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Abstract 

Monitoring grinding wheel wear is crucial for optimising dressing intervals and workpiece surface integrity. 
Grindability tests were conducted on a through-hardened, micro-alloyed C38 steel, using a multi-sensor 
approach to analyse forces and acoustic emission (AE) under varying grinding aggressiveness and wheel 
micro-topographies. The acquired data enabled the identification of features sensitive to wheel wear 
progression. For all investigated conditions, a worn wheel (duller micro-topography) led to higher forces 
and instantaneous energies of the AE Intrinsic Mode Functions. The frequency spectra obtained by Fast 
Fourier and Hilbert-Huang transforms also revealed distinct differences as wheel wear progressed.  
Keywords: 

acoustic emission, wear monitoring, process optimisation, grinding 
 
 

 

1 INTRODUCTION 

Grinding is a finishing process typically employed for the 
manufacture of precision components, where high 
requirements for form accuracy, dimensional tolerance, and 
surface integrity must be met. Cubic Boron Nitride (cBN) 
grinding wheels are particularly valued for their superior 
hardness, thermal stability, and long service life compared 
to conventional abrasives. However, as cBN wheels wear 
over time, their performance deteriorates, leading to 
reduced machining robustness and increased grinding 
forces. Further, the surface condition of a grinding wheel 
significantly influences the quality of the ground workpiece, 
as the wheel topography changes due to wear mechanisms 
such as attritious wear, grit fracture, and bond fracture 
[Malkin 2008]. In industrial grinding operations, dressing 
intervals are typically preset – determined without direct 
feedback on the actual wear state of the wheel –  leading to 
conservative dressing strategies aimed at preventing 
defects such as thermal damage, poor surface finish, and 
dimensional inaccuracies. As a result, grinding wheels are 
often dressed earlier than necessary, increasing wheel 
consumption and reducing process efficiency.  

Effective monitoring of cBN wheel wear is therefore 
essential for optimising grinding performance and 
extending tool life. Direct wear evaluation methods, such as 
optical microscopy and scanning electron microscopy 
(SEM), can be employed to assess the grinding wheel 
topography and quantify wear. While these techniques offer 
high accuracy and reliability, they interfere with the process, 
requiring interruption of grinding and sometimes destruction 
of the costly grinding wheels.  

In contrast, indirect monitoring techniques using different 
sensors enable real-time assessment of wheel surface 
conditions during grinding. These methods provide 
continuous, non-intrusive monitoring, making them more 
practical for industrial implementation [Wegener 2011], and 
support adaptive dressing strategies that improve both 
productivity and cost-effectiveness. Previous work in wheel 
wear monitoring has focused on the use of sensors such as 
accelerometers [Mahata 2021], dynamometers [Shu 2023], 
power measurement [Guo 2007], and acoustic emission 
(AE) sensors [Badger 2018].  

Among various sensors, AE sensors have proven to be the 
most promising for detecting wheel wear. During grinding, 
AE signals primarily originate from mechanisms such as 
elastic impact, grit fracture, bond fracture, friction, and the 
formation of indentation cracks, making AE highly effective 
for monitoring grinding wheel wear [Karpuschewski 1999]. 
Researchers have developed AE-based feature extraction 
techniques – such as root mean square (RMS), signal 
energy, and various frequency domain strategies – to 
correlate AE signals with wear states [Tönshoff 1999]. 
Despite promising results, challenges in data processing 
and real-time implementation remain areas of active 
research. 

Dynamometers, on the other hand, can indicate variations 
in grinding conditions due to wheel wear through the 
measurement of grinding forces. Increases in normal and 
tangential forces have been linked to attritious wear and 
bond fracture [Malkin 2008]. Despite their accuracy, 
dynamometers are often less desirable in industrial settings 
due to their high cost and the potential need for machine 
reconfiguration [Zhang 2024].  
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This research investigates the use of AE sensors and 
dynamometers for monitoring cBN grinding wheel wear. For 
this purpose, two sets of surface grinding tests were 
conducted to investigate the influence of wheel micro-
topography on the resulting signal responses.  

