination for life 
detection, to a planet with comparable environmental conditions to Earth 
(Reinecke & Bimm, 2022, p. 14-15). 
	 Scientist Walter who is engaged with the operation of the instrument 
SAM on Curiosity juxtaposes Mars and Earth, as sharing the planetary 
history of having liquid water – one of the conditions to sustain life. The 
shared history with Earth serves as a motivation to continue exploring 
Mars. 
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Curiosity [the current rover on Mars] originally was to 
determine whether or not Mars was habitable, or had conditions 
that would be conducive to have previous life on Mars. You 
know, at some point, Mars was wet and warmer. Mars and Earth 
diverged and we want to understand why. 

Walter articulates the objective of NASA missions as exploring habitability, 
meaning conditions to sustain life. Vertesi has pointed to how the 
ontological flexibility of a planet can reveal unstable institutional settings 
(Vertesi, 2019, p. 480). The re-crafting of Mars – from a destination for life 
detection to exploration of habitability – reveals a shift in the institutional 
conditions after Viking. To gain support for missions to Mars, after two 
decades without funding, NASA scientists re-phrased the role of Mars and 
the objective of their missions. 
	 However, practitioners do not only articulate the mission objectives 
as searching for habitability. Many are also explicitly distancing their 
practices from life. Programmer Victoria refers to the mission with the 
instrument that Walter and Lu are working with as “not a life detection 
mission, it was more of a habitability and search for organics kind of 
mission.” Victoria and her colleague Eric are programmers developing AI 
for instruments on upcoming missions to Mars (MOMA) and Titan 
(DraMS). According to Victoria, “MOMA and DraMS are not life detection 
instruments, they will be instruments onboard missions to understand other 
planets better.” Programmer Eric says that MOMA, the instrument that will 
be sent to Mars can show “reminiscence of life.” These articulations 
illustrate how practitioners actively create a distance between life detection 
and their activities by referring to “habitability” and “organic molecules.” 
In an interview with scientist Lu, she suggests that the shift away from life 
detection at the institutional level occurred for political reasons. 
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So you COULD really design a mission for life detection. This 
was just not part of the… I don’t know what the history is but 
someone in Congress or someone in government or whatever, 
was not, didn’t, wasn’t comfortable with calling Curiosity life 
detection. Part of it might also have to do with the payload 
itself. Because life detection is still an open-ended hot research 
topic. No one has been able to design a mission concept or a 
series of instruments that is able to say ’oh, if I put all these five 
instruments onboard and I analyze it and it shows this and this 
and this and this, you know, I’m very confident about it’s life’. 
That wasn’t really what MSL [mission on Mars with instrument 
SAM], Curiosity, was designed for. So because of that, I think 
people weren’t comfortable calling it life detection mission, 
even though it IS capable of finding some biosignatures. 

In line with previous research (Reinecke & Bimm, 2022), I suggest that re-
framing the objectives of the missions from life detection to habitability is a 
strategy to maintain legitimacy for NASA missions. Drawing upon the 
interviews above, habitability is about studying the environment and its 
preconditions for the possibility of sustaining life. It is a much broader aim 
than detection of life itself. To keep in mind is that after Viking – the first 
mission for life detection – was deemed as a failure, NASA lost funding for 
missions to Mars for two decades. The move away from life detection and 
toward habitability can be understood as a demarcation to legitimize 
NASA's activities and re-gain governmental funding. Exploring habitability 
is a more doable research problem than life detection. NASA can not fail to 
find evidence of extraterrestrial life if it is not searching for it. Exploring 
habitability is a much wider concept that encompasses a long list of 
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molecules prevalent across the universe. Habitability is not just about 
preconditions for life – it constitutes preconditions for missions less prone 
to fail. 

Biosignatures – Constructing the Research Problem 
In spite of the institutional imperative to explore habitability, Lu 
emphasizes that NASA missions to Mars are “capable of finding some 
biosignatures.” Biosignatures refers to signs of life. It is a term used in the 
context of NASA missions. A biosignature is described as “an object, 
substance, and/or pattern whose origin specifically requires a biological 
agent.” (NASA Astrobiology, 2003, p. 23) Such a definition includes a wide 
range of phenomena: “dinosaur fossils, empty candy wrappers, the green 
haze of a forest too far away to make out the individual trees, or the oxygen 
we’re all breathing.” (Harman & Domagal-Goldman, 2018) However, in 
NASA missions to other planets and moons, biosignatures are narrowed 
down to signs of past or present microbial life, assuming that life beyond 
Earth will most likely be microbial. The reasoning behind this draws on a 
history of life on Earth, where single celled organisms might have been the 
most prevalent kind of life. 
	 One kind of biosignature that instruments on NASA missions are 
designed to detect are organic molecules. SAM, introduced in the vignette, 
is an example of such instrument. Astrobiologists recognize that all life on 
Earth consists of a particular set of chemical elements. The ingredients 
shared by all life forms are often referred to as CHNOPS (carbon, 
hydrogen, nitrogen, oxygen, phosphorus and sulfur). These assumptions 
shape how scientists and engineers at NASA design their instruments. This 
is articulated in an interview with astrobiologist Sandra who works with  
the MOMA instrument on NASA’s and ESA’s (European Space Agency) 
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mission to Mars. Her approach is representative for NASA missions, 
searching for signs of life in terms of organic molecules. 

The core of my research is about searching for organic 
molecules in rocks. When we search for life on other planets, 
we usually search for certain things such as liquid water, certain 
chemical elements like carbon, nitrogen and oxygen, and so on. 
And then we search for organic molecules. And this is based on 
the assumption that it is most probable that life is organic. I 
work with development of methods to detect these organic 
molecules in different rocks. 

The instruments designed to detect organic molecules are mass 
spectrometers. As I described in chapter 1, mass spectrometers measure the 
chemical composition of a sample. Scientists put a sample in the 
instrument. The instrument shoots a laser on the sample which creates a 
fraction of molecules. The result of this process – a mass spectrum – is 
displayed visually as a graph with peaks. The peaks are signs of the 
molecular mass, which indicates what kind of chemical elements are 
present in the sample – carbon, oxygen, sulfur and so on. Mass 
spectrometry is used in laboratories at NASA as well as in spacecrafts on 
other planets, although the latter is in a miniaturized version. Potential signs 
of life in outer space are anticipated to appear as peaks in a mass spectrum.  
	 Mass spectrometry has a constitutive role in how scientists on 
NASA missions look at the universe. Astrobiologist Lu, who works with 
mass spectrometry, describes the universe as full of organics. This outlook 
shapes how Lu understands her job as an astrobiologist. 
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If you just close your eyes and imagine all the organic matter in 
the solar system, they’re distributed everywhere. There’s some 
of them that are very simple, like the simple amino acids 
etcetera. We’ve seen them by remote observations. We’ve seen 
them in extraterrestrial samples that landed on Earth, 
meteorites. We’ve gone through the technical steps to confirm 
that there are amino acids in extraterrestrial samples that isn’t 
coming from biology. So when you have this idea of how much 
organics are distributed in the solar system, your job now, if 
you’re an astrobiologist interested in life detection, is to 
distinguish what organics come from the background, which is 
space, whether you’re on Titan or Europa or whatever, and 
what organics are coming from life. 

This illustrates how mass spectrometry, as the standard tool to use at 
NASA, constitutes how practitioners understand their object of study and 
their work. Lu’s description of the universe is as full of organic molecules, 
and her job is to distinguish which ones are signs of life and which are not. 
Astrobiologists frequently bring up a particular problem with interpreting 
organic molecules. Organic molecules can be generated biologically, but 
they can also be generated by non-biological sources (abiotically). There 
are also certain objects that can look “life-like” although they are abiotic – 
this phenomenon is also referred to by scientists as “pseudosignatures”, 
“false biosignatures”, or “false positives.” In an earlier section, I mentioned 
how astrobiologist Sandra brought to my attention the problem of how non-
biological life-like objects are understudied, which poses a problem in life 
detection. To illustrate the difficulty with interpretation of organic 
molecules, Lu provides an example of amino acids that are present in both 
humans and meteorites (rocks from outer space that have fallen to Earth). 
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That’s the thing too, biosignatures aren’t necessarily a binary 
question either. I have like amino acids in me but so does a 
meteorite. The amino acids in me are biosignatures. But the 
same amino acids in a meteorite aren’t a biosignature. So 
finding that isn’t necessarily telling you you’ve detected life but 
it’s more like one piece of evidence that it could be. 

Human life has more commonalities with meteorites than we would think. 
At least in terms of organic molecules. But an organic molecule alone can 
not tell whether an object is a biosignature (unless we are fine with 
recognizing rocks as life). Lu articulates that on the one hand, detecting 
amino acids “isn’t necessarily telling you you’ve detected life” but at the 
same time, “it could be.” Lu insists on how amino acids are just one piece 
of evidence. According to her – and most astrobiologists I have interviewed 
– scientists need multiple lines of evidence to identify that an object is a 
sign of life.  
	 Lu’s description of biosignatures as a non-binary question, where 
interpretation of organic molecules can be a matter of multiple 
interpretations, is by definition ambiguity. Ambiguity is not only 
characteristic for interpretation of biosignatures, it is even anticipated in 
future missions to Mars. In a scientific publication about this subject, 
entitled “False biosignatures on Mars: anticipating ambiguity,” two 
astrobiologists based in the UK put forward examples of “misleadingly life-
like objects and substances.” However, they claim that these cases represent 
only a small set of phenomena relevant to study. That is because the 
examples that are known have been discovered by chance, rather than 
during systematic research. The two astrobiologists also point to the 
problem (which I mentioned earlier, based on the interview with 
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astrobiologist Sandra) of poor understanding of life-like abiotic objects, 
which makes it difficult to interpret life. Drawing on the examples of “false 
biosignatures” and how understudied they are, the authors make the 
argument that “it seems prudent to anticipate more ambiguous results” from 
missions for life detection on Mars, rather than a discovery of “unequivocal 
biosignatures” (McMahon & Cosmidis, 2022, p. 17). This articulation 
makes ambiguity the status quo in life detection. 
	 The rhetorical move to “anticipate ambiguity” can be understood as 
a strategy to maintain ambiguity, which is in line with Reinecke and 
Bimm’s analysis of astrobiology (2022). However, in the publication by the 
UK astrobiologists, ambiguity figures also in the sense of an uncertainty, 
due to unknowns (understudied life-like objects), which affect the ability to 
interpret phenomena. Scientists frame ambiguity as something that should 
be anticipated in life detection, however, also as something that can be 
mitigated. The theme of ambiguity appears explicitly in yet another 
scientific publication about biosignatures.  
	 In a scientific publication by a group of 14 scientists with 
background in planetary science, based in European and Canadian 
universities, the authors argue that biosignature is a vague concept, 
“intrinsically fraught with ambiguities” (Malaterre et al, 2023, p. 1222). 
They suggest that the vagueness can serve both positive and negative ends 
– on the one hand, it can promote interdisciplinarity, and on the other, life 
detection is a context with particular “public and media scrutiny,” and 
therefore, the terminology should be used with caution (Malaterre et al, 
2023, p. 1223). Malaterre and colleagues do not suggest to replace the 
concept of biosignature, however, they do recommend that scientists 
working with life detection should mitigate ambiguity through clarity in 
communication (2023). 
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	 Keeping the concept of biosignature in the context of life detection, 
in spite of its vagueness, can be read as serving the interdisciplinary 
character of astrobiology, which requires communication and cooperation 
across many different social worlds. Biosignature can be understood as 
what science studies scholars Star and Griesemer call a “boundary object”, 
meaning a scientific object that inhabits many social worlds. A boundary 
object is both flexible enough to adapt to the local context, yet stable 
enough to keep a shared identity across the different contexts. Star and 
Griesemer argue that production and management of boundary objects is 
central to maintain “coherence across social worlds” (Star & Griesemer, 
1989, p. 393). Biosignatures can work as a scientific object that is flexible 
enough but still maintains a shared identity within astrobiology as an 
interdisciplinary field.  
	 The use of biosignature as a concept can also be interpreted 
differently. Before the adoption of “biosignature” as a concept in life 
detection at NASA in the 1990s, other terminology was prevalent, such as 
“evidence of life,” “signs of life”, “evidence of living microorganisms” 
(Malaterre et al, 2023, p. 1216). I want to bring attention to the timing of 
adoption of the concept of biosignatures at NASA as noteworthy. It was in 
the late 1990s during the scientific controversy of signs of Martian life on 
meteorite ALH84001 that the term biosignature was adopted and has since 
then been part of the vocabulary at NASA (Malaterre et al, 2023). It was 
also in the 1990s that the field of astrobiology was rebranded, from 
exobiology to astrobiology, shifting the focus from life detection on Mars to 
a wider aim of understanding life and its origins in the universe (Reinecke 
& Bimm, 2022). The vagueness of the concept of biosignature can serve 
what Reinecke and Bimm refer to as maintenance of ambiguity. Read in 
this way, the vagueness of biosignature as a term can facilitate “interpretive 
flexibility” in experiments, to “resist closure or an experiment’s premature 
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end by creating doubt in negative findings and fostering hope for future 
positive results.” (Reinecke & Bimm, 2022, p. 1) Reinecke and Bimm have 
identified the maintenance of ambiguity as a key strategy in astrobiology, to 
maintain credibility. In the light of NASA’s boundary work, where the focus 
shifts away from life toward potentialities of signs of present or past life, 
biosignature can be understood as another facet of this repertoire that 
maintains legitimacy of astrobiology and the research subject. 
	 After decades of search, without finding credible signs of 
extraterrestrial life, the astrobiology community has developed arguments 
and strategies to maintain the search as a legitimate endeavor. We can see 
how scientists and engineers at NASA Goddard distance their practices 
from life detection. They do so by shifting attention from “life” to 
“habitability,” “biosignatures,” and “organic molecules.” This move is 
taking them a step away from “life” by focusing on its preconditions. I 
interpret this as demarcation to maintain legitimacy and part of rebranding 
of the field of astrobiology, after the Viking mission for life detection which 
was deemed as a failure and led to withdrawal of funding. In line with 
previous studies by Reinecke and Bimm, I identify maintenance of 
ambiguity in the results during the periods of non-detection as a prevalent 
strategy in astrobiology (Reinecke & Bimm, 2022).  
	 Maintenance of ambiguity however, is in conflict with performing 
boundary work in relation to the general public. This unfolds as I discuss 
interpretation of data with a group of scientists at NASA. During an early 
afternoon, me and three scientists take a seat in comfortable armchairs in an 
open work space at Goddard. When colleagues pass by to leave for the day, 
we realize that we have been talking for hours. Throughout this long 
conversation, NASA’s public appeal is a recurring subject. For instance, the 
inspiring role of the space images and the anthropomorphic design of 
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rovers, which helps to make them relatable.  But when the three scientists 9

discuss scientific interpretation of data from space missions, 
communication with the public is expressed with a concern. One of the 
scientists insists on how scientific interpretations of data cannot be reduced 
to a binary “yes or no” answer, upon which the colleague counters: “but 
how do you tell that to the public?” In their discussion, the three scientists 
articulate a clash between two poles. On the one hand is the human desire 
to get a “yes or no” answer, and on the other, the multiple scientific 
interpretations of data. The scientists are concerned about how the framing 
of scientific results into a binary of life or not life makes the multiple layers 
of interpretations invisible. 
	 To provide an example of the clash between scientific practice and 
communication about the missions with the public, I return to the interview 
with planetary scientist and previous director Paul. He depicts the contrast 
between scientific interpretations of when methane (an organic molecule) 
was detected on Mars versus how it was reported in media. 

Methane on Earth is mostly produced by biology so the public 
is always very interested whenever we report methane 
detection, then the press picks up on it ’Oh, they detected life 
on Mars!’ and we never say that, but it’s again, providing the 
foundation for understanding on what one needs to do next in 
terms of looking for biosignatures on Mars. 

As a NASA scientist, Paul interprets methane as an organic molecule that 
serves as a cue for further explorations of biosignatures on Mars. However, 

 For a discussion about the construction of appealing images at NASA, see 9

Kessler (2012). For a discussion about how humans build relations with rovers, 
see Vertesi (2015).

85



the media communicates the findings as signs of life on Mars. To capture 
attention, several news articles about methane detection relate it to “life” in 
their headlines: “NASA Rover on Mars Detects Puff of Gas That Hints at 
Possibility of Life” (Chang, 2019) in The New York Times, and “Methane 
on Mars: does it mean the Curiosity rover has found life?” (Sample, 2014) 
in The Guardian. Detection of methane was made into a sensation. Because 
of the “public appeal” of life in outer space, layers of scientific 
interpretation of an organic molecule were made invisible.  
	 Communication of scientific findings with the public illustrates how 
NASA practitioners experience a conflict. I read this as a conflict in 
performing two different kinds of boundary work. At the institutional level, 
as a governmentally funded organization, NASA has to maintain a 
“publicly appealing” image to the citizens. This is prevalent in how NASA 
creates engagement in life detection through outreach activities. In the 
scientific practice, astrobiologists at NASA have to maintain scientific 
credibility. Scientists do so by maintaining distance from life as a research 
subject and focusing on a more doable problem, namely, by searching for 
organic molecules. Noteworthy is that publicly, the missions are still 
promoted as missions searching for signs of life. The distancing from life 
contradicts the outreach rhetoric, where NASA communicates how it is 
“searching for signs of life” on other planets. I have shown how the 
demarcations of NASA’s activities to the public are in conflict with how 
scientists articulate their everyday practices in the laboratories. 
	 This conflict shows how the rightness of the research subject shifts 
depending on the context – from life, to organic molecules, biosignatures 
and habitability. This terminology allows practitioners to maintain 
ambiguity in interpretation of experiments. Rewinding to previous 
examples of organic molecules, amino acids and methane, they can but do 
not have to be biosignatures. Reinecke and Bimm have argued that 
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maintaining ambiguity has been a crucial strategy to maintain credibility in 
astrobiology. Such strategies can entail injecting doubt in negative findings 
and encouraging hope for the possibility of positive findings in the future. 
The emphasis on the ambiguity of the results contributes to the endurance 
of astrobiology as publicly funded research at NASA (Reinecke & Bimm, 
2022). However, the maintenance of ambiguity through vague terminology 
is in clash with NASA’s maintenance of “public appeal” through outreach 
activities promoting missions as searching for life in outer space. 
Ambiguity does not sell well. For the purposes of communicating with the 
public, many layers of interpretation of organic molecules can be framed 
within the binary of life and not-life. Because of the “public appeal” of life 
detection, “life” is sometimes imposed upon non-conclusive scientific 
interpretations. The institutional boundary work focusing on life clashes 
with the boundary work that scientists perform, by distancing their research 
subject away from life. 

The Search for Extraterrestrial Intelligence (SETI) 
– A Brief History of Boundary Work 
The mechanism of ambiguity is an important strategy – however, in 
analyzing how exobiology at NASA maintains credibility, Reinecke and 
Bimm (2022) have left out SETI (Search for Extraterrestrial Intelligence), 
which I argue plays a role of an important Other, in relation to which NASA 
articulates life detection. Currently in the US, both NASA and SETI 
promote themselves as organizations searching for life in outer space. 
However, only one of the two receives governmental support. Gieryn 
identifies how excluding “rivals from within by defining them as outsiders” 
(Gieryn, 1983, p. 792) is a common strategy to demarcate scientific 
authority. Below, I will show how NASA demarcates astrobiology by 
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excluding SETI. To understand the demarcation of astrobiology at NASA, 
its boundary work must be analyzed in relation to SETI. In the following, I 
depict how SETI emerged as a field, and then, how it gained and lost its 
governmental support. Throughout the rest of the chapter, I will show how 
this history is reenacted by the practitioners at NASA, through articulation 
of a doable research problem and the right tools. 
	 In the 1960s, a small group of astronomers were interested in 
listening to signs of intelligent extraterrestrial life through radio signals. 
According to historian Steven Dick, the group was aware that it would be a 
controversial research subject, so they agreed to keep it a secret (Dick, 
1996, p. 422). A dozen scientists met in Green Bank in 1961. Among them 
were the molecular biologist Joshua Lederberg, who played a key role in 
the establishment of exobiology at NASA and the famous astronomer Carl 
Sagan (in chapter 5, I discuss how Sagan still figures as an admired legend 
among practitioners at NASA). Astronomer Frank Drake thought that it 
would be convenient to organize the discussion around the main topics of 
interest. He formalized the meeting agenda as an equation – now called the 
Drake equation – which is still used to estimate the probability of existence 
of extraterrestrial intelligence.  The ideas started to spread soon after the 10

Green Bank meeting. In the 1970s, SETI became a part of NASA (Dick, 
1996, p. 428, 459). The fact that the participation of the founder of 

 In The Drake equation, the terms are defined as follows: 10

N: The number of civilizations in the Milky Way galaxy whose electromagnetic 
emissions are detectable. 
R*: The rate of formation of stars suitable for the development of intelligent life 
(number per year). 
fp: The fraction of those stars with planetary systems. 
ne: The number of planets, per solar system, with an environment suitable for life. 
fl: The fraction of suitable planets on which life actually appears. 
fi: The fraction of life bearing planets on which intelligent life emerges. 
fc: The fraction of civilizations that develop a technology that produces detectable 
signs of their existence. 
L: The average length of time such civilizations produce such signs (years).
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exobiology at NASA (Joshua Lederberg) was one of the dozen scientists in 
the Green Bank meeting indicates that the search for life in outer space was 
initially a common ground between NASA and SETI. 
	 Despite institutional support from NASA, SETI’s credibility 
remained contested. Historian Stephen Garber depicts how SETI has 
struggled with a so called “giggle factor” – an image of being a 
pseudoscientific search for little green men – which has posed challenges 
for maintaining public support (Garber, 1999). In 1978, after almost two 
decades of listening to radio signals, SETI lost its governmental funding. 
Astronomer Carl Sagan, who was a public figure and a SETI proponent, 
managed to influence relevant politicians to provide continued federal 
support. Nonetheless, it did not last for long. In 1993, SETI lost its 
governmental funding again. Garber describes that this occurred during a 
governmental budget deficit and that the “giggle factor” made it an easy 
target in the political hunting for cuts. Individuals behind the SETI 
community mobilized private funding and continued listening to radio 
signals outside of NASA quarters (Garber, 1999). Since 1993, the SETI 
Institute has been a privately funded organization based in Silicon Valley.  
	 Both NASA and SETI promote themselves as searching for life in 
outer space. To maintain credibility after decades of searching without 
evidence of extraterrestrial life, each organization adopts certain strategies. 
In a study of SETI’s boundary work, science studies scholar Valentina 
Marcheselli shows that since the formulation of the Drake equation in 1961, 
the rhetoric of probability has been a consistent framing of SETI’s 
enterprise and it has played an important role in keeping SETI afloat 
(Marcheselli, 2024, p. 445).  
	 As already discussed, one of the ways in which exobiology at 
NASA has sought credibility is by maintaining the ambiguity of results 
(Reinecke & Bimm, 2022). However, as I will show in the following 
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section, another important strategy to maintain credibility at NASA is by 
excluding SETI from astrobiology. By keeping SETI in the periphery, 
NASA creates distance from the “giggle factor”. In the following, I show 
how this is performed among practitioners at NASA and then, I turn to how 
it is articulated in strategic documents. 

