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evolution of protein oligomers
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György Abrusán 1 & Aleksej Zelezniak1,2,3

Recently, it has been suggested that the evolution of many protein homomer complexes follows a
neutral pattern, with little effect on their biochemical function. One of the strongest arguments in
support of this hypothesis is the observation that homologous enzymes with the same catalytic
function can have different quaternary structures in various species. However, in the case of proteins
with multiple functions (“moonlighting” proteins), this pattern can also have an adaptive explanation if
quaternary structure is responsible for their variable, non-canonical functions. To test whether
moonlighting can be responsible for the variability of quaternary structure, here we examine the
opposite of the “same function–multiple structures” pattern, and test whether orthogroups of
moonlighting (multifunctional) and non-moonlighting proteins have similar quaternary structure
variability. We show that there is very little association between moonlighting and homomer
quaternary structure diversity, which is in agreement with the neutral expectation and the hypothesis
that many homomers might be adaptive by shaping the biophysical characteristics of the cell and
cytoplasm, rather than the biochemical function of the protein.

Most proteins function as part of a protein complex, which can be either a
heteromer, assembled from several different proteins, or a homomer,
assembled from multiple instances of the same protein. Even though
homomers are very common1, especially in prokaryotes, the functional
relevance of homomer formation is unclear. Currently, there are two views
on the factors that govern the evolution of homomers. The traditional view
is that such complexes are adaptations enabling the biochemical, or some
other function of the protein2, whilemore recently it has been suggested that
their evolution follows a neutral pattern3 and frequently might be adaptive
only at the level ofmaintaining cellular homeostasis4, rather than at the level
of protein function.

Several arguments support both views, and currently, it is not known
what fraction of homomers evolves in a neutral/stochastic or adaptive
manner. The adaptationist view is supported by the facts that many
homomers can function only in their oligomeric form; interfaces are fre-
quently conserved5, quaternary structure similarity depends on sequence
similarity6; mutations in protein-protein interfaces are often pathogenic7;
complex formation frequently has a role in the dynamics, allostery, and the
regulation of protein function2,8–10 (for example only one of the topologies/
conformersmight be active; among allosteric proteins dihedral symmetry is
enriched); and can also result in higher stability of proteins11.

However, some of these characteristics can also be the result of con-
structive neutral evolution (CNE)12–15, which can result in an “entrench-
ment” of interfaces and the evolution of stable, obligate complexes12. The
neutral view is also supported by several arguments: homologous enzymes
with the same function frequently have different quaternary structures3,16–18;
in a fraction of homomers (which in somedimersmight be as high as 35%19)
their monomeric subunits can perform the same function as the full
complex12,20; novel quaternary structures can emerge due to a small number
of point mutations21; in homomers with binding sites restricted to a single
subunit the evolution of ligand binding/function follows the samepattern as
in monomers22; the hydrophobicity of homomer interfaces is only weakly
affected by the strength of purifying selection19; and that the turnover of
subunits is biased towards subunit gains4, as predicted by constructive
neutral evolution and the entrenchment of interfaces12.

The neutral and adaptationist views are not mutually exclusive, and
currently, it is unclear to what degree stochastic processes shape the com-
plexome. The same complexes might be affected by both adaptive and
stochastic factors; for example, if the interface of a dimer is adaptive, while
the higher-order multimers of such dimers (e.g., tetra-, hexa-, octamers)
evolve due to a neutral/stochastic process. Additionally, even though a
substantial QS variability that is not linked to protein function clearly exists,
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in many species, especially autotrophs, hydrophobic residues can have a
higher synthesis cost than other residues23, and in such species, the existence
of hydrophobic interfaces is probably not strictly neutral4, but might be
adaptive in maintaining cellular homeostasis4. Thus, it is probably more
appropriate to use the neutral-like, or stochastic evolution terms for such
quaternary structure variability.

In this paper, using multifunctional, so-called “moonlighting”
proteins24, we test to what degree the quaternary structure of homomers is
shaped by protein function and stochasticity (Fig. 1). The observation that
enzymes with the same functions frequently have different quaternary
structures is oneof the strongest arguments for the role of stochasticity in the
evolution of quaternary structure3 (Fig. 1A). However, several ancient
enzymes are also known to be moonlighting proteins25,26, and can have
diverse additional functions, like chaperone activity, scaffolding, cell adhe-
sion or others25,27. Proteins can “moonlight” via several different mechan-
isms, ranging from changes in subcellular localisation, changes in binding
partners, changes in the topology of their fold (including disordered
regions), and changes in oligomerisation are also known25,27. Examples
include peroxidases that are enzymes as dimers, chaperones as decamers27;
fructose 1,6-biphosphate aldolases, which show large structural and func-
tional variability across different species28, hexokinases29, ormorpheeins, for
example, porphobilinogen synthase27.