The first set of tests, referred to as the grindability tests, was 
designed to evaluate variations in grinding forces and AE 
signals under different grinding conditions and wheel micro-
topographies, i.e., wheel sharpness. Prior to each test, the 
grinding wheel was dressed dull, medium, or sharp – to 
generate different levels of wheel sharpness corresponding 
to various stages of wheel wear. The acquired force and AE 
signals were processed in the time domain, while the AE 
signals were further analysed using signal processing 
techniques, including Fast Fourier Transform (FFT) and 
Hilbert-Huang Transform (HHT), to extract potential 
features sensitive to the wheel sharpness/wear. 

To further evaluate the sensitivity and robustness of the 
extracted features to progressive wheel wear, a longer 
grinding test was conducted without intermediate dressing 
– referred to as the no-dress test. This test aimed to monitor 

the evolution of the wheel’s micro-topography and its 
influence on the force and AE features over time. This study 
thus evaluates the potential of various signal-processing 
methods in the context of wheel wear monitoring, offering 
more accessible and cost-effective solutions for industrial 
grinding applications. 

2 THEORETICAL FOUNDATION OF SIGNAL 
PROCESSING  

Signal processing in both time and frequency domain offer 
complementary approaches for analysing and interpreting 
signals. Time-domain (TD) methods require minimal 
processing and are computationally efficient, making them 
efficient for real-time applications. Features such as the root 
mean square (RMS) of the signal can provide valuable 
insights into the progression of a signal. However, TD 
methods may not capture the detailed frequency 
characteristics embedded within a signal [Shen 2022].  

Frequency domain (FD) methods, on the other hand, offer 
insight into the spectral composition of signals, enabling the 
identification of frequency-dependent features that may be 
obscured in the time domain. However, this often comes at 
the cost of increased computational complexity and the 
need for transformations that may obscure temporal 
dynamics [Shen 2022]. Traditional FD methods, such as the 
Fast Fourier transform (FFT), decompose time-based 
signals into their constituent frequency components. 
However, FFT-based approaches assume signal 
stationarity and inherently lose time-localisation 
information, which limits their effectiveness in analysing 
non-stationary or transient signals where both time and 
frequency resolution are essential, as is the case in grinding 
operations [Huang 2008]. Despite their limitations, FFT can 
offer useful insight into the frequency composition of a 
signal. Further, the spectral centroid 𝑆𝑐 represents the 

center of gravity of a spectrum and provides an indication 
of its average frequency content, while the spectral 
variance 𝑆𝑣 quantifies the extent to which the signal's 

energy is dispersed across its frequency range. The 
spectral centroid can be calculated as,  

𝑆𝑐 =
∑ 𝐸𝑖 𝑖 ∙𝑓𝑖

∑ 𝐸𝑖 𝑖
     (1) 

where 𝑓𝑖 is the instantaneous frequency at point 𝑖 and 𝐸𝑖 is 

the amplitude at frequency 𝑓𝑖. The spectral variance is then 

calculated as, 

𝑆𝑣 =
∑ 𝐸𝑖 𝑖 ∙(𝑓𝑖−𝑆𝑐)2

∑ 𝐸𝑖 𝑖
     (2) 

In contrast to FD methods, time-frequency (TFD) methods 
such as Hilbert-Huang transforms address several inherent 
limitations of FD approaches like the Fast Fourier 
Transform (FFT). These methods enable simultaneous 
representation of both time and frequency information by 
projecting one-dimensional time-series signals onto a two-
dimensional time-frequency plane [Huang 2008]. The HHT 
is executed through a two-stage process: initially, Empirical 
Mode Decomposition (EMD) is applied to decompose the 
input signal into a finite set of intrinsic mode functions 
(IMFs). Subsequently, Hilbert Spectral Analysis is 
performed on the IMFs to extract their instantaneous 
frequency and energy distributions [Huang 2008].  