Technosignatures – Demarcating Astrobiology at 
NASA Through Exclusion 
During fieldwork at NASA Goddard Space Flight Center, I meet planetary 
scientist Michael, whom I recognized from an astrobiology conference that 
took place a few months earlier. Michael studies habitability of planets 
outside of the Solar System (exoplanets). When I ask Michael about life 
detection, he wonders what I mean by life. “When you say life, do you 
mean biological or technological?” he asks. I want to keep the question as 
open as possible and let Michael define what life can mean. Instead of 
answering, I ask him further. “I don’t know, what would you say?” upon 
which Michael answers “I would consider both.” 
	 In astrobiology, signs of biology are referred to as “biosignatures”, 
while signs of technology are referred to as “technosignatures”. A 
biosignature, discussed earlier in this chapter, is “a detectable sign, e.g., 
chemical or morphological, that supports the likelihood of the presence of 
life.” (NASEM, 2019, p. 170) As I stated before, what is assumed in the 
search of biosignatures at NASA is that life in outer space will most likely 
be microbial. Organic molecules serve as a proxy to detect life. A 
technosignature is “a detectable sign of technologically advanced life.” 
(NASEM, 2019, p. 170) In the search for technosignatures, the assumption 
is instead that life in outer space has produced technology. Examples of 
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technosignatures that are searched for are radio or other electromagnetic 
signals, as well as industrial emissions. 
	 By being explicitly open to the search for both biology and 
technology in outer space, Michael is not a typical scientist at Goddard. In 
his personal description at NASA website, he presents himself as a 
planetary scientist who is dedicated to technosignatures. While Michael  
articulates this in his presentation, he highlights that technosignatures are as 
relevant to study as biosignatures. This line of argument is also prevalent in 
one of his publications, concluding with a justification that 
technosignatures are as worthy of studying as biosignatures. What this  
implies is that biosignatures are a more established approach. When I 
discuss life detection with other scientists at NASA Goddard, 
technosignatures are rarely brought up. Biosignatures are often assumed as 
the approach in life detection. This illustrates the strength of biosignatures 
as the right research subject in astrobiology at NASA.  
	 Defending technosignatures, by juxtaposing it to biosignatures, 
shows the strength of biosignatures as the main approach in life detection at 
NASA. It can be understood as an attempt to redraw the demarcation 
between the two approaches in life detection. This rhetoric has to be 
interpreted further in the context of technosignatures as tied to SETI 
(Search for Extraterrestrial Intelligence) and its history with NASA. Both 
NASA and SETI have a history of struggling with scientific legitimacy. 
	 To show how this history is reenacted, I rewind to the interview 
with planetary scientist and previous director at NASA, Paul. I ask him 
explicitly about his view on SETI. 

I think it’s easier to make the case - there might be microbes 
somewhere in the Solar System or in the Universe, than for 
somebody to actually think there will be humans like us making 
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radio stations. (…) SETI was always a bit of a political 
controversy let’s say. The senators would say, you’re looking 
for life outside Earth, he he, do something useful, so… I think 
NASA treads carefully there. 

Paul’s comment about how senators perceive SETI as ridiculous is a 
reenactment of what Garber calls the “giggle factor” (Garber, 1999). 
Furthermore, Paul articulates the demarcation of NASA and their search for 
microbes as legitimate, in contrast to the “political controversy” of SETI, 
searching for “humans like us making radio stations”. According to Gieryn, 
“monopolization of professional authority and resources” is performed by 
exclusion of “rivals from within by defining them as outsiders with labels 
such as “pseudo”, “deviant” or “amateur” (Gieryn, p. 792). In order to 
make the NASA Astrobiology Program the undisputed center of the 
astrobiology community, NASA keeps SETI at arm’s length, creating 
distance from what Gerber refers to as the “giggle factor” associated with 
SETI (Gerber, 1999).  
	 In a strategic document from 2015, NASA defines itself as being 
“the lead agency of astrobiology research in the United States.” (Hays, 
2015, p. xvi) Noteworthy is that while “biosignatures” are referred to 180 
times in that document, “technosignatures” are mentioned three times, and 
“SETI” four times. This pattern continues in later strategic NASA 
documents concerning astrobiology. The Decadal Survey (NASEM, 2023) 
is the most significant strategic document shaping NASA’s future 
“Planetary Science and Astrobiology” activities. Out of the 700 pages of the 
document, technosignatures are only mentioned in the appendix. However, 
once NASA did mention SETI in a strategic document published in 2015, it 
was to explicitly exclude it from the field of astrobiology.  
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While traditional Search for Extraterrestrial Intelligence (SETI) 
is not part of astrobiology, and is currently well-funded by 
private sources, it is reasonable for astrobiology to maintain 
strong ties to the SETI community. (Hays, 2015, p. 150) 

Considering the history of lack of credibility in search for life in outer 
space, one interpretation of this statement is that NASA draws boundaries 
to exclude SETI from “astrobiology,” in order to avoid guilt by association, 
to maintain scientific credibility and funding. This serves as the strongest 
example of exclusion in NASA’s boundary work.  
	 The statement quoted above was met by strong criticism from 
SETI’s proponents. They responded with a number of white papers to 
NASA. A leading figure at the SETI Institute, Jill Tarter, is the first author 
in one of the white papers submitted to the National Academies (which 
provides recommendations about astrobiology research to the government). 
Tarter and the co-authors directly address NASA’s exclusion of SETI from 
astrobiology in the document from 2015. 

This is an arbitrary distinction that artificially limits the 
selection of appropriate tools for astrobiology to employ in the 
search for life beyond Earth, one that is not supported 
scientifically. The science of astrobiology recognizes life as a 
continuum from microbes to mathematicians. It is time to 
remove this artificial barrier, and to re-integrate the community 
of all those who wish to study the origin, evolution, and 
distribution of life in the universe. [emphasis in original] (Tarter 
et al., 2018) 

In the same year that the white paper referenced above was submitted 
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(2018), NASA hosted a workshop about technosignatures. The aim of the 
“Technosignatures Workshop at the Lunar and Planetary Institute” in 
Houston was to discuss the state of the art of the technosignature field and 
the role that “NASA partnerships with the private sector and philanthropic 
organizations” can have for the field of technosignatures.  
	 In a strategic astrobiology document published in 2019, NASA 
acknowledged that SETI projects lost federal support but the “interest is 
once again growing in the search for technosignatures.” (NASEM, 2019, p. 
147) SETI is recognized for their success to generate research through 
private funding. However, there is no recognition of the value of the 
technosignatures approach for the field of astrobiology. 

Conclusion 
Development of AI is situated in an organization that enables and constrains 
certain courses of action. This chapter focused on how NASA demarcates 
which practices are considered as legitimate, and not, through the lens of 
boundary work (Gieryn, 1983). The question of legitimacy is particularly 
important for NASA missions, due to their history of non-detection. The 
first life detection mission to Mars in the 1970s was followed by 
withdrawal of funding.  
	 Drawing on ethnographic material from fieldwork at NASA 
Goddard, and strategic documents, this chapter shows how NASA’s 
boundary work has been shifting focus away from life, and toward 
potentialities of signs of present or past life. Widening the scope from life 
detection to habitability, biosignatures, and organic molecules creates 
preconditions for organizational survival.  
	 The results are in line with previous work by Reinecke and Bimm, 
who pointed out that maintenance of ambiguity in interpretation of 
experiments contributes to the endurance of astrobiology as a publicly 
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funded field of research at NASA (Reinecke & Bimm, 2022). However, the 
findings in this chapter add more nuance to the understanding of how 
NASA sustains legitimacy. NASA’s boundary work shifts not only across 
different historical periods, but also across different social worlds. In order 
to sustain legitimacy, NASA aligns with two social worlds: the scientific 
community and the public. This study finds that the ambiguity of multiple 
interpretations of experiments (Reinecke & Bimm, 2022) articulated within 
the scientific community, is in clash with the outreach rhetoric and public 
understanding of life as a binary question: life versus not-life. Furthermore, 
this chapter demonstrates how astrobiology at NASA focuses on identifying 
biosignatures, and excludes technosignatures from the field, as a way to 
sustain legitimacy. 
	 These organizational preconditions – demarcations of astrobiology 
at NASA – shape what kind of research subjects and tools are considered as 
legitimate. Against this background, the AI tools developed for the missions 
at NASA Goddard are designed to facilitate identification of organic 
molecules, as potential biosignatures. 
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Chapter 5 Making Field Sites, Laboratories 
and AI Datasets into Truth-spots 
A group of scientists and software engineers are gathered in a conference 
room at NASA Goddard Space Flight Center. The room is furnished with 
functional modern interior, a large white board, a screen and a long table 
around which everyone is seated. Well, almost everyone. In the middle of 
the room is a camera for video calls, allowing a few scientists and software 
engineers to join from anywhere. This impersonal room is designed to feel 
like anywhere, a space where universal aspirations can flourish. But even 
universal aspirations are entangled with local places. 
	 The large NASA complex is located in Greenbelt, a small city 
outside of Washington DC. As usual in July, Greenbelt is unbearably hot 
and humid. Thankfully, the efficient air conditioner in the conference room 
is offering protection from the weather during the meeting. Scientists and 
programmers are brainstorming about automation of a mission to Saturn’s 
largest moon, Titan. The environment on Titan is way colder than the air 
conditioner in the conference room is simulating. Way colder than the 
researchers would endure. Way colder than any kind of life as we know it 
would survive. But – there is a quintessential but – are there possibly other 
kinds of life forms that could thrive in such conditions? Could such 
environment be habitable? These are central questions in the future NASA 
mission to the -179 Celsius degrees cold moon Titan, which is being 
discussed in the moderately cold conference room at NASA Goddard Space 
Flight Center. 
	 The 1.5 billion-kilometer distance to Titan poses severe challenges 
for the NASA team, who has to figure out how to communicate with the 
spacecraft. The data rates are slow, because of the limited power of a 
spacecraft and the distance that the signal has to travel. Over the long 
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distance, the signal becomes weaker. Once it gets to Earth, it is very faint. 
Given these data limitations, only a small portion of all the data from Titan 
can be sent back to Earth. What scientists and programmers envision, is that 
an autonomous software on Titan will make decisions about which data is 
interesting to get back to Earth. This desire is captured in a witty comment 
made by Desmond, one of the scientists in the conference room.  

Well, anything that can be done manually should be automated. 
We just have to teach the computer how to think the way that 
we do.  

Automation seems effortless, the way Desmond puts it. Scientists around 
the table find it funny and provoking at the same time. Ryan, a scientist 
who sits by the table with his arms crossed says: “Yeah, that’s easily said 
but it’s true.” The challenge for the scientists resides in deciding how to 
predetermine which data will be interesting versus not. What is at stake is 
choosing the right data to send back, to enable new discoveries about other 
worlds.  
	 After some giggling across the room, programmer Victoria 
expresses her doubts. “Easy to say, hard to do.” Victoria is the person 
making automation happen. She needs to transform the idea into practice 
and sees the challenges in front of her. To train the algorithms, 
programmers need large amounts of data. But not any kind of data. To 
perform well, the algorithms have to be trained on the right data. Ideally, it 
would be data equivalent to where it will be used – experiments on Titan’s 
surface. But there is no data from such experiments on Titan. How can 
programmers train the algorithm without data from Titan? Programmers 
discussed how to resolve this during an earlier meeting. I rewind to their 
brainstorming session a month before.  
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	 In the same conference room at NASA Goddard, software engineers 
discuss training of AI. Software manager Eric describes how he envisions 
development of AI to optimize data transfer from Titan. To fly the 
spacecraft from Earth to Titan will take almost ten years, Eric says.  11

Nonetheless, instead of articulating the long interstellar journey as a 
problem, Eric formulates it as an opportunity. A decade of waiting for the 
spacecraft to land, means a decade of collecting more data to train AI! It is 
not until the landing on Titan that programmers have to transfer the AI 
software to the spacecraft. By then, it will have been trained for almost ten 
years. It sounds promising, given the general premise in the field of AI: the 
more data for training, the better the algorithmic performance. Noteworthy 
is that all the training will occur before the spacecraft lands on Titan. So 
where does the data for training of AI come from? 
	 Instead of Titan, the data comes from just across the hallway, a few 
steps away from the meeting room where the programmers are gathered. 
Behind the door of the laboratory, scientists use so called “planetary 
chambers” to simulate the temperature and air pressure of other planets and 
moons. Scientists put samples in the planetary chamber to analyze their 
chemical composition and see how they react in a simulated extraterrestrial 
environment. The samples come from different sources – some are  
collected from field sites, others are produced synthetically in an industrial 
facility. Scientists analyze these samples in the laboratory, which in turn 
becomes data. Data that programmers use to train AI tools for missions to 
other planets and moons. 
	 With this vignette, I offer a tiny glimpse of the complex process of 
developing AI for missions to other planets and moons. In the absence of 
the right data for training – from other planets and moons – programmers 

 7 years, according to estimations in the mission plan.11
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train AI on the best data that is available.  Data from laboratory 12

experiments at NASA, performed on samples from different sites on Earth. 
This chapter is about how knowledge infrastructures enable and constrain 
data, by focusing on these places. Places where data stems from play an 
important role by forming data’s structure and interpretation (Loukissas, 
2019, p. 3). To study the role of places in production of data at NASA, I use 
the concept of truth-spots (Gieryn, 2006). Sociologist Thomas Gieryn 
understands truth-spots as places that lend credibility in making claims 
about the world.  

Truth-spots are ‘places’ in that they are not just a point in the 
universe, but also and irreducibly: (1) the material stuff 
agglomerated there, both natural and human-built; and (2) 
cultural interpretations and narrations (more or less explicit) 
that give meaning to the spot (Gieryn, 2006, Footnote 3). 

In the vignette, I alluded to NASA as a truth-spot that lends credibility in 
making claims about the universe – the impersonal conference room at 
NASA Goddard, designed to feel like “anywhere,” reflecting the aspirations 
of making objective decisions. If we consider a spacecraft on Titan as a 
truth-spot, it reflects the epistemic virtues of both a field site and a 
laboratory. It is on the one hand a risky exploration of a unique, unknown 
place. On the other hand, scientists will bring a miniature laboratory, to 
create controlled experimental conditions. Due to the lack of control and 
precision associated with fieldwork, the laboratory has become an 
important site in making scientific claims (Gieryn, 2006).  

 Substantial amounts of data from other planets are available, however, it does 12

not correspond to the amount and quality needed for training of AI.
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	 To design a successful truth-spot, NASA thus draws on the 
epistemic virtues of both the laboratory and the field site. In this chapter, I 
turn to how scientists at NASA use truth-spots to produce scientific data for 
missions to other planets and moons. I will expand Gieryn’s concept and 
suggest to understand digital databases as yet another important truth-spot 
in scientific knowledge production – at least as important as the laboratory 
and the field site. 
	 The chapter is structured by different truth-spots used in NASA’s 
production of data to explore life and habitability on other planets and 
moons. Rather than a biography of a particular datapoint, this chapter is an 
ethnography of the infrastructure that makes it possible to produce data at 
NASA. It focuses on the stages of transformation of data – starting with the 
source of samples, continuing to the laboratory, and finally, the AI dataset. 

Making and Contesting Planet Analogs 
To explore life and habitability in outer space, astrobiologists travel to 
“planet analogs”, which are different places on Earth used as field sites. In 
these field sites, the scientists collect samples which they bring back to the 
laboratory. The samples are analyzed in the laboratory, upon which they 
become data in a spreadsheet. These data are then used to make claims 
about other planets. How are places on Earth used to make claims about 
other planets?  
	 Planet analogs are field sites usually depicted as “extreme” 
environments on Earth. The extremity of these sites - in terms of how dry, 
cold, hot or salty they are - is argued to resemble conditions on other 
planets and moons. Conditions in these environments are considered to be 
harsh for life to survive. Yet, some microbial lives unexpectedly thrive in 
these environments. Scientists have categorized these life forms as 
“extremophiles,” meaning lovers of the extreme. Astrobiologists suggest 
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that if life can thrive in such harsh environments on Earth, it cannot be 
ruled out that there are forms of life that could survive in harsh 
extraterrestrial worlds. To summarize, one way astrobiologists study outer 
space is by collecting samples from particular places on Earth, which they 
argue to be analogous to other planets and moons. Moreover, microbial life 
forms that thrive in planet analogs - the “extremophiles” - are argued to be 
analogous to potential extraterrestrial life. 
	 Analogies between the terrestrial and extraterrestrial are not only 
prevalent in choices of field sites - they constitute a fundamental logic of 
inquiry in astrobiology. NASA scientist Walter, whom I introduced in 
chapter 4, says the following about the explorations of outer space: “We 
start with what we know, what is analogous, familiar and try to understand 
it.” Walter’s formulation is capturing the key logic in astrobiology. Namely, 
drawing analogies from what is known to what is not known. Historian of 
science David Dunér goes as far as arguing that “astrobiology as a whole is 
one single, great analogy,” beginning with life as we know it on Earth, to 
searching for it on other planets (Dunér, 2019, p. 310). Anthropologist Lisa 
Messeri argues that making things familiar through analogies is the key 
social dynamic in how scientists make other planets into known places 
(Messeri, 2011). The use of planet analogs is thus part of a larger narrative 
in astrobiology, based on drawing analogies between Earth and other 
planets. 
	 Nonetheless, the epistemic status of these analogies is contested 
within the discipline. In an interview with a NASA scientist, they articulate 
how the fundamental assumption of searching for life as we know it on 
Earth is a potential fallacy. Bringing Earth-bias to explorations of outer 
space is frequently problematized in scientific publications, conferences, 

101



and NASA’s strategic documents.  While Earth-bias has been 13

problematized, for many researchers, it is understood as the only known 
way to proceed. 
	 One of the most popular planet analogs for Mars where scientists 
collect samples is the Atacama desert in Chile. It is recognized as one of the 
driest places on Earth. Among the qualities that scientists argue to be 
analogous to Mars are the soil, volcanism, UV radiation, aridity, and 
presence of extremophiles. Another characteristic that serves as comparison 
with Mars is that the soil in the Atacama Desert is rich in perchlorate 
(Preston & Dartnell, 2014, p. 85), a chemical compound which has been 
detected on Mars but in higher concentrations than on Earth. Scientists have 
identified that perchlorate has dual implications for the possibility of 
hosting human life on Mars. On the one hand, perchlorate can be utilized as 
a resource to produce oxygen. However, in large doses, perchlorate is toxic 
for humans, which means that it can be hazardous for astronauts (Archer, et 
al, 2019; Davila, et al, 2013). The significance of perchlorate for 
experiments on Mars is a subject I return to in later sections. 
	 Besides collecting samples, scientists use planet analogs to prepare 
for future missions, by testing the instruments and flight protocols. A group 
of scientists working with an instrument that will be sent to Mars, visited 
field sites in Svalbard, which they argue are good Mars analogs (Siljeström, 
et al, 2014, p. 782). The Svalbard archipelago, in the Arctic Ocean, is 
depicted as a cold and dry climate with minimal vegetation. The group 
visited two field sites. The first, Colletthøgda, is described as similar to 
Mars in terms of minerals in sedimentary rocks. These minerals, called 

 To address this problem, there have been initiatives in astrobiology to study “life 13

as we don’t know it.” This approach is often referred to as “agnostic,” meaning 
that scientists try to avoid assumptions about what a potential life form could look 
like. However, the agnostic approach is rather in the periphery of life detection. 
The search for life in outer space continues to be about “life as we know it.” 
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evaporites, are produced by evaporation of water. Evaporites have been 
detected on several places on Mars and Martian meteorites. The group is 
also making a connection to other studies, showing how this mineral serves 
for preservation of organic material and suggesting that it could “be a good 
habitat for microbes in an extreme environment such as the surface of 
Mars” (Siljeström, et al, 2014, p. 782). The second field site, 
Botniahalvøya, has basalt rocks which have been weathered by water. Some 
parts are black and look shiny, reminding the scientists of desert varnish, a 
coating consisting of clay minerals. They tie this observation to previous 
studies where others have “suggested that biology is involved in the 
formation of desert varnish” (Siljeström, et al, 2014, p. 782). Weathered 
basalts, which could be desert varnish, have been identified on Mars and it 
has been suggested as a potential habitat for microbes. The two field sites at 
Svalbard serve as truth-spots lending credibility in preparing for missions to 
Mars. The sites are an agglomeration of natural material – particular 
minerals - which scientists narrate as analogous to Mars and the analogy is 
extended to imply potential habitat for microbial life on Mars. 
	 In an interview with one of the scientists from the Svalbard 
expedition, Sandra, she describes the Svalbard sites as planet analogs. 
Nevertheless, she is problematizing the use of terrestrial sites as analogs for 
other planets. 

There’s not like a lack of samples. People usually have their 
favorite analog site that they go to and collect samples. But I 
think that analogs are just analogs. There is no perfect analog. 