In such enzymes, the variability of quaternary structure in their
phylogenies3,4,17 might be the result of the variability of their additional,
moonlighting functions (Fig. 1A). However, the neutral and adaptive the-
oriesmake different predictions on the evolution of quaternary structure for
moonlighting and non-moonlighting protein families (orthogroups): the
neutral view predicts that function does not influence quaternary structure,
thus its variability will not be different between protein families that
moonlight and the families that do not (Case 1, Fig. 1B). In contrast, the

adaptive explanations predict that quaternary structure variability will be
higher in the moonlighting protein families (Case 2, Fig. 1B).

Here, by analysing ~20k proteins from the Protein Data Bank (PDB),
we examined which of these two predictions is supported by the available
structural data.We found that there is no or just a weak association between
moonlighting and homomer quaternary structure diversity, indicating that
the evolution of quaternary structure in homomers is frequently stochastic
(i.e., supporting Case 1). These results also suggest that, in general, moon-
lighting proteins not so much drive but rather utilise the preexisting
variability of quaternary structure, at least when QS variability between
different species and proteins is considered.

Results
Characteristics of the proteins used
Using the Protein Data Bank, we compiled a set of proteins with a high-
quality structure (see Methods), in total 21,341. These proteins were clas-
sified into 4181 orthogroups, using the eggNOG-mapper tool30 and their
Pfam domain annotations (see Methods), which reduced their number to
19,783, of which 12,798 are homomers and 6985 are monomers (Supple-
mentary Data 1). The number of known, experimentally validated moon-
lighting proteins is low because they are usually detected only accidentally,
and their estimated numbers in the human proteome vary significantly,
from 3%31 to more than 30%32. We compiled a set of 759 moonlighting
proteins from theMoonProt33 and theMoonDB34 databases (seeMethods).
However, this small number of proteins is only the tip of the iceberg, and the
examination of particularly well-studied protein families like enolases with
many known moonlighting proteins suggests that within the orthogroups
that do contain some moonlighting proteins, they are widespread and
relatively evenly distributed across the phylogeny (see Fig. 2A,B). Therefore,
instead of directly comparing known moonlighting proteins with proteins

Fig. 1 | Outline of the hypothesis tested. A In
many species, proteins with the same function
(e.g., enzymes) have different quaternary
structures (QS). This was interpreted as a sign
of neutral evolution of QS, however, in the
case of moonlighting proteins, differences in
QS may be the result of their additional, non-
canonical functions, which can vary depend-
ing on species. B Neutral and adaptive
explanations of QS evolution result in differ-
ent predictions for its association with
moonlighting: if moonlighting does not result
in higher QS variability within homologous
proteins (Case 1), that supports the hypoth-
esis that in homomers the evolution of QS is
strongly influenced by stochasticity, or selec-
tion at a different level than protein function,
like the maintenance of cellular homeostasis.
In contrast, if QS evolution of homomers is
driven by the evolution of protein function,
i.e., it is adaptive, higher QS variability would
be expected in moonlighting proteins
(Case 2).
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that are not known to be moonlighting, we used known moonlighting
proteins as “markers” to identify protein families characterised by multi-
functional proteins. We identified the list of orthogroups that have at least
one known moonlighting protein, and compared them with the
orthogroups that have no knownmoonlighting proteins. Themoonlighting
orthogroups (MOs) were identified by adding the 759 moonlighting pro-
teins to the set of proteins with known structures, and re-running the

orthogroup identification procedure (eggNOG-mapper). This has resulted
in 196 orthogroups that have high-quality homomers or monomers in the
PDB (MOs), and at least one moonlighting protein (which may not
necessarily have a structure in the PDB), and 3985 orthogroups without
moonlighting proteins (non-MOs). MoonDB includes also predicted
moonlighting proteins, whereGO terms are utilised in the prediction. Thus,
to ensure independence, in all analyses that compare GO terms ofMOs and
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non-MOs, we used a reduced set of proteins for MO identification that did
not include predicted proteins from MoonDB. This resulted in 161 MOs,
while the number of non-MOs was not changed.

In total, 433 moonlighting proteins could be categorised into the 196
moonlighting orthogroups (Supplementary Data 2), of which 229 have any
structure in the PDB, and only 130 have a quaternary structure with high-
coverage of the protein: 66 homomers, 10 monomers, and also 54 that are
part of a heteromer. The size of the orthogroups is highly variable; the
majority of orthogroups are small, with less than four proteins (Fig. 2C);
however, most proteins, especially in MOs, are present in the larger
orthogroups. In total, 3113 proteins are present in MOs, of which 2808 are
present in the orthogroups with 8 or more proteins, and 16670 and 9572 in
non-MOs, respectively (Fig. 2D). Enzymes have higher frequencies inMOs
than in non-MOs (Fig. 2D). In orthogroups with 10 or more proteins, i.e.,
the ones that were used in the phylogenetic analyses (see below), homomers
have significantly, although not dramatically, higher frequencies than
monomers (80% vs. 63–67%, Fig. 2E, F).