The EMD decomposition reveals the signal’s IMFs, which 
are the different oscillatory modes that compose the original 
signal. The obtained signal then undergoes an iterative 
sifting process to eliminate background waves and increase 
the symmetry of the wave profiles. A successfully extracted 
IMF is characterised by two conditions: it must exhibit an 
equal number of zero-crossings and extrema, and its upper 
and lower envelopes – formed by the local maxima and 
minima – must be symmetric [Huang 2008]. After 
decomposing a signal into its intrinsic mode functions 
(IMFs), the Hilbert transform is applied individually to each 
IMF. The Hilbert transform of a signal 𝑥(𝑡) is mathematically 

expressed as:  

𝑦(𝑡) =
𝑝

𝜋
∫

𝑥(𝜏)

𝑡−𝜏

∞

−∞
𝑑𝜏    (3) 

In Eq. 3, 𝑝 represents the Cauchy principal value of the 

HHT. The Hilbert transform performs a convolution of a 
signal with 1/𝑡 . From this, the analytic signal 𝑧(𝑡) can be 
constructed by coupling the signal 𝑥(𝑡) with its Hilbert 

transform 𝑦(𝑡) as follows,  

𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) = 𝑎(𝑡)𝑒𝑖𝜑(𝑡)    (4) 

where 𝑎(𝑡) = √(𝑥2(𝑡) + 𝑦2(𝑡) )    (5) 

and 𝜑(𝑡) = tan−1 𝑦(𝑡)

𝑥(𝑡)
.    (6) 

Here, 𝑎(𝑡) and 𝜑(𝑡) denote the instantaneous amplitude 

and phase of the analytic signal 𝑧(𝑡), respectively. The 

instantaneous frequency 𝑤(𝑡) can then be derived from,  

𝑤(𝑡) =
𝑑𝜑(𝑡)

𝑑𝑡
     (7) 

3 EXPERIMENTAL SETUP AND MEASUREMENT 
SYSTEM 

3.1 Experimental procedures 

The workpiece material was a medium-carbon micro-
alloyed steel used for heavy-duty automotive crankshafts. 
Cuboidal workpieces of 100x14x18 mm3 were extracted 
from the half radius region of a hot-rolled steel bar. The 
workpieces were through hardened at 870 °C 
austenitisation temperature for 1 hour followed by water 
quenching. The workpieces were then tempered at 185 °C 
for 1 hour, resulting in an average hardness of 635 HV5.   

The grinding tests were conducted on a Blohm Planomat 
HP 408 surface grinding machine using a synthetic grinding 
fluid (Quakercool 2920 EVC) at an 8% concentration. The 
setup is shown in Fig. 1.  B181 VSS 1127G8SN V380 E 
vitrified cBN grinding wheel was used, with a diameter of 
400 mm and a width of 20 mm. The dressing utilised a 
rotating diamond disc mounted on a rotary dressing unit.  
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Fig. 1: Experimental setup of surface grinding tests.  

A summary of the grinding and dressing parameters is 
provided in Tab. 1. The wheel and table speeds were kept 
constant, while the depth of cut was varied between 0.001 
and 0.007 mm. This resulted in three different grinding 
aggressiveness numbers (Aggr = 13.5, 27.1 and 35.8), a 
widely adopted dimensionless parameter computed as 
described in [Badger 2021]. For the grindability tests, the 
wheel micro-topography was controlled via dressing prior to 
each test by varying the disc traverse speed. The employed 
traverse speeds gave three different overlap ratios (i.e., 3.5, 
7.0, 10.5), corresponding to sharp, medium, and dull wheel 
micro-topographies, respectively. This resulted in a total of 
nine test conditions: three wheel states across three 
grinding conditions.  For each of these conditions, a number 
of surface grinding passes were conducted, during which 
grinding forces and AE signals were acquired and 
analysed, as discussed in section 3.2. 

Tab. 1: Grinding and dressing parameters during surface 
grinding experiments. 