Sandra’s argument about favoritism in studying certain sites is in line with 
what Gieryn identifies as a common critique of field sites in science: 
“emotional attachments to ‘my site’ that introduce subjective biases.” 
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(Gieryn, 2006, p. 6) However, Sandra’s formulation “analogs are analogs,” 
points to acknowledgement of the limitations involved with drawing 
analogies between Earth and other planets. Still, her excursions to collect 
samples from planet analogs to explore Mars, indicate that she accepts 
these limitations. Sandra does not have samples from Mars – so Svalbard is 
her best available proxy.  
	 Science studies scholar Susan Leigh Star and sociologist Elihu M. 
Gerson identify how certain “artifacts” can be acceptable in scientific 
practice, if they are considered as uncontrollable due to “the state of the 
research art, expense, or political commitments.” (Star & Gerson, 1987, p. 
151) Bias in analogies in astrobiology can be read as uncontrollable and 
therefore acceptable, because of the high cost of in-situ experiments on 
distant planets. 
	 However, a group of scientists tied to a European space project have 
problematized the vagueness in making analogies between terrestrial and 
extraterrestrial places. As a solution, the group suggested that the analogy 
should be made more precisely in relation to how the site or samples are 
used. For instance, at what stage of the mission is the analog used, for what 
purposes (astrobiology or engineering) and what kinds of properties are 
analogous (geological, or biological). The group introduces “functional 
analogs” as a new term for this practice (Foucher, 2021). They put 
emphasis on how artifacts in planet analogs can be controlled to some 
extent and should be managed by the scientists, in order to be accepted as 
credible claims (Star & Gerson, 1987). The critique and proposed solutions 
can be understood as an attempt to make field sites more precise and 
controlled, like the laboratory (Gieryn, 2006, p. 6). 
	 Among the reasons for studying outer space through planet analogs 
is that places on Earth are more available than the extraterrestrial ones. 
However, not all of the desirable destinations on Earth are actually 
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accessible to scientists. In a review of planet analogs, planetary scientist 
Louisa J. Preston and astrobiologist Lewis R. Dartnell have concluded that 
analogies about habitability between the terrestrial and extraterrestrial sites 
are not based solely on similarity but also based on accessibility. According 
to the two scientists: 

It is of no surprise, therefore, that analogue sites most often 
cited in the literature are those that are easy to get to and can be 
revisited if needed; are large enough to sustain multiple 
sampling excursions and teams; and permissions regarding 
visitation and sampling under most circumstances are 
obtainable. How many scientifically valuable sites are being 
understudied or simply overlooked due to a lack of accessibility 
or available resources? (Preston & Dartnell, 2014, p. 93) 

The accessibility of the field sites on Earth has dual implications for the 
epistemic status of the analogies being made. For instance, if we return to 
the group of scientists who went on the expedition to Svalbard – they 
articulated the field sites as having “easy access” for explorations of 
“martian habitability” (Siljeström, et al, 2014, p. 782). Accessibility enables 
scientists to adhere to the criteria of reproducibility – scientists in the past 
and future can visit the site and reproduce the results – which is an 
important virtue in science (Leonelli, 2018). On the other hand, in the 
review of planet analogs in astrobiology by Preston and Dartnell (2014), 
inaccessibility of certain sites is articulated as an uncontrollable artifact, 
skewing the explorations in the direction of what is accessible and 
fundable. Accessibility of certain sites on Earth is thus articulated as a 
virtue, making it possible to reproduce the results – however, inaccessibility 
of other sites also makes it a problem. 
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	 Economic aspects also have an important impact on research in 
astrobiology (as in all research). Funding is one of the most frequent 
aspects brought up by my informants at NASA Goddard. Given how 
expensive it is to conduct research in extreme environments, astrobiology is 
very dependent on generous financial support. These themes appear during 
an interview with David, an influential scientist within origins of life 
studies who has been part of NASA’s astrobiology review boards. David 
travels to various warm ponds around the world to conduct experiments 
researching the origins of life. He has developed a new hypothesis about 
life emerging in fresh water, which he is testing by conducting experiments 
in warm ponds (so-called hydrothermal fields). David frames his hypothesis 
as an “alternative” to the hypothesis about life emerging below the surface 
of the ocean (in so called hydrothermal vents). The hydrothermal fields are 
situated on the surface of Earth, while the hydrothermal vents are deep 
down below the surface of the ocean. In our interview, David is 
acknowledging that the hydrothermal fields on the surface of Earth are 
much more accessible than working with hydrothermal vents deep in the 
ocean. 

The hydrothermal vent hypothesis does not have an easy test. If 
you want to work on hydrothermal vents, it’s very expensive. 
You need to rent a submersible and go down to the vent 
thousands of meters below the surface of the ocean. You have to 
somehow inject your experiment into the vent and collect the 
products coming out the top. It’s so complicated and so 
expensive, that nobody has ever done this. It’s beyond what we 
are able to do today, in terms of the cost. My research happens 
to be cheap. For instance, I can just buy a plane ticket and I can 
fly to Iceland. In fact, I’m doing that next July, with a field trip 
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to hydrothermal fields where we’ll do experiments. 

This case illustrates how the economic aspects and research funding is a 
significant factor in selection of sites and samples, which in turn has 
profound consequences for how scientists theorize about life and its origins. 
The understanding of life is skewed toward what is fundable and 
geographically convenient – a warm pond on the surface, rather than a 
hydrothermal vent at the bottom of the ocean. 
	 Now, it is time to return to the question posed earlier: how can 
places on Earth legitimize knowledge claims about other planets? I have 
shown how the status of planet analogs as truth-spots is negotiated in 
astrobiology. The sites on Earth are made into planet analogs through 
narratives of being “extreme” environments with microbial life forms, 
unexpectedly thriving in such conditions. Moreover, the narrative of the 
sites is also aligned with the larger narrative of drawing analogies in 
astrobiology. Nonetheless, the epistemic status of planet analogs is 
contested for a number of reasons, such as vagueness and subjectivity. 
	 However, once the scientific analysis of the sample has turned into a 
datapoint in a spreadsheet, the contestations of assumptions and narratives 
are rendered invisible – they become black-boxed (Latour, 1987). When the 
data shifts scale to the planetary level in the study of outer space, it shifts 
focus away from how data is derived from particular local places on Earth. 
Places chosen based on inter alia accessibility and favoritism.  

Making Mars in California 
Lu, a young astrobiologist, points to one of the pictures on her desk at 
NASA Goddard Space Flight Center. The image is of an austere desert 
environment. In the middle of it is a white spacecraft with a radar and a 
man standing in front of it, showing his widest smile for the camera. The 
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picture seems like it could have been taken on another planet. However, the 
man is not wearing any space suit to protect his fragile human body. Lu 
tells me about how she “went to visit that exact same spot in Death Valley,” 
which is a Californian desert. The man in the picture is Carl Sagan, a 
famous astronomer who popularized astrobiology during the 1970s. Sagan’s 
book “Pale Blue Dot: A Vision of the Human Future in Space” (Sagan, 
1994) made Lu curious about outer space as a teenager. A doctoral degree 
later, she works as an astrobiologist at NASA. During our conversation, she 
describes further the image on her desk. Behind Sagan is a white probe. 
“That’s the Viking lander,” Lu says. Launched by NASA in 1976, Viking 
was the first mission that landed on Mars. Moreover, it was the first mission 
for life detection. Although the image we are looking at was taken in the 
Californian desert, making space suits superfluous, the Viking spacecraft 
implies that this place has a connection to Mars. I ask Lu if this place is 
considered a planet analog for Mars. 

Yes. So Death Valley is huge. It has the lowest elevation in the 
North American continent. That place is called Badwater Basin 
in Death Valley and is where the hottest temperature has ever 
been recorded. It used to be like a biiiiig lake. It’s literally like a 
closed basin, like a big bathtub. 

The vivid way in which Lu portrays Death Valley reflects the epistemic 
virtues characteristic of field work. Scientists become immersed and 
absorbed in a field site for a period of time, to develop “embodied ways of 
feeling, seeing, and understanding.” (Gieryn, 2006, p. 6) Some field sites 
are understood as unique places. In those instances, “being there” is “an 
essential part of claiming authority for an observation or discovery.” 
(Gieryn, 2006, p. 6) However, “being there” in the field site can also be 
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understood as playing a constitutive role in the identity of the researcher 
(Messeri, 2011, p. 208). While looking at the image on her desk, Lu 
continues to describe what the field site means to her. 

I don’t know exactly if that specific place he [Carl Sagan] is 
standing on is a Mars analog but the whole park itself [Death 
Valley] is. I think it holds a pretty special place in astrobiology 
community because people have studied that. There’s a portion 
of the park that was used to train the Apollo astronauts because 
it had these volcanic features that are similar to the rocks on the 
moon. So that was trained there. NASA also did testing of rover 
traversing through different terrains. So there’s parts of Death 
Valley that has like rocks that look like almost like this, really 
rubbly (…) 

Lu did not collect any samples in Death Valley, but went to this field site as 
a visitor. I suggest that the above quote illustrates the mutual constitution of 
three narratives: Lu as an astrobiologist, the park as a NASA field site, and 
the landscape as Mars. Certain places are made more spectacular or 
prestigious to study, which can generate more attention, more funding, and 
more interest of people willing to dedicate their careers to study those 
places. Geoffrey C. Bowker refers to this dynamic in knowledge production 
as “feedback loops” with an effect of skewing knowledge about the world 
in particular directions (Bowker, 2000). Death Valley as a Martian analog 
clearly illustrates the dynamic of feedback loops in knowledge production. 
The desert and its history – Apollo astronauts, the Viking mission, more 
recent rovers, as well as the presence of Carl Sagan – make the site 
charismatic for astrobiologists and the public through outreach activities, 
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potentially generating more interest and funding to study this kind of 
phenomena. I will now turn further to the national narrative of this park. 
	 The narrative of Death Valley as a planet analog - with a history of 
being an analog for Apollo astronauts, the Viking mission, and rovers for 
more recent missions - is shared beyond the scientific community. The 
national park has been holding festivals where the public gets to meet 
NASA scientists and get educated on how this environment resembles 
Mars. Focusing on the connection between Mars and Death Valley in public 
events is reinforcing the perception of the environment as an analog for the 
other planet. In the previous chapter, I discussed how outreach activities to 
engage the public are an important part of NASA. Branding can maintain 
the popularity of the organization, legitimize public funding, and inspire 
people to choose a career within space research. Lu herself was inspired by 
a public figure, Carl Sagan. Sagan maintains a legendary position in the 
field of astrobiology and is frequently quoted by my informants at NASA 
Goddard Space Flight Center. His presence at the site in Death Valley, 
portrayed in a widely reproduced image together with the Viking 
spacecraft, enhances the narrative of the field site as a Mars analog.  
	 So far, I have discussed how field sites on Earth, such as Svalbard, 
Atacama, and Death Valley, serve as important truth-spots in astrobiology. I 
have described how scientists construct narratives of these places as 
resembling conditions on other planets, like Mars, extending the analogy to 
potential microbial life. Certain places are more accessible, more popular, 
or prestigious to study, which skews the scientific knowledge production in 
particular directions. It is in these truth-spots that scientists collect samples, 
which they bring to the laboratory and turn into data. The data that 
programmers use to train AI tools. Before turning to the next stage in the 
transformation of the objects used to train AI tools, I provide another 
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significant example of where scientists collect samples from: rocks from 
outer space. 

Asteroids and Meteorites as Archives of the Origins of 
Life 
During one day of fieldwork at NASA, when astrobiologist Lu and I walk 
across the hallway, we meet scientist Jason. I get introduced to him and in 
less than a minute, we end up in a discussion about the fundamental 
question in life detection: what is life? Jason has four decades of experience 
in studying the origins of life. As a doctoral student, Jason was supervised 
by Stanley Miller, an influential chemist whose experiment published in 
1953 was a key landmark in the modern studies on the origins of life 
(Lazcano & Bada, 2003). Miller's experiment simulated the conditions of 
early Earth and provided the first evidence that organic molecules could 
have been synthesized under those conditions. Over a half-century after the 
experiment, Miller’s former student directs the Astrobiology Analytical 
Laboratory at NASA Goddard Space Flight Center, where scientists analyze 
organic molecules in “samples from comets, asteroids, meteorites, and 
Moon dust, to help determine the origin of life on Earth.” (NASA, n. d. a)	  
	 We walk over to Jason’s office, which is the largest I had seen so far 
– Jason has his own conference space in his room. Next to the large oval 
table is a bookcase. But instead of books, one shelf is occupied by rocks 
and samples. Jason picks one of the rocks - a tiny black meteorite (a rock 
from outer space that has fallen to Earth) with white blobs. He puts the 
meteorite in front of me, on the large oval table by which we are seated 
during our interview. Jason tells me how the meteorite in front of me is 
4.567 billion years old – a little older than the Earth. A “little” in this case 
means approximately 27 million years. The chemistry of this meteorite can 
be similar to the chemistry of early Earth. “[Meteorites] are witnesses of 

111



early solar system,” he says. 
	 The bookshelf in Jason’s office, full of rocks and other samples, is 
on the one hand a collection of tokens, meaningful objects that remind him 
of his field trips. But besides being a diary of his work life, these rocks are 
also understood as an archive of the history of the universe. This is a 
narrative I have encountered previously with researchers in origins of life 
studies. During the main conference of the origins of life community 
(ISSOL) in 2021, a keynote scientist spoke of asteroids as “archives,” while 
another scientist claimed that “rocks are archives of Earth and history of 
life.” In September 2023, two months after my interview with Jason, a 
sample return mission landed on Earth, with the first asteroid that NASA 
has delivered. Jason is anticipating to analyze the samples from the 
asteroid. According to NASA, “The material gathered from [asteroid] 
Bennu acts as a time capsule from the earliest days of our solar system and 
will help us answer big questions about the origins of life and the nature of 
asteroids.”(NASA, n. d. b) 
	 Through the narratives of asteroids as “archives” and “time 
capsules,” they become a truth-spot that lends legitimacy to claims about 
the history of Earth and the universe. “Places can be like time machines,” 
according to Gieryn, “by providing tangible, resonating, and convincing 
evidence for assertions about how things were yesterday and how they will 
be tomorrow.” (Gieryn, 2018, p. 172-3) Asteroids are articulated as tangible 
time machines, lending NASA the powerful epistemic effects of answering 
“big questions about the origins of life.” This material – as a result of a 
billion dollar mission to bring the samples to Earth – is accessible only to a 
few scientists in the world. The uniqueness of asteroids as material from 
outer space provides a high epistemic value in origins of life studies. 
	 The way in which scientists tie objects and places to history of life 
and the universe can also be interpreted in terms of awe. Awe can be 
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explained as an enchanting experience of being carried away, a moment of 
connection and consummation (Lorimer, 2007, p. 922). Awe plays a 
significant role in guiding scientists attention and constituting their 
motivation for action. For instance, in Linnaeus journal from an expedition 
to Lapland in the north of Sweden, he noted the experience of being “as if 
in a new world,” and how the “time passed unperceived away” as he “sat 
down to collect and describe vegetable rarities.” (Linnaeus, Carl von, 
1811/2021). This immersion reflects the epistemic value of a field site. 
Gieryn argues that the Lapland expeditions became an important place 
providing credibility in “the eventual universalization of Linnaeus’ system 
for classifying plants (Gieryn, 2018, p. 52).” While the scientists in the 
1700s “discovered” the “new world” on foot or through the sea, 
astrobiologists “explore the unknown” in outer space. Immersion and awe 
are characteristic epistemic virtues in addressing the “big questions” 
through the study of outer space.  
	 With rocks as “archives,” scientists can travel through timelines and 
experience places which they deem as “exotic” and “tantalizing.” The 
narratives of the origins of life tied to asteroids open up portals for 
meaning-making across vast scales of time and space. A particular sample 
from an asteroid can be used to make universal claims about history of life.  
	 The concept of truth-spots, which I have used to analyze the making 
of scientific knowledge claims about other worlds, was introduced by 
Gieryn 20 years ago. What I suggest, is that truth-spots do not need to be 
tangible in the ways that field sites, or archives are. They can also be 
digital. To continue the analysis of what kind of infrastructure it takes to 
produce data at NASA, I turn to another important truth-spot in scientific 
knowledge production: digital databases. Scientists refer to these as 
“databases,” “libraries” and “catalogs.” While scientists at Goddard use 
various libraries, sometimes by constructing them on their own, I provide 
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an example of the national database that is often used among scientists 
working with mass spectrometry for life detection. It is used at the stage of 
analyzing the samples’ chemical composition in the laboratory. This 
constitutes another transformation of data – which can be used for training 
AI. 

Interpreting Data from Laboratory Experiments 
with the NIST Database 
The physical library full of rocks and other samples in Jason’s room is not 
the only library we discuss. Early on in our conversation, Jason brings up a 
digital database with mass spectrometry data, which scientists use for 
comparison with their own laboratory experiments. The database is 
developed and curated by NIST, which stands for National Institute of 
Standards and Technology. NIST is an agency of the US Department of 
Commerce, with a mission to develop standards and measurements to 
promote national “innovation and industrial competitiveness.” 
	 When scientists conduct laboratory experiments with mass 
spectrometers, they use the NIST database as a reference point to compare 
the results.  Scientist Jason compares a mass spectra result in his 14

laboratory experiments with existing data in the NIST database. When he 
explains his reasoning as he looks at the images of his own results versus 
NIST, he says “my spectra looks like this and there’s a NIST spectrum that 
looks like that, that’s pretty close, so maybe it’s a match.” Algorithms help 
Jason with this process but he uses his own eyes to verify the comparison. 
	 I suggest to expand the concept of truth-spots into the realm of the 

 This thesis considers the NIST library with mass spectra. However, it is worth 14

mentioning that it is not the only NIST library – another one, for example, is the 
infrared spectra library.
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digital, with the NIST database as an example. Digital databases can be 
understood as a particular kind of truth-spot which Gieryn refers to as 
“collections,” such as libraries, zoos and botanical gardens. Collections 
sacrifice the context of the object in the field in exchange for powerful 
epistemic gains. Collections allow “comparisons of specimens no longer 
separated by ocean or continent, with presumably less privation and risk 
than in the field, and in a more patient manner” because the scientist “is not 
a transient in this place (as Linnaeus was in Lapland).” (Gieryn, 2018, p. 
45-46)  
	 The digital database consists of agglomerated data from laboratories 
across different contexts, conducted by various practitioners, spanning 
across long time scales. It is curated by professionals employed at NIST, 
which is a governmental agency with aspirations to provide universal 
standards. The database is used as a yardstick in laboratory experiments - 
scientists compare their results with the national database - which means 
that it has an authoritative position in the making of knowledge claims. 
Therefore, I understand this digital database as a truth-spot. Digital 
databases are not only mediating relations to non-digital places (for 
instance, between the results in two different laboratories). They should not 
be understood as an entirely different kind than analog archives or libraries 
(whose status as a truth-spot most of us would acknowledge). The digital 
places are as important (if not more!) as the non-digital, in the current 
practices of scientific knowledge production, where scientists spend a 
substantial amount of their time by the computer screen. 
	 At NASA Goddard, and in the wider context of astrobiology, the 
NIST database serves as a comparison for laboratory results with mass 
spectrometry, for instance, at several stages of explorations of Mars. We can 
rewind to the group of scientists who collected samples in Svalbard, the 
Mars analog, from earlier in the chapter. To validate the results from their 
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experiments, the group compared it with the NIST database (Siljeström, 
2014, p. 786). NIST is also used for comparison of samples analyzed 
onboard the laboratory on Mars spacecraft (Millan et al, 2016, p. 95; Millan 
et al, 2022, p. 13). In other words, it serves as a reference point in the 
interpretation of mass spectrometry data from Mars (Figure 8), for instance, 
the interpretation of whether a particular kind of organic molecule is 
present on Mars. Moreover, NIST is used as a comparison in experiments 
testing instruments for future missions. At a Mars conference presentation, 
a group of scientists testing an instrument that will land on Mars in the 
future, argues that the mass spectrometry from their experiments are 
“accurate as their comparison with the reference mass spectrometry 
database from NIST allows to identify each peak without ambiguity.” 
(Szopa et al, 2019, p. 6227) 
	 However, the interpretation of mass spectrometry from Mars is 
complex. The comparison with the NIST database does not always provide 
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Figure 8. Mass spectra of 2,4-dithiapentane compound with SAM 
instrument on Mars (red), compared to the mass spectra from the NIST 
Mass Spectral Database (blue). The image is used in article by Millan and 
colleagues (2022, p. 15).



scientists the confidence to make claims about the presence or absence of 
particular molecules. One aspect is that NASA’s flight instruments are 
designed particularly for the purposes of the objectives of missions to other 
planets – detecting organic molecules in particular extraterrestrial 
environments. The experiments in the NIST database are likely conducted 
on commercial instruments, standardized for use on Earth. The mass spectra 
from flight instruments on for instance Mars are therefore not necessarily 
comparable to the mass spectra in NIST, performed on commercial 
instruments.  
	 Another aspect that makes the interpretation of Martian mass 
spectrometry more complex are the unprecedented conditions on other 
planets, which can alter the experiments in unexpected ways. Instruments 
on NASA missions are designed based on assumptions about the 
environments on other planets. Certain conditions can be “partly unknown” 
and lead to “unexpected behavior of the experiments” (Millan et al, 2016, p. 
90). SAM experiments with mass spectra on Mars are one example. A 
chemical compound called perchlorate was found on Mars, and scientists 
believe that it might react with the chemicals in the SAM instrument. This 
might lead to destroying the organic molecules or altering their chemical 
composition.  Such unprecedented aspects add another layer of complexity 15

in interpretation of mass spectrometry from Mars.  
	 When these uncontrolled artifacts (Star & Gerson, 1987) in 
extraterrestrial conditions become visible, NASA scientists try to manage 
them by constructing their own comparison for mass spectrometry, in 

 Detection of perchlorate on Mars in the early 2000s has had significant 15

implications for NASA missions exploring life on Mars – NASA scientists believe 
that the perchlorate impacted the results of previous experiments on Mars. The 
instruments onboard the spacecraft were designed to detect organic molecules on 
Mars, but the chemicals in the instruments reacted with perchlorate, which can 
either destroy the organic molecules or change their chemical composition 
(Archer, et al, 2019).
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simulated Martian conditions, on instruments that are more flight-like than 
the commercial ones used in the NIST database. 
	 Scientists’ own mass spectra data and the ones from the NIST 
database are never a perfect match – different mass spectrometers with 
different ionization sources and ionization energies produce different types 
of mass spectra. Jason writes in a correspondence that “comparing similar 
kinds is ok, but you will never get a perfect match.” To make knowledge 
claims, the differences are bracketed, to focus on the similarities (Pinch, 
1993, p. 30-31).  
	 NASA scientist Jason acknowledges in an interview that there are 
further problems with the NIST database. More fundamental problems with 
the quality of its data. When me and Jason are discussing the databases in 
the context of potentially using it for AI to detect life, he is mentioning 
three kinds of problems. One is related to the technological changes, which 
affects the quality of data. For instance, “oh here’s a dataset from the 90s 
that I took in, so I have to know that the peak shape was poor because of 
the technology.” The second issue identified by Jason is the aspect of 
different researchers producing different quality of data. “Not every 
spectrum is the same quality. Some of them are very poor. These are taken 
from whatever laboratory and as better ones come in they get replaced but 
you have to be aware of that.” 
	 The third issue pointed out by Jason in relation to the NIST database 
is the systematic bias. To explain this further in correspondence, he brings 
up the example of Murchison – a famous meteorite named after the 
Australian city where it landed in 1969. Studies of Murchison meteorite 
(figure 9), which is older than our solar system, have contributed with 
knowledge about interstellar chemistry before, or just during the birth of 
our solar system (Schmitt-Kopplin et al, 2010). Jason explains that there is 
a small overlap between the millions of compounds in the NIST database, 
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and the ones in Murchison meteorite, which are probably one million 
unnamed compounds. Jason points out that the NIST database has an 
inherent bias toward compounds that are important to the US Department of 
Commerce. And as their Mass Spectrometry Data Center states, they work 
with mass spectrometry data “for industrially and environmentally 
important (bio)molecules.” (National Institute of Standards and 
Technology, n.d.) Jason draws a relation between the database and the 
impact of funding, which then leans the research toward certain areas with 
relevance for “medicine, industry, and technology.” 
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Figure 9. Samples of Murchison meteorite held by  
scientist Lu in a laboratory at NASA Goddard Space 
Flight Center. Photo from fieldwork.



