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Abstract

Monitoring grinding wheel wear is crucial for optimising dressing intervals and workpiece surface integrity.
Grindability tests were conducted on a through-hardened, micro-alloyed C38 steel, using a multi-sensor
approach to analyse forces and acoustic emission (AE) under varying grinding aggressiveness and wheel
micro-topographies. The acquired data enabled the identification of features sensitive to wheel wear
progression. For all investigated conditions, a worn wheel (duller micro-topography) led to higher forces
and instantaneous energies of the AE Intrinsic Mode Functions. The frequency spectra obtained by Fast
Fourier and Hilbert-Huang transforms also revealed distinct differences as wheel wear progressed.
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1 INTRODUCTION

Grinding is a finishing process typically employed for the
manufacture of precision components, where high
requirements for form accuracy, dimensional tolerance, and
surface integrity must be met. Cubic Boron Nitride (cBN)
grinding wheels are particularly valued for their superior
hardness, thermal stability, and long service life compared
to conventional abrasives. However, as cBN wheels wear
over time, their performance deteriorates, leading to
reduced machining robustness and increased grinding
forces. Further, the surface condition of a grinding wheel
significantly influences the quality of the ground workpiece,
as the wheel topography changes due to wear mechanisms
such as attritious wear, grit fracture, and bond fracture
[Malkin 2008]. In industrial grinding operations, dressing
intervals are typically preset — determined without direct
feedback on the actual wear state of the wheel — leading to
conservative dressing strategies aimed at preventing
defects such as thermal damage, poor surface finish, and
dimensional inaccuracies. As a result, grinding wheels are
often dressed earlier than necessary, increasing wheel
consumption and reducing process efficiency.

Effective monitoring of cBN wheel wear is therefore
essential for optimising grinding performance and
extending tool life. Direct wear evaluation methods, such as
optical microscopy and scanning electron microscopy
(SEM), can be employed to assess the grinding wheel
topography and quantify wear. While these techniques offer
high accuracy and reliability, they interfere with the process,
requiring interruption of grinding and sometimes destruction
of the costly grinding wheels.

In contrast, indirect monitoring techniques using different
sensors enable real-time assessment of wheel surface
conditions during grinding. These methods provide
continuous, non-intrusive monitoring, making them more
practical for industrial implementation [Wegener 2011], and
support adaptive dressing strategies that improve both
productivity and cost-effectiveness. Previous work in wheel
wear monitoring has focused on the use of sensors such as
accelerometers [Mahata 2021], dynamometers [Shu 2023],
power measurement [Guo 2007], and acoustic emission
(AE) sensors [Badger 2018].

Among various sensors, AE sensors have proven to be the
most promising for detecting wheel wear. During grinding,
AE signals primarily originate from mechanisms such as
elastic impact, grit fracture, bond fracture, friction, and the
formation of indentation cracks, making AE highly effective
for monitoring grinding wheel wear [Karpuschewski 1999].
Researchers have developed AE-based feature extraction
techniques — such as root mean square (RMS), signal
energy, and various frequency domain strategies — to
correlate AE signals with wear states [Tonshoff 1999].
Despite promising results, challenges in data processing
and real-time implementation remain areas of active
research.

Dynamometers, on the other hand, can indicate variations
in grinding conditions due to wheel wear through the
measurement of grinding forces. Increases in normal and
tangential forces have been linked to attritious wear and
bond fracture [Malkin 2008]. Despite their accuracy,
dynamometers are often less desirable in industrial settings
due to their high cost and the potential need for machine
reconfiguration [Zhang 2024].
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This research investigates the use of AE sensors and
dynamometers for monitoring cBN grinding wheel wear. For
this purpose, two sets of surface grinding tests were
conducted to investigate the influence of wheel micro-
topography on the resulting signal responses.

The first set of tests, referred to as the grindability tests, was
designed to evaluate variations in grinding forces and AE
signals under different grinding conditions and wheel micro-
topographies, i.e., wheel sharpness. Prior to each test, the
grinding wheel was dressed dull, medium, or sharp — to
generate different levels of wheel sharpness corresponding
to various stages of wheel wear. The acquired force and AE
signals were processed in the time domain, while the AE
signals were further analysed using signal processing
techniques, including Fast Fourier Transform (FFT) and
Hilbert-Huang Transform (HHT), to extract potential
features sensitive to the wheel sharpness/wear.

