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learning
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Department of Computer Science and Engineering
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Abstract

This thesis explores how Deep Generative Models (DGMs) can accelerate
molecular modeling tasks central to drug discovery by addressing conditional
sampling problems. It consists of four studies, the three first focusing on
molecular dynamics (MD), and the last on molecular design. The first paper
introduces Surrogate Model-Assisted Molecular Dynamics (SMA-MD), which
combines a DGM with statistical reweighting and short MD simulations to effi-
ciently sample Boltzmann ensembles of small molecules, producing more diverse
and lower-energy configurations than conventional simulations. The second
paper presents Transferable Implicit Transfer Operators (TITO), a transferable
generative surrogate that learns time-integrated molecular dynamics directly
from data, enabling propagation at arbitrarily large time steps with up to four
orders of magnitude acceleration while maintaining thermodynamic and kinetic
fidelity. The third paper, Boltzmann Priors for Implicit Transfer Operator
learning (BoPITO), introduces equilibrium-aware priors to surrogate models of
MD, improving data efficiency and long-term dynamical accuracy. Finally, the
fourth paper develops a reinforcement learning scheme to fine-tune graph-based
DGMs for de novo molecular design, guiding models toward molecules with
desired properties even when such examples are rare or absent in the training
data. These contributions constitute important stepping stones towards the
automation of the drug discovery process.
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Chapter 1

Introduction

Drug discovery aims to identify and develop compounds capable of modulating
biological targets, such as proteins or genes, for therapeutic benefit. This
process is inherently complex, expensive, and time-consuming, demanding
close collaboration across multiple scientific disciplines. Current estimates
suggest that bringing a new drug to market requires, on average, more than
a decade of research and an investment of approximately 2.6 billion dollars
[2]. Consequently, developing methods that can accelerate and simplify drug
discovery is of critical importance.

Machine Learning (ML) approaches offer promising tools to enhance and
accelerate many stages of the drug discovery pipeline. By leveraging large-scale
biological and genomic datasets, ML models can assist in the identification
and validation of novel therapeutic targets [3], [4]. They can also support the
design and optimization of drug candidates through generative modeling and
molecular simulations [5], [6], [7], as well as improve the prediction of molecular
properties and safety profiles [8], [9], [10]. Furthermore, advances in natural
language processing and computer vision have enabled new applications in
clinical development and experimental analysis [11], [12], [13].

Conditional sampling problems are ubiquitous across scientific disciplines,
with applications in drug discovery [14], [15], materials science [16], [17], and
machine learning [18], [19]. Given a condition C, the objective is to generate
samples x from a conditional probability distribution p(x | C), which is often
accessible only up to an normalizing constant or through computationally
expensive numerical evaluations. Classical approaches, including simulation-
based methods [20], [21], Markov Chain Monte Carlo algorithms [22], [23], [24],
and evolutionary strategies [25], often perform poorly when applied to high-
dimensional, metastable, or topologically complex distributions such as those
encountered in molecular systems. Deep Generative Models (DGMs) provide a
powerful alternative, learning flexible parameterizations of complex probability
distributions directly from data. Unlike traditional sampling techniques, DGMs
are topologically flexible and scale effectively to high-dimensional spaces, making
them particularly well suited for modeling molecules.

This thesis explores four solutions based on DGMs to sample from chal-
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4 CHAPTER 1. INTRODUCTION

lenging molecular distributions. First, we explore molecular dynamics where
x represents the three-dimensional atomic coordinates of a system, and the
condition C encodes the molecular identity along with temporal information.
Second, we address molecular design, in which x denotes a molecular graph
and C specifies a desired property profile or target set of physicochemical
characteristics.

The first paper [26] introduces a new method for generating equilibrium
ensembles of molecules that combines a DGM with statistical reweighting and
short Molecular Dynamics (MD) simulations. The method, called Surrogate
Model-Assisted Molecular Dynamics (SMA-MD), can produce more diverse
and lower energy ensembles than conventional MD simulations, and can also
estimate implicit solvation free energies. SMA-MD is demonstrated to be an
efficient and transferable approach for sampling from the Boltzmann distribution
of small molecular systems.

The second paper [27] introduces Transferable Implicit Transfer Operators
(TITO), a DGM that learns the statistical behavior of molecular dynamics
directly from simulation data. By modeling transition probability distributions
across different molecular systems and timescales, TITO eliminates the need for
explicit femtosecond-scale integration and enables the propagation of molecular
trajectories at arbitrarily large time steps while maintaining both thermody-
namic and kinetic fidelity. Trained on small molecules and peptides, TITO
achieves up to four orders of magnitude acceleration in simulation throughput
relative to conventional molecular dynamics, while generalizing to larger and
chemically distinct systems unseen during training.

The third paper [28] introduces Boltzmann Priors for Implicit Transfer
Operator learning (BoPITO), which combines ideas from the two preceding
works. BoPITO integrates equilibrium knowledge into deep generative surrog-
ates of molecular dynamics by leveraging pre-trained Boltzmann Generators as
priors to guide the learning of transition densities. This approach introduces
an inductive bias toward physically consistent long-term dynamics, improving
data efficiency by an order of magnitude and enabling interpolation between
models trained on biased off-equilibrium data and the equilibrium distribution.
BoPITO is demonstrated across diverse systems, including small peptides and
fast-folding proteins, showcasing its ability to recover accurate long-timescale
behavior even in limited-data regimes.

The fourth paper [29] presents a novel training scheme to fine-tune graph-
based DGMs for de novo molecular design. This scheme guides the model
to generate molecules with desired properties, even when they are rare or
absent in the training data. We use a graph neural network to model the action
probability distributions for building molecular graphs, and introduce a memory-
aware loss function to speed up and stabilize learning. We demonstrate the
effectiveness of this approach on several design tasks, especially for generating
molecules with predicted dopamine receptor type D2 activity.

Finally, we discuss how these methods could impact drug design pipelines
in the future and what important problems towards the automation of drug
design remain unsolved.



Chapter 2

Drug discovery and
molecular distributions

2.1 The drug discovery process

Drug discovery seeks to develop new medications by leveraging knowledge
of biological targets implicated in disease. A biological target is typically a
molecule—such as a protein or a gene—that plays a central role in a metabolic
or signaling pathway associated with a pathological condition. The overarching
goal of drug discovery is to design molecules that interact with such targets and
modulate their activity in a way that yields therapeutic benefit [30] (Figure
2.1). This endeavor unfolds through a sequence of interdependent stages, each
addressing a distinct aspect of the translation from biological insight to effective
medication.

The process begins with target identification and validation. Target identi-
fication [31] involves selecting a biological entity whose modulation is expected
to influence disease progression. This step commonly relies on high-throughput
experimental techniques such as genomics [32] and proteomics [33], which
characterize the structure and function of genes and proteins at scale. Tar-
get validation then seeks to establish a causal link between the target and
the disease phenotype, often through perturbation experiments such as gene
knockouts [34], where specific genes are selectively inactivated to assess their
functional relevance.

Following target validation, drug design focuses on lead discovery and optim-
ization. Lead discovery aims to identify candidate compounds with measurable
activity against the target, typically through the exploration of large chemical
spaces. Virtual screening [35] plays a central role in this stage by prioritizing ex-
isting or enumerated molecules according to their predicted binding affinity and
biological activity. In contrast, de novo molecular design [36] seeks to generate
novel chemical structures from scratch, optimizing them directly toward pre-
defined physicochemical or pharmacological objectives. Once promising leads
are identified, lead optimization iteratively refines their properties—including
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6 CHAPTER 2. DRUG DISCOVERY AND MOLECULAR DISTRIBUTIONS

Target iden�fica�on
and valida�on:

- Genomics and proteomics.
- Gene knockouts and RNA    

 interference.

Drug design:
- Lead discovery: Screening 

and de-novo design.
- Lead op�miza�on: Docking 

and Free Energy Perturba�on.

Drug development:
- Pre-clinical: In-vitro and

in-vivo experiments.
- Clinical: Human tes�ng.

Figure 2.1: The drug discovery process: stages and key techniques

potency, selectivity, solubility, stability, and toxicity—to improve their suitabil-
ity for downstream development. Quantitative Structure–Activity Relationship
(QSAR) modeling [37], [38] plays a central role in this stage by relating molecular
structure to biological activity through predictive models.

The final phase, drug development, encompasses the steps required to
transform optimized lead compounds into approved therapeutics. This phase
includes preclinical studies to assess safety and efficacy in animal models,
followed by clinical trials to evaluate therapeutic effects in humans. Successful
candidates then undergo regulatory review by agencies such as the European
Medicines Agency or the Food and Drug Administration before entering the
market, where post-approval monitoring ensures long-term safety and quality.

2.2 Molecular probability distributions in drug
design

Drug design is the second stage of the drug discovery pipeline and involves
iterative cycles of hypothesis generation and experimental validation. A typical
question might be: how does property A change when substructure B is
modified in a given molecule? This process is often conceptualized through the
Design–Make–Test–Analyze (DMTA) cycle [39], [40], illustrated in Figure 2.2.

The DMTA cycle describes the iterative feedback loop through which new
molecules are conceived, synthesized, evaluated, and refined. In the design
stage, chemical structures expected to meet certain pharmacological or physi-
cochemical objectives are proposed. These molecules are then made—either
synthesized experimentally or generated computationally—and subsequently
tested through in vitro, in vivo, or in silico assays to evaluate their relevant
properties, such as potency, selectivity, or solubility. Here, in vitro refers
to experiments conducted outside a living organism, typically in controlled
laboratory environments such as cell cultures or biochemical assays; in vivo
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Design

MakeAnalyze

Test

Design candidate molecules

Synthesize themCreate hypothesis

Evaluate them

Figure 2.2: The Design–Make–Test–Analyze (DMTA) cycle — a conceptual
model for iterative drug design.

denotes studies performed within living organisms to assess physiological ef-
ficacy and toxicity; and in silico encompasses computational simulations and
predictive modeling approaches used to estimate molecular behavior and prop-
erties. Finally, the results are analyzed to extract insights that inform the next
design iteration. This closed-loop process underpins modern drug discovery
but is often slow and resource-intensive, motivating the need for computational
methods that can predict outcomes and guide molecular optimization before
synthesis.

This thesis focuses on developing methods to accelerate computational
drug design by targeting two fundamental challenges: (1) accurately predicting
molecular properties, and (2) generating molecular structures that satisfy
specified property profiles. Both challenges can be formulated as conditional
sampling problems.

Accurate prediction of molecular properties fundamentally depends on
understanding how atoms and molecules evolve over time under the influence
of interatomic forces. This process can be formally expressed as estimating the
probability distribution of molecular states x∆t after some lag time ∆t given
an initial configuration x0 and set of thermodynamic or simulation conditions
ξ,

p(x∆t | x0,∆t, ξ). (2.1)

This transition probability distribution encodes the stochastic evolution of the
molecular system. Molecular property estimation then reduces to computing
ensemble averages with respect to this distribution.

Molecular Dynamics (MD) provides a computational framework for approx-
imating these transition probabilities by numerically integrating the equations
of motion derived from a potential energy function, typically parameterized by
classical force fields or obtained from quantum mechanical calculations. Start-
ing from given initial positions and momenta, MD evolves the system according
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to its underlying equations of motion, accounting for solvent effects and thermal
fluctuations. When combined with appropriate thermostats and barostats, these
simulations generate trajectories that sample well-defined statistical ensembles
corresponding to real experimental conditions (e.g., constant-temperature or
constant-pressure). Thus, MD offers a principled means of generating statist-
ical realizations of the transition probability distribution through numerical
integration, serving as a cornerstone for molecular property prediction.

Many relevant experimentally measurable molecular properties—such as
the dissociation rate of a ligand from its receptor or the folding time of a
protein—are directly determined by the statistics of these transition probabilit-
ies. Accurate estimation of such kinetic and thermodynamic quantities requires
adequate sampling of the molecular ensemble over relevant timescales, which
may range from microseconds to seconds. However, conventional MD simula-
tions are constrained by the necessity of femtosecond-level integration steps,
rendering long-timescale sampling computationally infeasible. Bridging the gap
between the timescales accessible to MD and those relevant to experiments—
commonly referred to as the sampling problem—remains a central challenge.
Consequently, the development of methods that accelerate sampling from the
transition probability distribution is essential for achieving accurate and efficient
molecular property prediction.

Conversely, generating molecular structures that exhibit desired physico-
chemical or biological properties constitutes an inverse design problem. Such
inverse problems can also be formulated as conditional sampling tasks, where
the objective is to draw molecular samples that satisfy prescribed property
constraints. Formally, this can be expressed as sampling from the property-
conditioned molecular graph distribution,

p(G | y), (2.2)

where G denotes a molecular graph, y represents the target property specifica-
tion, and the probability distribution p assigns higher likelihood to molecular
graphs that fulfill the desired criteria.

In the context of drug discovery, y may encode multiple optimization
objectives—such as binding affinity to a target receptor, membrane permeability,
solubility, selectivity, or metabolic stability—that collectively determine a
compound’s efficacy, safety, and pharmacokinetic profile. Designing molecules
that simultaneously satisfy several of these often conflicting objectives is a
highly nontrivial task, as the mapping from molecular structure to property is
typically nonlinear, high-dimensional, and discontinuous due to the discrete
nature of chemical space. Moreover, the vastness of chemical space—estimated
to contain more than 1033 synthetically accessible small molecules [41]—renders
exhaustive search infeasible, highlighting the need for alternative strategies.

Therefore, efficiently sampling both molecular dynamics transition probab-
ility distributions and property-conditioned molecular distributions represents
a central challenge in molecular science. Improved sampling strategies promise
not only more accurate molecular property prediction but also more effective
exploration and optimization of chemical space, ultimately facilitating the
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rational design of drug-like compounds and expediting the discovery of new
therapeutics.
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Chapter 3

Molecular representations

To predict molecular properties and design new molecules computationally, we
first need an appropriate representation of molecules within the computer. In
this work, we represent molecules using the positions of their atomic nuclei.
Molecules are inherently dynamic and can adopt a range of three-dimensional
structures known as conformations. The collection of conformations adopted
in equilibrium, referred to as equilibrium conformational ensemble, encodes
important information about a molecule’s structural diversity and the relative
populations of its various states. However, generating representative con-
formational ensembles remains a significant challenge because conformational
transitions often occur over long time and length scales [42].

In certain contexts, conformational ensembles can be approximated by
considering only the dominant local maxima of the equilibrium distribution.
These representative structures are known as conformers. Among them, the
conformer with the lowest potential energy is referred to as the ground state
and is often the most statistically representative. While conformers provide
a simplified description of molecular structure, they offer a less complete
characterization than full conformational ensembles.

Both conformational ensembles and individual conformers can be encoded
as collections of three-dimensional structures. A straightforward representation
uses the Cartesian coordinates (CCs) of all atoms, as illustrated in Figure
3.1 (a). Although simple, this representation is sensitive to global rotations
and translations, which are typically irrelevant to molecular properties. To
address this limitation, internal coordinates (ICs) are often employed instead.
ICs describe molecular geometry in terms of bond lengths, bond angles, and
dihedral angles, as shown in Figure 3.1 (b), and can be converted to Cartesian
coordinates. A complete specification of a molecular structure in internal
coordinates, together with atom identities and reference atoms, is commonly
referred to as a Z-matrix.

For applications where detailed three-dimensional information is unneces-
sary, simpler representations may be preferable. In particular, a molecule can
be described by its chemical graph, which encodes only topological connectiv-
ity via nodes representing atoms and edges representing chemical bonds, as

11
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Atom Type Coordinates (Å)
0 O 0.00 0.00 0.00
1 C 1.21 0.00 0.00
2 C 2.07 1.19 0.00
3 H 1.70 -0.97 0.00
4 H 2.70 1.14 0.98
5 H 2.76 1.13 -0.89
6 H 1.53 2.13 -0.02

C
H H

H
HO

C- -=
-

-
-

CC=0
0=CC

Molecular graph

Cartesian coordinates

SMILES strings

Internal coordinates
Reference d (Å) 𝛼 (rad) 𝜏 (rad)

- - - -
[0,-,-] 1.21 - -
[1,0,-] 1.47 2.20 -
[1,0,2] 1.08 2.04 3.14
[2,1,0] 1.13 1.86 2.08
[2,1,0] 1.13 1.89 -2.16
[2,1,0] 1.10 2.00 -0.02

(c)

(a) (b)

(d)

Figure 3.1: Molecular representations for acetaldehyde: Cartesian Coordinates
(a), Internal Coordinates (b), consisting of distances (d), angles (α), and
dihedral angles (τ), molecular graph (c), and SMILES strings (d).

depicted in Figure 3.1 (c). This graph-based information can be serialized
into a compact textual format using the Simplified Molecular-Input Line-Entry
System (SMILES) [43], illustrated in Figure 3.1 (d). SMILES strings are widely
used for storing and exchanging molecular structures across databases and
software platforms. While a molecular graph can be reconstructed from a
SMILES string, multiple distinct SMILES representations may correspond to
the same graph, which can lead to inconsistencies in generative or predictive
models when different strings are used to represent the same molecule.

The choice of molecular representation ultimately depends on the task of
interest and the available computational resources. For example, applications
requiring accurate predictions of molecular interactions or biological activity
often benefit from representations that capture three-dimensional geometry. In
contrast, large-scale virtual screening campaigns may rely on graph-based rep-
resentations to balance expressiveness and computational cost. More expressive
representations generally enable more accurate modeling at the expense of
increased computational demands. A comparative summary of the properties
of different molecular representations is provided in Table 3.1.

3.1 Neural molecular representations

Modern machine learning methods for molecular modeling depend critically
on how molecules are represented. Two primary paradigms have emerged for
neural molecular representations: sequence-based and graph-based approaches.

One the one hand, sequence-based representations describe molecules using
textual encodings such as SMILES. This formulation allows the application
of Natural Language Processing (NLP) architectures , including recurrent
neural networks [44], [45] and transformers [46], [47], to learn the syntax and
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Advantages Drawbacks
Cartesian
Coordinates

Simple Sensitive to roto-translations

Internal
Coordinates

Invariant to
roto-translations

Requires specification of
reference atoms

Graph Unique Lack of 3-dimensional information

SMILES
Simple and
lightweight

Not unique.
Lack of 3-dimensional information.

Table 3.1: Advantages and drawbacks of different molecular representations:
Cartesian Coordinates (CCs), Internal Coordinates (ICs), chemical graphs, and
Simplified Molecular-Input Line-Entry System (SMILES) string.

semantics of chemical structures in a manner analogous to language modeling.
SMILES-based methods have shown success in molecular property prediction
and de novo molecule generation [48], [49]. However, they struggle to capture
molecular symmetries, are sensitive to the specific SMILES enumeration used,
and do not naturally encode geometric or topological information.

On the other hand, graph-based methods represent molecules as a collec-
tion of atoms (nodes) connected through bonds (edges). This representation
aligns directly with the relational nature of chemistry and enables the use of
Graph Neural Networks (GNNs) [50], [51]. GNNs update atomic features by
aggregating information from neighboring atoms through message passing:

x
(l+1)
i = ϕ


x(l)i ,

⊕

j∈N (i)

ψ
(
x
(l)
i , x

(l)
j

)

 , (3.1)

where x
(l)
i is the feature vector of atom i at layer l, N (i) denotes its neighbors, ψ

computes pairwise messages,
⊕

is a permutation-invariant aggregation function
(e.g., sum or mean), and ϕ updates the atomic representation. This design
ensures invariance to the ordering of atoms and provides a natural framework
for incorporating other molecular symmetries.

Symmetries play a central role in the design of neural architectures for
chemistry [52], [53], [54], [55]. For example, if we were to predict the forces on
the atoms of an isolated molecule, it is desirable for the prediction to rotate
along with the input molecule. However, if we were to predict its strain energy,
the prediction should not change with global roto-translations of the input.
We say that the forces model should be equivariant w.r.t. rotations while
the energy model should be invariant. In general, given a model m and a
transformation t, we say that m is equivariant w.r.t. t if

m(t(x)) = t(m(x)), (3.2)

and invariant if

m(t(x)) = m(x). (3.3)
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Note that the transformation acting before and after the model need not be
identical, as it may operate on different spaces

Incorporating these symmetries not only enhances physical consistency
but also reduces data requirements and constrains the hypothesis space of
learnable models [53], [56]. In molecular systems, the most relevant symmetry
groups are permutation, rotation, and translation. The permutation group
is the largest of the three, and GNNs are inherently permutation-invariant.
Additional symmetry properties can be achieved through careful design of
the message-passing and update functions. For instance, defining messages
based solely on interatomic distances yields rotation-invariant models, whereas
representing messages in terms of relative position vectors enables rotationally
equivariant outputs (Figure 3.2).

model

transformation

prediction

Figure 3.2: Model equivariant to rotations: applying a rotation to the input
molecule before or after model evaluation leads to equivalently rotated outputs.



Chapter 4

Molecular dynamics

Molecules are inherently dynamic, and their properties depend on the ensemble
of conformations they can adopt. Molecular dynamics (MD) is a computa-
tional technique that simulates the time evolution of molecular systems under
specified thermodynamic conditions by numerically integrating their equations
of motion. In this thesis, we use classical MD simulations within the canonical
ensemble (constant number of particles, volume, and temperature). Under these
conditions, the equations of motion govern the evolution of atomic positions
and momenta according to the laws of classical mechanics, with interatomic
forces derived from a potential energy surface defined by a molecular force field.
To maintain a constant temperature, the system is coupled to a heat bath,
which introduces random forces, resulting in stochastic dynamics.

4.1 Langevin dynamics

A widely used formulation of molecular dynamics, particularly when coupling
to a thermal bath is desired, is Langevin dynamics [57]. The Langevin equation
introduces both frictional and stochastic forces that mimic the interaction of
the system with its environment. Let x ∈ Ω and p ∈ R3N denote the positions
and momenta of N particles, respectively. The Langevin dynamics stochastic
differential equation (SDE) is given by

dx =
p

m
dt,

dp = −∇xU(x) dt− γ

m
p dt+

√
2γkBT dW,

(4.1)

where ∇x denotes the gradient w.r.t. to the positions, U(x) is the potential
energy, γ is the friction coefficient, m is the mass, kB is the Boltzmann constant,
T is the temperature, and W is a standard Wiener process [58] representing
Gaussian thermal noise.