Grinding parameters 

Wheel speed  [m/s] 70 

Table speed  [mm/min] 36000 

Depth of cut [mm] 0.001, 0.004, 0.007 

Grinding width [mm] 18 (grindability tests), 

7 (no-dress test) 

Dressing parameters 

Wheel speed [m/s] 70 

Dressing depth [mm] 0.002 

Speed ratio [-] +0.8 

Traverse speed  [mm/s] 48.0, 24.0, 10.9 

Overlap ratio [-] 3.5, 7.0, 10.5 

For the no-dress test, one grinding condition was selected 
due to the high volume of workpiece material removed 
required. The wheel speed was set at 70 m/s with a depth 
of cut of 0.007 mm, table speed of 36000 mm/min, and 
grinding width of 7 mm. The grinding wheel was initially 
dressed to a sharp condition (with an overlap ratio of 3.5), 
after which grinding of the workpiece was conducted in 
successive passes without dressing the wheel in order to 
allow the wear of the wheel to occur. This no-dress test was 
completed after 3900 passes, where the material removed 
per mm of wheel width (MR) reached 2,730 mm3/mm. The 
force and AE signals were also acquired as discussed in 
section 3.2. 

3.2 Sensors and signal acquisition  

To monitor tangential and normal forces during the grinding 
process, workpieces were mounted on a dynamometer 
(Kistler, type 9255C) which was fixed to the machine’s 
table. For AE monitoring, the Accretech’s (SB-3276) sensor 
was attached to the work-holding vice. Both signals were 
acquired by a National Instruments data acquisition (DAQ) 
system (cDAQ chassis NI-9174 with NI-9215 voltage input 
module) sampling the force and AE signals at 3 kHz and 
100 kHz respectively. 

For each grinding pass, the DAQ collected 3 signals: 
normal force (𝐹𝑛), tangential force (𝐹𝑡) and acoustic 
emission (AE). No signal shifting was required since the 
data collected by the DAQ was already synced to the same 
time scale. Signal segmentation of each signal allowed the 
extraction of the segments pertinent to active grinding, 
whereby the segments where the wheel was not engaged 
with the workpiece were excluded. The investigated 
frequency range of the AE signal was set to 0-50 kHz to 
satisfy the Nyquist criteria with a 100 kHz acquisition rate. 

During the grindability tests, the force and AE signals were 
acquired and analysed from 5 repetitions (5 passes) for 
each of the 9 test conditions.  

For the no-dress test, the forces were measured and 
analysed at various intervals, more frequently towards the 
beginning of the test to monitor the break-in of the wheel. 
The AE signals were analysed from 5 distinct segments 
(S1-S5) captured at various stages of the no-dress test. 
Each segment corresponds to 3.0 seconds of active 
grinding, equivalent to a workpiece material removed of 
12.60 mm3/mm. To ensure measurements were taken in 
stable grinding condition (after wheel break-in as identified 
by the force stabilisation), the initial segment analysed (S1) 
begins after an accumulated MR of 70 mm³/mm. 
Subsequent segments S2 through S5 were collected 
following MRs of 669.9, 1352.4, 2034.9, and 2717.4 
mm³/mm, respectively. 

3.3 Signal post-processing and feature extraction 

The analysis of the grinding forces 𝐹𝑛 and 𝐹𝑡 in this work 

primarily focused on their mean values and determining the 
specific energy associated with the grinding process.  

The acoustic emission signals, on the other hand, were 
subject to various time, frequency and time-frequency post-
processing. The TD features, extracted from the raw signal, 
included the root mean square, variance, skewness and 
kurtosis. For the FD analysis, the FFT transform was 
applied, and the mean FFT amplitude was computed 
across 20 equally spaced frequency bins. In addition, the 
spectral centroid and spectral variance were calculated to 
differentiate between various wheel conditions. As for the 
TFD analysis, the HHT transform was applied, and the 
instantaneous energy was extracted for the first 4 IMFs. For 
each IMF, the mean instantaneous energy was computed 
across 20 equally spaced frequency bins, and the spectral 
centroid and variance were calculated. The extracted 
features from the AE signals are summarised in Tab. 2. 