To further evaluate the sensitivity and robustness of the
extracted features to progressive wheel wear, a longer
grinding test was conducted without intermediate dressing
—referred to as the no-dress test. This test aimed to monitor
the evolution of the wheel's micro-topography and its
influence on the force and AE features over time. This study
thus evaluates the potential of various signal-processing
methods in the context of wheel wear monitoring, offering
more accessible and cost-effective solutions for industrial
grinding applications.

2 THEORETICAL FOUNDATION OF SIGNAL
PROCESSING

Signal processing in both time and frequency domain offer
complementary approaches for analysing and interpreting
signals. Time-domain (TD) methods require minimal
processing and are computationally efficient, making them
efficient for real-time applications. Features such as the root
mean square (RMS) of the signal can provide valuable
insights into the progression of a signal. However, TD
methods may not capture the detailed frequency
characteristics embedded within a signal [Shen 2022].

Frequency domain (FD) methods, on the other hand, offer
insight into the spectral composition of signals, enabling the
identification of frequency-dependent features that may be
obscured in the time domain. However, this often comes at
the cost of increased computational complexity and the
need for transformations that may obscure temporal
dynamics [Shen 2022]. Traditional FD methods, such as the
Fast Fourier transform (FFT), decompose time-based

signals into their constituent frequency components.
However, FFT-based approaches assume signal
stationarity and inherently lose time-localisation

information, which limits their effectiveness in analysing
non-stationary or transient signals where both time and
frequency resolution are essential, as is the case in grinding
operations [Huang 2008]. Despite their limitations, FFT can
offer useful insight into the frequency composition of a
signal. Further, the spectral centroid S. represents the
center of gravity of a spectrum and provides an indication
of its average frequency content, while the spectral
variance S, quantifies the extent to which the signal's
energy is dispersed across its frequency range. The
spectral centroid can be calculated as,

SiEifi
Se= Y. E; (1)
where f; is the instantaneous frequency at point i and E; is
the amplitude at frequency f;. The spectral variance is then
calculated as,

SiEi(fi=50)?

o= nE @)
In contrast to FD methods, time-frequency (TFD) methods
such as Hilbert-Huang transforms address several inherent
limitations of FD approaches like the Fast Fourier
Transform (FFT). These methods enable simultaneous
representation of both time and frequency information by
projecting one-dimensional time-series signals onto a two-
dimensional time-frequency plane [Huang 2008]. The HHT
is executed through a two-stage process: initially, Empirical
Mode Decomposition (EMD) is applied to decompose the
input signal into a finite set of intrinsic mode functions
(IMFs). Subsequently, Hilbert Spectral Analysis is
performed on the IMFs to extract their instantaneous
frequency and energy distributions [Huang 2008].

The EMD decomposition reveals the signal’s IMFs, which
are the different oscillatory modes that compose the original
signal. The obtained signal then undergoes an iterative
sifting process to eliminate background waves and increase
the symmetry of the wave profiles. A successfully extracted
IMF is characterised by two conditions: it must exhibit an
equal number of zero-crossings and extrema, and its upper
and lower envelopes — formed by the local maxima and
minima — must be symmetric [Huang 2008]. After
decomposing a signal into its intrinsic mode functions
(IMFs), the Hilbert transform is applied individually to each
IMF. The Hilbert transform of a signal x(t) is mathematically
expressed as:

y(©) =2[% X4y (3)
In Eq. 3, p represents the Cauchy principal value of the
HHT. The Hilbert transform performs a convolution of a
signal with 1/t . From this, the analytic signal z(t) can be
constructed by coupling the signal x(t) with its Hilbert
transform y(t) as follows,

z(t) = x(t) + iy(t) = a(t)e’?® @
where a(t) =/ (x2(t) + y2(t)) (5)
and (t) = tan~1 28 ©)

x(t)"
Here, a(t) and ¢(t) denote the instantaneous amplitude
and phase of the analytic signal z(t), respectively. The
instantaneous frequency w(t) can then be derived from,

w(e) = <2 )

3 EXPERIMENTAL SETUP AND MEASUREMENT
SYSTEM

3.1 Experimental procedures

The workpiece material was a medium-carbon micro-
alloyed steel used for heavy-duty automotive crankshafts.
Cuboidal workpieces of 100x14x18 mm?3 were extracted
from the half radius region of a hot-rolled steel bar. The
workpieces were through hardened at 870 °C
austenitisation temperature for 1 hour followed by water
quenching. The workpieces were then tempered at 185 °C
for 1 hour, resulting in an average hardness of 635 HV5.