Proteins inmoonlighting orthogroups are characterised bymore
functions
As the vast majority of proteins inMOs are not present among the proteins
fromthemoonlightingdatabases,we testedwhetherproteins in theMOsare
generally characterised/annotated by more functions than proteins in non-
MOs. We examined five protein characteristics: the number of different
Pfam domains per protein, the number of human protein-protein inter-
actions (PPIs), Reactome annotations, GeneOntology annotations, and the
number of subcellular locations from theHuman ProteinAtlas35.We found
that proteins in MOs have significantly more different Pfam domains than
proteins in non-MOs (Fig. 2G). Additionally, within the orthogroups that
contain human proteins, proteins in MOs have a significantly higher
number of PPIs than those in non-MOs (Fig. 2H). Similarly, both the
Reactome (Fig. 2I) and Gene Ontology annotations (Fig. 2J–L) indicate a
consistent difference between the two groups, indicating that proteins in
MOs are generally annotated with more functions than proteins in non-
MOs.However,withinMOs, there is a significantdifferencebetweenknown
moonlightingproteins andproteins forwhich informationonmoonlighting
is not available (Supplementary Fig. 1); thus, we repeated the analysis with
the knownmoonlighting proteins excluded fromMOs. The results indicate
that the patterns are not substantially influenced by the small number of
known moonlighting proteins in MOs (Supplementary Fig. 2). We also
repeated the GO analysis using subsets of GO terms (Supplementary Fig. 3,
see also “Methods”): with the terms with IEA evidence codes excluded
(Supplementary Fig. 3A–C), and using only terms with experimental evi-
dence (Supplementary Fig. 3D-F), which show a smaller, nevertheless sig-
nificant difference. Surprisingly, even though moonlighting is frequently
thought to result in changes of subcellular locations25, and this is supported
by the GO Cellular Component terms (Fig. 2J), the analysis of Human
Protein Atlas (HPA) subcellular locations shows no clear differences
between moonlighting and non-moonlighting proteins (Supplementary
Fig. 4). Besides simply incomplete knowledge or errors in theHPA (e.g., due
to off-target antibody binding), a possible explanation of this pattern is that

these locations are likely to include also the cases of protein
mislocalization36,37 present in the HPA cell lines.

Taken together, these results indicate that, on average, proteins inMOs
have more functions than proteins in non-MOs, even when only proteins
that currently lack experimental evidence of moonlighting are considered
(Supplementary Fig. 2). Thus, the small number of known moonlighting
proteins can be used as markers of protein families characterised by mul-
tifunctionality (instead of using them directly), which allows larger-scale
comparisons of quaternary structure, based on thousands of proteins, rather
than dozens.

The rateofquaternarystructurechange issimilar inmoonlighting
and non-moonlighting phylogenies
Next, we quantified the rate of quaternary structure change in the phy-
logenies of the orthogroups, using orthogroups with 10 or more proteins.
We made rooted phylogenetic trees for each orthogroup, and estimated
the quaternary structure at their nodes (including the root) with a dis-
crete maximum likelihood method, using the known quaternary struc-
ture of the proteins at the leaves (see Figs. 2A and 3A, and “Methods”). In
addition, in a separate analysis, the ancestral states of the nodes were also
estimated with maximum parsimony (Supplementary Fig. 5). The rate of
QS change was determined as the number of parent-child nodes
(including the leaves of the tree) that do not have the same QS, divided by
the total number of the nodes of the tree. As the rate of QS change in an
orthogroup is significantly affected by the type of the root of the tree (i.e.,
homomer or monomer)4, and MOs have higher homomer frequencies
(Fig. 2E, F), similarly to4, we analysed trees with homomer root and
monomer root separately.

In the case of trees with homomer root, we found no significant dif-
ference, neither for the overall rate of QS change (Fig. 3C), nor for subunit
gains or losses (Fig. 3D). The average interface area of proteins in MOs is
higher than in non-MOs (Fig. 3E), but there is no difference in the average
distance of proteins from the root (Fig. 3F). As interface size is likely to
influence the rate of QS changes and interface evolution (i.e., themagnitude
of the overlap in interfaces between homologues), we also compared MOs
and non-MOs using interface size as a covariate; we found no significant
difference between the two for the rate of QS change (Fig. 3G), and also no
difference in the average interface-overlapwithin the orthogroups (Fig. 3H).
Ancestral character estimates based on maximum parsimony (Supple-
mentary Fig. 5) show a similar pattern tomaximum likelihood, i.e., a lack of
difference between MOs and non-MOs. However, among homomers with
small, less than 1000 Å2 interfaces, crystallographic artefacts are frequent38.
To test whether possible crystallographic artefacts influence the results, we
repeated the analysis with such homomers being included among the
monomers (Supplementary Fig. 6). The results show no significant differ-
ences in the rate of QS evolution, even when interface area is added as a
covariate (Supplementary Fig. 6E).