Tab. 2: Tested extracted features using the AE signals 
and their extraction source. 

Domain Source Extracted features 

TD Raw signal 
- RMS, variance, skewness, 

kurtosis 

FD 
FFT 

Amplitudes 

- Spectral centroid 

- Spectral variance  

- Frequency bin amplitudes 

TFD HHT-IMFs 

- Spectral centroid 

- Spectral variance 

- Mean instantaneous energy 

- Frequency bin energies 

4 RESULTS AND DISCUSSION 

4.1 Grindability tests 

The results presented in this section refer to the grindability 
tests conducted using different aggressiveness (Aggr = 

13.5, 27.1 and 35.8) and wheel conditions (sharp, medium 
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and dull). Fig. 2(a) presents the variation in normal (𝐹𝑛) and 

tangential forces (𝐹𝑡) for each of the investigated conditions, 

where an increase in aggressiveness leads to the expected 
increase in both normal and tangential forces. The wheel 
with the duller micro-topography also exhibits significantly 
higher forces for identical grinding conditions. For instance, 
at the highest aggressiveness, the normal force is 82% and 
154% higher for a medium and dull wheels, respectively, 
compared to the sharp one. A similar trend is observed for 
the tangential force, with increase of 72% and 156% for a 
medium and dull wheels, respectively, compared to the 
sharp wheel.  

 

Fig. 2: (a) Normal and tangential forces and (b) specific 
energy for different aggressiveness and wheel conditions 

Fig. 2(b) shows the obtained specific energy curves. As 
expected, the specific energy is notably higher for a duller 
wheel under the same grinding conditions. At the 
intermediate aggressiveness, for instance, the specific 
energy increases by 48% and 96%, respectively, when 
grinding with a medium or dull wheel compared to a sharp 
one – making chip formation less efficient. 

Regarding the analysis of the acoustic emission signals 
from a time domain perspective, the extracted features are 
summarised in Tab. 3 for the lowest and highest 
aggressiveness tests. As evident, the RMS and variance 
both exhibit a progressive increase from sharp to medium 
to dull wheel, while the skewness and kurtosis follow the 
opposite trend. This implies that as the wheel becomes 
duller, the signal undergoes more significant fluctuations 
and greater energy, while the distribution of the signal 
becomes more symmetric and less peaked. In fact, these 
trends hold for Aggr = 27.1 as well.  

Tab. 3: Time-domain extracted features of AE signals 

 Aggr = 13.5 Aggr = 35.8  

 Sharp Med. Dull Sharp Med. Dull 

RMS [-] 0.10 0.11 0.32 0.36 0.64 0.93 

Variance [-] 0.01 0.01 0.09 0.11 0.39 0.85 

Kurtosis [-] 5.92 3.38 1.76 1.84 0.69 0.29 

Skewness [-] 66.16 21.56 7.35 7.45 3.41 2.45 

 

The frequency domain analysis of the AE signals using FFT 
for the case of Aggr = 35.8 shows the discrete frequency 
spectrum, presented in Fig. 3. The Fourier amplitudes, 
which reflect the contribution of a specific frequency within 
a signal, are averaged and classified into 20 equally spaced 
frequency bins. As evident, there is a clear distinction in the 
FFT amplitudes, where the medium and dull wheel show a 
notable increase compared to a sharp wheel across all 
frequency bins. In fact, the same trends are observed for 
the other investigated grinding conditions, with all frequency 
bins successfully identifying different wheel wear states.  

 

Fig. 3: Discrete frequency spectrum comparing the mean 
AE FFT amplitudes for a sharp, medium and dull wheel  

Further analysis of the FFT provided the spectral centroid 
and variance plots shown in Fig. 4(a). The spectral centroid 
shifts towards higher frequencies as the wheel becomes 
duller. Additionally, lower aggressiveness levels appear to 
exhibit higher spectral centroids compared to more 
aggressive grinding conditions. This suggests that both 
wheel dullness and less aggressive grinding are associated 
with increased prominence of higher frequency 
components in the acoustic emission spectrum.  