The NIST database is based on things that people look for. It’s 
based on things where there’s money for people to research on. 
Therefore, it’s biomedical. So there’s a heavy bias for things 
that are important for medicine, industry, technology, things of 
that sort. Which is biased heavily toward Earth life. And 
heavily away from chemistry we haven’t thought of. 

Jason mentions how the NIST database is “biased heavily toward Earth 
life”, which relates to the previous discussion about Earth-bias as an 
uncontrolled artifact. But it is not any just kind of Earth-bias. Jason points 
to how the NIST database is skewed toward production of knowledge for 
the purposes of “medicine, industry, technology.” After all, as I mentioned 
earlier, NIST is an agency of the US Department of Commerce, with a 
mission to develop standards and measurements to promote national 
“innovation and industrial competitiveness.” As a consequence, the 
unknown in outer space is interpreted in light of what is relevant to conduct 
research on - for medical, industrial and technological purposes. 
	 Jason contests the epistemic status of the NIST database as a truth-
spot in making claims about laboratory results. In Jason’s depiction, NIST 
database is an agglomeration of data tied to particular research areas – 
medicine, industry, technology. Mass spectra of extraterrestrial phenomena 
have small overlap with mass spectra in the NIST database, with molecules 
that are relevant for industrial purposes. Awareness about this issue comes 
through as important in an interview with Jason, however, without 
condemning its epistemic status. This implies that the artifacts can be 
controllable to a certain extent (Star & Gerson, 1987). If used with caution, 
it can serve as a truth-spot for making knowledge claims. 
	 I wrap up this section with Jason’s reflection about the NIST 
database as “having an incomplete knowledge” which is based on “funding, 

120



as everything is.” In the previous chapter, I described how AI tools can 
appeal to ideals of objectivity in science. Could AI have a more complete 
knowledge? We discuss visions of AI as a tool to facilitate understanding of 
life. AI needs to be trained on a set of data - it needs its own database of 
knowns, to distinguish the unknown. 

(…) To get better models and back and forth but that 
bootstrapping is in a direction, that’s not agnostic. It’s toward 
something that is fundable. That is something relevant to 
medicine or plastics or petroleum or whatever. It’s all biased. So 
you can’t totally free your mind from terrestrial influences 
when you’re looking for something that is unique. 

Based on discussion with scientist Jason, terrestrial bias is an uncontrollable 
artifact in scientific practice, as well as in development of AI tools. The 
search for the unique in outer space is through analysis of the terrestrial – in 
this case medicine, plastics or petroleum. Now, I turn to the next stage in 
the transformations, and new contestations, when programmers take over 
the scientific data to develop AI tools. 

Using Data From Planet Analogs in Datasets for 
AI 
At the start of this chapter, I introduced how NASA scientists and engineers 
plan a future mission to Titan, the moon of Saturn. However, as I wrote in 
the introduction, the distance to Titan being over a billion kilometers away 
from Earth poses severe data limitations. It slows down the communication 
between the scientists on Earth, and the instrument on Titan. The team 
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argues that this can be addressed with automation of decision making 
onboard the spacecraft.  
	 The aim of the algorithms developed by the programmers at NASA 
Goddard is to make real-time decisions onboard the spacecraft, about how 
to interpret the data from experiments or how to proceed with operations on 
the landing site. Instead of sending all the data back and forth between the 
spacecraft and the scientists on Earth, the algorithm will make some of the 
decisions. In the following section, I discuss how the making of automation 
for “partly unknown” (Millan et al, 2016, p. 90) worlds is done in practice. 
I pay particular attention to how the epistemic contestations change, when 
the programmers take over the data. 
	 In the AI domain, it is often said that AI is only as good as the data 
it learns from. To make reliable decisions, the tool has to be trained on the 
right data. Ideally, the AI would be trained on the kind of data that it is 
designed to detect. Following this logic, if the aim of an AI tool is to detect 
organic molecules on Titan, it should ideally be trained on mass spectra 
from Titan. However, there is not enough such data and for some 
unexplored destinations in the universe there is no such data at all. In the 
absence of enough data from other planets and moons, programmers create 
datasets based on the data that are available. They use the scarce data from 
other planets, together with data from planet analogs described in this 
chapter. For instance, field sites in Svalbard, the Atacama Desert and 
meteorites. Another kind of data programmers use is from laboratory 
experiments on samples that are purchased and produced in an industrial 
facility, which I described in the first chapter. Yet another kind of data used 
for training of AI are computed simulations, which I focus on in the last 
empirical chapter. 
	 I accompany programmers Victoria and Eric, and scientist Caroline 
during a meeting about a mass spectrometry dataset for training algorithms. 
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Victoria and Eric are among the leading AI developers at NASA Goddard. 
So, what does a dataset for life detection on Mars look like? I get to see an 
excerpt, to which programmers Victoria and Eric have to pay close 
attention. It is a long list with several columns – the first consists of sample 
labels. It includes labels such as “atacama”, “PaintedDesert”, 
“terephtalicacid”, “kitkat”, “Snickers” and “Butterfinger.” 
	 While observing, I wonder, how can sample labels such as “kitkat” 
and “Snickers” facilitate the search for signs of life on Titan or Mars? The 
planet Mars, not the chocolate bar. I think… A few days before going 
through the data, I recall Victoria being pleasantly surprised by getting a 
KitKat, as a friendly gesture from a colleague at the office. Now, I am 
rather puzzled, by seeing “kitkat” amongst the samples for life detection. In 
order to make sense of the chocolate bars in data for AI and decide whether 
they should remain or be deleted from the list, Victoria has to consult the 
scientist who worked with the samples.  
	 Caroline, the scientist who shared the data with Victoria, was 
collecting samples in Svalbard. The conditions in Svalbard, which is close 
to the Earth’s North Pole, are seen as resembling Mars – this time, 
definitely the planet Mars, not the chocolate bar. While conducting 
fieldwork in the ice cold, distant, Mars-like site, scientists found themselves 
hungry, and labeled the samples after what they were longing for – 
chocolate bars.  
	 This is just one quirky example of Victoria’s detective work, in 
order to create AI. She needs to investigate much more than which 
compounds the chocolate bars represent for the scientist. During the 
consultation with scientist Caroline, other questions rise. Some require 
Victoria and her programmer colleague Eric, to search for a decade-old 
notebook across the laboratories at NASA Goddard to find an answer about 
a particular datapoint. The missing data concerns information about an 

123



experiment conducted by the scientist many years ago, documented on 
paper but not clear in which of the laboratories. A long walk back and forth 
later – Goddard is a large facility – Victoria and Eric are cheerfully back, 
with an old notebook, ready to turn it into computer code. What appears as 
a single datapoint on a list – “Snickers” – requires a lot of effort for 
scientists to produce, and moreover it requires a lot of detective work for 
programmers to understand. 
	 What is interesting here is the shift of what is understood as an 
artifact. Star and Gerson (1987) point out that anomalies can shift status 
very quickly, depending on the shift of context where the anomaly is 
situated. In the case above, we can see that planet analogs, previously 
contested by scientists, are not contested by programmers who include them 
in the datasets for AI.  The analogy is no longer a relevant question. On the 
other hand, new artifacts arise when the data shifts context from one 
profession to the other. The chocolate labels for samples from Svalbard 
were accepted by the scientists in the peer review process - Snickers and 
Butterfinger made it into the journal publication (Siljeström et al, 2014). 
However, data labelled after chocolate bars becomes an artifact in the 
context of programmers who need the data to be standardized for training 
of AI. 
	 During the meeting about mass spectrometry data for training of AI, 
programmers Victoria and Eric, together with the scientist, discuss how to 
categorize the data. The AI will analyze organic molecules based on the 
categories ascribed to the data it is trained on. In this particular set of data 
for training, there are nine categories. The categories stand for different 
kinds of chemical compounds. For instance, mineral, hydrocarbon- or 
sulfur-bearing compounds. Based on the dataset, the algorithm is trained to 
ascribe categories of chemical compounds to new data.  
	 Once an experiment on Mars or Titan is executed, the algorithm 
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analyzes the results by distributing probability of what the extraterrestrial 
sample most likely contains. In other words, it ascribes a certain percentage 
of how much the sample belongs to each category. Ultimately, when NASA 
scientists on Earth receive the data analyzed by AI, they will see it on a 
computer screen with a display of the top categories, suggesting which are 
the most likely to fit the sample. For instance, minerals or sulfur-bearing 
compounds. So, the instrument does experiments with the mass 
spectrometer and the AI categorizes the results. Now, I turn to the question 
of how to decide which data is interesting in explorations of life and 
habitability, and how to train an AI to make these decisions. 

Interpreting Anomaly in the Data – Potential Life or 
Error? 
What data from missions searching for signs of life and habitability is most 
interesting? When I pose this question to scientists and programmers at 
NASA Goddard Space Flight Center, I get almost a unanimous answer. 
Signs of potential life in outer space are expected to appear as an anomaly 
in the data. Anomalies in the data can be a sign of something known but 
rarely occurring, or something unexpected in a given setting. Anomalies 
can also be a sign of a completely unknown phenomenon. For instance, 
unique chemistry or biology in outer space. 
	 I ask programmer Eric how an anomaly would appear in the AI tool. 
Based on how frequently I hear researchers addressing search for life in 
terms of anomaly detection, I deduced that one of the categories would be 
labeled precisely as the desired kind of data: anomaly. However, after 
persistently asking Eric follow up questions, I realized that there is no 
formal category for an anomaly. Instead, detecting an anomaly is a matter 
of interpretation of the scores from all categories. Eric imagines that if the 
algorithm would ascribe low probabilities to categories that it was taught to 
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recognize, the interpretation would be that it can possibly contain an 
“unknown” object. I ask Eric at what stage something becomes an 
unknown. He seems troubled and I soon realize why. I have been asking for 
clarifications about something very unclear. There is no particular 
threshold, percentage, or category for when an entity becomes an unknown 
anomaly, a potential sign of extraterrestrial life. 
	 The scientists and engineers I observed at NASA Goddard are 
searching for life and habitability within our solar system. However, 
searching for anomalies in outer space is also a prevalent practice amongst 
astronomers searching for new exoplanets – planets outside of our solar 
system. In an ethnographic account, Messeri depicts how astronomers 
search for new planets by searching for anomalies. What Messeri brings 
attention to is how the declaration of new planets is not about seeing them, 
but rather about noting the absence of alternative explanations for the 
anomaly (Messeri, 2011, p. 51). The same logic follows in the case of life 
detection with AI - detection of an unknown anomaly is not about seeing 
the anomaly but rather, noting the absence of correlation with the categories 
of known chemical compounds. 
	 Failing to detect interesting anomalies is the “number one concern,” 
according to Eric. The danger with the use of algorithms is that they can 
potentially ascribe misleading categories to the samples. As a result, the AI 
can skew scientists’ attention toward false positives – recognizing 
something common as a novelty – or false negatives – recognizing a 
novelty as something common. The consequences can be both immediate 
and long-lasting. AI can drive the course of action of a billion-dollar 
mission in misleading directions. In such case, it is a loss in terms of 
economic resources and scientific efforts. Errors in algorithmic 
performance can steer researchers in life detection missions away from 
what they are looking for – potential signs of life and habitability. 
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	 NASA researchers expect that the AI approach with predetermined 
categories – the so-called supervised approach – will perform well with 
detecting known anomalies, meaning objects that are known but rarely 
occurring. For detection of unknown anomalies, the researchers expect that 
a technique called unsupervised training will perform better. The 
unsupervised approach is about training the algorithm on a dataset that is 
not labeled, to let the algorithm identify patterns on its own.   16

	 I discuss training of AI for anomaly detection with Victoria. In 
search of refreshment, we are sitting on a bench outside of the office at 
NASA Goddard, stubbornly, despite the windy weather. In order to focus on 
asking adequate follow-up questions, I have surrendered to the wind madly 
twisting my hair all over my face. I want to disentangle what anomaly 
means in practice. In order to show me how training AI works, Victoria 
displays graphs on her computer. Scatter plots with plenty of blue dots. The 
dots are data from experiments with mass spectrometry. I see that all the 
dots form a clear pattern, a wave-like shape. But there is this one dot that 
stands out, like a splash from the wave. What does it mean?  
	 While staring at the odd dot during the interview, I recall my 
conversations with Victoria from last year and how anomalies seemed to 
have more than one meaning in the context of life detection. She has 
referred to data as “anomaly”, “novelty”, “weird” and “outlier”. These 
terms are at times articulated as distinct and at times used interchangeably. 
At times, anomalous data is desired, at other times avoided. This ambiguity 
reappears still one year later, when I ask Victoria about what she means by 
anomaly. 

 Similar approach is used on the present Mars mission (ChemCam on MSL) to 16

find scientific targets autonomously. However, in contrast to Mars, there is not as 
much data from “ocean worlds,” like Titan, for training of algorithms. The already 
mentioned data from planet analogs and synthetic data (chapter 7) serve as a 
solution.
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A: So in this case, does the anomaly detection refer to fault in 
experiments or something interesting, potentially, scientifically 
speaking? 

V: That’s a great great question. It could be both. An anomaly 
could be something very weird, compared to all these points, 
this one doesn’t have a lot of signal so maybe this point here is 
weird because there’s no signal. But it could also be maybe this 
one is like it looks different in the way that there are more peaks 
and maybe a massive peak that is not somewhere else. So we 
use anomaly and novelty, these two words, sometimes saying 
the same thing. But anomaly usually has a negative connotation. 
If it’s an anomaly, it’s not great so we should remove it. To me, 
anomaly is also a way to learn about how your instrument did 
well or not, and how to learn from it. This is weird data so I 
really want to look at it. 

Recall the scatter plot with blue dots forming a wave-like pattern and the 
splash. The “weird” dot, in Victoria’s terms. Based on Victoria’s 
explanation, a single dot that stands out can be interpreted by programmers 
as two fundamentally different phenomena.  
	 The first interpretation of anomaly in data can be that it stands for 
an error. An error in terms of a failed scientific experiment. If an instrument 
is not calibrated correctly, or breaks altogether, it can result in a datapoint 
that stands out from the rest. Consequently, programmers remove the 
datapoints interpreted as failed experiments. Keeping such data in a dataset 
for AI is perceived as endangering the training process. The intention is to 
teach the AI on examples of successful experiments, not on the failed ones. 
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Nevertheless, as Victoria points out, the failures can still be important 
lessons for the humans involved. 
	 The second interpretation of anomaly in data can be as a novel 
phenomenon. In one of the articles that Victoria has co-authored, novelty 
detection is articulated as a matter of both known anomalies that are rarely 
occurring in a particular context or an anomaly that is completely unknown. 
It can stand for something unique that scientists have not encountered 
before. In the context of life detection in outer space, many scientists expect 
a sign of life to appear as precisely that: an anomaly in the data. In contrast 
to anomalies in the data as an error, novelty is desirable. 
	 Star and Gerson describe how anomalies in science usually appear 
in small research projects involving a small group of people. In most cases, 
anomalies can be interpreted as either mistakes or controlled artifacts 
before publishing results. Furthermore, Star and Gerson point to that there 
is an incentive to interpret the anomalies quickly – extended negotiations 
delay the work process, funding, as well as career advancement. On the 
other hand, interpreting anomalies as discoveries is tied to “professional or 
public honor, funds, and career opportunities.” (Star & Gerson, 1987, p. 
152) 
	 The two interpretations of anomalies in mass spectrometry data 
have drastically different consequences. One entails a risk of deviance, 
which is considered as something to be avoided. The second is a promise of 
something unique, which is highly desirable. The contrasting interpretation 
entails opposite consequences for the datapoint - one is to be removed, the 
other remains in the dataset. If the unique object and failed experiment look 
the same in a scatter plot… How can you teach an AI to distinguish 
between these two anomalies? Misinterpreting data is one of the biggest 
fears amongst programmers. Missing a sign of life could cost you a 
potential Nobel Prize! (see the discussion in chapter 4) 
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	 This uncertainty in the interpretation of data is not experienced just 
by the programmers. Scientists do recognize this as a fundamental problem 
in interpretation of data. I rewind to the meeting in the vignette, where 
scientists and programmers at Goddard discussed automation for a future 
mission to Titan. Scientist Desmond seemed confident about the capacity of 
AI tools to select the right data to send back to Earth (“We just have to 
teach the computer how to think the way that we do.”) But after a 
discussion around the table, Desmond admits that the challenges of 
automation are serious. 

Yeah, I mean the difficult part of that, you know Ryan is not 
wrong, I’m trivializing that, right. The typical parts in that is, 
it’s an unknown. You don’t know what the heck signal is versus 
noise, right? So how do you know what to add and what to 
ignore, right? Obviously, we talked just about ignoring, you 
know, completely empty spectra and not returning those, that’s 
easy. But how do you, you know, teach and determine what is 
actual signal and what is actual noise? Blaaah! 

All objects in the universe produce background noise. The results of 
scientific experiments (“signal”) are entangled with the background noise 
generated from spacecraft and all other objects surrounding it. Scientists 
need to determine what is the signal versus noise in the data. Both 
programmers, and scientists, struggle to operationalize the difference 
between the interesting and non-interesting data. Data from experiments on 
field sites which they have not yet accessed. 
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Conclusion 
The development of AI depends on data that is available for training these 
tools. Which data are available is in turn dependent on the knowledge 
infrastructure, which enables and constrains the practices in planetary 
science and astrobiology. This chapter analyzes particular truth-spots 
(Gieryn, 2006; 2018) in astrobiology, which are places on Earth that lend 
credibility to making claims about other planets and moons, as well as life 
and its origins in the universe.  
	 The chapter demonstrates how the choice of field sites is dependent 
on accessibility and symbolic value, rendering some places more popular 
than others. As a result, scientific knowledge production about life and its 
origins is skewed toward the sites that are accessible, or popular. 
Consequently, this skewness is reflected in the data that is available. These 
findings are in line with Bowker’s study on databases on biodiversity, 
reflecting similar feedback loops that skew knowledge production in a 
particular direction (Bowker, 2000). This problem is also prevalent in NIST 
databases with mass spectrometry, which scientists use to compare results 
of experiments, from laboratories on Earth as well as on other planets and 
moons. This database is curated and developed for industrial purposes, 
which has little overlap with the compounds of interest for astrobiologists, 
for instance, a meteorite. These truth-spots – the planet analogs, from where 
scientists collect samples, and the NIST database, which serves as a library 
of knowns with which to compare the unknown – constitute the knowledge 
infrastructure that enables and constrains what kind of scientific data is 
produced. The knowledge infrastructure shapes AI, through the availability 
of scientific data which can be used for training of these tools.  
	 Development of AI also changes the scientific knowledge 
production, by black-boxing particular epistemic concerns and introducing 
new ones, in line with the norms of practice in the field of AI. With 
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development of AI comes a shift in who makes the decisions about the data, 
which concerns are relevant, and what is interpreted as an artifact. 
	 The samples collected in the extreme field sites and dissected into 
molecules in the laboratory, are tamed into a pattern in a dataset and the 
outliers are managed. Although the risks with filtering out interesting data 
with AI are acknowledged, the performance of life as a pattern in data is 
successfully coercive in life detection. Standardization and control of 
anomalies in datasets for AI reflects the epistemic virtues of laboratory 
work.  
	 AI datasets can also be understood as truth-spots in their own right – 
they are an agglomeration of huge amounts of data, and in the programming 
practices, sometimes narrated as “ground-truths” (Jaton, 2021), or being 
envisioned as an oracle in scientific knowledge production (Messeri & 
Crockett, 2024). However, in this case, AI is at the early stage of 
development and has not reached the epistemic status of a truth-spot – yet. 
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Chapter 6 Negotiating Between Two 
Epistemic Cultures, Within One Data 
Economy 
On a Monday morning, June 5 2022, by the main gate of NASA Goddard 
Space Flight Center, me and software manager Eric, are glad to meet for the 
first time. However, none of us have received any updates about my 
permission to enter the facilities. The bureaucracy got even worse since the 
pandemic, Eric says. Trying to maintain a good spirit, we decide to get a 
coffee a few minutes car ride away from Goddard. As we are chatting at the 
coffee shop, a man with a face mask walks in with decisive footsteps. Even 
though half his face is shielded, Eric recognizes the colleague. They wave 
and say hi to each other. The man continues to walk at a brisk pace to the 
cashier, makes a quick purchase and before we see him leave, Eric leans in 
to whisper “that is the smartest guy at NASA”. Eric’s comment could be 
interpreted as just regular American English, where things tend to be 
expressed in superlatives. But soon enough, I find out that there is more to 
the superlative than just embellishment. 
	 During the first weeks of field work at Goddard, I spend a lot of 
time shadowing a group of software engineers. While discussing how to 
design AI that would make decisions onboard future missions to outer 
space, a particular risk is repeatedly brought up. Namely, the fear of 
missing out interesting data. To illustrate the challenge that programmers 
are facing, Eric tells me about a particular example of a previous mission to 
the moon, in which “the smartest guy at NASA” reappears. The following 
is Eric’s account of what he refers to as “the garbage story,” which he often 
mentions when discussing AI. 
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	 Imagine a satellite orbiting around the moon. To save energy during 
the long journey around the moon, the instrument is powered up only 
during the right planetary conditions. Once powered up, it takes the 
instrument 15 minutes to warm up. Data generated during the warm up 
period was considered as not interesting for scientific purposes. Instead, it 
was considered as “garbage,” according to Eric. While most scientists 
focused on what they understood as interesting data, one day, a scientist 
(the man at the coffee shop, that walked in and out in a hurry) decided to 
take a look at the “garbage data.” Thanks to that, he estimated the amount 
of water on the moon.  In other words, going through the disregarded 17

“garbage data” led him to a new scientific discovery. In Eric’s account of 
this story, “the smartest guy at NASA” figures as a hero. The heroism for 
Eric, as a software engineer, resides not in launching a rocket but in making 
data useful. The scientist turned “garbage” into a valuable resource. 
Understanding and selecting data is a key problem in the development of 
AI, which makes “the garbage story” an important lesson for programmers. 
The interesting data can lurk where you least expect it. 
	 Understanding data as garbage is brought up at yet another occasion 
during my visit at Goddard, in a conversation with Jason, the scientists 
introduced in the earlier chapter, with decades of experience in research on 
the origins of life. Right away after I mention AI for life detection, he is 
turning to the pitfall of “garbage in and garbage out.” In the field of 
computation, this term refers to how low-quality data for training will result 
in low output. Just like the programmers, Jason is also concerned about the 

 The scientist found signs of water molecules in the data from the first 15 17

minutes of getting the instrument ready. Water was present in the data only during 
the first two seconds of the powering up period, because the warming up of the 
instrument caused evaporation of the water molecules. As a result, after the first 
two seconds of turning the instrument on, there were no signs of water molecules 
in the data. 
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problem with selecting the right data to train AI. However, his 
problematization, as a scientist, goes further. It goes back to the 
fundamental question of (not) understanding what life is. Jason asks, how 
do you teach an AI for life detection, “if we can’t even define life?”  
	 With the vignette, I have introduced what is at stake in choosing the 
right data. This chapter focuses on how data practices to develop AI tools 
are integrated into scientific cultures at NASA Goddard. The value of data 
is negotiated between two groups: the software engineers and the planetary 
scientists (whom I refer to as scientists, for the sake of brevity). There is a 
major clash between their ways of approaching data. Broadly speaking, 
software engineers need specific requirements to design a tool to detect life, 
while scientists do not know what to look for. In other words, to develop an 
AI tool, the uncertainty about not knowing what life is has to vanish. 
	 I analyze the negotiations in terms of trading zones (Galison, 1999) 
between the scientists and programmers. I identify these two groups as two 
epistemic cultures (Knorr Cetina, 1999), yet, belonging to one data 
economy (Pinel & Svendsen, 2023). My argument in this chapter is 
twofold. The first argument is that even though AI is at the stage of early 
development, it already changes the power relations in scientific knowledge 
production by imposing new ideals of epistemic order. However, it does not 
preclude the presence of relations of care, which are fostered through 
participation in the context of scientific knowledge production. And this is 
at the heart of my second argument, which can be summarized as follows: 
organizational arrangements can inscribe data with a biography or make it 
ahistorical, which in turn has consequences for what I call epistemic 
responsibility in programming. Without further ado, I dive right into 
showing how this is the case at NASA Goddard Space Flight Center. In the 
first part of the chapter, I focus on the relations of power, and toward the 
end, I unfold the relations of care. 
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Negotiating Between “Two Worlds” at Goddard 
In order to construct an AI for life detection, programmers need to prepare 
the data to train the algorithms on. As I already alluded to in the previous 
chapter, programmers rarely do this alone. Often, they consult the scientists, 
asking about their interpretation of the data. However, the interaction 
between the professions is challenging. During a brainstorming session 
about automation of life detection missions, in a meeting room full of 
software engineers, programmer Victoria clearly articulates a distinction 
between the two groups and their interests. Software engineers and 
scientists, as “us” and “them.” 

