CHAL

UNIVERSITY OF TECHNOLOGY

Metabolic Engineering of Yeasts: A Key Cell Factory Platform for
Advanced Biomanufacturing

Downloaded from: https://research.chalmers.se, 2026-01-14 19:11 UTC

Citation for the original published paper (version of record):

Yu, A., Mao, J., Xu, N. (2025). Metabolic Engineering of Yeasts: A Key Cell Factory Platform for
Advanced Biomanufacturing. Journal of Fungi, 11(12). http://dx.doi.org/10.3390/jof11120863

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)



Editorial

Metabolic Engineering of Yeasts: A Key Cell Factory Platform for
Advanced Biomanufacturing

Aiqun Yu *@©, Jiwei Mao >*0 and Ning Xu

check for

updates
Received: 26 November 2025
Accepted: 3 December 2025
Published: 5 December 2025

Citation: Yu, A.; Mao, J.; Xu, N.
Metabolic Engineering of Yeasts:

A Key Cell Factory Platform for
Advanced Biomanufacturing. J. Fungi
2025, 11, 863. https://doi.org/
10.3390/jof11120863

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

3,4,%

State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology
of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology,
Tianjin University of Science and Technology, Tianjin 300457, China

Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden

Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

State Key Laboratory of Engineering Biology for Low-Carbon Manufacturing,

Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China

*  Correspondence: yuaiqun@tust.edu.cn (A.Y.); jiwei@chalmers.se (J.M.); xu_n@tib.cas.cn (N.X.);

Tel.: +86-22-60602723 (A.Y.); +46-07007851971 (J.M.); +86-22-24828784 (N.X.)

With mounting concerns over finite fossil fuel reserves and climate change, increasing
attention is being paid to an emerging bioeconomy. There is a global consensus about
the role of bio-based products, manufactured from renewable raw materials, in ensuring
a sustainable bioeconomy [1,2]. Therefore, research into biomanufacturing is developing
at a rapid pace, followed by attempts for its industrial application. Microbial cell facto-
ries represent a cornerstone of biomanufacturing [3-5]. They employ various strategies,
technologies, and methods to develop a microbial chassis, which can serve as a super
‘bio-factory” for the efficient and inexpensive production of chemicals from renewable,
low-cost materials. There are four key elements to keep in mind when designing microbial
cell factories: materials, chassis, engineering, and products (Figure 1).
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Figure 1. Key elements of microbial cell factories.

Currently employed materials of interest include oil-based feedstocks [6-8], cellulosic
biomass [9-11], and one-carbon compounds [12-14]. A deeper understanding of microbial
metabolism and continuous advances in metabolic engineering have greatly improved
the transformation of raw materials and widened the spectrum of products generated
from them by microbial cell factories. However, the poor metabolic performance of most
microorganisms when grown on these raw materials, as opposed to glucose, still limits
their industrial application.

At present, the most commonly used microbial platforms are bacteria and yeasts;
whereas molds, algae, and viruses have found only limited usage. Yeasts, in particular,
have many advantages over other microbial sources: they are GRAS organisms, easily cul-
tured with rapid growth, tolerant to various industrial stressors, and genetically tractable
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with relatively well-developed genetic tools. These characteristics make yeasts particu-
larly attractive for study and engineering in the construction of platform microbial cell
factories [15]. At present, some unconventional yeasts have been used as microbial chassis
for the production of natural products [16-18]. However, more efforts should be invested
in the fundamental research on physiological characteristics, metabolic and regulatory
information of these unconventional yeasts, as well as their engineering applications in
the future.

Utilization of well-suited engineering strategies is a critical factor in achieving
high-level product production by microbial cell factories. Metabolic engineering is undoubt-
edly still of great help in improving cellular processes through redirecting metabolic fluxes.
In the past decade, the emergence of new strategies has significantly improved the output
of microbial cell factories. Among them, multiscale systems engineering strategy [19-21],
dynamic regulation technology [22-24], and computer-assisted and Al-driven tools [25-27]
offer great promise and scope for future research.