In the high-friction limit, inertial effects become negligible compared to
frictional damping. This regime leads to the overdamped approximation [59], in
which the momentum variables relax much faster than the positions and can be
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effectively eliminated. The resulting dynamics evolve directly in configuration
space according to

γ dx = −∇xU(x) dt+
√
2γkBT dW. (4.2)

4.2 Fokker–Planck equations

The Langevin SDE defines a continuous-time Markov process on phase space
(x,p). The evolution of the corresponding probability density p(x,p, t) is
governed by a Fokker–Planck equation [60], [61],

∂p(x,p, t)

∂t
= −Lp(x,p, t), (4.3)

where L is the Fokker-Planck operator. L can be derived for a given SDE by
assuming that the continuity equation,

∂p

∂t
+∇x ·

(
p
p

m

)
= 0, (4.4)

holds.

For Langevin dynamics, L takes the form

Lp = p
m · ∇xp+∇p · [(∇xU(x) + γ

mp)p]︸ ︷︷ ︸
Transport

+ γkBT∇2
pp︸ ︷︷ ︸

Diffusion

, (4.5)

which is commonly referred to as Kramers’ equation [62].

Often, we are primarily interested in the time evolution and equilibrium
statistics of the positional coordinates x, rather than the full phase-space
dynamics. The marginal configurational distribution is obtained by integrating
out the momentum variables:

p(x, t) =

∫
p(x,p, t) dp. (4.6)

The corresponding Fokker–Planck equation for the overdamped Langevin
dynamics governs the time evolution of the configuration-space probability
density p(x, t),

∂p(x, t)

∂t
= ∇x ·

[
1

γ
∇xU(x) p(x, t)

︸ ︷︷ ︸
Transport

+
kBT

γ
∇2

xp(x, t)

︸ ︷︷ ︸
Diffusion

]
. (4.7)

which is known as the Smoluchowski equation [63]. Note that canceling the
diffusion term, setting γ = 1 and identifying −∇xU(x) with the velocity vector
field recovers the continuity equation, Eq. 4.4.
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4.3 Boltzmann (equilibrium) distribution

Assuming ergodic dynamics, i.e., the configurations space does not have two
or more subsets that are dynamically disconnected, the stationary solution of
Kramers’ equation corresponds to the Boltzmann distribution [64]:

µ(x,p) = Z−1 exp[−βH(x,p)] , (4.8)

where H(x,p) = p2

2m + U(x) is the Hamiltonian, β = (kBT )
−1 is the inverse

temperature, and Z is the partition function, which is only tractable in simple
examples.

This stationary solution represents a balance between the dissipative effects
of friction and the randomizing influence of thermal noise. In this state, probab-
ility fluxes in phase space cancel out, and Langevin dynamics can be interpreted
as a stochastic process whose long-time behavior samples configurations from
the canonical ensemble.

Because the Hamiltonian is separable in x and p, the equilibrium distribution
factorizes as

µ(x,p) ∝ µx(x)µp(p), (4.9)

where the momentum distribution µp(p) follows a Maxwell–Boltzmann distri-
bution [65],

µp(p) =

(
β

2πm

)3N/2

exp

[
−β p2

2m

]
, (4.10)

and the configurational marginal µx distribution is given by

µx(x) = Z−1
x exp[−βU(x)], (4.11)

with Zx =
∫
exp[−βU(x)] dx. Notably, µx is also the stationary solution of

Smoluchowski equation.
This marginal distribution over x corresponds to the canonical ensemble in

configuration space. The potential energy U(x) defines an energy landscape
whose local minima correspond to metastable conformations, while thermal
fluctuations allow transitions between them.

4.4 Transfer operators

Transfer operators provide a complementary perspective on the time evolution
of probability densities. Assuming Markovian dynamics, the transition density
p(xτ | x0, τ) is well defined. The transition density denotes the probability of
observing the system in state xτ after a lag time τ , given that it was in state
x0 at time zero. The Perron–Frobenius transfer operator1 Pτ [66], [67] maps

1Technical note: There exist multiple formulations of transfer operators. Here, for clarity
of presentation, we refer to the Perron–Frobenius operator as the transfer operator. In some
contexts, including in Paper 3, the µ-weighted density propagator is also referred to as the
transfer operator.
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an initial probability density p0 to the propagated density p(x, τ) according to

p(x, τ) = (Pτp0)(x) =

∫
p(x | x0, τ) p0(x0) dx0. (4.12)

Thus, Pτ acts as a linear operator that transports probability densities forward
in time by integrating over all possible transitions between states.

The transfer operator can equivalently be expressed in differential form
through its infinitesimal generator, given by the Fokker–Planck operator intro-
duced in Eq. 4.3. Then, the finite-time propagator is recovered through the
exponential relation

Pτ = eτL. (4.13)

Hence, while the Fokker–Planck operator governs the instantaneous rate of
change of probability densities, the transfer operator describes their evolution
over a finite time horizon.

The transfer operator can also be written in spectral form [68]. Assuming
detailed balance is satisfied, Pτ admits an eigendecomposition of the form

Pτp0 =
∑

i

λi ⟨p0, ψi⟩ϕi, (4.14)

where {λi} are the eigenvalues satisfying

1 = λ1 > λ2 ≥ λ3 ≥ · · · ≥ −1,

and {ϕi, ψi} denote the corresponding right and left eigenfunctions, respectively.
Since the transfer and Fokker–Planck operators are connected via an exponential
relation (Eq. 4.13), the two operators share the same eigenfunctions. Their
eigenvalues are also connected exponentially according to

τi = − τ

ln |λi|
. (4.15)

where τi are the eigenvalues of the Fokker–Planck operator, corresponding
to the characteristic relaxation rates of the underlying stochastic dynamics.
Transfer operator eigenvalues close to one correspond to large relaxation times,
indicating slow dynamical processes that dominate the long-term kinetics of
the system.

The leading eigenfunction ϕ1 corresponds to the stationary (equilibrium)
density, since Ptϕ1 = ϕ1 = µ. Moreover, the subdominant eigenfunctions
ϕ2, ϕ3, . . . describe slowly relaxing modes of the dynamics, such as transitions
between metastable conformations or large-scale collective rearrangements in
molecular systems.

Finally, the action of the transfer operator is additive. If the transfer
operator at lag time τ is known, then operators at integer multiples of this lag
time, ∆t = Nτ , can be obtained through sequential applications of Pτ ,

PNτp0 = (Pτ )Np0 =
∑

i

λNi ⟨p0, ψi⟩ϕi, (4.16)

where the eigenvalues are raised to the Nth power, reflecting the exponential
decay of the corresponding dynamical modes over time.
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Molecular properties

Predicting the properties of molecules is an essential part of drug design since
it allows for the identification of promising candidates and reduces the cost
and time of experimental testing [69], [70]. In principle, accurate property
prediction requires access to representative conformational ensembles, which
can be generated using MD simulations. However, some applications may
allow compromising performance in favor of reduced runtime and graph-based
methods may be preferred.

Graph-based models for property prediction take the molecular graph (or
SMILES) as input and generate predictions as outputs. Diverse models can
be used in this context such as logistic regression, support vector machines,
random forests or neural networks [71]. One particularly important type of
models are QSAR models [8], which are used to predict the activity of drug
candidates w.r.t. a given target. QSAR models can be classified into regression
models, which predict continuous activity values, or classification models, which
predict categorical activity values [9]. These models tend to be lightweight
and fast and therefore are often used for building scoring functions guiding
generative models.

In contrast, ensemble-based methods rely on inferring molecular properties
from a representative conformational ensemble, {x}. Given independent and
identically distributed (i.i.d.) conformations sampled from the Boltzmann
distribution or the transition probability distribution, a molecular property
(observables), O can be computed via Monte Carlo estimation [72],

1. Stationary observables:

Of = Ex∼µ [f(x)] . (5.1)

2. Dynamic observables / Time correlation functions:

Of(0),g(∆t) = Ex0

[
Ex∆t∼p(x∆t|x0,∆t) [f(x0) · g(x∆t)]

]
, (5.2)

Here, f and g : Ω → RL denote observable or forward model functions that
map microscopic configurations to measurable quantities. These functions
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capture physical properties such as interatomic distances, binding states, or
order parameters, leading to macroscopic observables such as binding affinities,
reaction rates, or conformational transition timescales. In conclusion, accurate
prediction of molecular properties fundamentally depends on the ability to
sample from both the Boltzmann distribution and the corresponding transition
density, with molecular dynamics remaining the principal computational tool
for generating such samples.

5.1 Limitations of MD for predicting molecular
properties

Despite its theoretical rigor, molecular dynamics (MD) faces significant chal-
lenges when used for molecular property prediction. These limitations arise
from both analytical intractability and computational inefficiency inherent to
high-dimensional stochastic dynamics.

Analytical solutions of the underlying transfer operator are only available
for simple systems, such as free diffusers or harmonic oscillators. For realistic
molecular systems with rugged, high-dimensional energy landscapes, closed-
form solutions of the transfer operator are generally intractable. Consequently,
the propagation of probability densities and the computation of ensemble
averages must rely on numerical simulations.

While the Boltzmann distribution provides a formal expression for the
stationary density, the partition function is typically intractable. Even when
unnormalized analytical expressions for µ(x) are available, generating repres-
entative samples remains difficult because molecular systems tend to spend
most of their time in low-energy regions, leading to inefficient exploration of
the configurational space.

In practice, representative ensembles are obtained through numerical integ-
ration of MD SDEs, such as Eqs. 4.1 and 4.2. MD simulations must employ
extremely small integration time steps (on the order of 1—2 femtoseconds)
to accurately resolve the fastest degrees of freedom in the system, such as
bond vibrations or angle oscillations, and preserve numerical stability. This
constraint leads to the need for an enormous number of integration steps to
access biologically relevant timescales, which often span from microseconds to
milliseconds. Furthermore, the number of integration steps needed to obtain
representative sampling grows rapidly with system dimensionality and with
the metastability of the potential energy surface. This makes MD particularly
inefficient for systems exhibiting rare transitions between long-lived states,
such as protein folding, conformational rearrangements, or ligand binding and
unbinding events.

To illustrate these challenges, consider the overdamped Langevin dynamics
(Eq. 4.2). For an infinitesimally small time step τ , the conditional probability
distribution of the particle position admits a closed-form Gaussian expression,

p(xτ | x0, τ) = N
(
xτ | x0 −∇U(x0)γ

−1τ, 2kBTγ
−1τ

)
. (5.3)
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Figure 5.1: MD require many simulation steps to generate representative
ensembles. Because integration times need to be small for stable simulation,
the next step distribution is shallow. All constants but infinitesimally time
increment, τ , are set to 1 for clarity of presentation.

This expression illustrates that transitions between wells correspond to rare
events, since crossing the energy barrier requires a fluctuation far in the tail of
the transition probability density. As a result, the system can remain trapped
in a single well for long periods, leading to slow mixing and biased estimates of
equilibrium ensemble properties (Fig. 5.1).

Alternative numerical approaches such as Markov Chain Monte Carlo
(MCMC) [22], [23], [24] and enhanced sampling techniques [73] have been de-
veloped to accelerate convergence toward the Boltzmann distribution. MCMC
algorithms can in principle sample from arbitrary distributions without expli-
citly integrating MD equations. However, they often suffer from low acceptance
rates in high-dimensional or rugged energy landscapes, leading to poor ex-
ploration and long autocorrelation times—limitations closely related to those
encountered in MD. Enhanced sampling methods, such as replica-based ap-
proaches [74], [75], [76], conformational flooding [77], meta-dynamics [78],
and umbrella sampling [79], aim to overcome energy barriers by biasing the
sampling process or introducing auxiliary variables. While these approaches
can significantly improve mixing efficiency, they generally require extensive
system-specific parameter tuning, careful bias design, or prior knowledge of
slow collective variables. Moreover, because these techniques artificially alter
the underlying dynamics, they do not provide physically meaningful informa-
tion about kinetics or transition pathways, restricting their applicability when
dynamical observables are of interest.

These limitations highlight the fundamental trade-off in molecular simu-
lation: while MD provides a principled route to sampling equilibrium and
dynamical distributions, its computational cost scales poorly with system
complexity. This motivates the development of alternative or complement-
ary density estimators—such as deep generative models—that can learn to
approximate or accelerate the sampling of molecular ensembles.
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Chapter 6

Traditional approaches to
molecular generation

Traditionally, the design of new molecular structures satisfying specific physico-
chemical or biological requirements relied on a combination of human expertise,
heuristic rules, and computational search methods. These approaches aimed to
explore chemical space in a directed manner by using known molecular scaf-
folds, reaction templates, and property predictors to guide the search toward
compounds with desirable features. While these strategies achieved significant
successes, they were limited by combinatorial complexity, lack of diversity, and
dependence on prior chemical intuition.

One of the earliest systematic approaches was combinatorial chemistry
[80], in which large libraries of compounds were generated by combining sets
of chemical building blocks according to predefined reaction schemes. This
enabled rapid synthesis and screening of extensive molecular collections but
provided little control over the resulting property distributions. Combinatorial
chemistry was often coupled with high-throughput screening (HTS) [81], where
physical or virtual assays were used to identify molecules showing desired
biological activity. Although HTS revolutionized early-stage drug discovery, it
remained costly and inefficient, as only a small fraction of tested compounds
exhibited the intended activity or acceptable pharmacokinetic properties.

To improve the efficiency of this process, structure–activity relationship
(SAR) [82] and quantitative structure–activity relationship (QSAR) [8], [9]
models were developed. These models established empirical mappings between
molecular descriptors and target properties, allowing the prediction of biological
or physicochemical behaviors for untested compounds. Despite their usefulness,
these approaches depended on manually designed molecular modifications
guided by chemical expertise and iterative trial-and-error.

Another important paradigm was fragment-based drug design (FBDD),
which aimed to assemble small, experimentally validated molecular fragments
into larger and more potent ligands. This allowed for a more controlled
exploration of chemical space by combining fragments that were already known
to bind to specific regions of a target protein. Similarly, pharmacophore
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modeling [83] abstracted the essential chemical features responsible for biological
activity—such as hydrogen-bond donors, acceptors, or hydrophobic centers—
and used these abstractions as templates to identify or design new molecules
with comparable functionality.

Further important contributions were virtual screening and evolutionary
algorithms. In virtual screening [84], large molecular databases were com-
putationally evaluated against scoring functions that approximated binding
affinity or other desired properties. Evolutionary algorithms [25], by contrast,
approached molecular design as an optimization problem over discrete chemical
structures. Molecules were treated as evolving populations, with successive
generations produced by mutation, crossover, and selection based on heuristic
fitness functions. While conceptually appealing, these methods suffered from
several key limitations. Their search was often inefficient, as random structural
mutations tend to disrupt molecular validity or lead to chemically implausible
intermediates. Furthermore, evolutionary algorithms lacked a learned repres-
entation of chemical space—each optimization run effectively started from
scratch, without leveraging statistical patterns from existing molecular data.
As a result, these methods struggled to generalize or to efficiently exploit prior
knowledge about molecular structure–property relationships.

Overall, traditional molecular generation can be viewed as an iterative
cycle of proposal, evaluation, and refinement. Molecular candidates were pro-
posed through rule-based or stochastic approaches, evaluated using property
prediction models, and refined according to expert judgment. While these
methods established important paradigms that remain influential today, they
were fundamentally limited by their reliance on hand-crafted rules and heur-
istics rather than learned representations of chemical space. Each approach
required extensive domain expertise to define appropriate molecular modi-
fications, reaction templates, or search operators, and these definitions had
to be manually adjusted for different design objectives. Furthermore, prior
knowledge about molecular structure and properties could not be systematically
leveraged across different tasks or domains. These limitations, motivated the
development of data-driven generative modeling frameworks, which aim to
learn molecular distributions directly from large datasets and provide more
flexible, generalizable approaches to molecular design.
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Deep generative modeling

Generative models are probabilistic models of data distributions. They learn
a parameterized distribution pθ(x) that approximates the underlying data
distribution pdata(x) from observed samples. Once trained, they enable infer-
ence—that is, the generation of new samples or the estimation of probabilities
under the learned distribution.

Formally, generative models define pθ(x) via a transformation of latent
variables z ∼ p(z) drawn from a simple base distribution (e.g., a Gaussian)
through a parameterized mapping. The key design question lies in how this
transformation is parameterized. Two major paradigms have emerged in
modern deep learning for generative modeling: auto-regressive models and
probability flow models, which are compared in Table 7.1. These approaches
differ in how they represent densities and construct sampling procedures, but all
share the goal of learning expressive, high-dimensional probability distributions.
Such generative modeling frameworks are the underpin some of the most
significant recent advances in artificial intelligence, such as large language
models [46], [47], image [85], [86], [87] and video [88], [89] generation or protein
structure prediction models [90], [91], [92].

7.1 Auto-regressive models

Auto-regressive (AR) models [93], [94], [95] decompose the joint distribution
over data into a product of conditional probabilities. For a D-dimensional
vector x = (x1, . . . , xD), the joint density can be written as

pθ(x) =

D∏

i=1

pθ(xi | x1, . . . , xi−1). (7.1)

Each conditional distribution is represented by a neural network that pre-
dicts the next component given the previously generated ones. Training is
performed by maximum likelihood estimation (MLE), minimizing the negative
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Training Inference Likelihood
Auto-regressive
models

Maximum
likelihood

Sequential
sampling

Exact,
inexpensive

Diffusion
models

Score matching
Integration of
learned SDE or
associated ODE

Intractable

Continous
Normalizing
Flows

Maximum
likelihood or
flow matching

Integration of
learned ODE

Tractable,
expensive

Table 7.1: Comparison of major deep generative model families. Each model
type is characterized by its training objective, the nature of its sampling or
inference procedure, and whether the model admits a tractable expression for
the data likelihood.

log-likelihood of observed data:

LAR(θ) = −Ex∼pdata

[
D∑

i=1

log pθ(xi | x<i)

]
. (7.2)

Because this factorization yields an exact likelihood, optimization is tractable.
Inference proceeds sequentially: given x<i, the model samples xi ∼ pθ(xi |

x<i) until a complete vector x is produced. While this sequential nature
allows fine-grained control over dependencies, it also imposes a computational
bottleneck for high-dimensional systems.

In molecular applications, auto-regressive models are used for example in
sequential graph generation [14], [15], where atoms and bonds are sampled
step-by-step. Common implementations employ masked transformers [5] or
graph neural networks [15].

7.2 Probability flow models

Probability flow models [96], [97] define a continuous transformation between
a simple, easy-to-sample base distribution p0 (typically a Gaussian) and the
data distribution p1 = pdata. This transformation is governed by a differential
equation whose dynamics evolve samples from noise to data.

Depending on whether the dynamics are deterministic or stochastic, two
main classes of models emerge: continuous normalizing flows [98], [99], using
an ordinary differential equation (ODE), and diffusion models [100], [101], [102],
implementing a stochastic differential equation (SDE):

dxt = uθ
t (xt) dt (Continuous normalizing flow), (7.3)

dxt = uθ
t (xt) dt+ σt dWt (Diffusion model). (7.4)

Here, uθ
t (xt) denotes a neural network parameterizing the time-dependent

vector field, σt is a time-dependent diffusion coefficient controlling the noise
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magnitude, Wt represents standard Wiener process, and t ∈ [0, 1] indexes the
transformation from noise to data. Note that the SDE underlying a diffusion
model corresponds to a time-dependent (inhomogeneous) overdamped Langevin
SDE.

Training a probability flow model involves learning the vector field uθ
t (x).

Once trained, inference proceeds by drawing initial samples x0 ∼ p0 and
numerically integrating the corresponding differential equation.

In the following sections, we introduce continuous normalizing flows and
diffusion models, and describe how the vector field uθ

t (x) can be trained using
samples from pdata.

7.2.1 Continuous normalizing flows

Continuous normalizing flows (CNFs) represent the deterministic subclass of
probability flow models. Originally, they were originally trained by maximizing
the data likelihood,

LCNF(θ) = −Ex∼pdata
[log pθ(x1)]. (7.5)

The model likelihood can be computed via the change-of-variables formula,
which describes which describes the evolution of the density pθt (x) evolves along
the flow trajectory:

d

dt
log pθt (xt) = −∇· uθ

t (xt). (7.6)

This expression corresponds to the continuity equation (Eq. 4.4), evaluated
along the flow trajectory rather than at a fixed spatial location. By integrating
the divergence term along each trajectory, CNFs enable exact likelihood com-
putation and, in principle, optimization of Eq. 7.5. In practice, however, this
approach demands explicit numerical integration of the flow dynamics, which
is computationally expensive and often unstable, making training difficult or
even impractical.

A more practical alternative is the flow matching framework [103], which
avoids explicit likelihood computation. Flow matching defines a conditional
interpolation path transporting samples from p0 to pdata. A simple and common
choice is the linear interpolant,

xt = (1− t)x0 + tx1, t ∈ [0, 1], (7.7)

which defines a straight-line trajectory. The corresponding conditional target
velocity field is

ut(xt | x1) =
dxt

dt
= x1 − x0. (7.8)

The model vector field uθ
t is trained to approximate this target conditional

field under the conditional flow matching loss,

LFM(θ) = Et,xt∼qt

[
∥uθ

t (xt)− ut(xt | x1) ∥2
]
, (7.9)
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where qt denotes the reference interpolation between p0 and pdata. Crucially,
this objective only requires samples from the base and data distributions—no
likelihood computation or ODE solving is needed during training.