It’s a lot about questions about what is interesting for them is 
not the same as what is interesting to us. And by them, I mean 
mass spec experts and us, software people. 

The challenging distinction between the two groups resides in the differing 
views on “what is interesting” in life detection. But this distinction resides 
not only in the context of development of AI tools. It is more fundamental 
than that. NASA scientists explicitly mention this distinction. In the 
following, I discuss how this theme appeared during interviews and 
observations of the everyday work at Goddard. I understand this as two 
epistemic cultures, meaning “those amalgams of arrangement and 
mechanisms – bonded through affinity, necessity and historical coincidence 
– which in a given field, make up how we know what we know” (Knorr 
Cetina, 2009, p. 1). Afterwards, I will turn to how these two epistemic 
cultures affect the negotiations about the value of data selected for training 
of AI. 
	 A major obstacle in the interaction between scientists and engineers 
is brought up in an interview by scientist Ryan. He works in the field of 
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mass spectrometry and its application to life detection missions. In our 
interview, he depicts the roles of scientists and engineers as fundamentally 
different. His descriptions are representative for how practitioners at 
Goddard speak about their professions. Here, Ryan puts the scientist hat on. 

Most of the time, we don’t know what we’re looking for. We 
have an idea about what life looks like here, on Earth. It might 
not look the same in space and still could be life, right? Just 
because you don’t see a human across Mars, it doesn’t mean 
there’s no life there, or a bug, it could look like something else. 

In the context of life detection, knowing what to look for is a very difficult 
question. Scientist Ryan gives a hint of this difficulty by referring to how 
life in outer space could look like life on Earth, but it could also look 
completely different.  
	 During the interview, Ryan also puts the engineering hat on. He 
describes how engineers need to start with “performance specifications, in 
terms of like how small of an amount of a chemical might be there and 
what types of chemicals are we trying to look for, to sort of define that life 
exists.” To design missions for outer space, scientists and engineers need to 
make decisions about what can be searched for, specifically. In spite of not 
knowing what to look for, designing a life detection mission boils down to 
specific requirements for what can be searched for. In other words, the 
obstacle here is the clash between engineers asking for specific 
measurements to build an instrument and scientists not knowing what to 
look for. 

I think that for better or for worse, and sort of as defined by 
their goals and training in some sense you know, scientists like 
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to keep things very open ended. Like ’I wanna detect life on 
Mars. That’s it, I want to do that and however I’m gonna do 
that.’ And engineers on the other side are like ’OK, I want to be 
able to detect methane, five parts per million, at 20 degree 
Celsius, at noon on Mars’, you know. So those are two totally 
different starting points, I mean they’re the same end result 
maybe, right? They’re both going to detect life but two totally 
different ways to approach that. And there’s a reason for why 
they have those approaches. Scientists don’t know what they 
need to do necessarily and they want to do science, they want to 
get the best outcome. And the engineer sort of wants to build 
the instrument to do the one specific thing.  

Scientists and engineers are depicted as having “two totally different ways 
to approach” life detection grounded in “their goals and training.” He 
speaks of how “based on their goals and their jobs” each profession is also 
“training sort of their mindset of what they want.” This implies that the 
difference between professions is not merely a matter of title or tradition, 
but rather a deeply rooted way of approaching the world. I read it as two 
different epistemic cultures (Knorr Cetina, 1999), which through 
professional training, shape how they constitute their epistemological goals 
and needs. It is not necessarily about knowing – take agnosticism as a 
position for instance – and more about the ideals and practices shaping how 
knowledge should be produced. It guides which questions should be posed 
and (im)possible venues for how they could (not) be addressed. In the case 
at Goddard, both professions strive for the same result – searching for signs 
of life and habitability – but they approach it through different goals and 
means. Ryan portrays scientists as “keeping things very open ended,” while 
engineers are about “measurements.” While an engineer is determined to 
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get specific information about what to search for, in order to be able to 
build the tool, the scientists tend to be open about how scientific objectives 
are formulated and operationalized. I already hinted at this in the vignette 
by quoting scientist Jason – his formulation about how scientists “can’t 
even define life” on Earth is representative. Scientists are inclined toward a 
more pluralistic worldview, by not knowing what to search for and staying 
open in the face of the multitude of possibilities of what life could look like. 
	 Ryan frames the difference as not just a problem but also the 
essential characteristic of each profession – “they’re doing their job.” 
Despite emphasizing how the difference between scientists and engineers is 
something good, he does acknowledge how the difference in the two 
approaches creates a gap that needs to be addressed. 

So I think that implicitly based on their goals and their jobs, 
they’re gonna come at two different sides so there’s a gap there, 
there has to be and that’s good in some sense cause they’re 
doing their job. But the way that we produce a functioning 
mission is by bridging that gap and understanding. OK, what 
do we need to actually make that measurement? And what is 
that measurement then that we’re gonna define and then build 
to. So you have to bridge those two goals but then it’s also 
people and they’re training sort of their mindset of what they 
want so I think there’s a need for some individuals that 
understand both sides of the coin. 

Bridging the gap between scientists and engineers is crucial for a successful 
mission, according to Ryan. The “gap” is also articulated in an interview 
with another engineer at NASA Goddard. They describe the professions as 
two languages in need of “translation” – science and engineering. The 
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engineer explains that the gap and lack of understanding can sometimes 
lead to frustration on both sides. Frustration can be read as an expression of 
the clash discussed above – the clash between different epistemic cultures. 
On the one hand, software engineers being frustrated about how scientists 
“do not know what they want.” On the other hand, scientists being 
frustrated when they discuss with engineers about how difficult it is to 
know what to look for when searching for signs of life. I want to emphasize 
how the differences, described above by Ryan as different “approaches,” 
are expressed by the engineer as different languages: “speaking science and 
speaking engineer.” This is important because it takes us further to the use 
of “translator” as a metaphor for bridging what scientist Ryan depicts as 
“two worlds.” 

Once the specifications can be defined, then we can work with 
those and say you know, this is how we can produce that sort of 
measurement and you know it’s always a give and take. It’s 
never just like I want this, period, and it never changes because 
sometimes we can make those measurements and sometimes we 
can’t. There’s sometimes we can make the measurements but 
only in certain ways or at certain times. My contribution is also 
some of that back and forth of like ’well, we probably can’t 
achieve this level of sensitivity in this condition but if we get a 
little bit more sample, or operate under the right temperature 
constraints, we can achieve that’. So it’s always a back and 
forth of trading off, you know, I can’t quite do this under those 
conditions but if you give me a little bit here, I can produce that. 
So certainly, a lot of my time is spent negotiating and sort of 
trading off the best way to achieve a desired science outcome. 
And I’ll also just say my specific role on a lot of these projects 
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is sort of bridging that science and engineering gap. And I 
think that maybe comes from, I don’t know if it’s just what I 
like to do, or I’m good at, but also sort of my training. Like I 
said, I consider myself a scientist, a chemist by training but I do 
a lot of engineering. And the ability to understand what the 
science goal is and then also how you would do that with the 
engineering capabilities that we have. That sort of bridges 
those gaps cause you can’t have one without the other. That’s 
really been my primary role as sort of making that connection 
and both sort of seeing how it can work and helping those two 
worlds kind of mesh. 

In the quote above, Ryan describes how the “two worlds kind of mesh” 
through the practices of negotiation. He repeats how working on a mission 
is always a “trade-off”, “back-and-forth”, “give-and-take.” To do so, Ryan 
is saying that he needs to make the connection between the “two worlds” 
and “bridge the gap.” This reveals a common set of metaphors used by the 
scientist and the engineer. Metaphors can be understood as upholding 
structures for how humans perceive and act in the world (Lakoff & 
Johnson, 1981). The scientist’s use of metaphor of trade-off between two 
worlds and the engineer’s use of metaphors of speaking different languages 
in need of translation, can be read as an exchange between two cultures.  
	 This can be tied to the concept of “trading zones” introduced into 
history of science by Peter Galison (1999) who has studied the context of 
physics by paying attention to the interactions between different groups: 
theoreticians, experimentalists and instrumentalists. Borrowing from 
linguistic anthropology and their observations of trade between different 
cultures, Galison suggests that we can draw parallels to negotiations 
between different groups in science. By developing contact languages, 
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different groups can reach local coordination of action and beliefs, despite 
having global disagreements. In his understanding of science, Galison 
brings attention to how it is disunity that keeps science stable. 
	 To summarize this discussion, global consensus is not necessary for 
scientific work – rather, different groups reach local agreements. They can 
even develop a new mode of communication to prepare for the exchange, 
yet, without losing their local identity. Now, I turn to how the negotiations 
between scientists and software engineers occur in the everyday practice of 
developing AI to detect signs of life in outer space. 

Scientists in Authority of Interpreting Causality 
When I ask practitioners at Goddard about AI, many of them refer to their 
colleague Samantha as the person to talk to. She is a planetary scientist 
working with life detection. On several occasions, I hear her turning AI into 
a verb, when humorously asking “Can I ML my project?”  Described by 18

colleagues as “fun to be around”, she is indeed a person with contagious 
enthusiasm. Once, Samantha presented her ideas about a mission for life 
detection to a group of engineers. During the meeting, Samantha presented 
a picture of the process of life detection. She stressed how it is a continuous 
process of re-evaluation of what life is, based on new discoveries. New 
discoveries and insights about life are in turn leading to new design of 
technology for life detection. Samantha described this as an interplay 
between on the one hand, philosophy (new insights about understanding of 
life), and on the other hand, operationalization (re-designing of technology 
to align more with the recent discoveries). Based on this reciprocative 

 In correspondence, Samantha explains how “Can I ML my project?” is a joke 18

that refers to how some people that have just started working with ML approach it 
as “a hammer trying to find a nail.” She points out that a more robust way to 
approach AI or ML is by being driven by a hypothesis.
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relation, Samantha wanted to suggest a mission that allows for staying 
flexible in the face of not knowing what to search for and being able to 
change the goal of the mission during its lifespan.  
	 “It flopped HARD, they were NOT OK with me talking about the 
agile stuff,” Samantha says, emphasizing how much the engineers 
dismissed her ideas. This “flopped,” she says, since the engineers “were 
like ’just tell me what you need!’”. Samantha laughs upon remembering 
that interaction with engineers. She was the only scientist in the room.  
	 The collision between engineers’ requirements and scientists not 
knowing what they look for is also mentioned in conversations I have with 
one of the programmers, Victoria, who collaborates a lot with Samantha on 
AI for life detection. “We [software developers] need to understand what 
they [scientists] need, but she [Samantha] doesn’t always know what she 
needs.” Samantha has even put this very straight during another meeting 
with a group of software engineers: “I don’t know what I want.” In later 
correspondence, Samantha explains that she can not know what she wants 
the engineers to design, “if we don’t know what life looks or acts like.” She 
shifts the question to designing an AI that could search for knowns and 
unknowns, which relates to detection of anomalies, discussed in the 
previous chapter. 
	 It is evident that Samantha and the engineers experienced moments of 
frustration in their interaction – something that Samantha can now laugh 
about. This echoes what I explained earlier as the clash between two 
epistemic cultures. What scientist Samantha asks for is “goal re-
orientation,” in NASA’s official terms. It is about opening up for different 
possibilities of what the goal of a mission could be. When engineers ask for 
specific requirements to build instruments, it results in a clash. Samantha’s 
suggestions lean toward a more pluralistic thinking, which is in conflict 
with the engineer’s view, who requires clear-cut specifications to develop 
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technological tools. Changing the design of a technology is possible in 
theory but in practice, institutional requirements can pose challenges for the 
vision of flexible goals. What this account illustrates is how scientists and 
engineers have contrasting needs and modes of reasoning throughout the 
process, which is posing challenges in working toward the same goal – 
designing a mission to detect signs of life and habitability. Software 
engineers are eager to understand a setting upon which they can clearly 
define a problem and address it. Scientists, on the other hand, emphasize 
the vague nature of the problem and possibilities of having to re-define the 
problem throughout the process. In the following, I will focus on how these 
two groups negotiate about data. 
	 To develop AI for life detection missions, Samantha collaborates with 
Victoria. While working with preparation of data for training of algorithms, 
in order to try to understand it better, programmer Victoria is using a 
technique called PCA (Principal Component Analysis). It is a way to 
explore data through visualizations, displayed as axes in a graph. “This is 
math, trying to find a linear relationship between the features to best 
represent the variance of the data,” she says. Drawing linear relations 
between phenomena in a plot, like PCA, is a common practice in data work. 
However, Victoria pinpoints that linearity is not only a solution but also a 
problem. It looks for linear relationships, whilst in many scientific 
problems, the relationship is not linear. Thus, the techniques relying on 
linearity need to be complemented with other tools, to understand the data. 
Another key problem with this method of deriving the correlations “is that 
there’s no clear metrics to say if it’s a good result or a bad result (…) and 
that’s where the experts come into the picture, they can look at the data and 
say ’yes, that makes sense, no, we don’t care’”, Victoria says. Another 
programmer, Ashley, describes how correlation is just one step during the 
process of developing algorithms – “this only tells us that they are 
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correlated, not that they are important.” The AI techniques are helpful for 
drawing correlations but interpretation of causality is something that 
programmers leave to the scientists. Understanding the data, its preparation 
and creation of algorithms is a continuous process of reiterations between 
software engineers and scientists. Like much, if not everything at NASA, 
everything depends on teamwork.  
	 To find out what “makes sense” or what is “important” in the data, 
programmers Victoria and Ashley ask scientist Samantha. Samantha 
explains to me how she looks at the data visualizations and wonders, “Is 
this a blob or are there certain groupings that are meaningful?” She derives 
meaning by looking at the plot. Therefore, to accommodate Samantha’s way 
of understanding the data, Victoria works a lot with visualizations. She is 
showing me colorful plots with a myriad of tiny figures. Squares, triangles 
and circles in different colors, where each stands for a variable. Victoria is 
meticulous with which colors and figures to select. “It might sound stupid, 
but the colors really help for the analysis of the data,” Victoria says.  
	 Making visualizations can be interpreted as helpful in understanding 
data. But given Victoria’s need to collaborate with another profession – a 
scientist – it can also be read as Victoria’s way of establishing a common 
language. Her expression of how creating colorful visualizations for 
analyzing the data “might sound stupid” suggests that choices about figures 
and colors can come across as a simplification. This resembles what 
Galison refers to as pidginization in “trading zones.” Derived from 
linguistic anthropology, pidgin is a simplified language that arises as a 
means of contact between different groups that need to reach an agreement 
about exchange. Galison suggests that such language arises in trading, 
when a group wants to “withhold its full language either to guard it to 
preserve their cultural identity, or because they believe that their social 
inferiors could not learn such a complex structure.” (Galison, 1999, p. 154) 
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Victoria’s work with colorful visualizations can be interpreted as preparing 
for an exchange with another culture, through the means of simplified 
communication. She admits how this language “might sound stupid.” 
However, it is not because she believes that the other group (NASA 
scientists) are “social inferiors.” Rather the opposite is the case. I interpret 
Victoria’s efforts as reflecting how scientists are social superiors. Scientists 
are the ones ascribed the power to interpret causality – the authority to 
decide which data is meaningful and valuable. 
	 So far, I have discussed how scientists are in authority in interpreting 
the causality in data used to train AI. In the following, I will deepen the 
discussion about power relations between the two groups at Goddard. In the 
vignette, I shared accounts where practitioners speak of data in terms of 
“garbage.” I started with the story about how a scientist turned “garbage 
data” into a valuable resource. Then, I turned to scientist Jason’s concern 
about selection of data for AI, which he refers to as “garbage in, garbage 
out.” A contrary vocabulary is also prevalent amongst programmers – 
namely, the cleaning of data. That is my next point of departure in the 
analysis of power relations between scientists and engineers at Goddard.  

Ideals of Purity – In the Laboratory and In the 
Dataset 
Power is about imposing a particular order in the world. In their pioneering 
study “Laboratory Life,” Latour and Woolgar argue that scientific practice 
is essentially about creating a particular order, out of disorder. I suggest 
focusing on practices of cleaning as a way of establishing an order. Why 
focus on cleaning practices to depict power relations? In the classic work of 
anthropologist Mary Douglas, “Purity and Danger: An Analysis of 
Concepts of Pollution and Taboo” (1966), she shows how hygiene – the 
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rules about dirt – can illuminate a lot about a culture. I follow her argument 
about how “dirt is essentially disorder. There is no such thing as absolute 
dirt: it exists in the eye of the beholder.” (Douglas, 1966, p. 2) Cleaning can 
be understood as a positive act of organizing the environment, rather than a 
negative movement to eliminate dirt. Imposing purity by the practice of 
cleaning is also tied to power – it imposes a particular order, driven by 
particular ideals of purity, which controls people’s behavior. Whose ideals 
about hygiene are prioritized in negotiations about data? In other words, 
whose order is maintained at Goddard? And how? 
	 To analyze this, I rewind to a Monday morning, June 13 2022 – a 
week after the episode in the vignette. Programmer Victoria comes by 
Eric’s office. The two programmers are very dedicated to spreading the idea 
of applying AI tools amongst their colleagues, scientists. To convince them, 
they plan to organize a workshop and let scientists try out different AI tools. 
Despite their eagerness to introduce AI to the scientists, Victoria and Eric 
agree on the significance of being cautious. To not overwhelm the 
scientists, they plan to take it one small step at a time. Currently, the two 
programmers do not see how they can make time to prepare the AI 
workshop. They are swamped by other projects. One of the major tasks that 
programmers are occupied with is testbed. It refers to a process of testing 
the spacecraft routines and instruments in a simulated environment, before 
the launch of a mission. The instrument is separated from the rest of the 
environment in a “clean room”, behind closed doors, in order to avoid 
contamination. Lately, Victoria and Eric have spent a lot of time 
communicating numerical values on a screen to the scientist in the “clean 
room”. Although sometimes frustrated by how much time these tasks can 
consume, programmers continue to support this work, sometimes at the 
expense of working with AI. 
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	 Back at Eric’s office, after a moment of chatting about work, Eric 
and Victoria catch up about what they did last weekend. Victoria tells us 
that she did a lot of cleaning. She cleaned her entire house as well as the 
folders on her computer. “I love to clean!”, she expresses with great 
satisfaction. Beside cleaning her home and computer folders, there is one 
more instance that she cleans even more frequently. In our interviews, she 
describes how creating AI is for her a lot about “cleaning data.” After 
collecting the data from the scientists, she has to “clean” them by removing 
files that are irrelevant and correcting labels that are inconsistent. 
	 Each group, programmers and scientists, has their own practices of 
cleaning. Scientists are concerned about not contaminating their space 
instruments, therefore, they keep them in closed environments in which 
they wear protective clothing. Programmers are concerned about bad data 
for AI-training, thus, they want to keep their data consistent. For scientists, 
hygiene is mainly biochemical. For programmers, hygiene is primarily 
digital. Each group has their own ideals of order, what to consider as dirt 
and how to clean it. Yet, it is programmers who sacrifice their time for the 
sake of scientists and their ideals of “cleaning”, rather than the opposite. On 
several occasions, programmers provide accounts of asking scientists to do 
favors, but it is rare that scientists sacrifice their time for the programmers 
on voluntary basis. As Douglas argues, the idea of dirt is constituted by care 
for hygiene as well as respect for conventions. “The rules of hygiene 
change, of course, with changes in our state of knowledge. As for the 
conventional side of dirt-avoidance, these rules can be set aside for the sake 
of friendship.” (Douglas, 1966, p. 6) Instead of dedicating their time to 
cleaning data in a software, programmers agree to assist scientists’ in their 
practices around the “clean room.” Programmers express how wearisome 
they find it, which suggests that it is a sacrifice on their part. Consequently, 
the assistance can be understood as an act of respect for the other profession 
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– programmers set aside working with their own rules of creating order by 
cleaning data. Noteworthy is that the act is rarely reciprocated, which 
illustrates a hierarchy between the groups.  
	 The interpretation of engineers as subordinate at Goddard is aligned 
with Eric’s own depiction of Goddard, which he argues is dedicated to 
science objectives, rather than engineering. The planetary science building, 
where we are seated, is brand new. One day, Eric takes me on a tour to an 
engineering building to show me how degraded it is. The prestige of each 
profession can be read as reflected in the spendings on facilities for each 
group. 
	 This dynamic can be tied to what historian of science Steven Shapin 
identified as the hierarchy between the scientists and the invisible 
technician. Invisible technicians are skilled practitioners doing a lot of 
manual work (Shapin, 1989). In contrast to Shapin’s account, the work of 
NASA programmers is not invisible, as their names are acknowledged in 
scientific publications. However, there is a persisting hierarchy between the 
status of each profession, as mentioned above, where the programmers 
support the scientists. 
	 Scientists are in authority but that is not to say that programmers are 
powerless. After my fieldwork visits at Goddard, I find out that 
programmers have managed to mobilize scientists to help with cleaning 
data on a regular basis. In the following, I will argue that programmers’ 
cleaning practices have an impact on the scientists by imposing new norms 
in the process of knowledge production. First, I will describe in more detail 
what they consider as dirt and how they clean it. 