Fig. 4(b) shows that the spectral variance decreases with 
both increasing wheel dullness and increasing grinding 
aggressiveness. This indicates that the frequency content 
of the acoustic emission signals becomes more 
concentrated around the spectral centroid, suggesting a 
reduction in the diversity of frequency components as the 
wheel wears and the grinding becomes more aggressive.  

 

Fig. 4: (a) FFT spectral centroid and (b) spectral variance 
variations for AE signals of different grinding conditions 

 
Fig. 5: Mean instantaneous energy of the different IMFs 

for different wheel and grinding conditions 

In the TFD analysis, the Hilbert-Huang Transform (HHT) 
was applied to the Intrinsic Mode Functions (IMFs) 
extracted from the AE signals. As shown in  
Fig. 5, the mean instantaneous energy effectively reflects 
the micro-topography of the grinding wheel. All four IMFs, 
across the three tested grinding conditions, follow the same 
trend: the mean instantaneous energy increases 
progressively from the sharp to the medium and to the dull 
wheel. This trend likely reflects the effects of wheel wear, 
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which leads to larger portions of ploughing and sliding 
during the grinding process – all of which are significant 
contributors to acoustic emission.  

4.2 No-dress test 

The no-dress test was performed to evaluate the 
robustness of the investigated extracted features when the 
wheel is not dressed between subsequent grinding passes. 
Under such conditions, the features should be particularly 
sensitive to changes in wheel micro-topography due to 
wear.  

The test was run for a total volume of material removed of 
2730 mm3/mm, after which the wheel was inspected for 
wear. Since only part of the wheel width – corresponding to 
the grinding width of 7 mm – was engaged during the 
process, a “razor blade” test could be performed to 
measure wear. Here, wear is induced on a localized section 
of the wheel surface, creating a step relative to the unused 
portion. The measurement revealed microscopic edge 
wear, with the depth of edge wear (𝛥𝑟𝑠𝑘) increasing from an 

initial 35 µm to 118 µm. No notable step was observed at 
the transition zone of the wheel, indicating no macroscopic 
wheel wear. Fig. 6 shows the normal and tangential force 
measurements throughout the test, where the force 
experiences a sharp decrease in the initial phase, identified 
as the wheel break-in [Malkin 2008]. The normal force then 
exhibits a slight but gradual increase from 77.2 N to 87.1 N 
(12.8% increase). The tangential force does not experience 
a similar increase and is rather stable at 29 N, attributed to 
insignificant wear. Fig. 6 also shows the approximate 
regions from which the 5 segments S1-S5 were extracted 
for the AE signal analysis.  

 

Fig. 6: Normal and tangential force progression with 
respect to material removed (width of S1-S5 not to scale) 

When analysing the raw AE signals in the time domain, the 
RMS, variance, kurtosis, and skewness were extracted. 
While kurtosis and skewness showed no discernible trend, 
both RMS and variance exhibited steady increases from S1 
to S5. Specifically, the RMS increased from 0.19 to 0.29 
(52%) and the variance rose from 0.044 to 0.095 (116%). 
These trends suggest that as wear progresses, the signal 
undergoes greater fluctuations and an increase in energy. 

From a FD perspective, the discrete frequency spectra of 
each segment, obtained using the FFT and presented in 
Fig. 7, do not exhibit any clear trends – unlike their 
behaviour in the grindability tests. This discrepancy may be 
attributed to the relatively minimal wear in the no-dress test, 
as opposed to the significantly different micro-topographies 
induced in the grindability experiments. Additionally, the 
limitations of the FFT in handling non-stationary and non-
linear signals likely contribute to its insensitivity to subtle 
wear changes. These findings suggest that FFT-based 
spectral analysis may be insufficient for early wear 

detection in industrial settings, where timely identification of 
even minimal wheel wear is critical – well before reaching 
the dull wheel condition identified in the grindability tests. 