7.2.2 Diffusion models

Diffusion models are the stochastic variant of probability flow models. Like
CNFs, they define a continuous interpolation between samples from the base and
target distributions. A common instance is the Denoising Diffusion Probabilistic
Model (DDPM) framework [100], which employs a normal interpolant,

pt(xt | x1) = N (xt |
√
αtx1, (1− αt)I), (7.10)

where the noise scheduler αt is a continuously differentiable and monotonic
function of t satisfying α0 = 0 and α1 = 1.

An associated SDE bridges the base and data distributions [101], [104],

dxt = −1

2
βt (x+ 2∇ log pt(x)) dt+

√
βtdWt, (7.11)

where βt = −d logαt

dt , and ∇ log pt(x) is the marginal score. Alternatively, the
corresponding ODE [101], [104] may be used for inference,

dxt = −1

2
βt (x+∇ log pt(x)) dt. (7.12)

In both cases, learning the marginal score also yields an expression for uθ
t .

Because the true score is intractable, it is approximated via score-matching
loss [101] by regressing a model ϵθ against the conditional score,

Lscore(θ) = Et,x1,xt

[
∥ϵθ(xt, t)−∇xt

log pt(xt | x1)∥2
]
. (7.13)

Moreover, by writing xt as
√
αtx1 +

√
1− αtϵ, with ϵ ∼ N (0, I) (Eq. 7.10),

this loss simplifies to a denoising objective,

Lscore(θ) = Et,x1,xt

[∥∥∥∥ϵθ(xt, t)−
xt −

√
αtx1√

1− αt

∥∥∥∥
2
]
= Et,x1,ϵ

[
∥ϵθ(xt, t)− ϵ∥2

]
,

(7.14)

revealing that training a diffusion model corresponds to learning to denoise
progressively corrupted data. This loss can be viewed as a simplified version of
the variational lower bound optimization [100], [101].

Standard diffusion models operate in Euclidean space, but molecular sys-
tems often include periodic variables, such as dihedral angles, which lie on the
n-dimensional torus Tn. In such cases, Euclidean diffusion produces discontinu-
ities at angular boundaries. Riemannian diffusion models [105], [106] generalize
diffusion to manifolds such as the torus, sphere with minor modifications. On
the torus, the forward diffusion process is defined by a rescaled Brownian mo-
tion on the manifold, with the key difference that the base distribution p0(θ) is
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uniform over Tm rather than Gaussian [107]. The corresponding interpolant for
this process is a wrapped normal distribution, which accounts for the periodic
topology by summing Gaussian contributions over all equivalent points under
the identification θ ∼ θ + 2πd for d ∈ Zm,

p(θt | θ1) ∝
∑

d∈Zm

exp

(
−∥θ1 − θt + 2πd∥2

2γ2t

)
, (7.15)

where γ contains noise levels.
The reverse-time sampling then proceeds as a geodesic random walk on the

torus, ensuring that generated conformations respect the angular boundary
conditions.
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Chapter 8

Generative molecular
modeling

As discussed in the previous chapters, many of the key challenges in molecular
design can be reformulated as problems of sampling from complex probability
distributions. Deep generative models (DGMs) offer a powerful and flexible
framework for learning and approximating such distributions. In this work,
we investigate how these models can be leveraged to accelerate molecular
property prediction and molecular generation by serving as efficient surrogates
of hard-to-sample molecular distributions.

8.1 Generative molecular dynamics

As discussed in Chapter 5.1, estimating molecular properties fundamentally
relies on sampling from the equilibrium and transition probability distributions
that govern molecular dynamics. Traditionally, these samples are obtained
through MD simulations. However, MD is computationally expensive due to
its need for very small integration time steps to maintain numerical stability,
leading to slow mixing and poor sampling efficiency.

A promising alternative is to replace explicit simulation with a DGM that
approximates the relevant probability distributions directly. This family of
methods, often referred to as generative molecular dynamics (GMD), aims to
learn surrogate models for either the equilibrium distribution or the transition
probability distribution. Once trained, such models can generate statistic-
ally valid molecular configurations or trajectories at a fraction of the cost of
conventional simulation.

8.1.1 Surrogate models of the equilibrium distribution

Surrogate models that approximate the equilibrium (Boltzmann) distribution
are known as Boltzmann Generators (BGs) [6]. Boltzmann Generators use
a deep generative model—typically a normalizing flow—to learn a mapping
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between a simple latent distribution (e.g., a multivariate Gaussian) and molecu-
lar configurations in equilibrium. Samples from the generative model are then
reweighted to recover unbiased estimates with respect to the target Boltzmann
distribution,

wi =
µ(xi)

pθ(xi)
∝ exp(−βU(xi))

pθ(xi)
, (8.1)

where pθ(x) is the DGM density.

To be effective, Boltzmann Generators must (i) approximate closely the
Boltzmann distribution, (ii) allow efficient, i.i.d. sampling from pθ, thereby
avoiding iterative simulation, and (iii) permit exact likelihood evaluation to
enable unbiased importance reweighting. This combination enables direct
computation of thermodynamic observables and free energy differences without
requiring long MD trajectories. Early Boltzmann Generators [6], [108], [109],
[110] demonstrated the feasibility of learning complex equilibrium distributions
but suffered from limited transferability across molecular systems. Recent work
[111], [112], [113] has improved generalization, though applicability remains
largely restricted to small molecules and peptides.

Another related approach is Boltzmann emulators, which do not aim to
capture full atomistic detail but instead focus on key degrees of freedom, such
as dihedral angles of rotatable bonds [26], [107] in small molecules, or Cartesian
coordinates of alpha carbons in peptides and proteins [114]. In particular,
BioEMU [114] demonstrated remarkable transferability across medium-sized
soluble proteins, highlighting the potential of generative equilibrium models
in biomolecular systems. While Boltzmann emulators do not permit exact
reweighting with respect to the full Boltzmann distribution, they offer dimen-
sionality reduction benefits, including lighter inference and likelihood evaluation,
and approximate reweighting can still, in principle, be performed [26].

Generative
 model

Sample

Re-weight 𝑒−𝑢(𝑥)

𝑝(𝑥)

Figure 8.1: Boltzmann Generators: a generative model samples a surrogate
equilibrium distribution and associated sample probabilities. The generated
ensemble is subsequently reweighted with respect to the Boltzmann distribution
to recover unbiased estimates of thermodynamic observables.
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...
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Figure 8.2: Implicit transfer operators learn surrogate models of molecular
dynamics at arbitrary time lags.

8.1.2 Surrogate models of the transition probability

While Boltzmann Generators target equilibrium statistics, they neglect temporal
correlations present in molecular trajectories and therefore cannot be used to
estimate dynamical observables, such as relaxation times or transition rates.
To address this limitation, an alternative line of work focuses on learning
surrogate models of the transition probability distribution [113], [115], [116],
[117]. By learning this distribution directly from MD trajectories, these models
can generate dynamically consistent samples and enable estimation of both
thermodynamic and kinetic properties without requiring explicit numerical
integration of the equations of motion.

Most existing surrogates of the transition probability distribution use a
fixed lag time ∆t. However, molecular systems exhibit rich multi-scale behavior
and an ideal surrogate for the transition density should accommodate arbitrary
lag times. The Implicit Transfer Operator (ITO) framework [118] addresses this
challenge by training a conditional generative model that explicitly depends on
the lag time ∆t as an input variable. During training, the model is exposed to
trajectory segments with varying time intervals, learning to generate configura-
tions xt+∆t conditioned on both the initial state xt and the desired lag time
∆t. This yields a continuous family of transfer operators T∆t parameterized by
a neural network that side-step numerical integration of MD trajectories.

8.2 Generative chemistry

As presented in Chapter 6, classical approaches to molecular structure gener-
ation maintained a separation between the generation and evaluation stages,
limiting their ability to efficiently explore chemical space and capture the com-
plex distributions governing molecular structures and properties. Evolutionary
algorithms enabled automation, but treated molecular design as an optimization
over discrete structures, evolving populations through mutation, crossover, and
selection, often producing invalid molecules. Moreover, the absence of learned
chemical representations made their search inefficient and poorly generaliz-
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able, hindering the effective use of prior knowledge about structure–property
relationships.

In contrast, modern deep generative and reinforcement learning frameworks
address many of these shortcomings by learning differentiable, data-driven
representations of molecular distributions and optimizing objectives directly
in continuous latent spaces. These models can adaptively explore chemical
space, balance exploitation and exploration, and incorporate gradients from
predictive models or experimental feedback to guide the generation process
more effectively.

DGMs are increasingly being adopted for de novo design, leading to the
emerging field of generative chemistry. Most approaches start from training
a prior generative model on large chemical datasets, which can be seen as
‘foundation models’ for chemistry. However, these models may not generate
molecules that satisfy the design requirements. Therefore, transfer learning
[119], [120] is used to bias the prior model towards regions of chemical space
that are more desirable. There are two main approaches. The first one consists
of fine-tuning the prior model on a smaller dataset of molecules satisfying the
design constraints [121]. The second one relies on the availability of a scoring
model, assessing the desirability of molecules, and consists of biasing the prior
model to promote the generation of highly scored compounds [14]. If target
data are scarce, usually the first approach is preferred, but if a reliable model
is available, it may be exploited by following the second approach.

Several types of generative models have been proposed to model molecular
structure distributions [122]. Previous work based on SMILES strings has used
Recurrent Neural Networks (RNNs) [14], [121], [123], Variational Autoencoders
(VAEs) [124], [125], Transformers, or Generative Adversarial Networks (GANs)
[126], [127]. Methods using a graph representation have used different types
of GNNs [128] such as Gated Graph Neural Networks (GGNN) [15] or Graph
Convolutional Neural Networks (GCNNs) [129] to iteratively sample actions
that build up a chemical graph. More recently, 3D-generative models [130], [131]
have explored molecular generation directly in the binding pocket, potentially
accounting explicitly for physical interactions. Prevalent methods are diffusion
models [101], [132], [133] and normalizing flows [99] powered by equivariant
models [52], [53], [134], [135].

The convergence of deep generative modeling with molecular simulation
and design represents a fundamental shift in computational chemistry. Rather
than relying solely on physics-based simulation or heuristic search, we can now
learn probabilistic surrogates that capture the complex distributions governing
molecular structure, dynamics, and properties. This thesis explores how such
models can be leveraged to address key bottlenecks in molecular science: from
accelerating equilibrium and dynamical sampling in molecular dynamics, to
enabling efficient exploration of chemical space for molecular design. The
papers presented in the following chapters investigate specific instantiations
of this paradigm, demonstrating how generative models can serve as flexible,
data-driven alternatives to traditional computational approaches.



Chapter 9

Summary of included
papers

9.1 Generation of conformational ensembles of
small molecules via Surrogate Model-Assisted
Molecular Dynamics

The first paper addresses the challenge of developing transferable surrogate
models for molecular equilibrium distributions. We introduce Surrogate Model-
Assisted Molecular Dynamics (SMA-MD), a novel method for generating
equilibrium conformational ensembles of small molecules. SMA-MD integrates
a deep generative model (DGM) that samples slow molecular degrees of freedom
with a subsequent reweighting and short simulation step that equilibrates the
fast degrees of freedom. This approach produces conformational ensembles
that are both more diverse and more physically realistic than those obtained
through conventional MD simulations alone.

We use a two-step procedure to generate molecular conformations. First,
we use a deterministic algorithm to generate the local structure of each atom,
and then we use a diffusion model to sample the torsion angles of rotatable
bonds [107]. The diffusion model is trained on MD simulations of small non-
cyclic molecules. Second, we reweight the generated conformations against the
Boltzmann distribution and run short parallel MD simulations to thermalize
and mix the fast degrees of freedom.

We evaluate our method by comparing it with MD and Replica Exchange
(RE) simulations on various metrics, such as conformer generation, potential
energy, free energy of solvation, and slow transitions. We show that SMA-
MD outperforms MD in generating more diverse and energetically favorable
ensembles, and matches RE in capturing the relevant states and properties of
molecules.

We conclude that SMA-MD is an efficient and robust method for sampling
from the Boltzmann distribution of molecules. We highlight the advantages of
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SMA-MD over MD, such as data aggregation, parallelization, and independence
of initial conditions. We also discuss the limitations and future directions of
SMA-MD, such as extending it to cyclic molecules, improving the computational
cost of sampling, and training Boltzmann surrogates with large-scale data.

SMA-MD shows promising results toward accelerating the generation of
representative conformational ensembles of molecules with DGMs. As such,
SMA-MD is a step toward faster methods for predicting molecular properties,
which is fundamental in drug design.
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9.2 Transferable Generative Models Bridge Femto-
second to Nanosecond Time-Step Molecular
Dynamics

The second paper introduces Transferable Implicit Transfer Operators (TITO),
a transferable surrogate model of molecular dynamics that learns the transition
probability distribution directly from simulation data. Unlike conventional MD
simulations constrained by femtosecond time steps, TITO models the effective
rules of molecular motion across arbitrary lag times, accelerating sampling by
up to four orders of magnitude while preserving physical accuracy.

As a surrogate model, TITO replaces explicit numerical integration with
learned transition probabilities. The framework employs continuous normaliz-
ing flows with equivariant flow matching to parametrize these distributions,
capturing how atomic configurations evolve over time without step-by-step
propagation. Trained on MD trajectories of small organic molecules and
tetrapeptides, TITO learns transferable transition statistics that generalize
across both chemical composition and temporal scale. This surrogate approach
maintains consistency with the underlying stochastic process, preserving crit-
ical statistical properties including Boltzmann equilibrium, Markovianity, and
relaxation dynamics.

We benchmark TITO’s performance as a dynamics surrogate across ther-
modynamic and kinetic observables. The model quantitatively reproduces
Boltzmann distributions and relaxation timescales for unseen molecules and
peptides, matching or exceeding the conformational coverage achieved by reg-
ular MD. Remarkably, although trained only on nanosecond-scale data, this
transferable surrogate correctly identifies metastable states and predicts ex-
change timescales on the microsecond scale—states that remain inaccessible
to conventional MD within practical computational limits. The model also
demonstrates qualitative transferability to peptides twice the size of training
systems through simple physical scaling corrections.

TITO’s transferable surrogate framework offers distinct advantages: explicit
control over the accuracy-efficiency trade-off, generalization across molecular
systems and sizes, and the ability to generate milliseconds of simulation time
per day on a single GPU. However, current limitations include restriction
to implicit solvent, system sizes below a few hundred atoms, and degraded
performance for very large extrapolations. Nevertheless, TITO establishes a
new paradigm by learning transferable transition operators directly, providing
a plausible pathway to bridge the persistent gap between atomistic resolution
and experimentally relevant timescales.
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9.3 Boltzmann priors for Implicit Transfer Op-
erators

The third paper introduces Boltzmann Priors for Implicit Transfer Operator
(BoPITO) learning, combining Boltzmann Generators with Implicit Transfer
Operators. BoPITO presents a framework that enhances long-term dynamics
data efficiency of deep generative surrogate models for molecular dynamics.
While ITO shows promise in accelerating MD simulations by learning transition
probability densities at multiple time resolutions, it requires extensive unbiased
simulation data, which is scarce for long-term dynamics. BoPITO addresses this
limitation by leveraging pre-trained Boltzmann Generators as priors, achieving
an order of magnitude reduction in required training data while guaranteeing
asymptotically unbiased equilibrium statistics.

BoPITO enhances ITO learning through four key mechanisms. First, it
uses Boltzmann Generators to efficiently initialize MD trajectories, ensuring
broad sampling across configuration space proportional to the equilibrium
distribution. Second, it separates the equilibrium contribution from time-
dependent components in the learned transition density, fixing the stationary
part. Third, it embeds an inductive bias that asymptotically samples from
the equilibrium model for long time horizons, ensuring convergence to the
correct Boltzmann distribution. Fourth, it enables tunable sampling protocols
that interpolate between models trained on off-equilibrium data and unbiased
equilibrium distributions.

The framework is implemented using score-based diffusion models, where
the score function separates, equilibrium and dynamical contributions,

sθ(x
tdiff

t+Nτ ,xt, N, tdiff) = seq(x
tdiff , tdiff) + λ̂Nsdyn(x

tdiff
t+Nτ ,xt, N, tdiff),

where seq(x
t
diff, tdiff) is the score of a pre-trained surrogate of the equilibrium dis-

tribution model, 0 < λ̂ < 1 is a hyper-parameter and sdyn(x
tdiff
t+Nτ ,xt, N, tdiff,θ)

accounts for the time-dependent components. This principled factorization
corresponds to the spectral decomposition of the transfer operator, with the
first eigenfunction (equilibrium density) treated as known and the remaining

dynamical components learned from data. The hyperparameter λ̂ controls the
timescale at which the model transitions to equilibrium sampling.

We benchmark BoPITO across systems of increasing complexity: the Prinz
potential, alanine dipeptide, and chignolin protein. Results demonstrate that
BoPITO models achieve higher accuracy for long-term dynamics compared to
standard ITO when training data is scarce. Furthermore, we introduce BoPITO
interpolators that can recover approximate dynamics from off-equilibrium
simulation data by framing interpolation parameter selection as an inverse
problem constrained by unbiased experimental observables.

BoPITO represents the first method enabling integration of multiple in-
formation sources—off-equilibrium simulations, biased enhanced sampling data,
and experimental measurements—into deep generative surrogates of molecular
dynamics. Current limitations include the need for careful hyperparameter
tuning and lack of Chapman-Kolmogorov guarantees for biased training data.



9.3. THIRD PAPER 39

Moreover, the current formulation does not address chemically transferable
models. Nevertheless, BoPITO establishes a principled approach to embedding
prior knowledge of stationary distributions as inductive biases for learning
long-term dynamical behavior in molecular systems.
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9.4 De Novo Drug Design Using Reinforcement
Learning with Graph-Based Deep Generat-
ive Models

In the fourth article, we propose a new training scheme to fine-tune graph-based
DGMs for de novo molecular design tasks. We show how our computational
framework can successfully guide a pre-trained generative model toward the
generation of molecules with a specific property profile, even when such mo-
lecules are not present in the training set and unlikely to be generated by the
pre-trained model. We explored the following tasks: generating molecules of
decreasing/increasing size, increasing drug-likeness, and increasing bioactivity.

We use GraphINVENT [15] as a graph-based molecular DGM. GraphIN-
VENT is based on a Gated Graph Neural Network (GGNN) that generates
molecules by iteratively sampling actions that build upon an input graph. The
action space is divided into three possible actions: add atom, add bond, and
terminate graph. The model is trained by minimizing the Kullback-Leibler di-
vergence between target and predicted action probability distributions (APDs).

Our Reinforcement Learning framework uses a memory-aware loss that
keeps track of the best agent so far and is updated every few learning steps.
By doing so, we remind the current agent of sets of actions that can lead to
high-scoring compounds, in turn accelerating and improving agent learning.
The scoring model is designed for each specific optimization task and can be
based on simple rules or more complex models such as QSAR models.

We tested our framework by fine-tuning a pre-trained graph-based DGM to
favor property profiles relevant to drug design, including increasing pharma-
cological activity. We model bioactivity using a QSAR model for dopamine
receptor type D2 (DRD2) activity. Optimization for DRD2 activity is a widely
used de novo design bioactivity benchmark and allows us to easily compare to
previous work. We achieve models that generate diverse compounds with pre-
dicted DRD2 activity for 97 % of sampled molecules, outperforming previously
reported graph-based methods on this metric.

Our contribution is an important stepping stone toward the design of more
advanced molecular DGMs which will allow scientists to efficiently traverse the
chemical space in search of promising molecules. We believe the use of DGMs
in fields such as drug design has the potential to help chemists come up with
new ideas and accelerate the complex process of molecular discovery.



Chapter 10

Discussion and Future
Work

This thesis investigates how deep generative models can address fundamental
challenges in drug discovery by learning to sample from complex molecular
probability distributions. It comprises four papers exploring complementary
facets of this problem: three focusing on molecular dynamics and one on
molecular design.

The first paper introduces Surrogate Model-Assisted Molecular Dynamics
(SMA-MD), which combines a DGM with statistical reweighting and short
MD simulations to efficiently sample Boltzmann ensembles of small molecules,
producing more diverse and lower-energy configurations than conventional sim-
ulations. The second paper presents Transferable Implicit Transfer Operators
(TITO), a transferable generative surrogate that learns time-integrated mo-
lecular dynamics directly from data, enabling propagation at arbitrarily large
time steps with up to four orders of magnitude acceleration while maintaining
thermodynamic and kinetic fidelity. The third paper introduces Boltzmann
Priors for Implicit Transfer Operator learning (BoPITO), which integrates
equilibrium knowledge into deep generative surrogates of molecular dynamics,
improving data efficiency by an order of magnitude and enabling interpolation
between models trained on biased off-equilibrium data and the equilibrium
distribution. Finally, the fourth paper develops a reinforcement learning scheme
to fine-tune graph-based DGMs for de novo molecular design, guiding models
toward molecules with desired properties even when such examples are rare or
absent in the training data.

These contributions constitute important stepping stones toward the auto-
mation of the drug discovery process. They demonstrate the potential of DGMs
to sample molecular distributions with different applications: accelerating
molecular dynamics, the prediction of molecular properties, and optimizing
molecules for multiple design criteria. At the same time, they highlight key
challenges and open directions for future research.

First, Boltzmann emulators—such as SMA-MD—illustrate a growing trend
in generative molecular dynamics to avoid fully atomistic representations of
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molecular systems. Reduced representations accelerate both sampling and like-
lihood evaluation. However, these approximations preclude exact reweighting
with respect to the Boltzmann distribution and neglect the entropic contribu-
tions of the omitted degrees of freedom. Ideally, generative molecular dynamics
methods would generate fully atomistic conformations. Nevertheless, in some
contexts, sacrificing exact reweighting in exchange for improved sampling ef-
ficiency can be justified. Striking a balance between representational fidelity
and computational tractability remains a central design consideration.