The grinding tests were conducted on a Blohm Planomat
HP 408 surface grinding machine using a synthetic grinding
fluid (Quakercool 2920 EVC) at an 8% concentration. The
setup is shown in Fig. 1. B181 VSS 1127G8SN V380 E
vitrified cBN grinding wheel was used, with a diameter of
400 mm and a width of 20 mm. The dressing utilised a
rotating diamond disc mounted on a rotary dressing unit.
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Fig. 1: Experimental setup of surface grinding tests.
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A summary of the grinding and dressing parameters is
provided in Tab. 1. The wheel and table speeds were kept
constant, while the depth of cut was varied between 0.001
and 0.007 mm. This resulted in three different grinding
aggressiveness numbers (Aggr = 13.5, 27.1 and 35.8), a
widely adopted dimensionless parameter computed as
described in [Badger 2021]. For the grindability tests, the
wheel micro-topography was controlled via dressing prior to
each test by varying the disc traverse speed. The employed
traverse speeds gave three different overlap ratios (i.e., 3.5,
7.0, 10.5), corresponding to sharp, medium, and dull wheel
micro-topographies, respectively. This resulted in a total of
nine test conditions: three wheel states across three
grinding conditions. For each of these conditions, a number
of surface grinding passes were conducted, during which
grinding forces and AE signals were acquired and
analysed, as discussed in section 3.2.

Tab. 1: Grinding and dressing parameters during surface
grinding experiments.

Grinding parameters

Wheel speed [m/s] 70
Table speed [mm/min] 36000
Depth of cut [mm] 0.001, 0.004, 0.007

Grinding width [mm] 18 (grindability tests),

7 (no-dress test)

Dressing parameters

Wheel speed [m/s] 70

Dressing depth [mm] 0.002

Speed ratio [-] +0.8

Traverse speed [mm/s] 48.0, 24.0, 10.9

Overlap ratio [-] 3.5,7.0,10.5

For the no-dress test, one grinding condition was selected
due to the high volume of workpiece material removed
required. The wheel speed was set at 70 m/s with a depth
of cut of 0.007 mm, table speed of 36000 mm/min, and
grinding width of 7 mm. The grinding wheel was initially
dressed to a sharp condition (with an overlap ratio of 3.5),
after which grinding of the workpiece was conducted in
successive passes without dressing the wheel in order to
allow the wear of the wheel to occur. This no-dress test was
completed after 3900 passes, where the material removed
per mm of wheel width (MR) reached 2,730 mm3/mm. The
force and AE signals were also acquired as discussed in
section 3.2.

3.2 Sensors and signal acquisition

To monitor tangential and normal forces during the grinding
process, workpieces were mounted on a dynamometer
(Kistler, type 9255C) which was fixed to the machine’s
table. For AE monitoring, the Accretech’s (SB-3276) sensor
was attached to the work-holding vice. Both signals were
acquired by a National Instruments data acquisition (DAQ)
system (cDAQ chassis NI-9174 with NI-9215 voltage input
module) sampling the force and AE signals at 3 kHz and
100 kHz respectively.

For each grinding pass, the DAQ collected 3 signals:
normal force (F,), tangential force (F;) and acoustic
emission (AE). No signal shifting was required since the
data collected by the DAQ was already synced to the same
time scale. Signal segmentation of each signal allowed the
extraction of the segments pertinent to active grinding,
whereby the segments where the wheel was not engaged
with the workpiece were excluded. The investigated
frequency range of the AE signal was set to 0-50 kHz to
satisfy the Nyquist criteria with a 100 kHz acquisition rate.

During the grindability tests, the force and AE signals were
acquired and analysed from 5 repetitions (5 passes) for
each of the 9 test conditions.

For the no-dress test, the forces were measured and
analysed at various intervals, more frequently towards the
beginning of the test to monitor the break-in of the wheel.
The AE signals were analysed from 5 distinct segments
(S1-S5) captured at various stages of the no-dress test.
Each segment corresponds to 3.0 seconds of active
grinding, equivalent to a workpiece material removed of
12.60 mm3/mm. To ensure measurements were taken in
stable grinding condition (after wheel break-in as identified
by the force stabilisation), the initial segment analysed (S1)
begins after an accumulated MR of 70 mm3*mm.
Subsequent segments S2 through S5 were collected
following MRs of 669.9, 1352.4, 2034.9, and 2717.4
mm?3/mm, respectively.