Standardizing for a Machine 
To produce an AI tool, programmers rely on digital data, which is an 
inscription produced by scientists in a laboratory. Data produced by 
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scientists can appear in very heterogeneous formats. From analog notes, 
lost somewhere at one of the laboratories at Goddard, to a scientist’s 
records from experiments at a university elsewhere, performed by students. 
The records span over various formats and are documented by various 
individuals. At times, documentation is fragmentary. At times, it involves 
labels based on other things that scientists were thinking about during 
sample collection – such as craving different foods, which I described in 
previous chapter. For a software developer working with AI, all these 
aspects pose a problem. 

They [Scientists] used to write really good notes but they’re not 
necessarily machine readable. So they might have handwritten 
very good notes about something, on a certain day, but if it’s not 
online, and if it’s not in a format that we can read, then it’s not 
very useful.  

For the programmers, the problem with the existing data produced by 
scientists is that it is inconsistent. Eric frequently brings up that the data for 
AI needs to be “machine readable” to be useful. “Machine readable” refers 
to data being compatible with a software. If the data do not fit the format 
that is readable for a machine, “then it’s not very useful.”  
	 Scientists’ data is made useful by the programmers, through the 
practice that they refer to as “data cleaning.” It is a set of practices that 
make the data fit into a standardized system that is compatible with a 
software. It is a long and meticulous process executed by programmers, 
manually. Cleaning entails both reiteration with scientists – such as asking 
which data to keep or remove – and correction of language and punctuation. 
The prevalence of an additional      	 space or a CaPital Letter instead of a 
lower case letter in a dataset, are major disturbances for a machine, 
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requiring flawless consistency. Data cleaning assignments are often met 
with sighs or eye rolls from the programmers. No wonder, since it has 
sometimes required sleepless nights of coding, to deliver a dataset on time.  
	 Cleaning, perceived as a time-consuming and sometimes frustrating 
task by the programmers, has led them to introduce what Eric refers to as 
“data discipline” amongst the scientists. It is a norm of how scientists 
during laboratory experiments inscribe everything in a particular digital 
format – that is “machine readable.” Since the previous norms of 
documentation by scientists were not “machine readable”, “data discipline” 
was brought forth to establish a more consistent system of keeping record 
of experiments to begin with, amongst the scientists. Eric tells me about 
how scientists that he collaborates with put all information about the 
experiment in a particular software, as soon as they touch the instrument. 
The information that becomes data, makes it possible to keep track of what 
was put in a certain cup. Thousands of such experiments are conducted and 
all the information “needs to be computer readable,” says Eric. He argues 
that establishing data discipline has been crucial for development of 
machine learning. He says that scientists have improved their data 
discipline “once they saw the value of it.” 
	 Programmers’ emphasis on the inconsistency of existing data and 
expressing the urgency to “clean” it, is telling for a clash between the ideas 
about order by scientists and programmers. When actors have divergent 
viewpoints, standardization can serve as a means of translation to reach a 
generalizable result. According to Star and Griesemer, standardization is 
about “developing, teaching, and enforcing a clear set of methods to 
’discipline’ the information” obtained by other actors (Star & Griesemer, 
1989, p. 186). Development of “data discipline” by programmers can be 
understood as standardization. 
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	 I suggest that another analysis illuminating the power relations at 
stake here can be made by reflecting upon the metaphor of “cleaning” used 
by programmers and how it imposes particular ideals of purity. As Douglas 
argues, the ideas about dirt are not absolute. What is considered clean 
versus dirty is in the eye of the beholder. Moreover, the understanding of 
dirt is not static. Within this framework, “machine readability” can be 
interpreted as programmers’ ideal of hygiene, where “data cleaning” is their 
own way of keeping data tidy, and “data discipline” then, is programmers’ 
attempt to impose their ideals of hygiene upon the scientists. These 
practices are not only changing the routines of how data is recorded but also 
the perception of what kind of data is valuable, and how to make it useful. 
The consequence of introducing “data discipline” is how it shifts who 
recognizes the value in data and for whom it is useful. By complying to the 
new norms of how the data should be recorded, scientists recognize the 
value of data as perceived by programmers. Part of the process of data 
production by scientists becomes dedicated to “machine readability” – to 
programmers’ ideals of order, that fits right into a dataset for AI. 
	 In this context at Goddard, AI for life detection is at the 
development stage. However, its’ capacity to change power relations in 
science should not be disregarded. Even at the stage of early development, 
AI already works as a mandate to impose new norms for the infrastructure 
of knowledge production. Previously, it has been up to programmers to 
make scientists’ data useful. With “data discipline,” this effort shifts to an 
earlier stage and to a different group – scientists make data useful in 
accordance with programmers’ ideal of order. The practices of “data 
discipline” are disciplining both data and practitioners. Most importantly, 
they shift norms about how data can be made useful and who decides its 
value. 
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Selecting Data for the Algorithm – The Taboo of Bad 
Data 
Choosing which data to select and which to exclude plays a crucial role in 
the development of AI. Decisions made by humans about the value of data 
are constituting which decisions AI will be able to make. A lot is at stake 
here. While “data discipline” was not much of a controversy, not all “data 
cleaning” practices are well received amongst scientists. Something that 
programmers admit that they need to tip toe around, is removal of data. 
Before explaining why this is a controversial subject, I describe the 
practices briefly. 
	 To create a training dataset for AI, programmers need to select 
which data to keep and which to remove. Some programmers refer to it as 
choosing between “good” and “bad” data. In order to understand which 
data is “bad,” programmers use clustering techniques, such as PCA 
described earlier in this chapter. Through a visual display of data, these 
techniques help programmers to identify patterns, to which some data does 
not fit. However, this is just a tool to facilitate programmers’ work, rather 
than provide a clear categorization by clustering data as “good” or “bad.” 
Eric says that it is difficult to draw the line between “good” and “bad” data. 
It can be something scientifically interesting, something novel, or an error 
during an experiment. The “outliers,” get an extra check to see if they make 
sense, or if their oddity does not belong in the dataset. To interpret the 
“outliers”, programmers consult the scientists (which I described earlier in 
chapter 5). 
	 When speaking about removal of “bad data” with scientists, 
programmers meet resistance. “When we talk to the scientists and say we 
throw all this bad data, they’re like ’WOAAH, wait, wait, wait! What’s the 
bad data?!’”, says Eric and laughs. For Eric, “bad data” stands for data that 
is “detrimental to the learning, the data that we thought would be 
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deceptive”, says Eric. In order to avoid the connotation of what “bad” can 
entail for the scientists, software engineers are now calling it “deceptive 
data.” At times, I hear Eric use the term “useless data.” Scientists’ 
reluctance to throw out data is also a reoccurring topic in my conversations 
with programmer Victoria. She describes negotiations about data with 
scientists as scientists wanting to keep as much information as possible. “It 
took us a year to decide on categories, to get the scientists to tell us what 
they need, because they need everything,” Victoria laughs and continues “if 
you talk to them, they will need every single thing.” 
	 While depicting negotiations with scientists and their reluctance to 
remove data, Victoria and Eric are laughing. I read their laughters as an 
emotional reaction to what they find puzzling – namely, the diametrically 
different understandings on the value of data. This reflects what I described 
earlier as the clash between the two professions and their epistemic 
cultures. 
	 “Cleaning data” is essentially about choosing what to keep and what 
to exclude. For programmers, the removal of data can be a promise of 
improving the performance of their tool. For scientists, the removal of data 
can pose a threat of losing precious information. What is at stake in the 
creation of a dataset for AI is creation of a particular order – it has the 
potential to become a very powerful one, through its acceleration across 
time and space. 
	 Thinking about “data cleaning” in terms of ideals of hygiene 
(Douglas, 1966) illuminates how these practices are a matter of imposing a 
particular order in the world, by distinguishing between the “clean” and the 
“dirty.” Programmers create an order by distinguishing between “good” and 
”bad” data. “Bad” data is considered as detrimental for AI training and thus, 
as something to be excluded. Scientists’ reluctance when programmers are 
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about to remove data can be read as fear of losing power of maintaining the 
scientific order.  
	 Seated by the computer screen and software to train algorithms, 
programmers are in power over datasets. They could delete whatever they 
find “deceptive”. All it takes is the push of a button. Nevertheless, 
programmers do not select the data simply as they wish.  
	 Eric’s move in changing terminology when speaking to the 
scientists (from “bad” to “deceptive”) can be understood as avoiding a 
language that discredits the scientists and their gift. Scientists are the 
producers of the data and the ones with authority in interpretation of what 
the data means. Programmers adapting to the scientists reflects the power 
relation between the two professions – programmers serve the scientists. In 
spite of the clash between each profession’s needs, the needs of scientists’ 
have higher status. Programmers are the ones sitting by the computer and 
“cleaning,” but they do not impose their own order – they negotiate the 
value of data with the scientists. 
	 It is not only programmers who want to delete certain data. In the 
following account, I discuss how programmers can also be reluctant toward 
when scientists want to remove data. Programmer Victoria shows me 
graphs with datasets before and after negotiations with scientists. We look 
at visual displays of data as dots between two axes. She points my attention 
to how a few dots stand out from what is otherwise a linear pattern. Then, 
she shows me a plot that has been “cleaned.” The process of “cleaning” 
involved continuous iterations between her, as a programmer, and the 
scientist with whom she develops AI for life detection, Samantha. 

This is a clean one. It’s a lot of iterations. Maybe we did ten 
iterations on this work, to clean, ’OK, this is cleaner, maybe it 
was better before, bla, bla, bla’, and then we agreed. And we 

155



can always clean more. It will always be ’Oh, this one is a tiny 
weird one here! Maybe we should remove it?’ But when we’re 
happy enough – because we don’t want to remove data, as a 
data scientist, I hate having to remove data, because it’s less 
inputs for me, and so, it’s harder to train something on less 
inputs. So it’s again a trade-off between the scientists saying 
’OK, this is good enough’ and me saying ’hey, I still need data, 
don’t remove everything’. 

This is a contradiction with my previous description of the two professions. 
Earlier, I discussed how programmers who wanted to remove data that is 
“bad” for AI training, meant that scientists insist on keeping as much 
information as possible. Here, it is instead programmers who insist on not 
removing too much data. In the case of this dataset, the extensive cleaning 
is not Victoria’s intention. Rather, it is the scientists that she collaborates 
with, that require data being “good enough,” from the scientific perspective. 
	 Cleaning too much is problematic for Victoria, as a programmer. 
The less data she has, the less reliable the dataset, and in turn, the less 
reliable the algorithm. The scientist with whom Victoria collaborates, 
Samantha, is aware of that she has a very different understanding of data 
than a programmer. Samantha says:  

I met this [ML/AI] person and said ’I have this large amount of 
data!’ But of course, to an ML person, it’s nothing. 

The interaction between Victoria and Samantha provides a good illustration 
of the negotiations about the value of data. “We can always clean more” 
implies that cleaning is a matter of degree, of which there can be more or 
less. Victoria prefers to remove less data and keep as much as possible, in 
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order to have a large dataset, which implies that programmers are 
concerned about quantities of data. Her needs are once again in conflict 
with the scientist, who needs data to be “good enough,” which implies a 
concern about quality of data. What “we can always clean more” and 
Victoria’s emphasis on the “trade-off” between her and the scientist 
suggest, is that “cleaning” – creating order in data – is a collective act. It is 
an act of balance between two professions. Interpreted as a trading zone 
(Galison, 1999), this situation illustrates how scientists and programmers 
reach local agreements about an exchange of data, despite disagreement 
about their epistemic value. Scientists see value in having as much 
information as possible about a single phenomenon, while programmers see 
value in data as simplified for a machine, but in large quantities. The value 
of data resides in two different principles about what is worth knowing. 
Knowing as much as possible about an object versus knowing little about as 
many objects as possible. 
	 So far, I have discussed how programmers at NASA Goddard 
negotiate which data to include and exclude from a dataset for training AI. 
Now, I dig deeper into how the context of where the cleaning takes place 
impacts how the data is valued. Based on an international competition 
organized by NASA, I analyze how organizational preconditions affect 
choices of which data to keep and which data to throw out. 

Deleting Negotiations – Deleting Data, Deleting 
Responsibility 
To develop AI, programmers need large quantities of data. The amount of 
data that is available is not sufficient. Programmers need more. In search of 
creative solutions to this problem, Victoria and Eric have announced a 
competition. Anyone in the world – even you – can join and try to train the 
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most accurate algorithm. After a brief introduction to the scientific problem, 
the competitors receive a dataset to train an AI algorithm. Programmers 
compete from home and their own computers, situated anywhere in the 
world. None of the contributors needed a “badge” to enter the NASA 
facilities. 
	 NASA programmer Eric defines the competition as successful, in 
terms of how many participated. Over 700 from across the world. I 
accompany Eric while he is reviewing winners of the competition. Initially, 
Eric says that he is “having a blast.” I see the joy emanating from him. 
After a while, his enthusiasm starts to fade. Winners of the contest have 
chosen to throw out a lot of data to develop the algorithms, which resulted 
in improved performance, according to an accuracy metric – a way of 
evaluating the performance of an algorithm (which I will discuss further in 
the next chapter). Instead of training the AI on the entire dataset, the winner 
trained it on a number of averages of the data. Eric describes how the 
winner of the competition “got rid of 3/4 of the data. He reduced it to 1/4 by 
averaging chunks of the mass spectra.” I ask Eric a follow up question “So 
basically, simplifying even more for the model?”  

Yeah, he simplifies even more. Which is really interesting, cause 
we wouldn’t do that. We would see like, OK, here’s mass, and 
here’s one, and here’s one… and he’s just taking all of these, 
taking them all and averaging them. So you’re losing all this 
information about these different peaks. (…) He’s just like ’I 
don’t care what mass it is, just gonna take the average’. My 
point of view is that there’s information in there and he’s just 
like maybe it doesn’t matter. There’s something in there and 
apparently, to me it’s like, I’m always worried that mass spec 
scientists, they’re looking very carefully at the ratio of these and 
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looking at every peak so carefully and trying to break it up from 
the bottom-up point of view. And he’s just deliberately, like 
putting on blurry glasses and looking at it like ’hmmm maybe I 
see this’. 

While discussing the results of the competition, Eric is laughing nervously, 
which implies that he feels uncomfortable about what the programmers 
across the world did with the data. The degree to which they reduced the 
data comes across as drastic to Eric. “Reading the reviews from the other 
day, they all did stuff like this. They all blurred the data deliberately.” As 
Eric squints to illustrate someone not seeing things clearly, we both burst 
into laughter.  
	 The programmers in the competition are “sacrificing some 
information to make it easier for the computer and apparently, it works” 
Eric admits. Then, he brings back scientists into the picture. “But the final 
test is if it’s useful to the scientists.” What if the scientists would know that 
3/4 of the data is removed? ”They [scientists] wouldn’t even show up to the 
meeting!”, according to Eric. “They [the scientists] spend their whole life 
looking at mass spectra in detail and you’re just gonna tell them ’oh, we 
don’t really care about these four peaks, we’re just gonna throw those 
out’?”, says Eric humorously. “Like killing darlings?”, I ask. “Yeah, 
exactly. I would’ve never have done it, I would just intuitively be like, no 
we’re not gonna lose information.”  
	 Losing information refers to the danger of throwing out important or 
interesting data. To illustrate what is at stake, Eric often brings up “the 
garbage story” introduced in the beginning of this chapter. It became a 
lesson for NASA programmers about the danger of throwing out interesting 
information that can lead to a discovery. The outsiders of NASA lack the 
insight about the risks of losing information. 
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	 Eric’s reaction to the reduction of data is shifting between different 
emotions. While inspecting the results, he laughs nervously. He is curious 
about the results but worries about what the scientists would think. While 
reviewing the winners, Eric is shifting between being impressed and 
skeptical. Afterwards, he tries to be humorous about it by making a silly 
face. I interpret this shift of emotions as struggling with a dilemma. Eric is 
mindful of the value that scientists ascribe to data. While Eric is skeptical  
about the extensive removal of data in the competition, he admits that it 
seems to be good for the algorithm. “I’m actually kind of shocked that it 
seems to work, they’re getting better metrics than we did.” 
	 Interpreting the value of data at NASA Goddard is tied to its 
particular data economy. In the pioneering account of trade between 
different cultures in Western Pacific islands, anthropologist Bronisław 
Malinowski described how the exchange of objects is not just a practical 
matter but also a matter of belonging to a particular economy (Malinowski, 
1922). The intimate tie between economy and belonging is also 
acknowledged in a more recent anthropological study of the use of data in 
laboratories by Pinel and Svendsen (2023). The authors conceptualize data 
exchange between groups in different laboratories as “economy”, referring 
to the etymology of the word – from the Greek oikos and nomos, economy 
means household management. Valuation of data, as Pinel and Svendsen 
suggest, can be understood as a matter of belonging to a data economy. 

Managing the home means opening the door to the outside to let 
some data in, while it also entails welcoming and shaping the 
data that have entered. These insights, we argue, shed an 
important light on valuation processes in the data economy. (…) 
we see value creation in the data economy as a matter of 
belonging. Crucially, we show how rendering data valuable in 
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the home means making them belong. This involves crafting 
and organizing the data’s ties to the home, rather than only 
imposing control and claiming ownership over data that have 
travelled (Pinel & Svendsen, 2023, p. 19). 

Data economy at NASA Goddard is an important organizational boundary. 
What the competition illuminates is how ideals about the value of data are 
contingent, depending on whether the practitioner is part of the epistemic 
cultures involved in the data economy, or a complete outsider. Outside of 
the data economy at NASA Goddard, the rituals of negotiations between 
programmers and scientists have no meaning. I suggest that employing 
outsiders or insiders for evaluation of the data can have an important 
consequence for the relation of care and implications for epistemic 
responsibility – which I unfold in the sections below.   19

	 While shadowing Eric and trying to understand his reluctance to 
throw out the same extent of data as participants in the competition, I notice 
that he frequently mentions how scientists would react if too much 
information would be removed. At the end of one of our interviews, me and 
Eric conclude that he and his colleagues feel “sentiment” toward data. How 
can this “sentiment” to data be interpreted? 
	 Eric’s computing world consists of not only data, but the relations 
he and the data have to the practices beyond the computer screen. A 
software developer at NASA is creating algorithms for a scientist – a dear 
colleague, toward whom they are responsible. Eric’s conscience is stopping 
him from throwing out too much information, while “these guys [outsiders] 
are just throwing it out”. Knowing how much “blood, sweat and tears” is 

 By epistemic responsibility, I mean responsibility in knowledge production. 19

Following Barad, I understand responsibility as not a formal obligation, but a 
sense that emerges in entanglement with others – things, people, and other beings 
(Barad, 2014).
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condensed in the data, how could Eric just throw it away? In the 
introduction chapter, and chapter 5, I described the efforts it takes for the 
scientists to produce data. By finding labels named after chocolate bars in 
the dataset, Victoria became aware of how the scientist had to experience a 
tough expedition to the Arctic, in order to produce the data. My adventures 
in the laboratories at NASA, including the experimental trials with Titan 
conditions by scientists, are inscribed not only in my field notes, but also 
very strongly in my memory. I suggest that it is precisely the memory, the 
history of data and the context of its emergence, which is constituting 
awareness about the scientists’ efforts amongst programmers at NASA, that 
becomes inscribed in the development of AI. Awareness of scientists’ 
efforts is inscribed through the choices of selecting which information 
should be included and excluded from a dataset. The “sentiment” toward 
data makes programmers mindful of balancing the record of information 
valuable to the scientists and the imperative to simplify for AI training. 
	 In their study of data work at a research laboratory, Pinel, Prainsack 
and McKevitt (2020) have paid attention to the relational aspects 
constituting value of data. They suggest that “As researchers build 
relationships with data, they feel connected to the data and responsible for 
its flourishing and growth, and are thus willing to go at great length to make 
the data valuable.” (Pinel, Prainsack, & McKevitt, 2020, p. 192) In contrast 
to Pinel, Prainsack, and McKevitt (2020) depicting the relation of care 
being between researchers and their data, I would emphasize that care 
occurs between humans. Whilst programmers at NASA do take care of data 
in a sense, they care about the scientists behind the data, not just the data 
itself. In previous studies about data work in biosciences by Svendsen and 
colleagues, they pay attention to substitution of entities and exemplify how 
data can appear as the extension of humans (Svendsen, Dam, Nave & 
Gjødsbøl, 2022). Data can appear as the extension of scientists at NASA. 
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NASA programmer Eric foregrounds the efforts of scientists to produce the 
data. In the competition, outsiders were able to remove data with ease, since 
it was produced by an anonymous source. This suggests that the presence or 
absence of any relationship with the human producing the data is decisive 
for which information is included and excluded when creating AI. For a 
programmer at NASA, a datapoint encapsulates not just information for AI 
but condensed efforts of scientists to produce it. Data has a biography with 
an emotional and material experience. The effort of scientists is 
encapsulated in the data. Whether a programmer is aware of these efforts or 
not can have decisive consequences for which data is included and 
excluded.  
	 By belonging to the data economy at NASA Goddard, the 
programmers are attached to the context of data production – and I showed 
how this attachment has moral implications (Navne, Svendsen & 
Gammeltoft, 2018; Pinel & Svendsen, 2021) for epistemic responsibility in 
the development of AI. Without the sense of attachment to the data 
economy, and room for negotiations with scientists, outsiders make choices 
in relation to accuracy metrics. They impose a new ideal of order by 
removing even more data. 