Similarly, we found no differences in the rate of QS evolution in the
trees with monomer root (Fig. 3I–L and Supplementary Fig. 6G–J), how-
ever, the number of such trees inMOs is very small (n = 14). Taken together,
these results suggest that there are no clear differences in the rate of QS

Fig. 2 | Orthogroups (OGs) having moonlighting proteins are consistently
annotated withmore functions. A Phylogeny of the enolases, using proteins with a
high-coverage PDB structure. Pie charts at the nodes indicate the probability of
subunit number; green squares indicate the known moonlighting proteins in the
tree; the taxonomic domain of the proteins is indicated with blue, red, and orange
squares. B The same phylogeny, with all known moonlighting enolases added; the
ones not having high-coverage structures are indicated with grey. Moonlighting
proteins are scattered through the entire tree, suggesting that many of the proteins
not annotated as moonlighting on panel A also have multiple functions in this
orthogroup. C Distribution of orthogroup sizes. The majority of orthogroups are
small, with less than four proteins; nevertheless, most proteins are in the
orthogroups with 8 or more proteins (see D). D The total number of proteins in
orthogroups of different size. As reported previously, moonlighting orthogroups

(MOs) are characterised by a higher frequency of enzymes than non-MOs. E The
fraction of orthogroups with a homomer majority, depending on orthogroup size.
(Tests of proportions, whiskers show 95% confidence intervals (CI)). F The fraction
of homomers in all proteins, depending on orthogroup size. (Tests of proportions,
whiskers show 95% CI). G The average number of different Pfam-domains per
sequence is significantly higher in the MOs than in non-MOs (Wilcoxon rank sum
test).H The average number of human PPIs in an orthogroup is significantly higher
in the MOs than in the non-MOs. I The average number of Reactome terms per
protein is significantly higher in the MOs than in the non-MOs. J–L Similarly to
Pfam domains, PPIs, and Reactome, the average number of GO terms per protein is
significantly higher in theMOs than in the non-MOs, in all three GO categories (See
also Supplementary Figs. 1 and 2). On all panels, numbers in parentheses are p values
corrected for multiple testing.
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Fig. 3 | The rate of change in quaternary structure is similar in phylogenies of
MOs and non-MOs. A, B Examples of trees with a homomer and monomer root
(note that the topology of the trees is similar). Only trees with 10 or more proteins
were used in the analyses. C In the trees with homomer root, the total frequency of
QS changes is not significantly different in MOs and non-MOs. D Similarly, the
frequency of subunit gains and losses is also not different in the trees of MOs and
non-MOs. E The average interface area of homomers in MOs is significantly higher
than in non-MOs. F The average evolutionary distance from the root is similar in

MOs and non-MOs. G The rate of QS change remains similar when the average
interface area of the orthogroups is added as a covariate. H The average interface
overlap in the two groups is also similar, suggesting that new interfaces are evolved at
a similar rate in MOs and non-MOs. I–L In the case of trees with monomer root, no
significant differences could be detected between MOs and non-MOs, however, the
power of the analyses is very low, due to the few such trees in MOs. On all panels,
numbers in parentheses are p values corrected for multiple testing. Except forG and
H, p values were obtained with Wilcoxon rank sum test.
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evolution between MOs and non-MOs, although the number of trees with
MOs is relatively low, and a weak trend might be detected with more
statistical power (Fig. 3G).

Quaternary structure diversity does not explain the functional
differences between MOs and non-MOs
The phylogenetic analyses above could not be performed for small
orthogroups, and the majority of orthogroups have less than 10 proteins
(Fig. 2C). Thus, to include more orthogroups in the analysis, we also per-
formed comparisons of MOs and non-MOs using simpler metrics of QS
variability, which we applied to orthogroups with a minimum of three
proteins.Weused fourmetrics: (1) the average number of complex subunits
in the orthogroup, including monomers; (2) QS diversity, measured as the
number of different quaternary structures that are present in anorthogroup;
(3) The Shannon index, which is based on the frequency of quaternary
structures in the orthogroup (see “Methods”), (4) The average number of
different QSs per protein in an orthogroup, which was calculated using all
entrieswithdifferentQS that are available in thePDB for aparticular protein
(see “Methods”).

These indices are affected differently by the characteristics of the data,
and any eventual errors in QS assignment in the PDB39, which inevitably
affect the dataset: QS diversity (2) can be substantially influenced by one or
two proteins in the orthogroup, because it does not take into account their
frequency, while the Shannon index (3), which uses also the frequency of
any givenQS is much less affected by this, at least in the larger orthogroups.
The average number of QS per protein (4) is likely to be overestimated for
many proteins, which normally function as homomers, because obligate
homomers sometimes also have monomeric entries deposited in the PDB,
while for proteins with variable quaternary structures, existing PDB entries
may not cover their entire structure space.