3.3 Signal post-processing and feature extraction

The analysis of the grinding forces F, and F; in this work
primarily focused on their mean values and determining the
specific energy associated with the grinding process.

The acoustic emission signals, on the other hand, were
subject to various time, frequency and time-frequency post-
processing. The TD features, extracted from the raw signal,
included the root mean square, variance, skewness and
kurtosis. For the FD analysis, the FFT transform was
applied, and the mean FFT amplitude was computed
across 20 equally spaced frequency bins. In addition, the
spectral centroid and spectral variance were calculated to
differentiate between various wheel conditions. As for the
TFD analysis, the HHT transform was applied, and the
instantaneous energy was extracted for the first 4 IMFs. For
each IMF, the mean instantaneous energy was computed
across 20 equally spaced frequency bins, and the spectral
centroid and variance were calculated. The extracted
features from the AE signals are summarised in Tab. 2.

Tab. 2: Tested extracted features using the AE signals
and their extraction source.

Domain Source Extracted features
™ Raw signal - RMS, yarlance, skewness,
kurtosis
FET - Spectral centr0|d
FD . - Spectral variance
Amplitudes . .
- Frequency bin amplitudes
- Spectral centroid
TED HHT-IMEs - Spectral variance

- Mean instantaneous energy
- Frequency bin energies

4 RESULTS AND DISCUSSION
4.1 Grindability tests

The results presented in this section refer to the grindability
tests conducted using different aggressiveness (Aggr =
13.5, 27.1 and 35.8) and wheel conditions (sharp, medium
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and dull). Fig. 2(a) presents the variation in normal (F,) and
tangential forces (F;) for each of the investigated conditions,
where an increase in aggressiveness leads to the expected
increase in both normal and tangential forces. The wheel
with the duller micro-topography also exhibits significantly
higher forces for identical grinding conditions. For instance,
at the highest aggressiveness, the normal force is 82% and
154% higher for a medium and dull wheels, respectively,
compared to the sharp one. A similar trend is observed for
the tangential force, with increase of 72% and 156% for a
medium and dull wheels, respectively, compared to the

sharp wheel.
500 ] , ! e
—o—F.(Dul) | oo
3 @ Medium
—— Fn (Medium)| = © Sharp
450 | @ F~ (Sham) E205
- o . (Dull) E .
— | |- o= F« (Medium) =
z o Fi(Sharp) | 3 L] .
§300 | 8150 .
5 e e ©
$§. °
150 S 1aT’s ® e
e |o
g o
0 8 9

0 10 20 30 _ 40
Aggressiveness [-]

0 10 20 30 _ 40
Aggressiveness [-]
Fig. 2: (a) Normal and tangential forces and (b) specific
energy for different aggressiveness and wheel conditions

Fig. 2(b) shows the obtained specific energy curves. As
expected, the specific energy is notably higher for a duller
wheel under the same grinding conditions. At the
intermediate aggressiveness, for instance, the specific
energy increases by 48% and 96%, respectively, when
grinding with a medium or dull wheel compared to a sharp
one — making chip formation less efficient.

Regarding the analysis of the acoustic emission signals
from a time domain perspective, the extracted features are
summarised in Tab. 3 for the lowest and highest
aggressiveness tests. As evident, the RMS and variance
both exhibit a progressive increase from sharp to medium
to dull wheel, while the skewness and kurtosis follow the
opposite trend. This implies that as the wheel becomes
duller, the signal undergoes more significant fluctuations
and greater energy, while the distribution of the signal
becomes more symmetric and less peaked. In fact, these
trends hold for Aggr = 27.1 as well.