Conclusion 
This chapter focuses on how data practices to develop AI are integrated into 
the scientific cultures at NASA Goddard. The development of AI occurs at 
the intersection of two groups – planetary scientists and software engineers. 
Each group constitutes an epistemic culture (Knorr Cetina, 1999) with 
particular ways of approaching life detection. While scientists are open to 
different kinds of possible life forms, engineers require predetermined 
parameters for what kind of objects to search for. 
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	 Although scientists and programmers constitute two distinct 
epistemic cultures, they belong to one data economy (Pinel & Svendsen, 
2023) in which they negotiate the value of data, and organize them together.  
Belonging to a data economy shows to be decisive for the evaluation of 
data. This was especially evident in a competition arranged for 
programmers outside of NASA – in absence of negotiations with the 
scientists, outsiders evaluated data differently, and solely in relation to 
performance metrics. This shows that negotiations with domain experts are 
decisive for how the data is evaluated, and more specifically, which data is 
included and excluded from a training dataset. Consequently, whether the 
programmer belongs to a data economy, or not, plays a crucial role in 
shaping the AI tools. Relationships between humans become encoded in the 
algorithms. 
	 This study shows that belonging to a data economy is tied to a sense 
of epistemic responsibility, which is a sense of care that emerges through 
entanglement in the context of scientific knowledge production. 
Organizational arrangements can play an important role in fostering 
epistemic responsibility, as they can inscribe data with a biography, or make 
it ahistorical. 
	 Another significant finding is that although AI is at the early stage 
of development, it is already changing the power relations in scientific 
knowledge production by imposing new ideals of epistemic order. While 
algorithms can be helpful for identifying correlations in data, scientists at 
NASA Goddard remain in authority of interpreting causality, by making 
claims about which relations in data are meaningful and important. 
Nonetheless, programmers can use AI as a mandate to impose their own 
ideals of order on the scientific practices. Standardization practices 
introduced by programmers are disciplining both data and the scientists. It 
shifts the norms of how data can be made useful and who decides about its 
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value. The development of AI can play a role as an infrastructuring entity, 
even when it just at the stage of early development, and not yet working for 
the intended purposes – which resonates with findings from other social 
contexts (Gjødsbøl etal, 2024).	  
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Chapter 7 Simulating Synthetic Data for AI 
and Measuring Their Success 
I am sitting with programmer Eric at his office at NASA Goddard. It is a 
small room with a narrow window high up on the wall that lets the daylight 
in. A few inches below, on the desk, two rectangular windows allow Eric to 
enter meeting rooms across the world. He is jumping between meetings, but 
his physical presence remains unchanged by the two computer screens. 
Many of his meetings are online. During the breaks, I ask follow up 
questions about the meetings he just had, we catch up on how our families 
are doing, share running routines. Regardless of where the conversation 
starts, sooner or later, there is one problem that always comes up. AI, 
spoken of as a solution, is also introducing new problems. 

We’re training [AI] the best we can here, but you really want to 
train on the real thing. But we’ll never ever have enough data 
on the real thing. That’s one of our biggest problems.  

Insufficient amounts of the right data for training is a common problem 
within the field of AI. Large amounts of data are associated with better 
performance in algorithmic predictions. For programmers at NASA, this 
means that to train AI tools, they need millions of data points from 
scientific experiments. But it is something that they do not have. The 
manual labor of scientific experiments comes across as too slow, in relation 
to the massive amounts of data required for AI training. To speed up the 
process, programmers take the production of data in their own hands. Or 
rather, computers. Programmers produce more scientific data through 
computer simulations. 
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	 Simulations are not new in planetary science – for example, 
scientists simulate extraterrestrial conditions in terrestrial laboratories. The 
novelty with simulations of data for AI resides in introducing particular 
norms of practice into scientific knowledge production: the standards in the 
field of AI. 
	 In the field of AI, where programmers never have enough “real-
world” data for training, data produced through simulations figure as a 
solution to build more robust AI tools. The so-called synthetic data can be 
described as “computer-generated data that mimic and substitute empirical 
observations without directly corresponding to real-world phenomena.” 
(Offenhuber, 2024, p. 1) Synthetic data has figured as a technical solution 
and “risk-free” technology (Jacobsen, 2023) but many concerns about its 
social implications have been raised. Among the risks that scholars point 
out are inaccurate representations of phenomena (Johnson & Hajisharif, 
2024; Lee, Hajisharif & Johnson, 2025), amplification of bias in society 
(Capasso, 2025), and reduction of the ethical questions to matters of 
technical concerns (Helm, Lipp & Pujadas, 2024). However, there are few 
empirical studies about how these data are actually produced in particular 
domains (Kampania et al 2025). This chapter contributes to a more 
empirically substantiated discussion about the social implications of 
synthetic data – it draws on ethnography of how scientists and programmers 
at NASA Goddard Space Flight Center simulate scientific data for AI. 
	 Simulation, from latin simulo, means “to make a thing like another,” 
and stems from similis, meaning similar (Perseus Digital Library, n.d.). A 
lot is at stake in simulations, considering that drawing relationships of 
similarity and difference is central in the construction of knowledge in 
science. As science studies scholar Trevor Pinch points out, relationships of 
similarity and difference are not out there to be found – they depend on 
classification of things, by selecting what is relevant and bracketing what is 
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not, out of a myriad of possibilities. Drawing these relationships is often 
taken for granted and embedded in theories and assumptions in a particular 
scientific or technological context (Pinch, 1993, p. 30-31). Paying attention 
to how the relationships of similarity and difference are drawn in 
simulations of data for AI can open up a window to see what kinds of 
epistemic concerns become embedded in these tools. In this chapter, I show 
how drawing the relations of similarity and difference is performed 
differently, depending on which profession performs the simulations. To 
show how the epistemic concerns shift depending on who performs the 
simulations, the chapter is divided into two parts, focusing on each 
profession – beginning with an astrobiologist, and then turning to 
programmers. 

Modeling Polymers to Search for a “Universal 
Biosignature” 
In between sips of coffee, at a cafeteria at NASA Goddard, astrobiologist 
Lu talks about one of her projects with particular enthusiasm. It is not just 
the amount of caffeine from the American-size mug that is causing her to 
speak so passionately. I have become familiar with how the daily work of 
NASA scientists resembles science-fiction tales, but this research project is 
different, by pushing the conceptual boundaries of what we imagine life to 
be.  
	 Lu’s project is about developing a tool following an agnostic 
approach, to search for what Lu and her team call universal biosignatures. 
The agnostic approach is about searching for life without presupposing a 
particular biochemistry based on life on Earth. For instance, the building 
blocks of life on other planets and moons could differ from the chemical 
molecules that constitute the life on Earth (carbon, hydrogen, nitrogen, 
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oxygen, phosphorus, and sulphur). In Lu’s work, agnostic biosignatures 
figure as synonymous to universal biosignatures (Chou, et al, 2020a; 
2020b), which are defined as “features that are common to all possible life 
forms in the universe,” including both “terrestrial” and possible “exotic” 
life forms (Chou, et al, 2021, p. 1). 
	 In the context of astrobiology at NASA, this approach is often 
referred to as searching for “life as we don’t know it.” It alludes to another 
phrase used in astrobiology: searching for “life as we know it,” which 
builds on assumptions that life elsewhere will share characteristics with life 
on Earth. This relates to what some astrobiologists refer to as Earth bias, 
discussed earlier in chapter 5. 
	 The term agnostic became especially popular in astrobiology around 
2018, when a research project called LAB (Laboratory for Agnostic 
Biosignatures), which Lu is associated with, was established, after winning 
a grant from NASA’s Astrobiology Program.  LAB consists of biologists, 20

chemists, computer scientists, and engineers, among others, scattered across 
different universities in the US and Europe. Agnostic approach to life 
detection might be a recent buzzword, but the idea behind it is not entirely 
new. The notion that potential life on other planets or moons might not 
necessarily be based on the same biochemistry as life on Earth was for 
instance supported by Carl Sagan in the 1970s (Sagan & Khare, 1979, p. 
107). Nevertheless, the LAB research group has been successful in 
promoting the idea anew – around 2021, many scientists outside of NASA 

 7 million US dollars grant for five years of research, for a group of 15 members 20

(Kaufman, 2019; Steigerwald, 2018).
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whom I interviewed were familiar with the agnostic approach.  21

	 The tool for agnostic life detection that astrobiologist Lu develops is 
searching for polymers. In conference presentations together with her team, 
she refers to polymers as a universal biosignature (Chou, et al, 2020a; 
2020b). Polymers are larger molecules that consist of repeated sets of 
molecular building blocks, and some of them, like DNA or proteins, allow 
life to store and propagate information. Lu and her team argue that the 
presence of a polymer in a sample from outer space can allude to the 
presence of life. 
	 However, there is a problem with interpretation of polymers as a 
biosignature. The issue runs parallel to the ambiguity in interpretation of 
organic molecules as biosignatures, discussed earlier in chapter 4. Similarly 
to organic molecules, polymers are also very common in outer space. For 
instance, they are present in the orange-brown haze on the surface of Titan. 
Does that mean that there is life on Titan? The mere presence of polymers 
does not necessarily indicate presence of life. Polymers can be of biotic and 
abiotic origin even on Earth. 

 Agnostic approach to life detection figures in NASA’s strategic documents 21

concerning astrobiology since 2018 (NASEM, 2018). In 2021, when I observed 
conference presentations about astrobiology, the agnostic approach was a quite 
widely spread concept. Many of the scientists whom I interviewed were familiar 
with it.  The attempt to reduce terrestrial bias about life generates both curious and 
skeptical responses among scientists studying life and its origins. In one of my 
interviews, an early career non-NASA scientist who does research in astrobiology 
in US depicted agnostic life detection as the “cool approach.” One researcher had 
even adopted this approach in their own research on life detection. In another 
interview, a senior scientist working with origins of life studies in Europe became 
agitated once I asked about their view on agnostic life detection. They exclaimed 
that one cannot construct a tool to search for anything.
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Training AI to Detect Polymers 
The challenge in interpretation of whether polymers are biosignatures or 
not, can be addressed with data science tools, according to Lu and her 
colleague Victoria, a programmer who is also associated with LAB. Lu and 
Victoria are developing an algorithm to automatically identify whether a 
sample in a mass spectra experiment on another planet contains a polymer 
that is biotic or abiotic. They train the algorithm to classify the data based 
on two questions. Is there a polymer, or not? And if the answer is yes, is the 
polymer biotic or abiotic? 
	 As mentioned in the beginning of this chapter, to train AI, 
programmers need large amounts of data, which is, paradoxically, a scarce 
resource at NASA. How do astrobiologist Lu and programmer Victoria 
resolve this issue? In conference presentations, Lu and Victoria describe the 
data that their algorithm is trained on as “artificially generated” mass 
spectrum data, or “in silico.” In silico means in silicon – as in computer 
chips – and refers to experiments performed in a computer, such as models 
or simulations. The term in silico is related to the latin terms in life sciences 
that describe different kinds of experimental settings – in vivo and in vitro. 
The in vivo experiments are performed inside of a living organism, while in 
vitro experiments are performed outside of the organism’s context, for 
instance, in a glass tube. What this implies is that the mass spectra data of 
polymers that Lu and Victoria use to develop the ML algorithm are not 
experiments performed on living organisms, nor on any other samples in 
laboratories (described in previous chapters). Rather, the ML algorithm is 
trained on simulations or models performed in a computer. 
	 In our conversation at NASA Goddard, Lu mentions that the 
algorithm for polymer detection is “trained on this simulated data.” I ask 
what she means by simulated data, upon which she takes over my notebook 
and fills it with drawings. She illustrates mass spectrometry data and its 
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peaks with patterns of lines (Figure 10). While pointing at this drawing, she 
explains the data used for training of the ML algorithm. 

The data that we got here [figure 10] is not the data that we get 
from these instruments [laboratory instruments at NASA] at all. 
These are data that we mathematically generate ourselves. We 
have the data here and we give it a string, and we fragment that 
string and count the number of masses that adds up here, and 
the number of masses that adds up there, and form these strings. 

Above the graph, Lu notes “principle – based on math.” I wonder how the 
data can be generated mathematically, and what is behind those numbers. 
“So there’s no physical reference beside the computational code? That’s 
what you mean when you say simulated?” I ask, upon which Lu confirms.  
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Figure 10. An illustration of simulated mass spectrometry data. 
Drawing by scientist Lu. Notebook from fieldwork.



Exactly. It’s almost like a model and it’s all built in into the 
computer code. And the assumption that the fragmentation 
happens, these are just assumptions. These are one type of 
assumptions we’re making here for this specific process, that 
we’re trying to use ML to answer. 

To construct the data for AI training, scientist Lu makes general 
assumptions based on previous studies about polymers, for instance, how 
they fragment in the mass spectrometer. However, simulating the chemical 
signal of polymers is not enough. Lu and Victoria need to simulate noise 
too. Both the instrument and outer space generate noise, which is also 
present as peaks in mass spectra. Based on assumptions about how the 
noise works, for instance in samples of meteorites, Lu and Victoria simulate 
the noise and add it to the data they produced.  
	 Then, Lu and Victoria use the method called supervised machine 
learning (ML), which is about training an algorithm based on data that is 
labeled, to reach a particular prediction goal. Lu and Victoria label the 
simulated data as polymers of biotic or abiotic origin. They train the 
algorithm to classify data in accordance with these two categories. The goal 
is to determine whether a data point – a mass spectra – represents a biotic 
polymer, or not. 
	 The algorithm is trained on in silico data, but to evaluate how well it 
performs, Lu and Victoria test it on both artificially generated data as well 
as data from laboratory experiments. The latter are performed on samples 
with polymers from a prototype MOMA instrument (a laboratory suite with 
mass spectrometry designed for a mission to Mars, described in chapter 1). 
The samples from these experiments contain biotic polymers (such as 
DNA), and abiotic polymers (present in meteorites, or in tholins analogs, 
which are laboratory analogs of the abiotic polymers on Titan). This entails 
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testing the algorithm on data derived from laboratory experiments on 
samples of polymers. 
	 In the field of AI, the objects that the algorithms are trained on are 
often referred to as data, or datasets. In life sciences, data can be understood 
as durable traces of experiments (Rheinberger, 2014, p. 325). However, 
according to scientist Lu, the data that this particular AI tool is trained on 
are “almost like a model,” which implies that the boundary between data 
and models is slippery. Models – in life sciences – consist of deliberate 
configurations of data (Rheinberger, 2014, p. 325). They are made with the 
goal of representing a phenomenon (Leonelli, 2019, p. 22). The objects 
produced by Lu and Victoria are configurations of mass spectrometry data 
from previous experiments on polymers, made with the goal of representing 
polymers, to make claims about polymers as universal biosignatures. The 
objects that Lu and Victoria make are not merely data, because they are not 
strictly traces of experiments in laboratories. These data are simulations of 
such traces, which means that these practices aim at imitation, at making a 
thing like another. In this case, it is an imitation of the signal and noise in 
data from laboratory experiments.  
	 If we return to the etymology of simulation, there is yet another 
meaning of the latin simulo that is adequate for this case: “to represent a 
thing as being which has no existence, to feign a thing to be what it is not” 
(Perseus Digital Library, n.d.). The simulated data is made to represent 
polymers based on mathematical constructs, without correspondence to a 
particular experiment on a sample. What we can observe in computational 
simulations, is a dynamic of detachment from the terrestrial laboratories 
and attachment to mathematical abstractions. 
	 Pointing out this dynamic is important, but it would be shortsighted 
to view the in silico data as merely mathematical constructs entirely 
detached from material circumstances. We must keep in mind the preceding 
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transformations of these objects. The in silico data are not made from 
scratch – they are configured into models based on previous laboratory 
experiments with polymer samples. Moreover, the astrobiologist evaluates 
the in silico data in relation to laboratory experiments. I am not the first to 
emphasize the attachment between computational simulations and 
biological material. Historian of science Soraya De Chadarevian has 
pointed out that the in silico data in biology remains “linked to the 
biological material from which it is abstracted (even if perhaps by other 
researchers and in other laboratories) and to which it always refers back.” 
(De Chadarevian, 2018, p. 655-656) The in silico data that AI is trained on, 
to search for “universal biosignatures,” maintains a link to samples of 
organisms on Earth. It is because these objects are constructed based on 
previous experiments on organisms, and ultimately, they are also evaluated 
in relation to them. 
	 However, the epistemic status of simulated data is contested 
amongst the researchers at NASA Goddard. Samantha, a scientist working 
with life detection and AI, says that simulated data is worth exploring, but 
there might be many potential biases. “I think we all feel like we have 
complicated feelings about simulated data and there are some people who 
are absolutely against it, and I understand that.” Software manager Eric 
says that he does not know of any project where synthetic data has worked 
successfully, in the context of life detection. Simulated data – creating new 
data based on mathematical equations, without correspondence to a 
physical sample – is spoken of with a slight skepticism.  22

 However, three years after the first fieldwork visit, correspondence with 22

scientist Samantha indicates that there might be a shift in the approach to 
simulated data as more trustworthy: “There are many new approaches to 
simulating data now, and new methods to make data and ML models more 
interpretable. I think these new methods are increasing the confidence in both 
simulating data and in generating ML models.” This shows how epistemic cultures 
are not static but changing and therefore calls for further studies.
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	 Previous studies have discussed the doubt in simulations among 
scientists. For instance, it is a prevalent concern in Sherry Turkle’s 
ethnographic account of molecular biologists at MIT. Some of the scientists 
argue that a computed version of the physical reality is always leaving 
something out. However, Turkle observes that some students are able to 
understand the physical dimensions better, through simulations, which 
allows them to feel closer to the reality. Engaging with simulations can 
indeed lead to new ways of knowing. But molecular biologists are 
concerned that replacing a particular practice with computational 
simulations can also lead to new ways of forgetting (Turkle, 2009 p. 19). 
Now, I will turn to the new ways of knowing, and forgetting, when another 
profession at NASA Goddard – programmers – simulate data to train AI on 
their own.  

Simulating Data for AI for Science Autonomy 
As a child, Victoria’s dream was to become an astronaut. Her dream is 
about to come true, at least in one sense. She might not travel to outer space 
herself, however, as a programmer, she designs AI tools that can travel 
onboard future missions to other planets and moons. These AI tools are part 
of a shared vision of a new way of doing science in outer space at NASA – 
science autonomy. This initiative is led by programmers Victoria and Eric, 
in collaboration with NASA scientists who work with mass spectrometers. 
As described in earlier chapters, the idea is to increase autonomy in analysis 
of scientific experiments onboard missions, by adopting data science tools, 
such as AI. This entails a profound shift in mission operations – from 
scientists in the loop, to distributing more agency to AI tools. AI onboard 
mission to other planets and moons could do a wide range of things. 
Examples include everything from prioritizing which data from 
experiments to send back to scientists on Earth, to making real-time 
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decisions about what to do next in the mission (instead of waiting for 
commands from Earth). The proponents of this approach argue that science 
autonomy enables more efficient scientific exploration – by prioritizing 
which data from experiments on other planets and moons are of most value 
to the scientists. 
	 To develop robust and reliable AI tools, programmers at NASA need 
much more data for training than they have access to. In previous chapters, 
I discussed how programmers train AI on data from scientists, and how 
scientists produce these data in laboratories. Because of how labor-intensive 
and time-consuming the process behind data production is, it cannot match 
the quantities needed to train AI. Insufficient amount of data for training AI 
is one of the major challenges in development of AI tools at NASA. To 
overcome the obstacle of not having enough data from the scientists, 
programmers produce data on their own. They do so through different 
techniques of computer simulations.  

Testing Data Augmentation to Make AI Work 
To test which techniques are most successful in producing data for AI, 
programmer Eric – who is also a software manager – hired a programming 
intern, Michelle. She is a student from a prestigious university in the US, 
with a background in computer science and molecular biology. During the 
internship at NASA Goddard, Michelle works with AI tools for autonomous 
categorization of the mass spectrometry data on Mars, based on which 
chemical compounds they contain. The main task for Michelle is to test 
different ways of training the AI tools, to see which techniques improve the 
performance of AI. 
	 Michelle uses one of the most prevalent methods to generate new 
data for AI training – a method called data augmentation (Nikolenko, 2021, 
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p. 88).  The point of departure in data augmentation is a set of data that is 23

available. In Michelle’s case, it is the mass spectrometry data produced by 
the scientists. To augment this data means to modify it through different 
techniques: stretching, shifting, intensifying the high peaks, as well as 
adding noise to the tiny peaks in the bottom of the mass spectra. In an 
interview, Michelle explains how augmentation of intensity works, while 
pointing at a list of trials and errors on her laptop.   

M: For some of the graphs, we multiplied the intensity values 
across all data points. In this case, the original intensity was 
400, and I increased it by about 50 %, making it 600. So this is 
an example of multiplying intensity where we increased all the 
data points and we multiplied it by some value. 

A: And do you have an equation for this or what do you rely 
on? 

M: Yeah, so for intensity we had randomized intensity and 
multiply intensity. So multiply intensity, I took every single 
value and based on your input, I would ask the user for input, it 
would multiply every single value by certain percentage. So you 
put in 10 % and it’s gonna take every single value and multiply 
it by 1.1. 

 In the first book about synthetic data, the author Sergey I. Nikolenko 23

understands data augmentation as the first step in development of synthetic data. 
However, he admits that the lines between these two techniques are blurry 
(Nikolenko, 2021, p. 12, 88). I do not take stances on the categorization here, but 
instead, focus on how programmers use data augmentation to produce more data.
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The practice of data augmentation goes in line with the mechanism 
identified by sociologist Karin Knorr Cetina – scientific work begins with a 
perceived solution from which practitioners move backwards and try to 
“make it work” by “tinkering toward success.” (Knorr, 1979) By tinkering, 
Knorr Cetina refers to the practice of striving toward what is good enough 
to work in a particular context, rather than optimal in a general sense. In 
contrast to the claims of “truth” as absolute in science, “success” is tied to a 
structure of interest of an agent in a particular place and time, consisting of 
resources, instruments and social alignment. The role of a solution resides 
in driving the research forward and orienting action in a particular direction 
(Knorr, 1979, p. 364-8). 
	 Recruitment of Michelle to NASA was based on an already defined 
ultimate solution: AI algorithms for categorization of mass spectra from 
Mars. With the solution as a starting point, Michelle’s actions are oriented 
toward making AI work. To do so, Michelle tinkers with numerical values 
to modify the mass spectra peaks in various degrees. The peaks can be 
amplified by 5, 10 or 15 percent, which intensifies them slightly. A few 
clicks later, programmer Michelle has new data, generated by multiplying 
and augmenting values on the computer screen.  
	 Now, let us look at the different means of producing data by 
rewinding to previous chapters. When scientists produce data in the 
laboratories, they spend hours on preparations of the sample, the 
instrument, and then careful analysis. We must also recall that this is 
preceded by collection of samples in “extreme” field sites, such as lava 
caves, which entail physically demanding work conditions. It takes a lot of 
manual effort for the scientists, to produce data in scientific laboratories. 
Meanwhile, when a programmer produces data, it takes a few clicks to 
multiply the data and modify their values in a computer. This is a major 
shift in the pace and mode of data production – from manual effort in field 
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sites and in laboratories, to instant production in silico.  
	 However, what we need to keep in mind is that programmers do not 
produce the data from scratch. The work of the programmers is dependent 
on the data produced by the scientists – without it, there is nothing to 
augment. Programmers augment data that are traces of experiments on 
samples (Rheinberger, 2014, p. 325), performed by scientists in the 
laboratories. Consequently, even in the augmented data, the link to the 
biological material is maintained (De Chadarevian, 2018, p. 655-656).  