Second, while TITO demonstrates qualitative transferability to peptides
twice the size of training systems, and SMA-MD generalizes across small organic
molecules, systematic transferability across diverse chemical compositions and
system sizes remains elusive. Extending these frameworks to larger biomolecu-
lar systems—such as proteins, nucleic acids, or explicitly solvated drug-like
molecules—will require careful treatment of periodic boundary conditions [136],
[137], innovations in neural architectures [116], [117], [138], hierarchical mod-
eling strategies [139], [140], and potentially coarse-graining [141], [142], [143],
[144] approaches that preserve thermodynamic and kinetic consistency.

Equally important is the careful curation of training datasets to ensure
adequate coverage of relevant regions of chemical space. Active learning
techniques [145], [146] are likely to play a central role in guiding targeted
data acquisition. Furthermore, achieving thermodynamic transferability across
temperatures, pressures, and solvation conditions—aking to the reweighting
strategies employed in transition-based reweighting analysis (TRAM) methods
[147], [148], [149] within the Markov state models framework—would enable
the study of perturbations and phase transitions, unlocking new opportunities
in materials science and biophysics. Ultimately, the widespread adoption of
these machine-learning-based molecular simulation frameworks will depend on
their generalization capability, the diversity of available training data, and the
accessibility of efficient, open-source implementations—much as GROMACS
[150], [151] and OpenMM [152], [153] have become foundational platforms for
traditional Molecular Dynamics.

Third, BoPITO demonstrates that incorporating equilibrium priors into
dynamical models improves both data efficiency and long-term accuracy. The
framework provides a natural mechanism for combining enhanced sampling
techniques—potentially augmented with machine-learned collective variables
[154], [155], [156]—with short unbiased simulations. Furthermore, by integrat-
ing experimental observables, BoPITO enables limited temporal extrapolation
beyond transition statistics in the training data. These findings suggest that
multiple information sources—unbiased and biased simulations, experimental
data, and physics-based priors—can be systematically combined within gener-
ative frameworks. Future work should explore principled strategies for such
integration while ensuring key properties such as detailed balance and Chap-
man–Kolmogorov consistency. Establishing these guarantees would strengthen
the theoretical foundations of learned dynamical models and improve their reli-
ability for quantitative prediction. Currently, BoPITO is not transferable across
molecular systems, which limits its applicability and developing transferable
models equipped with equilibrium priors remains an open problem.
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Fourth, the reinforcement learning framework introduced in the fourth
paper effectively steers graph-based DGMs toward molecules with desired
properties, achieving a predicted activity of 97% on the dopamine receptor
D2 benchmark. Nonetheless, the QSAR model used for both fine-tuning and
evaluation was based exclusively on graph-level representations, disregarding
three-dimensional structure and binding geometry. Since de novo molecular
design is fundamentally a three-dimensional problem, approaches that generate
molecules conditioned on binding pockets [138], [157], [158], [159] while expli-
citly optimizing target interactions constitute a promising avenue for future
research. In addition, synthesizability was addressed here as an optimization ob-
jective, whereas recent work advocates a more integrated paradigm—designing
molecules that are inherently synthesizable by construction [160], [161].

Finally, a natural extension of this work is using MD acceleration methods
developed in this thesis to predict molecular properties in a close loop to
molecular design framework. Most current design methods either optimize
molecules based on single conformations or simple descriptors, ignoring con-
formational flexibility and the ensemble nature of molecular behavior, or rely
on slow optimization where molecular scoring is the main bottleneck. Using
MD surrogates within the molecular design loop could allow for fast molecular
optimization under a high-accuracy property estimation signal. Furthermore,
one could integrate conformational sampling with molecular design. Developing
frameworks that jointly optimize molecular graphs and their conformational
ensembles—for instance, by combining the reinforcement learning scheme from
the fourth paper with MD surrogates from the first three—could enable more
reliable property optimization.

In conclusion, this thesis demonstrates that deep generative models offer a
viable path toward accelerating molecular property prediction and design by
learning flexible, data-driven surrogates of molecular distributions. While sig-
nificant challenges remain, the foundations established here provide a roadmap
for future developments. By continuing to bridge machine learning, statistical
mechanics, and computational chemistry, we can work toward a future where
the discovery of new therapeutics is both faster and more systematic, ultimately
benefiting human health and society.
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[108] M. Dibak, L. Klein, A. Krämer and F. Noé, Temperature Steerable Flows
and Boltzmann Generators, 2022. arXiv: 2108.01590 (cit. on p. 32).
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Abstract

The accurate prediction of thermodynamic properties is crucial in various
fields such as drug discovery and materials design. This task relies on sampling
from the underlying Boltzmann distribution, which is challenging using con-
ventional approaches such as simulations. In this work, we introduce Surrogate
Model-Assisted Molecular Dynamics (SMA-MD), a new procedure to sample
the equilibrium ensemble of molecules. First, SMA-MD leverages Deep Gener-
ative Models to enhance the sampling of slow degrees of freedom. Subsequently,
the generated ensemble undergoes statistical reweighting, followed by short
simulations. Our empirical results show that SMA-MD generates more diverse
and lower energy ensembles than conventional Molecular Dynamics simulations.
Furthermore, we showcase the application of SMA-MD for the computation of
thermodynamical properties by estimating implicit solvation free energies.
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Abstract.

The accurate prediction of thermodynamic properties is crucial in various fields

such as drug discovery and materials design. This task relies on sampling from the

underlying Boltzmann distribution, which is challenging using conventional approaches

such as simulations. In this work, we introduce Surrogate Model-Assisted Molecular

Dynamics (SMA-MD), a new procedure to sample the equilibrium ensemble of

molecules. First, SMA-MD leverages Deep Generative Models to enhance the sampling

of slow degrees of freedom. Subsequently, the generated ensemble undergoes statistical

reweighting, followed by short simulations. Our empirical results show that SMA-

MD generates more diverse and lower energy ensembles than conventional Molecular

Dynamics simulations. Furthermore, we showcase the application of SMA-MD for

the computation of thermodynamical properties by estimating implicit solvation free

energies.

1. Introduction

Accurately predicting molecular properties is an important task with applications

across the sciences. Some prominent examples are drug discovery and material

design. Estimating such properties relies on sampling from the underlying Boltzmann

distribution. However, generating unbiased and independent samples from the

Boltzmann distribution efficiently remains a challenging open problem.

Currently, Molecular Dynamics (MD) [1] and Markov chain Monte Carlo (MCMC)

[2] are the key techniques to draw samples from the Boltzmann distribution. While

these techniques asymptotically generate samples from the Boltzmann distribution,

many simulation steps are often needed to generate just one independent sample.

This problem is particularly prescient for high-dimensional and meta-stable molecular

https://doi.org/10.26434/chemrxiv-2023-sx61w ORCID: https://orcid.org/0000-0002-0526-1766 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0
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systems. Despite their limitations, these techniques are widely used, especially in

combination with enhanced sampling methods [3], which offer different strategies to

speed up the generation of independent samples. Important enhanced sampling methods

include replica-based approaches [4, 5], flooding [6], meta-dynamics [7], and umbrella

sampling [8].

With the advent of Deep Generative Models (DGMs) [9, 10, 11, 12, 13], a family

of new methods to generate unbiased one-shot equilibrium samples of the Boltzmann

distribution were proposed under the name of Boltzmann Generators (BG) [14, 15, 16,

17]. These methods approximate the Boltzmann distribution of a molecular system

with a DGM which allows efficient sampling and exact likelihood evaluation, commonly

Normalizing Flows [11]. Efficient sampling allows to side-step iterative simulation

methods, and exact likelihood evaluation allows to recover unbiased samples through

importance sampling or importance weighing [14]. Previous work has successfully used

BGs to sample from large molecules such as proteins [14] or solids [18]. However,

these approaches currently do not generalize to different molecular systems, and

designing models that are transferable across different molecules remains a challenging

task. Another family of recent related methods, such as Implicit Transfer Operator

Learning (ITO) [19] or Timewarp [20], tackles the sampling problem by modeling the

generative process in Molecular Dynamics simulations, yet on much longer time-scales.

Nevertheless, currently, these approaches similarly suffer from limited transferability.

Other approaches focus on enumerating the local minima of a potential energy

function, so-called conformers. Different architectures have been proposed, such as

CGVAE [21], GeoMol [22], or GeoDiff [23]. These methods are transferable across

different molecular systems, however, as the generated states represent local minima of

potential energy, they are unable to capture entropic effects due to thermal fluctuations,

which makes them unsuitable for computing many molecular properties.

Large-scale conformational rearrangements in molecules can be represented by

changes in torsion angles (dihedrals), which correspond to rotations occurring around

flexible bonds. For example, the structures of biomolecules such as proteins or RNA are

compared and analyzed in terms of such angles, using the Ramachandran plot and prob-

abilistic models of local structure [24, 25] as prominent examples. Transitions between

different conformations usually account for the slowest processes in simulations. There-

fore, generating representative ensembles of torsions is time-consuming and challenging.

For this reason, models focusing on torsion angles are useful means to conformational

sampling. Recent work encoding conformations in small molecules using torsions include

GeoMol [22], Torsional Diffusion [26], Tora3D [27], and VonMisesNet [28]. Apart from

capturing major conformational changes, torsion angles are attractive as they reduce

the dimensionality of conformational space and are intrinsically invariant to rigid body

symmetries. However, even if some of these methods have been adapted to generate

equilibrium samples, they still cannot model stochastic fluctuations in the local struc-

ture, and their evaluation as surrogates of the Boltzmann distribution is limited.
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In this work, we present Surrogate Model-Assisted Molecular Dynamics (SMA-

MD), a method for generating equilibrium ensembles of molecules. In SMA-MD,

generative models are used to sample a diverse ensemble of initial conditions for short

molecular simulations. SMA-MD follows a two-step procedure: First, a generative

model mixes efficiently across degrees of freedom which exchange slowly in molecular

simulations. Second, we reweight samples against the Boltzmann distribution and run

short Molecular Dynamics simulations to equilibrate the local structure and ensure

sampling statistics are unbiased with respect to the target Boltzmann distribution.

In this manner, SMA-MD is able to capture entropic effects occurring in all degrees

of freedom in a molecule, which are critical for the computation of thermodynamic

quantities such as free energy differences. We implement SMA-MD using torsional

surrogate models and restrict ourselves to working with small non-cyclic molecules.

We probe our method by measuring geometric and thermodynamical (potential and

implicit solvation free energies) properties and comparing them to the baseline of classic

MD simulations, used as the source of training data. We empirically show that our

method can generate diverse and physically realistic ensembles. Equilibrium ensembles

generated with SMA-MD present higher conformational coverage and lower average

energy than those obtained with conventional MD simulations of similar runtime, closely

matching long Replica Exchange (RE) simulations.

Our main contributions are:

• Introducing SMA-MD: A new approach that combines generative models for slow

degrees of freedom with statistical reweighting and short simulations to produce

equilibrium ensembles for molecules.

• Evaluation of our method by comparison with ensembles generated by Molecular

Dynamics and Replica Exchange simulations.

• Generating a new dataset: MDQM9-nc, consisting of MD simulations of ∼ 12.5

k non-cyclic small molecules from the QM9 dataset that we use as training data,

along with data-splits for benchmarking.

• Showcasing a downstream application: estimating relevant observables such as

geometrical quantities and free energies of solvation.

2. Methods

2.1. Sampling and molecular properties

Experimental observables (molecular properties) often correspond to averages over the

ensemble of 3D arrangements (conformations, x) molecules can adopt, which follow the

Boltzmann distribution,

µ(x) = Z−1 exp(−βU(x)), with Z =

∫
dx exp(−βU(x)), (1)

where U(x) is the potential energy and β is the inverse temperature. We

conveniently define the reduced potential u(x) = βU(x). Given independent and
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identically distributed (i.i.d.) conformations sampled from the Boltzmann distribution,

thermodynamical quantities can be computed with the Monte Carlo estimator:

O = Ex∼µ(x)[o(x)] ≈
1

N

N∑

i=1

o(xi), xi
i.i.d.∼ µ(x), (2)

where o(x) computes the microscopic contribution of a property for a conformation.

Generating i.i.d. samples from the Boltzmann distribution is challenging. However,

if a surrogate model p(x) overlaps with µ(x), unbiased Boltzmann-distributed samples

can be generated by reweighting the surrogate distribution [14]. This reweighing or

resampling, can be achieved with various algorithms, but the simplest one is known

as importance sampling, in which samples from p(x) are assigned statistical weight

w = e−u(x)/p(x).

2.2. Boltzmann surrogate model

A Boltzmann surrogate is a generative model trained to generate samples from the

Boltzmann distribution. In this work, we consider models that generalize across different

molecular systems. We use a torsional generative model and therefore, we structure the

generation process in the following two sub-steps.

2.2.1. Local structure generation We define the local structure of a non-terminal atom

as the relative geometry of the atoms connected to it. The local structure of a given

atom can be specified as a set of internal coordinates (distances, angles, and dihedral

angles). In this work, we restrict ourselves to molecules that don’t have rings as cyclic

molecules would require special considerations. Local structures around non-terminal

atoms are very constrained and highly dependent on the hybridization of the central

atom. For this reason, we use a simple method for generating the local structure of

molecules:

• Distances and angles are set to the equilibrium force field parameters.

• Dihedral angles are chosen based on the hybridization of the central atom. For

example, if an atom is sp2 hybridized, its local structure will be planar but if it is

sp3 hybridized, it will follow a tetrahedron shape. We provide further details in the

Appendix 9.1.

2.2.2. Rotatable bond generation: Torsional diffusion In this work, following

conventions from previous contributions in the context of small molecules [22, 26], we

consider a bond to be rotatable if it connects two non-terminal atoms in the chemical

graph. In this step, we generate the remaining degrees of freedom, the torsion angles of

rotatable bonds, using a DGM to model potentially complex multi-modal distributions.

We choose this DGM to be a diffusion model [12, 13, 29]. Torsion angles lie on the

circle and therefore the set of torsions of rotatable bonds within a molecule lies on a
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hyper-torus. Previous work adapted the formalism of diffusion models to operate on

this Riemannian manifold [30]. Based on this work, Torsional Diffusion [26], a diffusion

model tailored for modeling torsions, was proposed. One of the main innovations behind

Torsional Diffusion is the use of 3D-aware torsional updates which are invariant to the

choice of reference atoms. Moreover, a new model architecture exploiting symmetries

around rotatable bonds, the Pseudo-Torque layer, was introduced. In this work, we use

Torsional Diffusion as a model for torsion angles around rotatable bonds.

2.2.3. Training Since the local structure generation module has no learnable

parameters, in this section we solely elaborate on how we train the rotatable bonds

model. We train Torsional Diffusion models against a set of target conformations with

torsions τ0 ∼ p0. During training, noise with intensity t is added, resulting in noisy

torsions τt. Model optimization is performed by minimizing the denoising score matching

loss [13, 31]

JDSM(θ) = Et

[
λ(t)Eτ0∼p0,τ t∼pt|0(·| τ0)

[
||s(τ t, t)−∇τ t log pt|0(τ t|τ 0)||2

]]
, (3)

where noise level t is uniformly sampled, λ(t) = 1/Eτ∼pt|0(·|0)
[
||∇τ t log pt|0(τ |0)||2

]
,

s(τ t, t) is the neural network prediction for the score and pt|0(τ t|τ 0) is the perturbation

kernel. More details about training can be found in the Appendix 9.3.

Please note that, if we directly trained a model using molecular conformations

obtained from simulations (or other methods), we would create a distribution shift

between training and inference. Therefore, to compensate for this, during training, we

substitute the local structures from target conformations with the ones generated by

our local structure model.

2.3. Surrogate Model-Assisted Molecular Dynamics

In this work, we present Surrogate Model-Assisted Molecular Dynamics (SMA-MD)

as an approach to efficiently sample from the Boltzmann distribution. The overall

workflow of SMA-MD is summarized in Figure 1 and consists of two main steps. In the

first step, we use a generative model trained to emulate the Boltzmann distribution of

molecules (the Boltzmann surrogate) to generate conformations. These conformations

are constructed in two sub-steps: starting by generating local geometries with a

deterministic algorithm and then sampling the torsion angles using a DGM to mix

across the molecules’ ‘slow degrees of freedom’. Next, in the second step, we use short

parallel MD simulations to thermalize and mix the fast degrees of freedom. Combining

simulations with an exact reweighting scheme enables us to generate unbiased samples

from the Boltzmann distribution of the molecule. These ensembles can then be used to

compute thermodynamic properties of interest.
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Figure 1: The SMA-MD workflow: Starting from the chemical graph describing a

molecule, SMA-MD generates its conformational equilibrium ensemble. First, we

generate conformations using a generative model trained to generate samples from the

Boltzmann distribution. Then, we reweight against the Boltzmann distribution and

run short MD simulations. The generated ensembles can then be used for computing

downstream properties of interest.

2.3.1. Sampling from the surrogate model We first generate the degrees of freedom

corresponding to the local structure and then we sample the torsions, τ . The torsions are

sampled through integration of the probability flow (neural) ODE (ordinary differential

equation), corresponding to the torsional diffusion model, which further enables exact

reweighting through sample likelihood calculation. We denote p0(τ ) the neural ODE

sampler likelihood in torsional space. However, the Boltzmann distribution is generally

specified as a function of the 3D coordinates of the atoms in a molecule, x. Therefore,

to allow for compatibility with the Boltzmann measure, we need to express p0(τ )

in Euclidean space instead. As all the generated geometric quantities correspond to

internal coordinates, and the local structure is generated deterministically, the Euclidean

likelihood can be computed as

p(x) = p0(τ )/| det(Jint→euc(x))|, (4)

where Jint→euc(x) is the Jacobian of the transformation from internal to Euclidean

coordinates. For details about the sampling procedure, see Appendix 9.4.

2.3.2. Reweighting and MD fine-tuning After generating molecular conformations with

the surrogate model, we post-process them by taking two extra steps which we have

observed to be critical to generate physically realistic structures.
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Reweighting according to Boltzmann weights Given a set of sampled conformers, we

compute per-sample weights with

w(x) =
e−u(x)

p(x)
. (5)

We note that reweighting only guarantees improvement in the case of complete domain

coverage, which is not fulfilled in general. However, we observe that the surrogate

model tends to broadly cover the domain, even generating high-energy metastable

conformations. One important role of the reweighting step is ruling out these states

as we illustrate in Appendix 9.7.

MD fine-tuning: short parallel simulations Generally, we expect reweighting to align

the generated ensemble more closely to the target Boltzmann distribution. However,

the ensemble still misses two fundamental ingredients in our implementation: stochastic

fluctuations in the local structure and the coupling of these fluctuations with the

rotatable bonds. We hypothesize that these two features can be recovered in short

simulations. Therefore, we run parallel simulations on the reweighted ensemble using

the REFORM library extending OpenMM [32, 33]. For the experiments performed in

this work, we run 1 ns simulations per sample.

2.4. The MDQM9-nc dataset

We generated approximately Boltzmann-distributed samples using MD by simulating

12,530 non-cyclic molecules from QM9 in vacuum and room temperature using the

GAFF force field [34]. We carried out these simulations using the openmmforcefields

[35] and OpenMM packages [33]. All initial conditions were generated by energy

minimizing the QM9 geometry in the corresponding GAFF force field. We sampled

different molecules proportionally to their number of heavy atoms with a median

sampling time of 36.5 ns. Moreover, for 100 molecules from the test set (10%), we

run longer 100 ns Replica Exchange (RE) simulations. These long RE simulations are

used as ground truth in our experiments. We provide further details about the dataset

generation and training, validation, and test splits in the Appendices 9.8 and 9.9.

3. Results and discussion

3.1. The impact of the different components of SMA-MD for sampling equilibrium

conformations of molecular systems

We showcase the contribution of the different components of SMA-MD by analyzing

state populations and potential energies for a molecule in the test set at the two

different sampling stages (sampling from the surrogate model and applying post-

processing). To find the slowest transitions between metastable states, we use time-

lagged independent component analysis (TICA) [36], a linear dimensionality reduction
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Figure 2: Free energy of slowest TICA component (a) and density of ensemble

energies (b). The shaded areas in (a) correspond to the standard deviation of 10-

fold cross-validation. The Boltzmann surrogate captures the relevant states, potentially

transitioning to each other in slow processes. Moreover, reweighting and running short

simulations adjust the populations and reduce the energy of the ensemble, matching

ground-truth long RE simulations

technique that identifies the linear combinations of molecular features that maximizes

the autocorrelation. In Figure 2 (a) we observe that the Boltzmann surrogate captures

the relevant states, potentially transitioning to each other in slow processes. Moreover,

reweighting and running short simulations adjust the populations and reduce the energy

of the ensemble, matching ground-truth long RE simulations 2(b).

3.2. SMA-MD generates similar local structures to MD

As the marginal distributions of the degrees of freedom in the local structure are often

unimodal, in order to compare local structures generated by different methods, we

compute the Mean Absolute Error (MAE) of the estimated mean and standard deviation

of these distributions. In Table 1 we observe that local structures generated by SMA-MD

and MD exhibit remarkable similarity.

Table 1: Average relative difference of distribution parameters in the local structure

between generated and MD for all molecules in the test set. Errors are not shown for

being smaller than the last digit.

Distances Angles Dihedrals

Average (%) Std (%) Average (%) Std (%) Average (%) Std (%)

0.04 2.6 0.13 1.3 0.14 1.4
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3.3. SMA-MD outperforms MD in conformer generation

As previously introduced, a conformer is a local minimum in the molecular energy

landscape. Therefore, they are also local maxima of the density landscape. Given an

ensemble, we can extract its conformers by finding these local minima. Following this

logic, we retrieve conformers from ensembles generated by SMA-MD and MD.

To obtain a set of conformers from an ensemble, we first find modes in the marginal

distributions of torsions. Then, we check how many of the possible combinations of

modes in the marginal distributions appear in the ensemble. Next, we refine the set

of extracted conformers eliminating duplicates corresponding to atom permutations

or global inversions of the geometry. Finally, we check that all conformers satisfy

a dissimilarity threshold in their relative Root Mean Square Deviation (RMSD). We

provide additional details about this procedure in the Appendix 9.10.