The comparison of MOs and non-MOs indicates that there is no, or
just very little, difference between the two groups (Fig. 4). The average
number of subunits, QS diversity, and the Shannon index are not sig-
nificantly, or just marginally different (Fig. 4A–C) when the size of the
orthogroup is used as a covariate, both with a parametric (ANCOVA) and
with a non-parametric (Spearman partial correlation)method. The average
number of QS per protein shows a significant, nevertheless small difference
(Fig. 4D), however when homomers with small, less than 1000 Å2 interfaces
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Fig. 4 | Quaternary structure diversity metrics do not explain the functional
difference between MOs and non-MOs. A–D The average number of subunits,
their diversity, and the Shannon index do not differ significantly between MOs and
non-MOs. Only the number of different QS per protein shows a small, nevertheless
significant difference between the two groups (D); however, it disappears or weakens
when homomers with small interfaces (<1000 Å2) are included among the mono-
mers (Supplementary Fig. 7). E–H The correlations between QS diversity metrics
and the number ofMolecular FunctionGO terms also indicate thatQS diversity does
not explain the difference in functional diversity between the two groups (see
Supplementary Fig. 9 for Cellular Component and Biological Process GO terms). In
addition, we find no clear positive correlation between diversity metrics and the

average number of GO terms, suggesting that on evolutionary timescales, changes in
QS and the evolution of function are frequently independent. The exception is the
number of different QS per proteins (H, see also Supplementary Fig. 8D, H), where
we could consistently detect aweak, nevertheless significant positive correlationwith
the number of GO terms, which explains 1–2% of the variance in the GO terms. I–K
Conservation of interfaces in the MOs and non-MOs. Each dot represents the
average interface conservation (compared to the surface) and average interface size
of homomers in an orthogroup. No significant difference could be detected between
the MOs and non-MOs (K, see also Supplementary Fig. 12). On all panels, numbers
in parentheses are p values corrected for multiple testing.
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are included among the monomers, the difference largely disappears
(Supplementary Fig. 7D). Since some of the regressions show deviations
from regression assumptions (homoscedasticity, normally distributed
residuals), we also compared the two groups with the axes swapped (Sup-
plementary Fig. 8), which consistently show that at the same QS diversity
level, MOs have more proteins.

We also examined the dependence of GO-term richness on the four
diversity metrics (Fig. 4E–H and Supplementary Fig. 9). We found that the
consistent, highly significant difference between MOs and non-MOs is not
explained by any of the QS diversity metrics, in any of the three GO cate-
gories (Molecular Function: Fig. 4E–H, Cellular Component and Biological
Process: Supplementary Fig. 9). The inclusion of homomers with small
interfaces (<1000 Å2) amongmonomers also does not influence this pattern
(Supplementary Fig. 7E–H). Surprisingly, in the case of average subunit
number, QS diversity, and Shannon index, there is no positive correlation
betweenQSdiversity andGO-term richness.However, we found significant
positive correlations in the case of the average number of QSs per protein
(metric 4), which is weak, and explains only 1–2%of variance depending on
the term used, nevertheless, it is consistent across the three different GO
categories (Fig. 4Hand Supplementary Figs. 9D and S8H). Since the average
number ofQSs per protein is likely to be affected by erroneousQS entries in
the PDB, particularly monomer entries of proteins that in reality are mul-
timers, it is very likely that the weak positive correlation we observe is an
underestimate.

The diversity of QSs is also likely to be influenced by the divergence of
proteins within orthogroups; in orthogroups with closely related proteins,
QS is likely to be more conserved, while in orthogroups containing very
distantly relatedproteins, QS is likely to bemore variable, andmoonlighting
proteins are enriched among ancient proteins with conserved (frequently
metabolic) functions25. Using the orthogroups with phylogenetic trees, we
examined whether a difference in diversity emerges when the evolutionary
distance within an orthogroup is used as a covariate (Supplementary
Fig. 10). The results show that, as expected, MOs are characterised by a
somewhat lower averagedistancewithin anorthogroup thannon-MOs, and
QS diversity scales positively with the average distance of proteins within an
orthogroup (Supplementary Figs. 10B and S10C). However, except for the
number of subunits (Supplementary Fig. 10A, see also Fig. 2E, H), the
diversity–evolutionary distance relationship is not different in MOs and
non-MOs (Supplementary Fig. 10B–D), while a clear difference in GO-
Molecular Function terms could be detected, which is not explained by the
diversity metrics (Supplementary Fig. 10E–H).

In addition to the comparisons between different orthogroups, we also
compared the moonlighting and non-moonlighting proteins within MOs
(Supplementary Fig. 11). We used the average number of subunits and the
number of QSs per protein metrics only, because these are meaningful also
when they are calculated only for a single protein. Unlike for GO terms,
where a clear difference exists between moonlighting and non-
moonlighting proteins (Supplementary Fig. 1), we found no difference in
these QS metrics.

Taken together, these data are consistent with the results of the phy-
logenetic analysis and suggest that the observed functional differences
between MOs and non-MOs are only minimally explained by quaternary
structure variability of the orthogroups.