Finally, advances in metabolic engineering and other technologies have facilitated the
development of tailored microbial strains that are capable of producing an expanded range
of non-native compounds. A variety of value-added products with complex structure have
been produced in different microbial cell factories [28-30], demonstrating their potential
for the green biosynthesis of industrial products. Although much progress has been made
in the use of microbial cell factories for the production of various industrial products,
the sub-optimal product titers, yields, and productivities render these platforms far from
reaching large-scale commercial exploitation. Meanwhile, it is worth noting that the
performance of different microbial chassis may vary substantially even when producing the
same compound, a fact that needs to be taken into account and warrants further studies.

The increasing demand for sustainable and efficient biomanufacturing has positioned
yeast metabolic engineering at the forefront of industrial biotechnology. The nine contribu-
tions collected in this Special Issue exemplify both the conceptual breadth and technical
sophistication of current research efforts, encompassing the production of high-value na-
tive and non-native metabolites, the valorization of low-cost or renewable feedstocks, the
exploitation of non-conventional yeast platforms, as well as the in-depth investigation of
yeast stress physiology, epigenetic regulation, and pathogenicity. Liu et al. (Contribution 1)
demonstrated that Ca* can promote the accumulation of the triterpenoid squalene in the
yeast Saccharomyces cerevisine. Huang et al. (Contribution 5) demonstrated that sodium
butyrate can promote carotenoid synthesis in the yeast Rhodotorula glutinis. The study by
Maloshenok and co-authors (Contribution 2) assayed the intracellular heterologous expres-
sion of PhyD phytase from Bacillus species in the yeast Yarrowia lipolytica. They successfully
overcame aggregation issues and obtained a functionally active product through refold-
ing PhyD phytase using osmolytes (e.g., proline). Zhang and colleagues (Contribution 7)
successfully engineered S. cerevisiae to de novo produce (25)-eriodictyol, and the product
titer was effectively increased by fine-tuning the metabolism of the (25)-naringenin syn-
thesis pathway. Wang and colleagues (Contribution 6) successfully engineered S. cerevisiae
to produce genistein and glycosylation derivatives, and they demonstrated that the sys-
tematic engineering approach can increase the product titer in S. cerevisiae through the
incorporation of a pathway multicopy integration strategy, regulation of the competitive
pathway, and enhancement of cofactor availability. An and colleagues (Contribution 3)
successfully engineered the industrial rice wine strain S. cerevisiae HJ to produce resveratrol,
and they demonstrated that the combinatorial metabolic engineering approach effectively
improved resveratrol biosynthesis in the industrial S. cerevisiae strain through employing
a fused-protein methodology and removing feedback inhibition of tyrosine. The study by
Deng et al. (Contribution 8) demonstrated that the endoplasmic reticulum—plasma mem-
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brane tethering protein Ice2 can control lipid droplet size by controlling intracellular phos-
phatidylcholine levels in the yeast Candida albicans. The study by Du et al. (Contribution 9)
demonstrated that the Mec1-Rad53 signaling pathway can regulate DNA damage-induced
autophagy and pathogenicity in C. albicans. The impact of deleting the DNA damage check-
point kinase Rad53 on the global transcription profiles and alterations in genes associated
with ribosome biogenesis, DNA replication, and cell cycle of C. albicans was explored in the
work by Zhang et al. (Contribution 4). Overall, these studies showcase innovative strategies
and mechanistic insights that are informing the development of robust, high-yielding, and
sustainable yeast cell factories. Despite the progress, several critical knowledge gaps persist,
including the need for more predictable engineering of non-conventional yeasts, a deeper
mechanistic understanding of multi-scale regulatory networks, and improved strategies for
metabolic resource allocation and stress tolerance. The convergence of multi-omics analy-
ses, artificial intelligence-driven strain design, and high-throughput engineering platforms
is expected to accelerate the construction of intelligent, resilient, and high-performing yeast
cell factories, ultimately advancing both fundamental insights into yeast biology and their
practical application in sustainable biotechnology.

The Editors of this Special Issue extend their sincere appreciation to all contributing
authors, reviewers, and editorial staff, whose valuable efforts were crucial for the successful
publication of this Special Issue. It is hoped that researchers in the field of yeast metabolic
engineering will work collaboratively to solve the bottlenecks associated with yeast cell
factories, significantly improve their ability to synthesize a broader range of target com-
pounds, and promote the wider practical application of metabolically engineered yeast in
industrial-scale production.
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