In Table 2 we show the Average Minimum RMSD (AMR) and Coverage (COV) of

our method in precision and recall modes, see Appendix 9.11 for precise definitions. We

report remarkable agreement of SMA-MD with RE, clearly outperforming the training-

set-like MD trajectories (MD (15 min)). Because the runtime of SMA-MD (using a

single GPU) is longer (20 min) than that of the training set simulations (15 min), see

Appendix 9.12 for details, we further challenged SMA-MD by comparing to longer MD

simulations of comparable runtime. We observe that SMA-MD still clearly outperforms

these longer simulations (MD (20 min)) by recovering 6 % more conformers in the

ground-truth ensemble. In Figure 3 we compare the Coverage for different threshold

values. Here we observe that SMA-MD achieves the best Coverage among the three

methods independently of the choice of threshold and the improvement margin becomes

greater as we reduce the threshold.

Table 2: Average Minimum Root Square Deviation (AMR) and Coverage (COV) of

the ensembles generated by SMA-MD and MD simulations of different runtimes against

Replica Exchange. For COV, the threshold is set to δ = 0.75 Å.

MD (15 min) SMA-MD (20 min) MD (20 min)

Precision Recall Precision Recall Precision Recall

AMR (Å,↓) 0.14±0.02 0.24±0.03 0.08±0.01 0.10±0.02 0.13±0.01 0.21±0.02

COV (↑) 0.95±0.02 0.87±0.02 0.98±0.01 0.96±0.01 0.97±0.01 0.90±0.02

3.4. Covering conformations separated by high free-energy barriers

The conformer generation results above, suggest that our generative model covers

the local free energy minima of small molecules well and that we may cover the

conformational space of small molecules faster than regular MD simulations. We

illustrate that this indeed is the case through the following example. We find SMA-

MD samples states present in the long RE simulations separated by barriers that are
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Figure 3: Coverage (precision and recall) as a function of threshold.

never overcome in MD simulations of comparable runtime to SMA-MD. In Figure 4, we

show how SMA-MD samples a state (torsion 8) that is not sampled by MD. Overall, the

marginal distributions of MD do not match RE, suggesting the simulated ensembles are

not fully equilibrated. However, SMA-MD shows remarkable agreement. The difference

in mean ensemble energy w.r.t. to RE is -0.37 kBT for SMA-MD and +3.15 kBT for

MD.

Figure 4: Comparison of dihedral angles of rotatable bonds generated by Molecular

Dynamics simulations of similar runtime to SMA-MD (MD, top) and our method (SMA-

MD, bottom) vs Replica Exchange (RE). The shaded areas correspond to the standard

deviation of 10-fold cross-validation. While MD shows different marginal distributions,

our method recovers the distributions generated with RE. Torsions of atoms 13 and 14

are omitted for clarity of presentation, having similar marginal distributions under the

three methods.
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Figure 5: Average potential energy (a) and free energy from vacuum to implicit water

(b) of ensembles generated using different methods versus Replica Exchange. Error bars

are smaller than dots. MD here is an MD simulation of comparable runtime to SMA-

MD.

3.5. SMA-MD generates more diverse and energetically favorable ensembles than MD

In section 3.1 we have shown that SMA-MD outperforms conventional MD simulations

in conformer generation, presenting better precision and recall w.r.t. ground-truth

simulations. Moreover, we have illustrated in section 3.4 how SMA-MD is able to

sample across high-energy barriers, where MD falls short.

Furthermore, we show that SMA-MD generates samples in a more statistically

efficient manner by comparing the ensemble potential energies. We do this by computing

the difference in average ensemble energies and the Jensen-Shanon divergence (div)

between energy histograms. We show in Figure 5 (a) that SMA-MD generates more

similar energy averages and distributions to RE than MD, and that the agreement with

RE is very high.

We attribute a number of factors to the improved performance of SMA-MD

compared to MD. First, SMA-MD combines data aggregation and post-processing. On

the one hand, even if simulations used as training data are not fully converged, it is

possible to learn relevant structures from similar molecules. On the other, reweighting

and short simulations help to equilibrate the populations and compensate for small

deviations in the geometries generated by the surrogate. Combining these two elements,

SMA-MD shows robustness against training on biased data (non-converged simulations).

Second, SMA-MD does not need initial conditions. One important limitation of

MD simulations is their sensitivity to the initial coordinates, often obtained from an

experimental crystal structure. Indeed, a main success of Markov state modeling [37] is

its ability to use simulation data from different initial conditions to make quantitative

predictions. In contrast, SMA-MD not only does not require an initial condition but
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provides a way of initializing simulations with several different representative initial

structures to boost convergence. Third, SMA-MD allows for parallelization. MD

simulations are intrinsically sequential, however, all the individual components in SMA-

MD allow for parallelization, which makes SMA-MD a more suitable method for modern

computing hardware.

3.6. Prediction of molecular properties using SMA-MD: solvation free energy

Finally, after finding great agreement between SMA-MD and RE in the previous

analyses, we illustrate how the equilibrium ensembles generated by SMA-MD could be

used for downstream tasks by estimating solvation free energies. We use the improved

Generalized Born model (GB-Neck2) [38] available in OpenMM and experimentally

validated with the GAFF force field in previous work [39]. We set an effective number

of samples threshold of 100. Details are available in the Appendix 9.13. Results in

Figure 5 (right) show remarkable agreement between the two methods.

4. Limitations and future work

A major bottleneck of SMA-MD remains the computational cost per sample in

comparison to MD. However, as previously discussed, while MD is intrinsically

sequential, the SMA-MD framework is fully parallelizable (except for the short

individual simulations) and therefore allows for an efficient way to use modern computing

hardware, including GPUs. Indeed, this divide-and-conquer strategy is successfully

applied in the Markov state modeling community [40, 41, 42, 43]. Nevertheless, SMA-

MD, in the context presented here does not outperform RE in terms of runtime, see

Appendix 9.14. This limitation is related to the high cost of sampling from the generative

model and the low sample efficiency. Due to continual improvements in the field of

DGMs, we believe both of these issues will be resolved in the near future.

Currently, SMA-MD is limited to non-cyclic molecules. This limitation comes

from the difficulty of generating realistic ring structures when representing molecules in

internal coordinates, e.g. distance, angles, and torsions. This problem is particularly

prescient for non-aromatic ring structures, including sugars, which are highly restrained

but may undergo concerted slow conformational transitions. While heuristics are

available to overcome this problem in e.g. rule-based conformer generations, these

methods do not readily allow for the extraction of equilibrium statistics. Therefore,

we leave accurate modeling of rings for future work. If modeling non-aromatic rings

does not entail significant extra computational cost, we foresee that SMA-MD will be

scalable to drug-like molecules. Drug-like molecules in the GEOM-Drugs dataset [44]

contain 1.7 aromatic rings and 1.3 non-aromatic rings per molecule. Consequently, the

number of rotatable bonds in molecules studied here and those of drug-like molecules,

6.3 and 7.9 respectively, remain comparable.

Finally, we consider training Boltzmann surrogates with large-scale data a
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promising direction. With data sharing taking an increasing priority, simulation data

using similar protocols are deposited in scientific data repositories. Although these

simulations may not be fully converged, they still contain valuable information to build

general transferable Boltzmann surrogates. Indeed, the data we used to train our model

is clearly not converged, however, we can still learn a useful surrogate. Mining this

data to train Boltzmann surrogates could increase the transferability and therefore the

usefulness of these systems.

5. Conclusions

In this work, we have introduced Surrogate Model-Assisted Molecular Dynamics,

SMA-MD, an efficient method for generating equilibrium conformational ensembles for

molecules. SMA-MD combines a transferable surrogate from the Boltzmann distribution

with a statistical reweighting and short simulation post-processing step. The goal

is to mix between slow degrees of freedom using the surrogate model and refine the

ensemble through reweighting and brief simulations. Here, we implement SMA-MD

using torsional generative models and show that this method outperforms conventional

MD simulations in diversity and ensemble energy. We showcase the applications of

this method in downstream tasks by successfully estimating solvation free energies.

Even if the work presented here is limited to small non-cyclic molecules, we believe

it motivates further research on solving remaining scientific problems and paves the

way towards the adoption of similar methods in practical applications, especially drug-

discovery pipelines.

6. Data and Software

Data and software will be made available upon publication.
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9. Appendix

9.1. Local structure model

In this work, we define the local structure of a non-terminal (central) atom as the rela-

tive geometry of the atoms connected to it. We use a breadth-fist algorithm to generate

atomic labels. Atoms with higher atomic ranking (generated with RDkit [45]) and which

are non-terminal have a preference to be selected as the next atom. Particularly, every

time the algorithm reaches a non-terminal atom, it generates labels for all its non-labeled

neighboring nodes. The non-terminal node and its neighbors form a group. In a group

of atoms, the first atom is the central one. The next is the one that had been previously

visited by the algorithm. Finally, the remaining atoms are added to the group based on

their ranking. This is illustrated in Figure 6.

i
j i+1

i+2

i+3

Figure 6: Atomic groups and order.

We can specify the local structure within a group (gi) as a set of internal coordinates.

Distances between pairs of connected atoms ((i, k) with k ∈ gi) are generated using the

force field equilibrium distance parameters. Angles between triplets of atoms are set

using the force field equilibrium angle parameter. Triplets of atoms are chosen using

the atoms (j, i, k) in the group, where k ∈ gi and k > i. If gi has more than 3 atoms,

dihedral angles are needed. Dihedral angles are assigned based on the hybridization of

the central atom i.

• If i is sp2 hybridized, the dihedral angle formed by (j, i, i+1) and (j, i, i+2) is set

to π.

• If i is sp3 hybridized, the dihedral angle formed by (j, i, i+1) and (j, i, i+2) is set

to + − 2π/3 and, if necessary, the one formed by (j, i, i + 1) and (j, i, i + 3) is set

to −+ 2π/3.

Chirality is specified depending on the sign of the previous dihedral angles. In cases
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where the central atom is sp3 hybridized and the groups has 4 atoms, chirality inver-

sion is possible. For simplicity, we set the probability of the dihedral angle being 2π/3

or −2π/3 to 0.5. In our dataset, MDQM9-nc, no other hybridizations occur, but our

framework could be easily extended to other types of hybridizations such as sp3d or

sp3d2, which are present in some drug-like molecules.

9.2. Diffusion generative models

Diffusion models are a type of generative model and aim to generate samples from the

data distribution p0(x). Starting from samples from p0, the forward diffusion process is

defined as an Ito stochastic differential equation (SDE),

dx = f(x, t)dt+ g(t) dw, (6)

where dw is a Wiener process, f(x, t) and g(t) are chosen functions and t ∈ (0, T )

is referred to as the time variable. The distribution at time T , pT , asymptotically

approaches a simple Gaussian distribution. Diffusion models are often trained to

approximate the so-called score ∇x log pt(x) [13]. Once a diffusion model is trained

to approximate the score, there are different ways to sample from it. In this work, we

use the probability flow ordinary differential equation (ODE),

dx =

[
f(x, t)dt− 1

2
g2(t) ∇x log pt(x)

]
dt, (7)

Generating samples from pT and solving the probability flow ODE yields samples from

the data distribution, p0.

9.3. Training details

We train a Torsional Diffusion model by feeding batches of conformations of molecules

to the Pseudo-torque network, computing the loss in Equation 3, and optimizing using

Adam. The target score of a set of noisy torsions τ ′ at time t obtained from a data

sample τ can be computed with the perturbation kernel [30, 26],

pt|0(τ
′|τ ) ∝

∑

d∈Zm

exp−||τ − τ ′ + 2πd||2
2σ2(t)

, (8)

where σ(t) is the noise scale.

We tuned the following hyper-parameters on the validation set: initial leaning rate

(5 · 10−3, 1 · 10−3 and 5 · 10−2) and number of layers (3, 4 and 5). The rest of the

hyper-parameters were set as in [26]. We trained our models for around 750 epochs

until the log-log plot of the loss was converged taking about 10 days to train in a single

GPU.
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9.4. Sampling details

In this work, we use the probability flow ODE 7 of the Torsional Diffusion model

to sample torsions of rotatable bonds. Crucially, this method allows for likelihood

computations of the generated samples. The likelihood in torsional space under this

sampling mechanism can be computed as

log p0(τ 0) = log pT (τ T )−
1

2

∫ T

0

g2(t)∇τ · s(τ t, t)dt. (9)

We sample 10k conformations for each molecule in our empirical evaluations.

9.5. Reweighting and Boltzmann Distribution

In this section, we first show how under ideal conditions of full coverage and infinite

sampling, reweighting returns the target distribution for an arbitrary surrogate. Finally,

we discuss the differences between the ideal case and ours and reflect how this can affect

the performance of our model.

A probability density is the stationary (Boltzmann) distribution if and only if its

corresponding µ-weighted density u fulfills ⟨u|ϕi⟩ = δi,1. That is, p(x) = ϕ1(x) =

µ(x)ψ1(x) = µ(x), where ϕi and ψi are, respectively, the eigenfunctions of the propagator

and transfer operator [37]. Therefore, in the language of these operators, we want to

show that the contributions corresponding to non-stationary distributions (i ̸= 1) get

smaller after reweighting. Under the assumptions of infinite sampling and domain

coverage (meaning that the surrogate model assigns a non-zero probability to all

possible states in state pace), the reweighted distribution (pr) is exactly the Boltzmann

distribution. We confirm this by computing

⟨ur|ϕi⟩ =
∫

Ω

p0
µ(x)

p0(x)

1

µ(x)
ϕi(x)dx =

∫

Ω

ϕi(x)dx

=

∫

Ω

µ(x)ψi(x)dx =

∫

Ω

ϕ1(x)ψi(x)dx = δi,1,

(10)

where we have used the orthonormality of the eigenfunctions.

In practice, the previous assumptions do not necessarily hold. Sampling time is

limited by our computing budget and we cannot guarantee domain coverage. However,

we do observe empirically that our model does not under-sample, but, if anything,

tends to over-sample states not observed in long simulations. After reweighting, the

distribution will not be exactly Boltzmann distributed, in contrast to our derivation,

but states with lower energy will be favored as more efficient starting points for our

simulation while balancing state populations. Furthermore, after the short simulation,

we expect that fast-decaying contributions of the distribution vanish pushing our

samples further closer to the stationary distribution.
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Figure 7: Scenario in which reweighting can cause longer convergence times. In the left

(a), we show a double-well potential with its corresponding stationary distribution and

possible surrogate density. In the right (b), we show the second (slowest) eigenfunction

of the system. When the surrogate distribution is reweighted, the states on the negative

part are assigned very small statistical weight. However, running a short simulation

would transport those steps to a high-density area in a few steps, following the steep

potential.

9.6. When reweighting can be detrimental

In general, it is not guaranteed that reweighting improves a surrogate distribution. In

this section, we provide a counter-example to prove this. Consider the situation depicted

in Figure 7 (a).

Here, we show a double-well potential and the corresponding stationary distribu-

tion. In this figure, we plot as well the density corresponding to a surrogate distribution.

This consists of a clipped mixture of two Gaussian distributions. The positive compo-

nent of the Gaussian mixture covers values of x with high stationary density, but the

negative component covers a high-energy region. The surrogate distribution is clipped

in the sense that the density is set to 0 for values of x in which the density of the mixture

is below a threshold. This defines a simple surrogate that does not have full support

over the domain. The surrogate distribution is depicted in 7 (a), see section 9.6.1 for

exact equations.

Intuitively, because negative samples from p0 have high energy, if we reweight the

ensemble, they will be assigned smaller (negligible in this example) statistical weight.

Therefore, pr, the reweighted distribution, contains fewer (almost none) samples in the

negative region. However, if a simulation starts from a negative sample from the surro-

gate, it would approach the left node of the stationary distribution, following the steep
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energy gradient, so, intuitively, reweighting should slow down the convergence in this

constructed example.

We can prove this formally by computing the relaxation time of the slowest

process, t2, which is proportional to the projection of the surrogate distribution to

the corresponding eigenfunction, ψ2. As ψ2 resembles the slowest process in the system,

it must change sign in 0 as shown in Figure 7 (b). Let’s say that we choose ψ2 in such

a way that is negative on the left and positive on the right. Then,

|⟨pr|ψ2⟩| = |
∫

+

pr(x)ψ2(x)dx+

∫

−
pr(x)ψ2(x)dx| = |

∫

+

pr(x)ψ2(x)dx| − |
∫

−
pr(x)ψ2(x)dx|

> |
∫

+

p0(x)ψ2(x)dx| − |
∫

−
p0(x)ψ2(x)dx| = |⟨p0|ψ2⟩|,

(11)

where
∫
+

and
∫
+
− denote, respectively, the integral over the positive and negative

regions. The previous inequality holds because pr(x) > p0(x) in the positive region

while the opposite occurs in the negative one. Finally,

tr,2
t0,2

=
|⟨pr|ψ2⟩|
|⟨p0|ψ2⟩|

> 1, (12)

which means that the relaxation time of the slowest process for the reweighted distri-

bution (tr,2) is longer than for the non-reweighted one (t0,2).

9.6.1. Equations of counter-example Double-well potential with b=1 and c=2.5:

V (x) = bx4 − cx2. (13)

The surrogate distribution is composed of the normal distributions f−(x) = N (µ =

−2.3, σ = 0.15) and f+(x) = N (µ = 1.1, σ = 0.15). The unnormalized density can be

computed as a function of f(x) = 0.5 ∗ f−(x) + 0.5 ∗ f+(x),

unnormalized p0(x) =

{
f(x) if f(x) > δ

0 else.

δ is chosen to be 0.05.

9.7. Reweighting in practice

In practice, for most molecules, we observe the reweighting steps to be beneficial. We

illustrate this with an example molecule in the test set. In Figure 8, we observe:

• Globally, the marginal free energies obtained with the reweighting step fit much

better the ones generated by RE.
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Figure 8: Role of reweighting in practice. Comparison of dihedral angles of rotatable

bonds generated by SMA-MD with (SMA-MD (RW), bottom) and without (SMA-MD

(no RW), top) the reweighting step vs Replica Exchange (RE). The shaded regions

correspond to the standard deviation of 10-fold cross-validation. The reweighting step

helps compensate populations and eliminates metastable states not sampled in the RE

simulations. Torsions of atoms 13 and 14 are omitted for clarity of presentation, having

similar marginal distributions under the three methods.

• Population equilibration: In torsion 8, we observe how SMA-MD without

reweighting fails to exactly capture the relative populations of the two minima,

while this is mostly corrected when we add the reweighting step.

• High-energy metastable states depletion: In torsion 11, a state around 0 is sampled

with low probability when reweighting is not used. This state is not sampled by

RE. Using the reweighting step this state is ruled out from the ensemble.

In certain instances, we have observed that performing reweighting prior to

executing brief simulations can have an unfavorable impact, resulting in an increase in

the mean energy value. In such cases, we omit the reweighting procedure and proceed

directly with the brief simulations. Note that these two sampling modalities can be

executed in parallel with very limited overhead.

9.8. Dataset generation: MDQM9-nc

Our dataset is generated by running MD simulations of non-cyclic molecules in the QM9

dataset [46]. We were able to simulate 12,530 molecules with the GAFF 2.11 [34] force

field in vacuum. We used the OpenMM [33] library and the GAFF template generator

available at the openmmforcefields [35] as recommended in https://github.com/

openmm/openmmforcefields. Our workflow consists of:
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Figure 9: Distribution of heavy atoms (a) and rotatable bonds (b) for different splits in

the dataset.

• Selecting the non-cyclic molecules of QM9.

• Minimizing the structures in QM9 using the GAFF 2.11 force field.

• Running simulations: We choose the simulation time depending on the size of the

molecule. The simulation time is heuristically computed as 0.5+4∗nh ns, where nh

is the number of heavy atoms. This way we aim to perform longer simulations for

molecules that are bigger and potentially more flexible. We generate a total of 16k

samples per molecule with a time step of 1fs. The minimum threshold of 0.5 ns is

chosen so that the minimum time between frames is 0.3 ps. The simulation time

for the median QM9 molecule (9 heavy atoms) is 36.5 ns. Partial charges are taken

from the QM9 dataset.

9.9. Dataset statistics and splits

We use random 70 − 20 − 10 train-validation-test splitting in this work. We show in

Figure 9 how the number of heavy atoms and rotatable bonds is evenly distributed

across the different splits.

9.10. Extracting conformers from a small molecule ensemble

Here we propose a simple method to generate a set of conformers from an equilibrium

ensemble. As torsions of rotatable bonds are the main source of flexibility, we look for

local maxima in the densities of torsions. Our workflow consists of:

• We first find modes in the marginal distributions of torsions. We do this based

on modes’ prominence and considering that torsion angles are wrapped around the

circle. We heuristically set the density prominence threshold (minimum threshold

so that a node is considered to be so) to 0.02.
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Table 3: Average runtime of different components of our implementation of SMA-MD

for one molecule. Note that components do not sum to total because CPU → GPU

requires to be done twice. MDFT (MD fine-tuning) corresponds to short simulations.

Sampling CPU → GPU Energy evaluation MDFT Total

Time (min) 11.3 1.5 0.4 5.6 20.3

• As we have analyzed the marginal distributions of torsions (and not the global

distribution), we need to check which combinations of local maxima appear in the

ensemble. To do that, we associate each sample in the ensemble with a combination

of local maxima and only keep the combinations found in the ensemble.

• Finally, we add an extra dissimilarity threshold depending on the relative Root

Mean Square Deviation (RMSD) between candidate conformers. We set this

threshold to 0.1 Å. This prevents us from selecting multiple times conformers that

are too similar, helping us to discard repetitions due to atom labels permutations.

Finally, we also apply the same filter to inverted structures to avoid considering

global geometric inversions as different.

9.11. Conformer metrics

We use the benchmark metrics used in [22] and followed in posterior works for evaluating

the quality of the conformers generated with different methods. The metrics consist of

the so-called Average Minimum Root Mean Square Deviation (AMR) and Coverage

(COV). These metrics are computed in two modes, Precision (P) and recovery (R).