The conservation of interfaces is not different in MOs and
non-MOs
Finally, we examinedwhether the conservation of interfaces (compared to
the conservation of solvent-accessible surface) differs between the pro-
teins ofMOs and non-MOs.We used the summary files from theConSurf
database40 to calculate the difference in conservation between the interface
and surface of every protein. The two groups were compared in twoways,
by using the average interface area and average conservation of the
orthogroups (Fig. 4I–K and Supplementary Fig. 10I–K), and by clustering
the proteins at 30% sequence similarity, and using the cluster centroids in

the comparison (Supplementary Fig. 12). This latter procedure can result
in multiple clusters within a single orthogroup. Both methods show that
interface conservation is not significantly different between MOs and
non-MOs (Figs. 4K and S9K and S11C).

Discussion
Probably the most intuitive argument for the neutral-like evolution of
homomers is the observation that homologous enzymes with the same
function can have very different quaternary structures3. However, protein
moonlighting can provide an alternative, adaptive explanation for this
pattern, if quaternary structure is responsible for the non-canonical (e.g.,
non-enzymatic) functions of the protein (Fig. 1A), and many ancient, core
metabolic enzymes are known to moonlight29.

Here, we performed the opposite of the “same function—multiple QS”
test, and examined whether the “multiple functions—same QS” pattern
holds (Fig. 1B), which would support the hypothesis that a substantial
fraction of QS variability is neutral from the perspective of protein function.
Our findings are in agreement with the predictions of a stochastic QS
evolution: while we could detect clear differences in the functional anno-
tation of moonlighting and non-moonlighting orthogroups (Fig. 2), we
found little or no differences in the variability/diversity of their quaternary
structures (Figs. 3 and 4). The QS diversity metric that is most consistently
correlated with functional diversity is the number of different quaternary
structures per protein (Fig. 4 and Supplementary Fig. 9); however, even this
metric explains only a small fraction (1–2%) of GO-term variance, and does
not explain the difference betweenMOs and non-MOs. The strength of this
association is likely to be significantly underestimated, though, due to QS
errors in the PDB, but also due to the incomplete sampling of the structure
space, i.e., that not all functional forms of homomersmight be present in the
PDB. In addition, in orthogroups with 10 or more proteins, the number of
subunits is higher inMOs than in non-MOs (Fig. 2E–Hand Supplementary
Fig. 10A), suggesting that in some cases simply the larger size of a homo-
oligomer, rather than its structural variability, might contribute to moon-
lighting functions.

While the number of known, experimentally characterised moon-
lighting proteins is low, the availability of genome-wide and high-
throughput datasets provides indications for a larger number of such pro-
teins, for example, through multiple subcellular locations35 or RNA
binding41, even though such data do not prove the existence of additional,
non-canonical functions, andmay result in overestimates (see ref. 36 and 42

for subcellular locations). Thus, the non-moonlighting protein families we
used are also likely to contain some multifunctional proteins, and in prac-
tice, at least for someorthogroups,wemost likely compareproteinswith few
vs. many functions rather than proteins with a single vs. multiple functions.

Moonlighting proteins can perform different functions by several
different mechanisms, of which change in the oligomeric status is just one.
The very weak association between functional variability and QS variability
is nevertheless somewhat surprising, given the large number of experi-
mental studies demonstrating the effect ofQSonbiochemical function. This
suggests that, in most cases where the non-canonical function of moon-
lighting proteins is also associated with a change in QS between species, it is
not so much moonlighting that drives the QS change, but moonlighting
proteins rather utilise preexistingQS variability, which, initially, in the early
stages of its evolution, is likely to be largely neutral. However, our data also
indicates that within species, at least in some cases, moonlighting is likely to
drive diversification of QS (Fig. 4H) and result in multiple functional oli-
gomers for the same protein.

Taken together, our findings indicate that previous observations sug-
gesting a neutral-like evolution of homooligomers3,4,12,17,22 are not invali-
dated by moonlighting, and provide support for the hypothesis that for
manyhomomersQSevolution is a stochastic process, thatmight be adaptive
in shaping the biophysical characteristics of the cell and its homeostasis4 (i.e.,
diffusion rates, cytoplasm fluidity), rather than by affecting the biochemical
function of the protein.
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Methods
Data sources
The proteins of the analyses were selected with a largely similar metho-
dology as in ref. 4.We usedUniProt proteins that have a crystal structure in
the PDB, and meet the following criteria: (1) their quaternary structure is
either a homomerormonomer; (2) their structurehas resolutionbetter than
3 Å; (3) thePDBstructure containsmore than80%of theUniProt sequence;
(4) have a minimum length of 100 amino acid residues. Signal and transit
peptides were excluded from the protein sequence. Quaternary structure
was determined using the first biounit of the entries. For proteins with
multiple entries, the one with the largest number of subunits and coverage
was used, and proteins that have also heteromer entries were not included.
PDB entries with multiple biounits, where the biounits have different
quaternary structure, were not used. We also excluded PDB entries that
originate from viruses, have chimeric sequences, or form fibrils. Addition-
ally, sequences annotated as antibodies (using the Structural Antibody
Database43 and GO annotations) and MHC proteins were not included in
the analyses. This has resulted in 21,341 proteins (homomers and mono-
mers) where the quaternary structure is known, i.e., have at least one high
coverage entry in the PDB.