Measuring the Success of Data Augmentation 
What is noteworthy in Michelle’s account of data augmentation is how 
manipulating digital values gives countless possibilities to create new data. 
But is “more data” per se leading to better performance of AI? Is that the 
case regardless if Michelle intensifies the peaks by 5, 10 or 15 percent, adds 
noise, or stretches the entire graph? Can data be modified without limits? 

So the idea for data augmentation is that we can generate more 
data to train [AI] models. But it’s also very important that the 
data that we generate should still be… I guess scientifically 
accurate, because we’re generating artificial spectra but we still 
want this spectra to be kind of like real. Anyway, if it would be 
super off, it probably wouldn’t improve the algorithm anyway. 

While augmenting, Michelle is torn between preserving and modifying 
data. However, this concern is not expressed in relation to what is contained 
in the data, but rather, in relation to how well the algorithm performs. After 
trying different augmentation methods, Michelle concludes that “the more 
we like got away from the original spectra the worse the model was doing.” 
The success of the balance between preservation and modification in data 
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augmentation is interpreted in light of how well the algorithm performs.  
	 To measure the performance of the algorithm, programmer Michelle 
relies on so called accuracy metrics. It is one kind of performance metrics 
for machine learning algorithms, which is calculated by dividing the 
number of correct predictions by total predictions. On the last day of 
Michelle’s internship at NASA, in a presentation of her work for a group of 
scientists and engineers, she concludes that data augmentation was 
successful by displaying accuracy metrics reaching over 99 %.  
	 The discussion above tells us about one important implication of 
data augmentation on the scientific knowledge production. With the shift of 
profession comes a shift of how the simulations are evaluated – namely, 
through performance metrics. 
	 The use of performance metrics is a prominent practice in the field 
of AI – nevertheless, it is also part of a larger discourse at NASA, where 
scientists and engineers prove the value of the knowledge they produce in 
terms of metrics. During two brainstorming sessions about science 
autonomy for a future mission to Titan, I witnessed how one question that 
programmers and scientists always return to is: How can we measure an 
improvement in the value of science? At one occasion, this question was 
addressed humorously by a programmer – “Create measurements that make 
it look good!” – which reflects the struggle to estimate improved value in 
scientific knowledge production, in terms of performance metrics. 
Displaying some kind of metric to NASA’s review boards comes across as a 
necessity, to prove the value of what they do – which is also tied to 
maintaining funding for their missions in a very competitive research 
environment. This clearly shows that metrics have an epistemic authority in 
proving the value of scientific work. It also shows how metrics are human 
constructs, and a result of negotiation. And most importantly, it shows how 
the value of science is not easy to quantify and fit into performance metrics. 
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	 Estimating the value of an object through metrics is characteristic of 
a modern ontology, “in which the real easily becomes coextensive with 
what is measurable” (Espeland & Stevens, 2008, p. 432). Sociologists 
Wendy Nelson Espeland and Mitchell L. Stevens point out that 
measurements can be productive, by making it possible to see complicated 
relations – upon which humans and organizations can act. However, 
measurements can also “narrow our appraisal of value and relevance to 
what can be measured easily, at the expense of other ways of knowing” 
(Espeland & Stevens, 2008, p. 432). 
	 High results in performance metrics for AI – such as accuracy 
metrics used by programmer Michelle – might be interpreted as success. 
However, metrics can also be misleading. For instance, overfitting, a 
common problem in development of AI, can coincide with high accuracy 
metrics. Overfitting happens when the algorithm learns the training data too 
closely, instead of generalizing the patterns. As a consequence, the 
algorithms can perform very well on training data, but less so on novel data. 
Algorithms, as well as metrics, have limitations – by being trained on 
particular datasets, they provide a partial view of the world. 
	 Are there other ways of knowing for the programmers if the 
augmented data is adequate? In the following section, I describe how 
programmers Victoria and Eric aspired to use the experts – NASA scientists 
– as a yardstick to measure the success of augmented data. I rewind to the 
programmers’ first experiment with data augmentation, which Eric tells me 
about at his office. 

What is at Stake in Data Augmentation 
“So Victoria and I had this idea,” programmer Eric recalls from a few years 
ago. “We made fake data. We made like ten different fake experiments.” He 
refers to the experiments as the Frankenstein files, because “they were like 
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sewn together pieces from other experiments.” Although Eric is currently 
referred to as “the AI guy” at NASA Goddard, he recalls his initial disbelief 
toward this method. In our interviews, he describes how it did not make 
sense to him that an algorithm could be improved by adding “fake data.” 
What Eric refers to as the fake experiments or the Frankenstein files are the 
initial experiments with data augmentation at NASA Goddard (figure 11). 

In popular culture, Frankenstein figures as “a cautionary tale against 
technology.” (Latour, 2011, p. 19) The choice of Frankenstein as the name 
for the augmented data reflects how the introduction of the new method to 
produce simulated data entailed ethical dilemmas for programmers. Once 
the data was augmented, to Eric,  

they [fake experiments] looked exactly like actual experiments 
from Mars but they were these Frankenstein things (…) like 
sewn together pieces from other experiments. 

In the eyes of a programmer, the augmented data looks similar to the data 
from experiments on Mars. Programmers induce differences in the data, and 
evaluate whether the data is similar enough, to stand in for real-world data. 
Considering the significance of drawing the relationships of similarity in 

183

Figure 11. “Frankenstein files” – modified mass spectrometry data.



the construction of knowledge in science (Pinch, 1993, p. 31), data 
augmentation can be recognized as an instance where decisions about 
knowledge production at NASA are being made.  Data augmentation moves 
the space for decision making in scientific knowledge production to the 
domain of computer science, more specifically, to the standards of good 
practice in the field of AI.  
	 We can see that even clearer by rewinding to the scientific practices 
described throughout the thesis. In chapter 5, I described how scientists 
draw relations of similarity between field sites on Earth, as analogs to 
extraterrestrial environments. Yet another instance is mass spectrometry 
data, where scientists compare the data produced in the laboratory 
experiments, to the existing data in a database. In the beginning of this 
chapter, I described how a scientist and a programmer together draw 
relations of similarity between signal and noise in mass spectrometry data – 
the data produced in silico, and the data from laboratory experiments. In 
data augmentation, solely programmers are the ones who draw relations of 
similarity between mass spectrometry data: the data produced in scientific 
laboratories on Mars, and the data simulated by the programmers. 
Programmers, like Michelle, Eric, and Victoria, make decisions about how 
to preserve and modify the data, in order to improve algorithmic 
performance. Data augmentation entails a shift in who makes the decisions 
in knowledge production, for what purposes, and based on what epistemic 
grounds. Considering the central role of drawing relations between 
similarity and difference in scientific knowledge production, a lot is at stake 
in the augmentation of scientific data. 
	 One of the main risks associated with simulated data is inadequate 
representation. If we recall the latin etymology of simulation, this risk 
seems rather inherent. Simulation, from latin simulo means “to represent a 
thing as being which has no existence, to feign a thing to be what it is not.” 
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(Perseus Digital Library, n.d.) Researchers in the field of AI use the 
metaphor of “hallucinations” to discuss how synthetically produced data 
can generate representations of phenomena that are not present. For 
instance, Johnson and Hajisharif show how synthetic data of a population 
from the 1990s generates “intersectional hallucinations,” such as “male 
wives,” and “11-year old doctors.” (Johnson & Hajisharif, 2024). These 
examples can be evaluated as inadequate representations based on common 
sense. But AI hallucinations in mass spectra data are not as evident. 
Interpreting the peaks in a mass spectra image requires a particular kind of 
expertise. Whether the augmented data at NASA contains hallucinations or 
not is outside of the programmers’ area of expertise. At NASA, inadequate 
representation translates to the risk of missing interesting data and potential 
discoveries.  
	 Programmers at NASA are well aware of the risks, and therefore, 
asked the scientists for help. Eric and Victoria prepared a blind test – they 
have put together a dataset with mass spectra, where some were produced 
by the scientists, but the majority were augmented by programmers (the so-
called Frankenstein files). Without revealing that some of the data were 
augmented, Eric and Victoria gave this dataset to the scientists. The goal of 
this test was to see if scientists will find the augmented data meaningful. 
The underlying question was whether the augmented data that programmers 
produced can serve as substitutes for the data that scientists produced in 
laboratories.  
	 Programmer Victoria is expressing what is at stake in this test: 

We changed the intensity of some peaks and then we shifted 
some peaks (…) It [the test] was supposed to keep track of the 
science, the chemistry behind, that was the test for us, if our 
artificially generated data was making sense scientifically or 
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not (…) ’Cause we need to know. If we lose the chemistry, 
what’s the point? You know. 

At stake in augmentation of mass spectra data is “losing chemistry.” This 
utterance reflects the previously discussed act of balance between 
modifying and preserving the “chemistry” contained in data. The 
programmers aspired to use the scientists as a yardstick to measure their 
success in data augmentation. In a previous chapter, I showed how 
scientists are in authority of interpreting the value of data, and the test of 
the Frankenstein files confirms this position. So, did programmers find out 
if the augmented data contain AI hallucinations? 
	 The test constructed by programmers at NASA did not get any 
response from the scientists, who could not afford to volunteer their time. 
Without getting any assistance from the scientists, the programmers had to 
work with other measures of success to evaluate the augmented data. Left 
to their own devices, the programmers draw relations about similarity 
between the different kinds of data in relation to performance metrics. This 
has implications for the decision making in scientific knowledge 
production, by positioning it in the realm of programming. 

Conclusion 
Based on ethnographic material from NASA Goddard, this chapter shows 
how the ways in which synthetic data are made and evaluated can diverge 
between epistemic cultures. Synthetic data can be evaluated in relation to 
data from previous experiments, and/or performance metrics. 
	 The reliance on metrics in the field of AI can be understood as part 
of a larger discourse in society, where the value of objects – across science, 
governance, and everyday life – is estimated in quantitative measures 
(Espeland & Stevens, 2008; Porter, 1995). At NASA, a governmental 
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agency, metrics do have an epistemic authority in estimating the value of 
scientific practices. Practitioners are incentivized to prove the value of what 
they do in terms of metrics, in order to maintain funding for their missions 
in a competitive environment. Against this background, using performance 
metrics for AI fits well into the organizational context at NASA.  
	 Metrics figure as an important way of communicating the results of 
scientific work – but they provide a partial view, and can hardly capture 
complex phenomena. The same goes for performance metrics for AI.  
Previous studies have identified how reliance on metrics in AI can lead to 
focus on short-term goals and qualities, inadequate proxies for complex 
phenomena, or gaming the system to improve the metrics (Thomas & 
Uminsky, 2022). This relates to a general problem with measurements: 
Goodhart’s law, named after the economist Charles Goodhart. It can be 
summarized as follows: “When a measure becomes a target, it ceases to be 
a good measure.” (Strathern, 1997, as cited in Thomas & Uminsky, 2022)  
	 Programmers at NASA Goddard are mindful of the fact that metrics 
are a limited yardstick that needs to be complemented with other ways of 
knowing. To train robust AI tools, there is a need for joint efforts between 
programmers and domain experts, who can facilitate evaluation of the 
adequacy of synthetic data that AI tools are trained on. Without 
collaboration with other professions (relevant domain experts), the decision 
making in scientific knowledge production will reside in the realm of 
programming, and the standards of practice in the field of AI rather than 
science. Moreover, data from scientific experiments, such as mass 
spectrometry, require a particular kind of expertise to identify whether it 
contains adequate representations of phenomena. 
	 Synthetic data are computationally simulated. Nevertheless, these 
practices do not reside merely in the computational realm. In line with 
previous studies of the introduction of computational methods to life 
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sciences (De Chadarevian, 2018; Keller, 2001), this chapter shows how 
synthetic data maintain links to material circumstances of biological 
experiments, as a point of departure, and/or evaluation. 
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Chapter 8 Conclusion – How NASA Shapes 
AI, and How AI Shapes NASA 
This dissertation examines how the ways of knowing other worlds change 
with introduction of new technological tools. Although it focuses on the 
development of AI for life detection on other planets and moons, it 
demonstrates more broadly how these practices reshape the conditions of 
scientific knowledge production on Earth. By studying science in practice, 
this study shows how AI is an outcome of human decisions, situated in a 
particular organization, knowledge infrastructure, and scientific culture. In 
this concluding chapter, I synthesize how these three dimensions shape 
development of AI and vice versa. By doing that, I return to the overarching 
research question of this thesis: how the development of AI changes the 
ways in which scientific knowledge at NASA is produced. 
	 First, the development of AI is situated in an organization that both 
enables and constrains particular courses of action. In the case of NASA 
missions, the question of legitimacy is particularly important, due to the 
history of non-detection in the search for extraterrestrial life. To sustain 
legitimacy for missions to other planets and moons, NASA has been 
shifting the focus away from life detection, and toward detection of 
potential signs of present or past life. By widening the scope from life 
detection to habitability, biosignatures, and organic molecules, NASA 
creates preconditions for continued exploration and funding. These 
organizational preconditions – demarcations of astrobiology at NASA – 
shape what kind of research subjects and tools are considered legitimate. 
Against this background, the AI tools developed for the missions at NASA 
Goddard are designed to facilitate analysis of mass spectrometry data, in 
order to identify organic molecules, as potential biosignatures, or signs of 
habitability. 
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	 Second, the development of AI depends on data that is available for 
training, which in turn is shaped by the knowledge infrastructure in 
planetary science and astrobiology. The data used for training AI stem from 
laboratories, where scientists perform experiments on samples. Scientists 
collect these samples in field sites. The findings show how the choice of 
field sites is dependent on accessibility and influenced by symbolic value, 
rendering some places more popular to study than others. As a result, 
scientific knowledge production about life and its origins becomes skewed 
toward the sites that are accessible, popular, or prestigious. Subsequently, 
this skew is reproduced in the datasets used to train AI. These findings 
resonate with Bowker’s observation that knowledge production in 
biodiversity databases becomes skewed toward certain charismatic 
phenomena (Bowker, 2000). Importantly, knowledge production is always 
shaped by social interests. The critical questions are how, for what 
purposes, and with what consequences this skew is produced.  
	 At NASA, this dynamic is also prevalent through the use of mass 
spectrometry databases, which is curated by NIST for industrial purposes. 
This database serves as a library of known compounds against which new 
data are compared, despite limited overlap with compounds of interest in 
astrobiology, such as those found in meteorites. Field sites, laboratories, 
and databases together constitute a knowledge infrastructure that shapes AI 
by determining which data are available for training. 
	 These epistemic concerns – such as analogies between places on 
Earth and another planet or moon – become black-boxed, when the data is 
used in a dataset for AI. The development of AI introduces new epistemic 
concerns, in line with norms of practice in the field of AI. With 
development of AI comes a shift in which concerns are relevant, and who 
makes the decisions about the data. For example, by determining whether 
the anomaly in the data is an artifact, or a novel phenomenon – which lays 
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the groundwork for potential discoveries. However, discoveries of novel 
phenomena facilitated by AI is not necessarily about seeing an anomaly. 
Rather, it is about noting the absence – the absence of correlation with 
known chemical compounds that the algorithm has been trained to detect. 
Datasets used for training AI constitute another library of knowns, against 
which the unknown is identified. 
	 Third, AI development at NASA Goddard takes place at the 
intersection of two epistemic cultures (Knorr Cetina, 1999): planetary 
science and software engineering. Negotiations between these groups play a 
decisive role in determining which data are included in training datasets and 
how they are evaluated. Without negotiations, data is evaluated solely in 
relation to performance metrics. This means that the decision making is 
executed in the domain of programming, in line with standards of practice 
in the field of AI, rather than science. This dynamic echoes Leonelli’s 
(2014) observations of the consequences of Big Data in life sciences, 
moving the decision making about scientific data to the domain of 
programming (Leonelli, 2014). The findings demonstrate that the presence 
or absence of negotiations with domain experts is a key factor shaping how 
AI tools are made. 
	 Performance metrics have an epistemic authority for estimating 
value in science, society and governance at large (Espeland & Stevens, 
2008; Porter, 1995). This study confirms that metrics are also central to 
evaluating scientific practices within NASA’s competitive organizational 
environment. Practitioners are incentivized to prove the value of what they 
do in terms of metrics, in order to maintain funding. Against this 
background, using performance metrics for AI fits well into the 
organizational context at NASA. One of the problems with reliance on 
performance metrics is that they do not always reflect the actual 
performance of the tools (i.e. overfitting).  
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	 This issue becomes especially significant in the emergent 
phenomenon of synthetic data, which are developed for the purposes of 
training AI. Synthetic data can be produced by programmers 
computationally, and evaluated solely with performance metrics. However, 
these simulations are not merely computational. In line with previous 
studies about in silico data in life sciences (De Chadarevian, 2018), 
synthetic data for AI does maintain a link to material circumstances. How 
the links to material circumstances are maintained, and broken, and how the 
data is evaluated, are crucial aspects to pay attention to, while studying the 
epistemic consequences of synthetic data. 
	 Although AI remains at an early stage of development in the cases 
studied here, it already reshapes power relations in scientific knowledge 
production by introducing new ideals of epistemic order. It shifts the norms 
of how data can be made useful and who decides their value. This shows 
how AI can work as an infrastructuring entity in an organization, regardless  
of whether it functions successfully for the intended purposes or not – this 
role of AI resonates with findings from other social contexts, such as 
clinical practice (Gjødsbøl etal, 2024). 
	 This dissertation shows that while organizational structures, 
knowledge infrastructures, and scientific cultures shape AI, the 
development of AI also feeds back into these dimensions by enabling and 
constraining particular understandings of life. The development of AI can 
amplify understandings of life that are manageable through data and 
algorithms. 

Contribution and Future Research 

This study adds to previous ethnographic works about the scientific cultures 
and organization of work at NASA (Messeri, 2011; Mirmalek, 2019; Olson, 
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2018; Vaughan, 1996; Vertesi, 2015; 2020). It provides knowledge about 
two important tools that play key roles in explorations of other planets and 
moons in-situ: mass spectrometry and AI. By focusing on the context of 
astrobiology, this dissertation offers knowledge about the role of 
computational methods and simulations in scientific studies of life (Kay, 
1995; Keller, 2002; Helmreich, 1999; Roosth, 2019; Turkle, 2009). By 
focusing on AI at NASA, this study can be relevant for STS discussions 
about data-driven science (Edwards, 2010; Leonelli, 2014; Leonelli & 
Tempini, 2020; Messeri & Crockett, 2024; Mulinari, 2023).  
	 One of the dissertation’s central empirical contributions lies in its 
analysis of how synthetic data are produced in practice. Rather than treating 
synthetic data as a uniform phenomenon, this study shows that their social 
implications vary across contexts, underscoring the importance of 
empirical, situated analysis. These findings offer empirical insights to 
discussions on the social implications of synthetic data (Capasso, 2025; 
Jacobsen, 2023; Lee, Hajisharif & Johnson, 2025; Offenhuber, 2024). 
	 This study also demonstrates how relations of care impact decision 
making about data in the development of AI, which is relevant for 
discussions on the ethics of AI (Capasso, 2025; Dignum, 2019). Drawing 
on anthropological scholarship about moral implications in data work 
(Navne, Svendsen & Gammeltoft, 2018; Pinel, Prainsack, & McKevitt, 
2020; Pinel & Svendsen, 2021), and based on fieldwork at NASA Goddard, 
I introduced the term epistemic responsibility to theorize how relations of 
care and preconditions for responsibility emerge through attachment to the 
context of knowledge production. Epistemic responsibility is a term that 
adds a crucial emphasis to the discussions about responsibility in AI 
development. While there are a lot of discussions on the ethics of AI and 
formal obligations ascribed top-down to organizations who work with AI, 
the concept of epistemic responsibility focuses instead on how 
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responsibility emerges bottom-up. Building on the concept of epistemic 
responsibility introduced here, future studies can examine how it emerges 
in other contexts, and what consequences it has for data practices. 
	 This dissertation addresses the urgent call for social scientists to 
scrutinize the increasingly prevalent AI tools (Suchman, 2023). 
Methodologically, this study demonstrates how ethnography can facilitate 
an understanding of how AI tools fit into organizational circumstances, and 
in turn, how these tools change the ways in which we manage and 
understand the world. It supports the approach to pay attention to “data 
settings” rather than “data sets” (Loukissas, 2019), as a lot of the work it 
takes to make AI occurs beyond the data sheets on the computer screen. 
Moreover, the study provides an example of how to balance describing the 
matters of concerns of our interlocutors, and attention to practices of 
marginalization and exclusion in construction of scientific knowledge (Lee, 
2023). 
	 The concept of truth-spots (Gieryn, 2006) greatly facilitated the 
analysis of various places used in scientific knowledge production at 
NASA. This study expands this concept by showing how digital 
phenomena, such as databases, can serve as important truth-spots lending 
legitimacy in scientific knowledge production – alongside the laboratory 
and the field site. These findings are relevant at the intersection of the 
studies of place-making in scientific knowledge production (Gieryn, 2006; 
Messeri, 2011), and the studies of materiality of data (Leonelli & Tempini, 
2020; Mazmanian, Cohn & Dourish, 2014).  
	 In chapter 5, I concluded that AI, or AI datasets, can be understood 
as truth-spots in their own right, given that they are an agglomeration of 
data, and sometimes narrated as ground-truths (Jaton, 2021), or envisioned 
as oracles (Messeri & Crockett, 2024). In this study, AI is at the early stage 
of development and has not reached the epistemic status of a truth-spot. 
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However, it leads to an avenue that is worthwhile to explore in future 
studies: to what extent does AI or datasets for AI serve as an important 
truth-spot that lends credibility to claims about the world? How is it made 
and used as a truth-spot to make knowledge claims? What epistemic virtues 
characterize it? In what ways does it relate to the legacy of the laboratory 
and/or the field site? 
	 This study focuses on one of NASA’s ten centers. As studies from 
STS have shown, epistemic cultures are local and diverse (Knorr Cetina, 
1999). This study provides another piece of the puzzle in understanding the 
local cultures at NASA (Vertesi, 2020). Moreover, cultures are not static 
entities – they change. This means that the results of this study apply to the 
specific period of time when fieldwork was conducted (2022 and 2023). 
Considering the rapid changes and prevalence of new techniques to make 
AI work – such as synthetic data – there is a need to study this development 
further. Continued studies of how AI tools for science autonomy are being 
developed could provide insights about how AI becomes a trusted tool in an 
organizational context and scientific cultures at a large scientific institution 
like NASA. 
	 Considering the central role of NASA in the production of scientific 
knowledge about the universe, this case study provides insights into the 
dominant ways in which other worlds are made known. This dissertation 
demonstrates how AI is shaped by organizational structures, knowledge 
infrastructures, and scientific cultures. The development of AI is in turn 
reshaping these dimensions and by that, the ways in which life is made 
known in science. 
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