Let {C∗
l }l∈[1,L] and {C∗

k}k∈[1,K] be respectively the set of ground-truth and generated

conformers. Then,

AMR-R :=
1

L

∑

l∈[1..L]
min

k∈[1.K]
RMSD (Ck, C

∗
l ) (14)

COV-R :=
1

L
|{l ∈ [1..L] : ∃k ∈ [1..K],RMSD (Ck, C

∗
l )}|, (15)

where δ is the coverage threshold, which is usually set to 0.75 Å. Precision metrics are

obtained by swapping ground truth and generated conformer sets.

9.12. Runtime

We show the runtime of different components in our implementation of SMA-MD

running on a single NVIDIA A100 GPU in Table 3
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Table 4: Average Minimum Root minimum square deviation (AMR) and Coverage

(COV) of the ensembles generated by SMA-MD and Replica exchange comparable

runtime against long Replica Exchange with δ = 0.75 Å.

SMA-MD RE

Precision Recall Precision Recall

AMR(Å) 0.08±0.01 0.10±0.02 0.05±0.01 0.06±0.01

COV 0.98±0.01 0.96±0.02 0.99±0.01 0.99±0.01

9.13. Solvation free energy details

The free energy of solvation is estimated in our experiments using free energy

perturbation,

∆F (v → s) = −kBT log

〈
exp

(
−Us(x)− Uv(x)

kBT

)〉

v

, (16)

where v denotes vacuum and s denotes solvent. The average over v is evaluated by

generating vacuum ensembles and computing the average of the exponential term in

Equation 16. The solvent energy Us is evaluated using the improved Generalized Born

model (GB-Neck2). GAFF and (GB-Neck2) have been experimentally validated for

predicting free energies of solvation [39]. A prediction of very high solvation energy

can be due to both the molecule being not soluble (small overlap between vacuum

and solvent ensemble) or that an ensemble that we generated (but not the ground-true

vacuum ensemble) has low overlap. To be certain to have some statistical significance

in our estimates we set a threshold of 100 effective samples to rely on the predicted free

energy. This only discards 3% of the molecules.

9.14. Comparison: SMA-MD vs RE

Even if we show that SMA-MD outperforms conventional MD simulations, SMA-MD

does not yet outperform RE simulations of the same runtime. We show this in Table 4

and Figure 10, reporting the benchmark metrics used in the main text.

https://doi.org/10.26434/chemrxiv-2023-sx61w ORCID: https://orcid.org/0000-0002-0526-1766 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0



SMA-MD 27

Mean abs: 0.26
Meadian abs: 0.14
R : 0.9985
Div: 0.03

2

Mean abs: 0.06
Meadian abs: 0.06
R : 0.9999
Div: 0.02

RE

Figure 10: Average potential energy of ensembles generated using RE of comparable

runtime to SMA-MD versus long Replica Exchange. Error bars are smaller than dots.
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Abstract

Understanding molecular structure, dynamics, and reactivity requires
bridging processes that occur across widely separated time scales. Conventional
molecular dynamics simulations provide atomistic resolution, but their femto-
second time steps limit access to the slow conformational changes and relaxation
processes that govern chemical function. Here, we introduce a deep generative
modeling framework that accelerates sampling of molecular dynamics by four
orders of magnitude while retaining physical realism. Applied to small organic
molecules and peptides, the approach enables quantitative characterization of
equilibrium ensembles and dynamical relaxation processes that were previously
only accessible by costly brute-force simulation. Importantly, the method
generalizes across chemical composition and system size, extrapolating to pep-
tides larger than those used for training, and captures chemically meaningful
transitions on extended time scales. By expanding the accessible range of
molecular motions without sacrificing atomistic detail, this approach opens
new opportunities for probing conformational landscapes, thermodynamics,
and kinetics in systems central to chemistry and biophysics.
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Understanding molecular structure, dynamics, and reactivity requires bridg-

ing processes that occur across widely separated time scales. Conventional

molecular dynamics simulations provide atomistic resolution, but their fem-

tosecond time steps limit access to the slow conformational changes and relax-

ation processes that govern chemical function. Here, we introduce a deep gen-

erative modeling framework that accelerates sampling of molecular dynamics

by four orders of magnitude while retaining physical realism. Applied to small

organic molecules and peptides, the approach enables quantitative characteri-

zation of equilibrium ensembles and dynamical relaxation processes that were

previously only accessible by costly brute-force simulation. Importantly, the

method generalizes across chemical composition and system size, extrapolat-

ing to peptides larger than those used for training, and captures chemically
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meaningful transitions on extended time scales. By expanding the accessible

range of molecular motions without sacrificing atomistic detail, this approach

opens new opportunities for probing conformational landscapes, thermody-

namics, and kinetics in systems central to chemistry and biophysics.

Introduction

Many of the most important observables in statistical mechanics—such as the stability of a

folded protein, the conformational transitions underlying allosteric regulation, or the unbinding

rate of a drug from its targets—are central to understanding chemical and biological function.

These processes span timescales from nanoseconds to seconds, and while they are directly

accessible through experiments such as spectroscopy (1) and single-molecule techniques (2),

their atomistic origins are often hidden.

Molecular dynamics (MD) offers a powerful complement to such experiments. By simulat-

ing the trajectories of atoms and molecules at atomic resolution, MD connects the fundamental

interatomic forces that govern molecular motion to the statistical behavior observed in bulk. In

this way, simulations provide a mechanistic bridge between microscopic physics and macro-

scopic phenomena (3).

Yet MD comes with a fundamental limitation. To ensure numerical stability, simulations

must take time steps small enough to resolve the fastest motions in the system, such as bond and

angle vibrations. This requirement restricts MD to femtosecond update steps, even though many

processes of chemical and biological interest — protein folding, conformational transitions,

ligand binding — unfold over microseconds to seconds. These processes are typically governed

by rare transitions between metastable states (4), creating a persistent gap between simulation

and experiment that limits our ability to characterize slow molecular processes with statistical

confidence (5).
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This challenge, known as the ‘sampling problem’, continues to inspire a growing array of

strategies aiming at accelerating the observation of rare events. Most approaches either bias the

underlying dynamics or simulate multiple coupled replicas in parallel, both designed to make

infrequent transitions occur more often (6). Biasing methods rely on the definition of collective

variables (CVs), that capture the progress of a process of interest (7–9). However, identifying

suitable CVs for complex, high-dimensional systems remains difficult: variables that accelerate

one process may obscure others, and their design has become a discipline in its own right with

numerous options (10) including ones derived using machine learning-based strategies (11–13).

Further, since these methods bias the dynamic behavior of the system, estimation of kinetic

properties is only possible under restrictive conditions (14). A complementary line of work

seeks to increase the integration time-step directly, reducing the number of integration steps per

unit time. Despite decades of intense research in this direction (15–17), integration steps remain

on the femtosecond scale, leaving even the most efficient simulations orders of magnitude too

slow to capture experimentally relevant molecular processes.

A parallel line of progress has focused on harnessing ever-larger computational resources.

Specialized compute architectures (18,19) have achieved continuous millisecond-scale trajecto-

ries for small proteins, revealing mechanistic detail inaccessible to conventional hardware (20).

Distributed platforms such as Folding@home leverage millions of short trajectories contributed

by volunteers (21), while modern GPU-based algorithms have brought comparable acceleration

to widely used MD engines (22–25). Together with statistical frameworks such as Markov state

models (MSMs) (26, 27), these efforts have enabled the reconstruction of long-timescale kinet-

ics from massive ensembles of short simulations. Yet all remain bound by the need to generate

femtosecond-resolved trajectories, keeping progress tied to extreme computational resources.

A conceptually different approach would be to model the effective long-lag dynamics directly,

without resorting to brute-force sampling or biasing.
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MD simulations function through the numerical integration of the Langevin equation (28).

As we move along the simulation trajectory, MD generates statistical samples from a transition

probability distribution p(xt+τ | xt) where τ is on the order of femtoseconds, and xt and xt+τ

are points in the phase-space. Crucially, this distribution is not ad hoc: it approximates the

Green’s function of the Fokker-Planck equation governing Langevin dynamics, providing the

theoretical foundation for viewing MD trajectories as stochastic samples from an underlying

probabilistic process (29). It follows that analogous transition probability distributions exist

for much larger ∆t, and that these can, in principle, be learned directly for a given molecular

system (30). Learning such long-lag transition densities offers a direct route to coarse-grained

yet statistically faithful dynamics, sidestepping the need for explicit time integration.

Here, we introduce Transferable Implicit Transfer Operators (TITO), a deep generative

framework that learns these transition probability distributions across molecular systems. TITO

allows us to choose the simulation step size freely, whether to match the characteristic timescales

of experiments or to accelerate sampling of slow conformational transitions. Trained on MD

data from small molecules and short peptides, TITO simultaneously learns transitions at multi-

ple step sizes, ensuring consistency with the underlying stochastic process. As a result, it pre-

serves key statistical properties such as Boltzmann equilibrium, Markovianity, and relaxation

dynamics, suggesting approximate energy conservation and equipartition.

TITO demonstrates quantitative transferability to molecular systems of similar size as in

the training data, and provides qualitative insights for molecules twice as large. Unlike con-

ventional simulation-based sampling, TITO offers explicit control over the trade-off between

accuracy and computational cost, enabling speedups of up to 15,000-fold. By learning effective

long-lag dynamics directly, TITO takes a step toward bridging the longstanding gap between

atomistic resolution and experimentally relevant timescales. More broadly, it establishes a new

paradigm for accelerating molecular simulations, with the potential to extend atomistic model-

ing to processes previously beyond reach.
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Transferable Implicit Transfer Operators

At its core, TITO (Transferable Implicit Transfer Operators, Fig. 1) learns the effective rules

of molecular motion: predicting how atomic configurations evolve over time without explicit

time integration. Rather than advancing dynamics step by step, TITO draws statistical samples

directly from the transition distribution p(xt+∆t | xt), capturing how configurations change

over a specified lag time ∆t. Trained across diverse molecular systems and lag times, TITO

generalizes both across chemistry and temporal scale.

Training proceeds from reference molecular dynamics trajectories simulated with a small

integration step τ :

X = {xτ , . . . ,xNτ}, xnτ ∼ p(xnτ | x(n−1)τ ), n = 1, . . . , N,

collected across a diverse set of molecules. From these data, the model learns to reproduce the

time-integrated transition statistics that would arise if the dynamics were propagated at much

larger effective steps ∆t = mτ , where m is an arbitrary large integer.

We parametrize the transition probability distribution, using a continuous normalizing flow

(CNF) through the equivariant flow matching (31,32) objective. A CNF consists of an ordinary

differential equation (ODE) and an easy-to-sample ‘base distribution,’ p0, such as a Gaussian

(33). The velocity field of the ODE is parameterized with a neural network model which is

trained to ensure that the resulting flow transports samples from p0 to a distribution p1 closely

matching the target data distribution, here, the transition probability distribution. The flowis

then the set of all integral paths xT
t+∆t, where T ∈ [0, 1] is the ODE integration time. Throughout

this work, superscripts denote ODE integration time, while subscripts indicate MD simulation

time.

In practice, we learn the weights θ of a neural network, vθ

(
xT
t+∆t; xt, ∆t, T

)
, to match a

conditional flow which approximates the transition probability distribution, by minimizing the
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conditional flow matching loss,

L(θ) = Ext,xt+∆t∼X, T∼U(0,1)

[∥∥vθ

(
xT
t+∆t; xt, ∆t, T

)
− (x1

t+∆t − x0
t+∆t)

∥∥2
]
.

During training, we sample molecules and lag times jointly, enabling TITO to generalize

across both chemical composition and temporal scale. After training, new trajectories are gen-

erated by sampling from p0 and integrating the learned ODE defined by vθ. Full model details

are provided in Section Model.

We train TITO models on two datasets. The first, MDQM9-nc (34), contains MD simu-

lations of small organic molecules, while the second, Timewarp (35), provides tetra-peptides

trajectories. Together, these datasets enable training across a range of molecular sizes and

chemistries. We provide details on dataset generation and pre-processing in Section Data.

Results

Integrity of the Boltzmann distribution under TITO dynamics in unseen
small molecules and peptides

A defining property of molecular systems undergoing Langevin dynamics is convergence to

the Boltzmann distribution. In contrast, when a generative model is trained to approximate

time–integrated transition probabilities, this guarantee is no longer automatic. The central ques-

tion is therefore whether TITO preserves physical realism—whether it samples configurations

consistent with the Boltzmann distribution—or instead produces unphysical states, analogous

to large language models generating text that is fluent but factually incorrect.

To test this, we examined whether the Boltzmann distribution, µ ∝ exp(−βU(x)), of the

potential energy function, U , at inverse temperature β is the invariant measure (i.e., stationary

distribution) of the transfer operator implicitly learned by TITO (36). Because the learned

operator is not directly accessible, we assessed this property numerically. Specifically, we drew
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Figure 1: Transferable Implicit Transfer Operators (TITO): A multi–time-scale surrogate
model for molecular dynamics that is transferable across systems. Starting from an initial con-
dition (black cross), TITO generates molecular dynamics ensembles for diverse molecules at
arbitrary lag times.
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Figure 2: TITO accurately predicts both thermodynamics and kinetics. Small molecules
(top) and tetra-peptides (bottom). Top row: Projection onto the first two TICA components and
comparison of VAMP timescales between MD and TITO-generated samples for a representative
molecule. Bottom row: Aggregated evaluation across systems: Jensen–Shannon divergence of
TICA projections (left), VAMP-2 gap (center), and top-10 relative error (right). Black arrows
denote the position of the example molecule within each histogram.
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initial conditions x0 ∼ µ from long unbiased MD simulations, generated trajectories using

p(x∆t | x0) with TITO, and compared the empirical distributions of x0 and x∆t using the

Jensen–Shannon divergence (JSD) (37). Across a broad set of small molecules and tetrapeptides

unseen during training, TITO reproduced the Boltzmann distribution obtained from reference

MD simulations (Fig. 2). A small fraction of cases exhibited elevated JSD values, indicating

discrepancies that could reflect either spurious (hallucinatory) samples or genuine metastable

states not explored by reference simulations (Suppl. Fig. S1).

To probe these outliers, we constructed Koopman operator models from long unbiased

MD and from TITO trajectories. These models characterize the system’s slowest dynamical

modes and associated metastable states. We found that TITO generally reproduced relaxation

timescales of MD, suggesting that much of the JSD tail arises from minor numerical mis-

matches. However, a subset of systems displayed substantially slower relaxation times under

TITO, as revealed by significantly larger VAMP (Variational Approach to Markov Processes)

scores (38). Because theoretical results show that timescales are bounded from above (39), this

suggests that TITO sampled metastable states not observed in the MD trajectories.

To evaluate whether these new states were physically meaningful, we performed extensive

replica exchange (RE) MD simulations (40). On average, TITO covered all density regions

visited by RE MD, whereas long conventional MD failed to do so in a significant fraction of

systems (Fig. 3A). States detected by TITO but absent in long MD were consistently recovered

in RE MD (Suppl. Fig. S2), confirming that they correspond to genuine metastable basins.

In one representative example, propiolamide, TITO uncovered a metastable basin absent from

long MD but corroborated by both ultra-long unbiased MD and RE MD simulations (Fig. 3C

and Suppl. Figs. S3 and S4). Remarkably, although trained only on nanosecond MD data,

TITO correctly inferred an exchange timescale between basins on the order of microseconds—

consistent with estimates from ultra-long trajectories.
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Intriguingly, TITO also predicted additional states not observed in either reference method

(Fig. 3B). To further investigate these cases, we initialized ensembles of nanosecond-length

unbiased MD trajectories from TITO-generated configurations. These simulations exhibited

a small but systematic improvement in agreement with RE MD (Suppl. Fig. S5), indicating

that TITO samples near-physical configurations capable of relaxing into correct basins under

explicit dynamics. We then assessed the stability of these newly identified states in ensemble

simulations and found that the configurations remained metastable (Fig. S6), suggesting that

they represent physically valid states rather than artifacts of the learned dynamics. Collectively,

these findings demonstrate that TITO not only preserves the integrity of the Boltzmann distribu-

tion but also uncovers metastable states that would likely remain undetected using conventional

methods within practical computational limits.

We further examined whether TITO’s generalization correlates with chemical similarity be-

tween training and test molecules. Surprisingly, no such correlation was observed in either of

the data-sets (Suppl. Figs. S7 and S8 and Suppl. Table S1). This lack of correlation suggests

that chemical composition alone provides limited signal for guiding iterative refinement or ac-

tive learning of generative dynamical models, underscoring the need for alternative strategies to

improve generalization.

TITO faithfully reproduces relaxation transients in unseen molecular sys-
tems

Next, we investigate whether the dynamics generated by TITO is statistically equivalent to that

generated by numerical MD simulations. Since we here target MD in the NVT ensemble, the

dynamics are stochastic, and consequently, we use statistical tools to quantitatively compare the

two approaches.

A stringent test of dynamical fidelity is whether a model can reproduce relaxation processes
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across systems that differ vastly in their intrinsic timescales. As noted TITO accurately recapit-

ulates relaxation dynamics in molecules and peptides outside its training set, and crucially pro-

vides quantitative predictions spanning over three orders of magnitude in characteristic times

(Suppl. Fig. S9). This level of agreement indicates that TITO has learned an effective and

generalizable representation of the underlying stochastic dynamics rather than merely fitting

short-time correlations.

Still, matching timescales alone does not guarantee that the associated motions are physi-

cally meaningful. To examine this, we performed extensive TITO simulations and compared

the full relaxation transients of slow dynamical modes with those obtained from long, unbiased

MD trajectories. Across two orders of magnitude in timescale, the agreement was striking,

suggesting that TITO reproduces both the rate and the mechanism of the underlying molecular

dynamics (Fig. 4A). This demonstrates that the learned transition operator generalizes dynami-

cally, faithfully capturing the hierarchy of molecular motions that govern relaxation kinetics.

A further requirement is internal consistency across time resolutions. Because TITO pre-

dicts time-integrated dynamics at multiple timescales, the resulting transients must be consistent

regardless of whether they are generated in a single long step or as a sequence of shorter steps

(nested sampling). We find that the relaxation transients remain self-consistent under this test

(Fig. 4A), suggesting that the learned transition density satisfies the Chapman–Kolmogorov

equation and thus encodes genuinely Markovian dynamics.

Finally, we investigated whether the high fidelity of slow dynamics is achieved at the ex-

pense of accuracy in fast, rapidly relaxing modes. Remarkably, despite operating at timesteps

orders of magnitude larger than those of bond and angle vibrations, TITO accurately repro-

duced equilibrium properties (Fig. 4B) and generated conformers with potential energies closely

matching those from unbiased MD (Fig. 4C). The main deviation we observed was a slight un-

derestimation of the variance of fast modes, which in turn leads to systematically lower potential
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energies relative to reference simulations.

Qualitative extrapolation to larger peptide systems

We next examined whether TITO can extrapolate beyond the molecular sizes represented in its

training data. This setting provides a stringent test of transferability: a model trained on short

peptides must infer effective dynamics at new length scales, where both the number of atoms

and the hierarchy of internal motions increase substantially. Specifically, we applied a model

trained only on tetrapeptides to generate trajectories for penta-, hexa-, hepta-, and octapeptides.

Extrapolation introduces a scale mismatch in the latent base distribution p0, whose variance

depends on system size. To mitigate this, we rescaled the standard deviation of p0 according

to Flory’s scaling law for the radius of gyration of random polymers, ⟨Rg⟩ ∝ N0.688 (41),

where N denotes the number of residues. Guided by this simple physical prior, TITO produced

configurations with realistic local geometry and global compactness across peptide lengths;

without this correction, stable extrapolation beyond pentapeptides was not achievable.

With the scaling correction in place, TITO approximately recovered the conformational

landscapes of larger peptides and reproduced relaxation times qualitatively consistent with ex-

plicit MD, even when the sequence length was doubled relative to the training systems (Fig. 5).

For the largest peptides, however, the generated trajectories exhibited mild structural com-

paction (Suppl. Fig. S10) and a systematic downward drift in potential energy (Suppl. Fig. S11),

leading to instability in long nested-sampling runs. These deviations likely arise from cumu-

lative local errors that are amplified at increasing system sizes. Nevertheless, the generated

configurations remain physically meaningful and can be readily refined by short low-cost MD

equilibrations.

Together, these results demonstrate that TITO captures transferable physical principles suf-

ficient to generalize far beyond its training domain, while also delineating the limits of such
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extrapolation. The observed degradation at large sizes naturally motivates hybrid divide-and-

conquer strategies, in which long TITO propagation steps are interleaved with brief MD equili-

bration phases—akin to hybrid Monte Carlo or multi-resolution simulation schemes (34,42,43).

Calibration of simulation accuracy to compute budget

For practical impact, TITO must deliver substantially higher throughput than conventional MD

while retaining quantitative accuracy in equilibrium and dynamical properties. Two factors de-

termine the effective simulation throughput: (i) the molecular size, which constrains the number

of simulations that can be run in parallel on a GPU with fixed memory, and (ii) the number of

ODE solver steps required for each CNF evaluation, which controls the cost per TITO step.

We find that equilibrium properties can be reproduced at comparatively low computational

budgets, whereas accurate estimation of relaxation time scales requires additional solver steps

and hence higher cost (Suppl. Suppl. Fig. S12). This trade-off implies that the compute budget

can be calibrated to match the target application, for example, prioritizing structural ensemble

generation versus reproducing kinetic observables measured in experiment.