The list of moonlighting proteins was obtained from two sources: the
MoonProt database33, which list most known moonlighting proteins with
experimental support, and theMoonDB34,which containsmanually curated
and predicted entries, resulting in a list of 759 proteins (excluding viral
proteins), of which 433 are present in the orthogroups (Supplementary
Data 2), and 336 have experimental support (Supplementary Data 3). The
majority of the moonlighting proteins do not have a 3D homomer or
monomer structure that meets the above criteria, and some are part of a
PDB heteromer. In the case ofMoonDB, predicted entries utilise GO terms
in the prediction, and, therefore, predicted entries were used only in the
analyses that donot involveGOterms. In analyses that do includeGOterms
(e.g., Figs. 2I–L and 4E–H) predictedMoonDB entries were not used in the
definition of moonlighting orthogroups (MOs).

Gene Ontology and Reactome terms, and EC numbers were obtained
from the UniProt annotation of proteins. GO and Reactome terms were
post-processed using the GO and Reactome term hierarchies (go.obo and
ReactomePathwaysRelation.txt files) using the “is_a” and “part_of” rela-
tions (for GO), and terms that are not independent, i.e., are in an ancestor-
descendant relationship, and are on the same pathway to the top-level term
were filtered out, and only the lowest level term was kept. (For example,
from the GO Cellular Component terms “mitochondrion” and “mito-
chondrial inner membrane” only the latter was kept). GO term pairs that
connect separate ontologies (e.g., molecular function with biological pro-
cess) were not used in the filtering.

Human protein-protein interaction terms were obtained from Bio-
GRID v.4.4.241. Only interactions between human proteins were used,
human-virus interactions were excluded. Subcellular locations35 of 13,534
human proteins from the Human Protein Atlas were downloaded from
https://www.proteinatlas.org/. All locations were used, including the pre-
dictions of secretedproteins, except for Supplementary Fig. 4CandD,where
locations labelled as uncertain were excluded.

Orthogroup identification
Orthogroups were identified with the eggNOG-mapper (v2.1.12) tool30,
online, using the 21341 proteins (see above) with known quaternary
structure. The default settings were used, except that the queries were rea-
ligned to the Pfam database. Proteins were assigned to an orthogroup using
their lowest, root-level annotation of eggNOG-mapper, and we required
that proteinswith the same root annotationhave also sharedPfamdomains.
(Sequence overlaps between the different Pfam domains were permitted.)
This procedure usually results in reasonably high tertiary structure simi-
laritywithin the orthogroups (TM-score larger than 0.5– 0.6, see ref. 4), thus
quaternary structure variability within the orthogroups is unlikely to be
dramatically affected by tertiary structure variability. The initial number of
~21k proteinswas reduced to 19,783 in the process, due to either not having

eggNOG-mapper hits or Pfam domains, and redundancy filtering (i.e.,
different UniProt IDs with the same sequence). Altogether, we identified
4181 orthogroups, of which 474 have 10 or more proteins (Fig. 2C, D).

In addition to the proteins with known quaternary structure, we also
identified the orthogroups of a dataset containing all the 759 moonlighting
proteins and the 21341 proteins above. The orthogroups were identified
with the samemethod as above, and twogroupswere identified in them, one
containing the orthogroups with at least onemoonlighting protein, and one
with no moonlighting proteins. The shared orthogroups of these two sets
were used in the downstream analyses, using only the proteins with known
quaternary structure (see Fig. 2A vs. 2B).

Phylogenetic analyses and ancestral state reconstruction
In every orthogroup with 10 or more proteins, we reconstructed the
phylogeny of the proteins and the evolution of their quaternary structure
using a two-step procedure. Protein sequences were aligned with Mafft-
DASH44 (v7.520), which also utilises the 3D structures of the proteins.
The L-INS-I method was used, with the --maxiterate 1000 --localpair
flags. Signal and transit peptides were removed from the sequences before
the alignment. The alignments were subsequently processed with IQtree
v245 to obtain maximum-likelihood phylogenetic trees. Next, to reduce
any errors in the tree topologies caused by proteins that evolve sig-
nificantly faster than the rest of the tree (either due to long-branch
attraction or the subsequent rooting), for every protein of the tree its
distance from all other proteins was calculated with the “cophenetic.-
phylo” function of the APE R package (v5.7)46. Proteins that are more
distant than the average +3 standard deviations were excluded; the fil-
tered set proteins was subsequently realigned, and the trees were rebuilt
with the same method as previously. (While this filtering step increased
the robustness of the phylogenetic analysis, it has no effect on any of the
conclusions.) Next, the trees were rooted with the Minimal Ancestor
Deviation method (v2.2)47. The most likely quaternary structure of the
internal nodes of the tree and its root were estimated with two methods;
discrete maximum likelihood (using the “ace” function of the APE R
package, with the equal rates model; Fig. 3) and maximum parsimony
(using the “phangorn” R package, with the ACCTRAN method; Sup-
plementary Fig. 5). For a fraction of the trees the quaternary structure of
the root could not be estimated with a probability higher than 51%, these
were excluded from the analyses (Figs. 3 and S5 and S6). The frequency
of QS changes in the trees was determined as the number of parent-child
nodes where the QS is not the same in the two, divided by the total
number of node pairs in the tree, excluding pairs where for at least one of
the nodes QS could not be estimated (i.e., its probability was lower
than 51%).