Tab. 3: Time-domain extracted features of AE signals

Aggr = 13.5 Aggr =35.8
Sharp Med. Dull Sharp Med. Dull
RMS [-] 0.10 0.11 032 036 064 0.93
Variance [-] 0.01 001 009 011 039 0.85
Kurtosis [-] 5.92 338 176 184 069 0.29
Skewness[-] 66.16 2156 735 745 341 245

The frequency domain analysis of the AE signals using FFT
for the case of Aggr = 35.8 shows the discrete frequency
spectrum, presented in Fig. 3. The Fourier amplitudes,
which reflect the contribution of a specific frequency within
a signal, are averaged and classified into 20 equally spaced
frequency bins. As evident, there is a clear distinction in the
FFT amplitudes, where the medium and dull wheel show a
notable increase compared to a sharp wheel across all
frequency bins. In fact, the same trends are observed for
the other investigated grinding conditions, with all frequency
bins successfully identifying different wheel wear states.

[OSharp N Medium B Dull

100 >
10
1,750
t1500 B
w
(32
<250 H ®
ILooo

Frequency [kHz]

Fig. 3: Discrete frequency spectrum comparing the mean
AE FFT amplitudes for a sharp, medium and dull wheel

Further analysis of the FFT provided the spectral centroid
and variance plots shown in Fig. 4(a). The spectral centroid
shifts towards higher frequencies as the wheel becomes
duller. Additionally, lower aggressiveness levels appear to
exhibit higher spectral centroids compared to more
aggressive grinding conditions. This suggests that both
wheel dullness and less aggressive grinding are associated
with increased prominence of higher frequency
components in the acoustic emission spectrum.

Fig. 4(b) shows that the spectral variance decreases with
both increasing wheel dullness and increasing grinding
aggressiveness. This indicates that the frequency content
of the acoustic emission signals becomes more
concentrated around the spectral centroid, suggesting a
reduction in the diversity of frequency components as the
wheel wears and the grinding becomes more aggressive.
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Fig. 4: (a) FFT spectral centroid and (b) spectral variance
variations for AE signals of different grinding conditions
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Fig. 5: Mean instantaneous energy of the different IMFs

for different wheel and grinding conditions

In the TFD analysis, the Hilbert-Huang Transform (HHT)
was applied to the Intrinsic Mode Functions (IMFs)
extracted from the AE signals. As shown in
Fig. 5, the mean instantaneous energy effectively reflects
the micro-topography of the grinding wheel. All four IMFs,
across the three tested grinding conditions, follow the same
trend: the mean instantaneous energy increases
progressively from the sharp to the medium and to the dull
wheel. This trend likely reflects the effects of wheel wear,
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which leads to larger portions of ploughing and sliding
during the grinding process — all of which are significant
contributors to acoustic emission.

4.2 No-dress test

The no-dress test was performed to evaluate the
robustness of the investigated extracted features when the
wheel is not dressed between subsequent grinding passes.
Under such conditions, the features should be particularly
sensitive to changes in wheel micro-topography due to
wear.

The test was run for a total volume of material removed of
2730 mm3/mm, after which the wheel was inspected for
wear. Since only part of the wheel width — corresponding to
the grinding width of 7 mm — was engaged during the
process, a “razor blade” test could be performed to
measure wear. Here, wear is induced on a localized section
of the wheel surface, creating a step relative to the unused
portion. The measurement revealed microscopic edge
wear, with the depth of edge wear (4rgy,) increasing from an
initial 35 ym to 118 ym. No notable step was observed at
the transition zone of the wheel, indicating no macroscopic
wheel wear. Fig. 6 shows the normal and tangential force
measurements throughout the test, where the force
experiences a sharp decrease in the initial phase, identified
as the wheel break-in [Malkin 2008]. The normal force then
exhibits a slight but gradual increase from 77.2 N to 87.1 N
(12.8% increase). The tangential force does not experience
a similar increase and is rather stable at 29 N, attributed to
insignificant wear. Fig. 6 also shows the approximate
regions from which the 5 segments S1-S5 were extracted
for the AE signal analysis.

120 T T T T T

Force [N]

(2]
o

s1

S

S3

S4

S5

30@@0000 009000000 00000

.

1000 1500 2000 2500 3000
Material removed [mm3/mm]

0 1
0 500

Fig. 6: Normal and tangential force progression with
respect to material removed (width of S1-S5 not to scale)

When analysing the raw AE signals in the time domain, the
RMS, variance, kurtosis, and skewness were extracted.
While kurtosis and skewness showed no discernible trend,
both RMS and variance exhibited steady increases from S1
to S5. Specifically, the RMS increased from 0.19 to 0.29
(52%) and the variance rose from 0.044 to 0.095 (116%).
These trends suggest that as wear progresses, the signal
undergoes greater fluctuations and an increase in energy.