To quantify achievable throughput, we report the maximum simulation time reached on

a single GPU. As shown in Table 1, TITO attains approximately 10 miliseconds of physical

simulation time per day of computation, representing a four-order-of-magnitude improvement

relative to standard unbiased MD simulations using the same resources. These results suggests

that TITO can be tuned flexibly: users may trade simulation fidelity against throughput depend-

ing on the level of accuracy required. Further, we emphasize that these gains can potentially be

even larger if the model is trained to predict larger time-steps, paving the way to study ultra-slow

processes in biology and and material science.
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Figure 5: Extrapolation to larger systems. Free energy landscape and VAMP time scales of a
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Systems Method Simulation throughput/day

Small molecules
MD 3.5 µs

TITO 11.3 ms

Tetra-peptides
MD 0.67 s

TITO 10.3 ms

Table 1: Maximum simulation time throughput. Estimates using one NVIDIA A100 80 GB
GPU for one day.

Discussion and Conclusion

We introduce Transferable Implicit Transfer Operators (TITO), a chemically generalizable gen-

erative model that reproduces molecular dynamics at a fraction of the computational cost of tra-

ditional simulations. TITO quantitatively recovers both the equilibrium probabilities of molec-

ular configurations and the rates and mechanisms of conformational exchange across diverse

chemistries, from small molecules to peptides. In essence, it delivers the fidelity of molecular

dynamics at the cost of sampling a deep generative model.

TITO achieves this by learning the statistics of time-integrated dynamics directly from sim-

ulation data, allowing propagation over arbitrarily long lag times without explicit numerical

integration at femtosecond resolution. This formulation yields an acceleration of up to four

orders of magnitude in the quantitative characterization of equilibrium states and relaxation ki-

netics at compute cost parity. Furthermore, TITO retains predictive power beyond its training

regime, qualitatively reproducing thermodynamic and kinetic behavior in peptides up to twice

the size of those used for training highlighting its ability to extrapolate across molecular size.

TITO differs fundamentally from dominant paradigms in generative models of molecular

dynamics, Boltzmann Generators which aim to quantitatively sample the independent equilib-

rium samples from the Boltzmann distribution (44) and Boltzmann Emulators which sacrifice

quantitative alignment with MD to boost efficiency and scaling (34,45,46). These methods, and

in particular their transferable variants (34, 46, 47), are rapidly becoming a viable complement
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to MD simulations when equilibrium properties are the target of investigation. However, these

approaches cannot capture dynamic properties such as rates or mechanisms.

Other methods that aim to predict the dynamics provide mainly qualitative insights and

at fixed time scales (35, 48). To our knowledge, TITO is the first framework to achieve physi-

cally realistic, multi–timescale sampling with demonstrated transferability across both chemical

composition and molecular size. Other complementary strategies, include machine-learning in-

fused path-sampling (49) strategies or latent space simulators (50–52) show promise in scaling

to larger systems, but generalization remains an open challenge requiring careful modeling and

calibration for every specific process of interest.

Machine learned interatomic potentials (53,54) and coarse-grained force-fields (55,56) have

similarly shown impressive strides towards general purpose transferability. These models can

guarantee realistic physical dynamics, depending on the integration strategy chosen. So while

they might boost the accuracy over current force-fields and coarse-grained models, they still

rely on iterative numerical integration with tiny time-steps making their computational footprint

significant. TITO instead offers a paradigm shift: bypassing iterative integration altogether.

Despite these advances, important limitations remain. At present, TITO is restricted to

implicit solvent representations and system sizes of at most a few hundred atoms. Extend-

ing the method to explicitly solvated biomolecules with tens to hundreds of thousands of de-

grees of freedom will require innovations in neural architectures (57–59) and/or hierarchical

strategies such as coarse-graining (60). In addition, periodic boundary conditions—essential

for realistic modeling of solvated systems—are not yet supported. While our experiments show

promising extrapolation to larger and chemically distinct molecules, generalization performance

still depends on the chemical similarity between target and training systems. Achieving broad

chemical coverage will necessitate larger and more diverse training datasets. Finally, TITO is

presently limited to a single thermodynamic state (NVT ensemble at room temperature). Ex-
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tending thermodynamic transferability, including across temperatures or pressures, would en-

able the study of the influence of thermodynamic perturbations on molecular systems stationary

and dynamic properties (61, 62).

Intriguingly, we find that TITO’s generalization performance shows no clear relationship

to the chemical similarity between training and test systems. This observation challenges the

prevailing assumption that broader chemical coverage alone ensures generalization. Instead,

it suggests that the structure and diversity of training data—how well they represent relevant

dynamical motifs and energy landscapes—may be more critical than sheer data volume. In this

view, progress may hinge less on scaling to ever-larger simulation datasets and more on care-

fully curated, mechanistically diverse benchmarks that capture the essential physics of molecu-

lar dynamics.

In summary, TITO establishes a new paradigm for transferable generative modeling of

molecular dynamics, unifying thermodynamic sampling and dynamical prediction in a singular

generative surrogate. By enabling accelerated and chemically transferable estimation of sta-

tionary and dynamic properties—such as free energies and rates—TITO paves the way toward

practical deep-learning–based acceleration of molecular simulations.
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Materials and methods

Data

We use three datasets covering different regions of chemical space:

1. Small molecules: The MDQM9-nc dataset (34) contains MD simulations for 12,530

small non-cyclic molecules from the QM9 dataset (63). Simulations are performed in

a vacuum, at room temperature using the GAFF force field (64). Simulation time is

dependent on the molecule size with a median sampling time of 36.5 ns. We perform

extra 1 µs RE simulations across 8 temperatures (300, 400, 500, 600, 700, 800, 900 and

1000 K). The average exchange rate 58 %.

2. Tetra-peptides: The Timewarp dataset (35) contains MD simulations for tetra-peptides.

It contains two tetra-peptides sub-datasets, large, which contains train 1457 molecules

and huge, with 92 larger molecules . We use large as training data and huge as test set.

The simulations are performed in implicit water and at room temperature. Simulation

time is 50 mns for training set molecules and 1 µs for test set molecules.

3. Larger systems: We performed 1 µs simulation of penta-, hexa-, hepta- and octa-peptides

with the same simulation parameters as in the Timewarp dataset. For each peptide length,

six sequences were randomly sampled based on vertebrate amino acid frequencies.

Model

TITO uses equivariant optimal transport flow matching to parameterize the transition probabil-

ity. Flow matching (31) provides an efficient framework for training continuous normalizing

flows by aligning a learnable velocity field with the optimal transport velocity field between

an easy to sample base distribution p0 and a target distribution p1. Rather than directly min-

imizing a divergence between the generated distribution and p1, flow matching constructs in-
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termediate states along an interpolation between p0 and p1. The neural ODE vector field is

then trained to predict the conditional displacement between these paired states. We use linear

interpolants (65),

xT = (1− T )x0 + Tx1, T ∈ [0, 1],

with target velocity,

vT =
dxT

dT
= x1 − x0.

Molecular distributions live in a space with inherent symmetries, such as rotational and

permutational invariances of atomic coordinates. Equivariant optimal transport (32) incorpo-

rates these symmetries to construct shorter paths by aligning sample pairs, x0 and x1, along

their symmetry orbits. In practice, this minimization is approximated sequentially: the optimal

permutation by solving a linear sum assignment problem (66), followed by an optimal superpo-

sitioning through solving a Procrustes problem (67).

For the velocity field model, vθ, we use a modified SE3-ITO architecture (30) enriched with

edge features encoding interaction types between atoms. Specifically, we distinguish single,

double, triple, and through-space bonds or interactions. As in SE3-ITO, we assume a complete

interaction graph where every atom interacts with all others, with bonded interactions prioritized

according to the order listed above.

Model training and inference parameters for different experiments are included in Suppl. Ta-

bles S2 and S3, respectively.

Evaluation metrics

Jensen-Shannon Divergence (JSD) The Jensen-Shannon Divergence provides a symmetric

measure of similarity between two probability distributions. Given two distributions p and q,

the JSD is defined as

JSD(p ∥ q) = 1

2
DKL(p ∥ m) +

1

2
DKL(q ∥ m),
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where m = 1
2
(p + q) and DKL denotes the Kullback–Leibler divergence. Unlike the KL diver-

gence, the JSD is bounded between 0 and 1.

Free energy The free energy (negative log-likelihood) of a sub-space of the conformational

space Ωi ∈ Ω is

F (Ωi) = −kBT log(p(Ωi)) with p(Ωi) =

∫

Ωi

p(x) dx.

Coverage and precision. Coverage and precision quantify the degree of overlap between the

probability distributions generated by two sampling methods. Given two methods, m1 and m2,

the coverage of m1 with respect to m2 is defined as

COVm1,m2 =

∫

Ωpm1∩pm2

pm2(x) dx,

where pmi
denotes the probability mass sampled from method mi, and Ωpm1∩pm2

= {x :

pm1(x) > δ and pm2(x) > δ}. Precision is defined analogously as

PREm1,m2 =

∫

Ωpm1∩pm2

pm1(x) dx.

Intuitively, coverage measures how much of the probability mass of m2 is captured by m1,

while precision measures the fraction of m1’s probability mass supported by m2. In practice,

we estimate these quantities from empirical histograms, defining Ωpm1∩pm2
as the set of discrete

states where both methods have nonzero counts.

Variational Approach for Markov Processes (VAMP) The VAMP framework provides a

principled method for evaluating the quality of dynamical models based on the variational prin-

ciple of conformation dynamics. We employed the following VAMP-based metrics:
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Implied timescales The eigenvalues of the estimated transfer operator were used to compute

implied timescales, defined as

ti = − τ

lnσi
,

where σi is the i-th singular value of the Koopman operator approximation and τ the lag time.

Relative time-scale discrepancy We define the relative time-scale discrepancy as

ϵrel =
1

N

N∑

i

|tMD
i − tTITO

i |
tMD
i

,

where tMD
i and tTITO

i are implied time scales predicted with MD and TITO respectively and

are sorted in decreasing order. We use N = 10 implied-time scales throughout this work.

VAMP-2 score The VAMP-2 score is the squared Frobenius norm of the singular value spec-

trum,

VAMP-2(k) =
k∑

i=1

σ2
i .

Higher scores indicate that the model captures slow dynamical modes.

VAMP-gap We define the VAMP-gap as the difference in VAMP2-scores between TITO and

the MD,

VAMP-gap = VAMP2-scoreMD − VAMP2-scoreTITO.

Negative VAMP-gaps indicate TITO predicts slower dynamics and vice versa.

Together, these evaluation metrics provide complementary insights: the Jensen-Shannon

Divergence and free energy excess measures how well the model reproduces equilibrium distri-

butions, while VAMP metrics assess the model’s fidelity in capturing slow dynamical processes

and metastability.
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47. L. Klein, F. Noé, Advances in Neural Information Processing Systems, A. Globerson, et al.,

eds. (Curran Associates, Inc., 2024), vol. 37, pp. 45281–45314.

48. B. Jing, H. Stärk, T. Jaakkola, B. Berger, Generative modeling of molecular dynamics

trajectories (2024).

49. H. Jung, et al., Nature Computational Science 3, 334–345 (2023).

50. H. Sidky, W. Chen, A. L. Ferguson, Chemical Science 11, 9459–9467 (2020).

27



51. P. R. Vlachas, J. Zavadlav, M. Praprotnik, P. Koumoutsakos, Journal of Chemical Theory

and Computation 18, 538–549 (2021).

52. D. Wang, Y. Wang, L. Evans, P. Tiwary, Journal of Chemical Theory and Computation 20,

3503–3513 (2024).

53. A. Kabylda, et al., Journal of the American Chemical Society (2025).

54. I. Batatia, et al., A foundation model for atomistic materials chemistry (2023).

55. N. E. Charron, et al., Nature Chemistry 17, 1284–1292 (2025).

56. M. Majewski, et al., Nature Communications 14 (2023).

57. J. T. Frank, S. Chmiela, K.-R. Müller, O. T. Unke, Euclidean fast attention: Machine learn-

ing global atomic representations at linear cost (2024).

58. R. Irwin, A. Tibo, J. P. Janet, S. Olsson, Semlaflow – efficient 3d molecular generation with

latent attention and equivariant flow matching (2025).

59. J. Cremer, et al., Flowr: Flow matching for structure-aware de novo, interaction- and

fragment-based ligand generation (2025).

60. J. Wang, et al., ACS Central Science 5, 755–767 (2019).
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Supplementary material

Examples of molecules with different Jensen-Shannon divergences

In Suppl. Fig. S1 we compare free energy landscape of MD, RE and TITO for different regions

of JSD.

0 1

1

0

1

TI
C

 2

MD

0 1

1

0

1

RE

0 1

1

0

1

TITO

6

7

8

9

Fr
ee

 e
ne

rg
y [
k B
T]

0 2 4 6

1

0

1

TI
C

 2

0 2 4 6

1

0

1

0 2 4 6

1

0

1

3

4

5

6

7

8

9

Fr
ee

 e
ne

rg
y [
k B
T]

0 1 2 3

0

2

4

TI
C

 2

0 1 2 3
TIC 1

0

2

4

0 1 2 3

0

2

4

4

6

8

Fr
ee

 e
ne

rg
y [
k B
T]

Supplementary Figure S1: Free energy landscape comparison between MD, RE and TITO for
different regions of JSD. From top to bottom, the JSD are 0.09, 0.21 and 0.35.

TITO recovers states not accessible by training set-like simulations

In Suppl. Fig. S2 we provide several examples of test molecules for which TITO is able to

recover states sampled by RE, which are not accessible by training set-like simulations.
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Supplementary Figure S2: Free energy landscape comparison between MD, RE and TITO of
test set molecules for which TITO recovers states sampled by RE, but not accessible by training
set-like MD simulations .

Overcoming MD time scales with TITO: Structural insights for propio-
lamide

In Suppl. Fig. S3 we show that the slowest process of propiolamide (Fig. 3C) involves a dihedral

angle sign inversion over the bond 3-1 and a global re-arrangement of other dihedral angles in

the molecule. Short MD fails to sample the transition, but TITO samples it and recovers an

equilibrium distribution in high agreement with RE.
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Supplementary Figure S3: Dihedral angles involved in slowest process of example molecule in
Fig. 3 C. MD fails to sample the transition. TITO recovers the equilibrium distribution predicted
by RE.

Alternative TICA projections

In Suppl. Fig. S4 we show alternative TICA projections using ultra long MD simulations to

estimate TICA models of propiolamide.

MD fine-tuning time vs JS divergence

In Suppl. Fig. S5 we show the evolution of average Jensen-Shannon divergence w.r.t. the time

that TITO samples are simulated with standard MD. Most of the reduction is achieved during

the first 10 ps.

Examples of nanosecond meta-stable state predictions of TITO missing in
RE

In Suppl. Fig. S6 we collect 4 example test set molecules for which TITO samples states are

not present in RE or MD, but are stable after 1 ns (per sample) ensemble simulation.

Performance vs chemical similarity

In Suppl. Figs. S7 and S8, and Table S1 we show that equilibrium distribution errors do not

correlate with chemical dissimilarity.
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Supplementary Figure S4: Alternative TICA projections using long MD simulations to estimate
TICA models in Fig. 3C. MD fails to sample the transition. TITO recovers the equilibrium
distribution predicted by RE and long MD.

Accurately sampling different fast and slow molecules

In Suppl. Fig. S9 we show that TITO accurately samples thermodynamic and kinetic properties

of molecules whose slowest process ranges from ps to ns.
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Supplementary Figure S5: Mean JS divergence and 95 % confindence interval for TITO, TITO
+ short MD and MD versus simulation time applied to sampled from TITO.

Hamming distance 0.25 0.75
Mean JS divergence 0.043 0.040
% of test peptides 64 26

Supplementary Table S1: Minimum Hamming dissimilarity of test set molecules w.r.t. training
set vs Jensen-Shannon divergence. No correlation is observed

Peptide size extrapolation results

Scaling of radius of gyration with number of heavy atoms (S10) and potential energy distribu-

tions comparisons (S11) for MD and TITO models trained on tetra-peptides in the pentapep-

tides, hexapeptides, heptapeptides and octapeptides.

Compute calibration example

In Suppl. Fig. S12 we show how VAMP implied time scales agreement improves when increas-

ing the number of ODE steps.

Experimental parameters

We show training and sampling parameters in Suppl. Tables S2) and S3, respectively. When

two numbers are shown separated by a forward slash (/), the first number refers to the small

34



1 0 1
2

1

0

1

TI
C

 2

MD

1 0 1
2

1

0

1

RE

1 0 1
2

1

0

1

TITO+MDFT

1 0 1
2

1

0

1

TITO

4

5

6

7

8

9

Fr
ee

 e
ne

rg
y [
k B
T]

0 1 2

1

0

1

TI
C

 2

0 1 2

1

0

1

0 1 2

1

0

1

0 1 2

1

0

1

4

6

8

Fr
ee

 e
ne

rg
y [
k B
T]

1 0 1

2

1

0

1

TI
C

 2

1 0 1

2

1

0

1

1 0 1

2

1

0

1

1 0 1

2

1

0

1

5

6

7

8

9

Fr
ee

 e
ne

rg
y [
k B
T]

0 1

1

0

1

TI
C

 2

0 1
TIC 1

1

0

1

0 1

1

0

1

0 1

1

0

1

6

7

8

9

Fr
ee

 e
ne

rg
y [
k B
T]

Supplementary Figure S6: Free energy landscape comparison between MD, RE and
TITO+MDFT and TITO of test set molecules for which TITO predicts nanosecond meta-stable
states missing or poorly sampled in RE.

molecules dataset and the second to the tetra-peptides.
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Layers 5
Feature vector size 64
Embedding layers 2
Learning rate 0.01
Batch size 750
Max lag 1 ns/ 5 ns
Lag distribution Uniform

Supplementary Table S2: Training hyper-parameters of TITO models for small molecules/tetra-
peptides.

Figure 2 Figure 3 A and B Figure 3 C Figure 4 Figure 5
Lag 57 ps/250 ps 1 ns 1 ns See figure 5 ns

Nested samples 640/500 1000 50,000 1 or 5 (nested) 1
ODE steps 20/40 20 20 40 100
Integrator Euler Euler Euler Euler Euler
Batch size 32 128 32 50 000 51200

MD fine-tuning simulation time - - 10 ps - -
MD fine-tuning replicates - - 32,000 - -

Ultra long MD simulation time - - 500 ns - -
Ultra long MD replicates - - 32,000 - -

Supplementary Table S3: TITO sampling parameters for results in different figures in the main
text for small molecules/tetra-peptides.
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Supplementary Figure S7: TICA Jensen-Shannon divergence vs chemical similarity for small
molecules dataset. (Left) First two t-SNE projections for molecules in training and test set using
Tanimoto dissimilarity as distance. Test set molecules are colored with Jensen-Shannon diver-
gence of samples generated with TITO vs reference MD simulations. Test set is well covered
by training set. (Right) Minimum Tanimoto dissimilarity of test set molecules w.r.t. training
set vs Jensen-Shannon divergence. No correlation is observed and Tanimoto dissimilarities are
low.
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Supplementary Figure S8: TICA Jensen-Shannon divergence vs chemical similarity for tetra-
peptides dataset. First two t-SNE projections for molecules in training and test set using Ham-
ming distance. Test set molecules are colored with Jensen-Shannon divergence of samples
generated with TITO vs reference MD simulations. Test set is well covered by training set.
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Supplementary Figure S9: TITO accurately samples thermodynamic and kinetic properties of
molecules whose slowest process ranges from ps to ns.
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Supplementary Figure S10: Scaling of radius of gyration ⟨Rg⟩ with number of heavy atoms in
the pentapeptides, hexapeptides, heptapeptides and octapeptides. TITO results (left) are size
extrapolations. MD values are computed on 100 ns simulation trajectories for each of the ex-
trapolation test systems. Dashed lines show ideal Flory chain (black) and best fit (red) scaling
exponent ν.

40



1400 1300 1200
100

101

102

Co
un

ts

PNGRI

1700 1600

RVSLV

800 700

SLAEA

900 800 700

STVSK

1100 1000

TFQAV

900 800 700

VANLM

800 600
100

101

102

Co
un

ts

IASSNI

1700 1600 1500

LRVYIN

500 400

MAECPF

1900 1800 1700

RLEKPD

1300 1200 1100

RPLSFM

600 500

WSIECM

1100 1000 900
100

101

102

Co
un

ts

CFDNVKI

1000 900 800

KNVSGHG

400 200

MAECPFW

1200 1000

SKENFPV

2000 1800

VLVRVDV

1100 1000 900

YFNHQKM

1100 1000 900
Potential Energy (kJ/mol)

100

101

102

Co
un

ts

FTQPEVSL

800 700 600
Potential Energy (kJ/mol)

GAGVESIH

1000 900 800
Potential Energy (kJ/mol)

KNVSGHGL

1400 1200
Potential Energy (kJ/mol)

MAECPFWR

100 200 300
Potential Energy (kJ/mol)

PAYLPPFG

2200 2000
Potential Energy (kJ/mol)

TISSQRVN

MD
TITO 1 step
TITO 2 step

Supplementary Figure S11: Potential energy distributions comparisons between MD (purple),
single (blue) and two step (gold) sampling with TITO (∆t = 0.5 ns) for pentapeptides, hexapep-
tides, heptapeptides and octapetides. Only samples in the range of sampled potential energies
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Abstract

Accurate prediction of thermodynamic properties is essential in drug dis-
covery and materials science. Molecular dynamics (MD) simulations provide a
principled approach to this task, yet they typically rely on prohibitively long
sequential simulations. Implicit Transfer Operator (ITO) Learning offers a
promising approach to address this limitation by enabling stable simulation
with time steps orders of magnitude larger than MD. However, to train ITOs,
we need extensive, unbiased MD data, limiting the scope of this framework.
Here, we introduce Boltzmann Priors for ITO (BoPITO) to enhance ITO
learning in two ways. First, BoPITO enables more efficient data generation,
and second, it embeds inductive biases for long-term dynamical behavior,
simultaneously improving sample efficiency by one order of magnitude and
guaranteeing asymptotically unbiased equilibrium statistics. Furthermore, we
showcase the use of BoPITO in a new tunable sampling protocol interpolating
between ITOs trained on off-equilibrium simulations and an equilibrium model
by incorporating unbiased correlation functions.
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ABSTRACT

Accurate prediction of thermodynamic properties is essential in drug discovery
and materials science. Molecular dynamics (MD) simulations provide a principled
approach to this task, yet they typically rely on prohibitively long sequential sim-
ulations. Implicit Transfer Operator (ITO) Learning offers a promising approach
to address this limitation by enabling stable simulation with time steps orders of
magnitude larger than MD. However, to train ITOs, we need extensive, unbiased
MD data, limiting the scope of this framework. Here, we introduce Boltzmann
Priors for ITO (BoPITO) to enhance ITO learning in two ways. First, BoPITO
enables more efficient data generation, and second, it embeds inductive biases
for long-term dynamical behavior, simultaneously improving sample efficiency
by one order of magnitude and guaranteeing asymptotically unbiased equilibrium
statistics. Furthermore, we showcase the use of BoPITO in a new tunable sam-
pling protocol interpolating between ITOs trained on off-equilibrium simulations
and an equilibrium model by incorporating unbiased correlation functions. Code
is available at https://github.com/olsson-group/bopito.