Identification of surface and interface residues, interface over-
lap, and conservation
Interfaces, their overlaps, and their conservationwere identified as described
previously in ref. 4. For every protein, we identified the solvent accessible
surface area (SASA) in its representative protein complex, and in its
monomeric subunits, using FreeSASA v.1.148. Interface size of the com-
plexes was determined as the difference of the SASA of the monomeric
subunits and the complex, divided by the number of subunits. Interface
residues were defined as residues with relative solvent accessibility (RSA)
being 0.2 or above, compared to the full amino acid areas as defined in
ref. 49, andwith aminimum10%change in SASA compared to the SASAof
the residue in the monomeric subunits. Surface residues were defined as
residues that are not part of the interface and have RSA above 0.2.

Interface overlap within orthogroups was calculated with TM-align50

(v.20190822). We made all possible pairwise comparisons of homomers
within an orthogroup, andusing themain output of TM-align, we identified
the structurally aligned residues in them. Interface overlap was calculated as
the ratioof thenumberof interface residuepairs that are structurally aligned,
and the number of residues in the smaller interface. Averages were calcu-
lated using all pairwise comparisons in the orthogroup. Structures with the
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same number of subunits were considered topologically different if the
overlap of their interfaces was lower than 0.5.

Conservation of interfaces was calculated using the summary files
downloaded fromtheConSurfdatabase40. For everyhomomer structure, the
average conservationof its interface and surface residueswas calculated, and
their difference was used in the analyses. The comparison of interface
conservation was performed in two ways, using the average conservation
and average interface size of every orthogroup (Fig. 4I–K), and using clus-
tering (Supplementary Fig. 12). In the latter case, clusters with minimum
30% sequence identity were defined with MMseqs251 (using the flags:
--alignment-mode 3 --min-seq-id 0.3 -c 0.9 --cov-mode 1 --cluster-mode 2
-s 8.5). The cluster centroids were used in the analysis.

Measures of quaternary structure variability
We used four measures to describe the variability and characteristics of
quaternary structure in the orthogroups: (1) Average number of subunits
per protein. (2) QS diversity, measured as the number of different QS
topologies. Besides differences in subunit number (monomer, dimer, tet-
ramer, etc.), differences in interfaces were also taken into account; homo-
mers with the same number of subunits but different interfaces (with
interface overlap <0.5) were treated as separate topologies. (3) Shannon
index, calculated as�Pn

i pi lnðpiÞ, where pi is the frequency of a particular
QS in theorthogroup, andn is thenumber of differentQS topologies.Unlike
the simple diversity measure above, the Shannon index also takes into
account how common the different QS topologies are in the orthogroup
(e.g., 1 monomer and 9 dimers vs. 5 monomers and 5 dimers, where the
latter has a higher Shannon index), thus it provides a better estimate of QS
diversity. (4) Number of different QSs per protein. In the previous metrics,
we used one representative structure for each protein. However, many
proteins have several entries in the PDB, which sometimes can have dif-
ferent quaternary structures. We determined the number of different QSs
for every protein, with a similar method as described above (using TM-
align), taking into account differences in interfaces, thus entrieswith similar
number of subunits but different interfaces were treated as different QSs.
The first biounits of all known entries of the proteins were used, even if they
had lower coverage or resolution. It is important to note that this metric is
error prone, as formany proteins that are known to function as amultimer,
and do have multimeric entries, monomeric entries can also be present in
the PDB.

Statistics and reproducibility
All statistical analyses were performed with R (v.4.1.2) and were plotted
with the ggplot2 R package. Boxplots indicate the median, 25–75%
interquartile range (IQR), whiskers indicate up to 1.5 * interquartile
range from the hinge, notches are defined as 1.58 * IQR/sqrt(n). Data-
points beyond whiskers are plotted as outliers. The Benjamini-Hochberg
method (FDR) was used to correct for multiple testing; we used all p
values of the study in the correction. Both the uncorrected and corrected
p values are reported on the figures, the latter ones in parentheses. All
statistical tests are two-sided.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data necessary to reproduce all figures and Supplementary Figs. is available
at Zenodo (https://doi.org/10.5281/zenodo.17378929). All other data are
available from public databases or the corresponding author on reasonable
request.

Code availability
Code necessary to reproduce all figures and Supplementary Figs. is available
at Zenodo (https://doi.org/10.5281/zenodo.17378929).
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