From a FD perspective, the discrete frequency spectra of
each segment, obtained using the FFT and presented in
Fig. 7, do not exhibit any clear trends — unlike their
behaviour in the grindability tests. This discrepancy may be
attributed to the relatively minimal wear in the no-dress test,
as opposed to the significantly different micro-topographies
induced in the grindability experiments. Additionally, the
limitations of the FFT in handling non-stationary and non-
linear signals likely contribute to its insensitivity to subtle
wear changes. These findings suggest that FFT-based
spectral analysis may be insufficient for early wear

detection in industrial settings, where timely identification of
even minimal wheel wear is critical — well before reaching
the dull wheel condition identified in the grindability tests.
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Fig. 7: Discrete AE-frequency spectrum of the mean FFT
amplitudes for segments S1-S5

In contrast to the limitations of the FFT, the HHT approach
demonstrates consistent trends with those observed in the
grindability tests. Specifically, the mean instantaneous
energy increases progressively with wear, as illustrated in
Fig. 8. Although there is some overlap between the error
bars, this is likely due to the comparatively lower wear
progression between consecutive segments in the no-dress
test. This trend is consistent across all four IMFs: IMF1
shows an increase of 272% from S1 to S5, while IMF2,
IMF3, and IMF4 exhibit increases of 111%, 129%, and
250%, respectively.
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Fig. 8: Progression of HHT mean instantaneous energies
for IMFs 1-4 for segments S1-S5

A more detailed spectral analysis of the IMFs across
specific frequency bands reveals a notable trend, as
observed in Fig. 9. The mean HHT energy in certain
frequency bins shows a progressive increase with wear,
increasingly gradually for each subsequent segment. The
frequency bins in which this trend occurs vary by IMF,
indicating that each IMF captures energy changes in
distinct frequency regions. For IMF1, a clear distinction
across all five stages is observed in approximately 50% of
the frequency bins, particularly in the higher-frequency
range. As the analysis moves to IMF2, IMF3, and IMF4, the
frequency bins exhibiting this trend shift toward lower
frequencies, while the percentage of bins showing
progressive increases remains relatively stable — around
45% for IMF2 and IMF3, and 50% for IMF4.

The further investigation of the spectral features of the IMFs
reveals distinct trends in the spectral centroid of the 3™ and
4™ IMFs, both of which shift towards higher frequencies as
wear progresses, as shown in Fig. 10. The increase in
spectral centroid from S1 to S5 is 4% and 26% for IMF3 and
IMF4, respectively. Similarly, the spectral variance shows
an increasing trend for IMF2 and IMF4 from segments S1
to S5 by 4% and 37%. This suggests that as the grinding
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wheel wears, the frequency content of the IMF spectrum
becomes less concentrated around the spectral centroid.
Notably, this increase appears to plateau across segments
S3, S4, and S5, indicating a slower rate of change in later
stages of wear. These trends indicate that, as wheel wear
progresses, the frequency content of the IMFs shifts to
higher frequency components but becomes dispersed
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Fig. 9: Discrete AE-frequency spectrum of the mean HHT
energy for IMFs 1-4 acquired from segments S1-S5
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Fig. 10: Comparison of spectral centroid and spectral
variance for different IMFs for segments S1-S5

5 CONCLUSIONS

A multi-sensor monitoring approach was successfully
employed to detect grinding wheel wear, revealing
consistent correlations between sensor features and wheel
condition. The main conclusions are as follows:

e The force measurements showed a clear increase in
normal and tangential forces with increased wear.

e The time-domain analysis of the AE signal showed an
increase in RMS and variance as wear progressed.

e Time-frequency analysis using HHT proved more
effective than traditional FFT-based methods in
detecting gradual wear progression, with the mean
HHT instantaneous energy of AE signals showing a
clear and repeatable increase across all IMFs.

e The spectral centroid and variance showed that the
frequency content of the IMFs shifted towards higher
frequencies and became more dispersed with wear.

o Aspectral analysis of IMFs showed that the frequency
ranges capturing wear-related changes varied by
IMF, with higher-frequency bins in IMF1 and
progressively lower-frequency bins in IMF2—IMF4.

These findings highlight the potential of various AE features
as robust means for early detection of wheel wear, with
implications for optimising dressing intervals and improving
process robustness in industrial applications.
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