 

Fig. 7: Discrete AE-frequency spectrum of the mean FFT 
amplitudes for segments S1-S5 

In contrast to the limitations of the FFT, the HHT approach 
demonstrates consistent trends with those observed in the 
grindability tests. Specifically, the mean instantaneous 
energy increases progressively with wear, as illustrated in 
Fig. 8. Although there is some overlap between the error 
bars, this is likely due to the comparatively lower wear 
progression between consecutive segments in the no-dress 
test. This trend is consistent across all four IMFs: IMF1 
shows an increase of 272% from S1 to S5, while IMF2, 
IMF3, and IMF4 exhibit increases of 111%, 129%, and 
250%, respectively. 

 

Fig. 8: Progression of HHT mean instantaneous energies 
for IMFs 1-4 for segments S1-S5 

A more detailed spectral analysis of the IMFs across 
specific frequency bands reveals a notable trend, as 
observed in Fig. 9. The mean HHT energy in certain 
frequency bins shows a progressive increase with wear, 
increasingly gradually for each subsequent segment. The 
frequency bins in which this trend occurs vary by IMF, 
indicating that each IMF captures energy changes in 
distinct frequency regions. For IMF1, a clear distinction 
across all five stages is observed in approximately 50% of 
the frequency bins, particularly in the higher-frequency 
range. As the analysis moves to IMF2, IMF3, and IMF4, the 
frequency bins exhibiting this trend shift toward lower 
frequencies, while the percentage of bins showing 
progressive increases remains relatively stable – around 
45% for IMF2 and IMF3, and 50% for IMF4. 

The further investigation of the spectral features of the IMFs 
reveals distinct trends in the spectral centroid of the 3rd and 
4th IMFs, both of which shift towards higher frequencies as 
wear progresses, as shown in Fig. 10. The increase in 
spectral centroid from S1 to S5 is 4% and 26% for IMF3 and 
IMF4, respectively. Similarly, the spectral variance shows 
an increasing trend for IMF2 and IMF4 from segments S1 
to S5 by 4% and 37%. This suggests that as the grinding 
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wheel wears, the frequency content of the IMF spectrum 
becomes less concentrated around the spectral centroid. 
Notably, this increase appears to plateau across segments 
S3, S4, and S5, indicating a slower rate of change in later 
stages of wear. These trends indicate that, as wheel wear 
progresses, the frequency content of the IMFs shifts to 
higher frequency components but becomes dispersed.  

 

Fig. 9: Discrete AE-frequency spectrum of the mean HHT 
energy for IMFs 1-4 acquired from segments S1-S5 

 

Fig. 10: Comparison of spectral centroid and spectral 
variance for different IMFs for segments S1-S5 

5 CONCLUSIONS 

A multi-sensor monitoring approach was successfully 
employed to detect grinding wheel wear, revealing 
consistent correlations between sensor features and wheel 
condition. The main conclusions are as follows: 

 The force measurements showed a clear increase in 
normal and tangential forces with increased wear. 

 The time-domain analysis of the AE signal showed an 
increase in RMS and variance as wear progressed. 

 Time-frequency analysis using HHT proved more 
effective than traditional FFT-based methods in 
detecting gradual wear progression, with the mean 
HHT instantaneous energy of AE signals showing a 
clear and repeatable increase across all IMFs. 

 The spectral centroid and variance showed that the 
frequency content of the IMFs shifted towards higher 
frequencies and became more dispersed with wear. 

 A spectral analysis of IMFs showed that the frequency 
ranges capturing wear-related changes varied by 
IMF, with higher-frequency bins in IMF1 and 
progressively lower-frequency bins in IMF2–IMF4. 

These findings highlight the potential of various AE features 
as robust means for early detection of wheel wear, with 
implications for optimising dressing intervals and improving 
process robustness in industrial applications. 
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