1 INTRODUCTION

Efficient molecular dynamics (MD) simulation on long time-scales is critical to a large number of
scientific and engineering applications. Stable simulations rely on solvers taking tiny integration
time-steps, making the simulation of most phenomena impractical with current methods. Since
these simulations are stochastic, a simulation step corresponds to drawing a sample from a tran-
sition probability density p(xt+τ | xt), where τ is a tiny time-step. Recently, deep generative
models have emerged as a promising strategy to potentially speed up these simulations by learning
transition probability densities where τ is much larger (Schreiner et al., 2023; Klein et al., 2023;
Hsu et al., 2024; Fu et al., 2023) and thereby allow efficient sampling at long time-scales. Implicit
Transfer Operator (ITO) learning (Schreiner et al., 2023) learns such surrogate models at multiple
time-resolutions. While ITO has shown promise in accelerating simulations, it relies on extensive
unbiased simulation data which may not always be available. In Markov state models, this limita-
tion can be mitigated by integrating off-equilibrium simulations and enhanced sampling simulations
(Trendelkamp-Schroer et al., 2015; Rosta & Hummer, 2014; Wu et al., 2014; 2016). However, such
estimators are so far unavailable for deep generative surrogates of the transition density.

Here, we introduce Boltzmann Priors for Implicit Transfer Operator (BoPITO) learning (Figure 1).
BoPITO leverages pre-trained Boltzmann Generators (BG) (Noé et al., 2019; Viguera Diez et al.,
2024; Klein & Noé, 2024; Köhler et al., 2023; Köhler et al., 2020; Midgley et al., 2024; 2023) as
priors to enable data-efficient training of ITO models, leading to one order of magnitude reduction
in the simulation data needed for training. As the BG encodes the invariant measure or Boltzmann
distribution of the dynamics encoded by the transition density, BoPITO, by construction, guarantees
asymptotically unbiased equilibrium statistics. In this way, BoPITO can combine off-equilibrium
data and biased data encoded into a BG prior to train ITO models that predict MD across multiple
time-scales. Using BoPITO we introduce a new sampling strategy to recover approximate dynamics
from biased off-equilibrium data, a BG prior, and unbiased time-correlation data, providing a new
method for inverse problems for molecular systems.

∗email: simonols@chalmers.se
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Figure 1: Boltzmann Priors for Implicit Transfer Operators (BoPITO) leverage pre-trained
Boltzmann Generators to enable data-efficient training of surrogate models of the transition den-
sity after N simulation steps. BoPITO is implemented using Score-Based Diffusion Models. The
score of the model, sθ, separates the contributions from the first eigenfunction of the transfer oper-
ator (equilibrium density), seq, from the rest, sdyn. BoPITO embeds inductive biases for long-term
dynamical behavior and enables interpolation between off-equilibrium and equilibrium models.

Our main contributions are

1. Boltzmann Priors for Implicit Transfer Operator Learning (BoPITO): We provide a
principled way to leverage Boltzmann Generators as priors for Implicit Transfer Opera-
tor Learning, boosting sample efficiency, ensuring the generation of uncorrelated data and
allowing asymptotically unbiased equilibrium statistics for τ → ∞.

2. BoPITO interpolators: A tunable sampling protocol facilitating interpolation of BoPITO
models trained on off-equilibrium simulation data to an unbiased equilibrium distribution.

3. We show that BoPITO interpolators can recover approximate dynamics from models
trained on biased simulations. We frame the optimization of interpolation parameters as
an inverse problem and select the interpolated ensemble that is most consistent with
unbiased observables.

2 BACKGROUND AND PRELIMINARIES

2.1 MOLECULAR DYNAMICS AND OBSERVABLES

Molecular dynamics (MD) is a widely used simulation method in chemistry, physics, and biology.
It combines a mathematical model of the dynamics — e.g. Langevin dynamics (Langevin, 1908) —
with a potential energy model, U(x) : Ω → R, of a system of interest, in turn providing detailed
mechanistic insights of molecular systems, through the time evolution of particles in configuration
space, x ∈ Ω. Practically, MD is solved by numerical integration, and time is discretized, with
step τ . Consequently, we can understand MD as a Markov process with a Normal transition density
p(xt+τ | xt), whose associated Markov operator has the Boltzmann distribution,

µ(x) = Z−1 exp(−βU(x)), with Z =

∫
dx exp(−βU(x)), (1)

as its invariant measure or stationary distribution, where β is the inverse temperature.

One important application of MD is to compute expectations or observables (Olsson, 2022):

1. Stationary observables:

Oa = Eµ [a(x)] . (2)

2. Dynamic observables / Time correlation functions:

Oa(t),b(t+Nτ) = Ext∼µ

[
Ext+Nτ∼pτ (xt+Nτ |xt) [a(xt) · b(xt+Nτ )]

]
, (3)

where pτ (xt+Nτ |xt) is the conditional probability density after N simulation steps with time-step
τ . The maps a and b : Ω → RL serve as observable functions or ‘forward models’ characterizing
microscopic observation processes, e.g. indicating whether a drug is bound or not, or an interatomic
distance, leading to observables such binding affinities and off-rates of a drug to a target protein.
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Unfortunately, stable MD simulations rely on using time discretizations, τ , on the order of 10−15 s,
whereas properties such as protein folding or ligand unbinding occur on much longer time scales,
∼ 10−3 − 10−1 s. Due to the sequential nature of these simulations, an impractical number of
simulation steps are necessary to predict these properties in an unbiased fashion. As a result, most
MD data will be ‘off-equilibrium’, e.g. trajectories exploring one or a few of the modes of the
Boltzmann distribution µ(x). See Appendix A.1 for more precise definitions of configuration space,
off-equilibrium, unbiased and biased MD.

2.2 BOLTZMANN GENERATORS

Boltzmann Generators (BG) (Noé et al., 2019) are a generative machine learning approach to draw
samples i.i.d. from the Boltzmann distribution, µ(x), of physical many-body systems (eq. 1). BGs
learn a diffeomorphic map, Fθ : RN → RN , from a latent space, equipped with a simple base
density p(z), to configurational space of a physical system, such that the push-forward density
p̂(x) = Fθ#p(z) closely approximates the Boltzmann distribution (eq. 1). In practice, Fθ is im-
plemented using an invertible neural network architecture with tractable Jacobian determinants to
enable efficient sampling and exact sample likelihood computation (Chen et al., 2018; Papamakarios
et al., 2021). BGs are trained either with approximately equilibrated simulation data or with biased
simulations, from i.e. enhanced sampling, by employing appropriate reweighting (Ferrenberg &
Swendsen, 1989; Shirts & Chodera, 2008). Unbiased samples can then be generated by importance
re-sampling (Nicoli et al., 2020). Similarly, unbiased expectations can be computed using the im-
portance weights w(x) = e−βU(x)/p̂(x). As such, BGs are surrogates of the target Boltzmann
distribution, but do not model time-correlation statistics.

2.3 TRANSFER OPERATORS

Transfer operators (Ruelle, 1978; Schütte et al., 2009) provide a framework to describe the evolution
of probability densities over time. Let p denote an initial probability density function on Ω, and ρ
its µ-weighted version, p = µρ. The Markov operator, TΩ, is defined using a transition density
p(xt+τ |xt),

[TΩ(τ) ◦ ρ](xt+τ ) ≡
1

µ(xt+τ )

∫

Ω

µ(xt)ρ(xt)p(xt+τ |xt) dxt. (4)

This operator describes the µ-weighted evolution of absolutely convergent probability density func-
tions on Ω by a discrete-time increment τ given by the dynamics encoded in a transition density
p(xt+τ |xt). In the context of molecular dynamics, TΩ is a µ-weighted equivalent to the Markov
operator discussed above (sec. 2.1). The spectral form of the transfer operator is expressed as

[TΩ(τ) ◦ ρ](xt+τ ) =
∞∑

i=1

λi(τ)⟨ρ|ϕi⟩ ψi(xt+τ ), (5)

where λi(τ) are the eigenvalues, ψi and ϕi are the corresponding right and left eigenfunctions,
respectively, and ⟨f |g⟩ =

∫
Ω
f(x)g(x) dx. The eigenvalues λi(τ) depend on the parameter τ and

are related to the characteristic relaxation rates κi by |λi(τ)| = exp(−τκi). The right and left
eigenfunctions are related by the stationary density, such that ϕi(x) = µ(x)ψi(x). In reversible
dynamics, all eigenvalues λi are real and lie within the interval −1 < λi ≤ 1. Notably, there is one
eigenvalue λ1 = 1, with corresponding eigenfunctions ψ1(x) = 1 and ϕ1(x) = µ(x).

2.4 DIFFUSION MODELS

Diffusion models (DMs) (Ho et al., 2020; Song et al., 2020) are a popular generative modeling
framework that approximates data densities p(x0) by learning to invert a noising process (‘forward
diffusion’). The forward diffusion process is pre-specified and incrementally transforms the data
distribution into a simple prior distribution, p(xT ), through simulation of a time-inhomogenous
Markov process represented by the SDE,

dxtdiff = f(xtdiff , tdiff) dtdiff + g(tdiff) dW, (6)

where (0 < tdiff < T ) is the diffusion time, f and g are chosen functions, and dW is a Wiener
process. To generate samples from the data distribution, p(x0), we can sample from p(xT ) and
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solve the backward diffusion process (‘denoising process’) (Anderson, 1982),

dxtdiff =
[
f(xtdiff , tdiff)− g2(tdiff)∇xtdiff log p(x

tdiff |tdiff)
]
dtdiff + g(tdiff) dW. (7)

This backward process is approximated using a deep neural network ∇xtdiff log pθ(x
tdiff |tdiff) =

sθ(x
tdiff , tdiff). The learned backward SDE can be recast into a probability flow ODE (Maoutsa

et al., 2020; Song et al., 2021), which in turn can be interpreted as a continuous normalizing flow
(Chen et al., 2018) which facilitates efficient sampling and enables sample likelihood evaluation.

2.5 IMPLICIT TRANSFER OPERATOR LEARNING

Implicit Transfer Operator (ITO) Learning (Schreiner et al., 2023) is a framework for learning sur-
rogate models of the transition density, p(xNτ |x0), from MD data, where N is an arbitrarily large
integer. ITO leverages that the transfer operator framework allows us to express the transition den-
sity as

p(xt+Nτ |xt) =
∞∑

i=1

λNi (τ)ψi(xt)ϕi(xt+Nτ ), (8)

where ψi and ϕi are independent of τ and N . See Appendix A.2 for a complete derivation.

This decomposition inspired a strategy to learn a conditional generative model xt+Nτ ∼
pθ(xt+Nτ |xt, N) by sampling tuples (xti ,xti+Niτ , Ni) and training a generative model to mimic
the empirical transition density at multiple time-horizons, Nτ . Here, we approximate ITO models
with a conditional denoising diffusion probabilistic model (cDDPM) of the form

p(x0
t+Nτ |xt, N) ≡

∫
p(x0:T

t+Nτ |xt, N) dx1:T , (9)

where x1:T are latent variables of the same dimension as our output, and follow a joint density
describing the backward diffusion process, eq. 7, and xT ∼ N (0, I). We denote diffusion time
in Diffusion Models using superscripts, while physical time is represented using subscripts. The
conditional sample likelihood is given by

ℓ(I;θ) ≡
∏

i∈I

pθ(x
0
ti+Niτ | xti , Ni) (10)

where I is a list of generated indices i specifying a time ti and a time-lag (τ ) integer multiple Ni,
associating two time-points in a MD trajectory of length Mτ , x = {x0,xτ , . . . ,x(M−1)τ}.

Training is performed by optimizing an approximation of the variational bound of the log-likelihood
(Ho et al., 2020),

L(θ) = Ei∼I,ϵ∼N (0,I),tdiff∼U(0,T )

[
∥ϵ− ϵ̂θ(x̃

tdiff
ti+Niτ

,xti , Ni, tdiff)∥2
]
, (11)

where x̃tdiff
t =

√
ᾱtdiffxt +

√
1− ᾱtdiff ϵ, with ᾱtdiff =

∏tdiff
j (1 − βj) and βj is the variance of

the forward diffusion process at diffusion time, j. ϵ̂θ(·) is one of the two architectures presented by
Schreiner et al. (2023). Following Arts et al. (2023) we express the score as

sθ(x
tdiff
t+Nτ ,xt, Ni, tdiff) = −

ϵ̂θ(x̃
tdiff
ti+Niτ

,xti , Ni, tdiff)√
1− ᾱtdiff

. (12)

See Appendix A.3 for more details and pseudo-code on training and sampling algorithms.

3 RELATED WORK

Sampling the Boltzmann distribution Apart from Boltzmann Generator-based approaches, there
are a number of traditional ways to draw statistical samples from the Boltzmann distribution of
molecular systems. Prominent examples include, molecular dynamics or Markov Chain Monte
Carlo simulations coupled with enhanced sampling strategies (Hénin et al., 2022; Kamenik et al.,
2022), including replica-based approaches (Earl & Deem, 2005; Sidler et al., 2016; Pasarkar et al.,
2023), conformational flooding (Grubmüller, 1995), meta-dynamics (Laio & Parrinello, 2002), and
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umbrella sampling (Torrie & Valleau, 1977), in particular when paired up with machine-learned col-
lective variables (Chen & Ferguson, 2018; Wang et al., 2019b; Herringer et al., 2023; M. Sultan &
Pande, 2017). The success of these approaches relies on choosing the right mechanism to enhance
sampling across high free energy barriers, or low probability regions, for any given case (Carter
et al., 1989). Finding such mechanisms typically involves substantial manual engineering of col-
lective variables and other hyper-parameters. Finally, there are transition path sampling approaches
(Dellago et al., 1998; Bolhuis et al., 2002), which are particularly powerful when combined with
reinforcement learning (Jung et al., 2023) or deep generative priors (Plainer et al., 2023).

Latent space simulators and Coarse graining Classical (fine-grained) molecular dynamics sim-
ulation can be coarse-grained beyond the Born-Oppenheimer approximation, such that atomic nuclei
are merged together into ‘beads.’(Noid, 2023) This strategy, in principle enables faster simulations
due to the smaller number of particles and the acceleration of kinetics caused by the coarse-graining
(CG) operation (Nüske et al., 2019). CG models can be estimated to closely approximate the ther-
modynamics of the corresponding fine-grained system through the optimization of two equivalent
variational bounds (Noid et al., 2008; Lyubartsev & Laaksonen, 1995; Ercolessi & Adams, 1994). A
relaxation of this bound was recently proposed to also allow for probabilistic reconstruction of fine-
grained configurations (Chennakesavalu et al., 2023). These bounds have been used extensively to
build CG force-field models (Husic et al., 2020; Wang et al., 2019a; Majewski et al., 2023; Charron
et al., 2023) including implicit solvation models (Chen et al., 2021; Katzberger & Riniker, 2024),
using deep neural networks due to their ability to capture multibody terms (Wang et al., 2021) to
ultimately accelerate the prediction of equilibrium properties of molecular systems. Similarly, the
development of ‘latent space simulators’ where a learned, typically low-dimensional, latent space
equipped either with a propagator (Sidky et al., 2020; Chennakesavalu et al., 2023; Wang et al.,
2024), or not (Wang & Gómez-Bombarelli, 2019), is learned to enable efficient simulation. These
approaches, in general aim to accelerate molecular simulations akin to BoPITO, yet due to the CG
operation, the molecular dynamics (kinetics) will be accelerated, and detailed knowledge of the
unbiased dynamics are needed to correct this (Nüske et al., 2019; Crommelin & Vanden-Eijnden,
2011). Concurrent work, presents MDGen where conformational states are tokenized and in turn
used to generate multiple frames of a MD trajectory jointly (Jing et al., 2024).

Transfer Operator surrogates Analysis of MD data often involves building transfer operator
surrogates such as Markov state models (MSM) (Schütte et al., 1998; Prinz et al., 2011; Swope
et al., 2004; Husic & Pande, 2018), time-lagged independent components analysis (Molgedey &
Schuster, 1994; Ziehe & Müller, 1998; Pérez-Hernández et al., 2013), Markov field models or dy-
namic graphical models, (Olsson & Noé, 2019; Mardt et al., 2022; Hempel et al., 2022), VAMPnets
(Mardt et al., 2018; Wu & Noé, 2019), or observable operator models (Wu et al., 2015). Markov
state models are time-space discrete approximations of the transfer operator and Deep Generative
MSM (Wu et al., 2019) and VAMPnets (Mardt et al., 2018) learn the space discretization through
deep neural networks. Dynamic graphical models or Markov field models (Hempel et al., 2022)
represent a time-space discrete approximation of the transfer operator injecting a (conditional) inde-
pendence assumption of molecular subsystems, when modeling the transition probability, leading to
better scaling for systems with poor time-scale separation (Olsson & Noé, 2019). Apart from ITO
(Schreiner et al., 2023), several other deep generative approaches for modeling the transition den-
sity of molecular dynamics have recently proposed. Timewarp where a normalizing flow is used to
encode the transition density (Klein et al., 2023) with limited transferability to enable metropolized
sampling of unbiased equilibrium distributions (Hastings, 1970). Score dynamics use a DDPM to
model the displacements of an initial configuration towards a time-lagged one, achieving picosecond
time-steps simulation and limited transferability (Hsu et al., 2024). However, unlike in the context
of MSMs (Trendelkamp-Schroer et al., 2015; Rosta & Hummer, 2014; Wu et al., 2014; 2016), there
are no deep generative transition density surrogates available leveraging available information about
the equilibrium distribution — BoPITO is one such method.
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4 BOLTZMANN PRIORS FOR IMPLICIT TRANSFER OPERATOR LEARNING

ITO training requires extensive, unbiased MD simulations to capture the statistical distribution of
rare events. This data-intensive requirement can hinder ITO’s practical implementation. Further-
more, models trained on off-equilibrium simulations, which may exhibit non-representative statis-
tics, can lead to inaccurate predictions, compromising their utility in downstream applications. In
practice, however, both unbiased off-equilibrium simulations and information about the equilibrium
distribution from potentially biased simulations (Hénin et al., 2022) can be cheaply generated, and
both encode information about the dynamical behavior of molecular systems. We introduce Boltz-
mann Priors for Implicit Transfer Operator (BoPITO), as a learning paradigm for ITO models that
leverage available information about the equilibrium distribution.

BoPITO uses pre-trained models of the equilibrium distribution to improve ITO learning in four
ways. First, it helps ensure broad sampling of Ω proportional to the equilibrium distribution for
subsequent MD simulations yielding information about the transition density p(xτ | x0) from across
Ω. Second, we use it to fix the stationary part of the learned transition density, boosting the sample
efficiency when learning models of molecular dynamics. Third, it imposes an inductive bias of
long-time dynamical behavior allowing for recovery of unbiased Boltzmann distribution for long-
time horizons. Fourth, using BoPITO, we introduce a novel tunable sampling protocol interpolating
ITO models trained on off-equilibrium simulation data and an unbiased equilibrium distribution.

4.1 EFFICIENT DATA GENERATION

Training data for ITO models consists of several independent unbiased MD simulations. Following
the adaptive sampling strategy (Bowman et al., 2010; Doerr & De Fabritiis, 2014; Viguera Diez et al.,
2024; Betz & Dror, 2019), used extensively in the molecular dynamics simulation community, we
use a pre-trained BG to generate initial conditions to simulations ensuring broad sampling across Ω
proportional to the Boltzmann distribution. As long as these trajectories reach a ‘local equilibrium’
we can in principle recover an unbiased model of the molecular dynamics (Nüske et al., 2017), albeit
without relying on running one or a few very long simulations to reach the global equilibrium.

4.2 LONG-TERM DYNAMICS INDUCTIVE BIAS FOR ITO

One important application of ITO is to allow for one-step sampling of long-time-scale dynamics.
However, real datasets often contain a limited number of effective samples for long time-scales,
leading to potential biases in models. To mitigate this issue, we propose separating the equilibrium
contribution from the time-dependent components:

p(xt+Nτ |xt) = µ(xt+Nτ ) +

∞∑

i=2

λNi (τ)ϕi(xt+Nτ )ψi(xt), (13)

where we have used that λ1 = 1 and its corresponding eigenfunctions are ϕ1 = µ and ψ1 = 1.
Additionally, we introduce a decay in the time-dependent component, creating an inductive bias that
asymptotically samples from an available equilibrium model for long-term dynamics. Using the
spectral decomposition of the transition density (eq. 13), we choose the score model as

s(xtdiff
t+Nτ ,xt, N, tdiff,θ) = seq(x

tdiff
t+Nτ , tdiff) + λ̂Nsdyn(x

tdiff
t+Nτ ,xt, N, tdiff,θ), (14)

where seq(xt
diff, tdiff) is the score of a pre-trained surrogate of the equilibrium distribution model,

0 < λ̂ < 1 is a hyper-parameter and sdyn(xtdiff
t+Nτ ,xt, N, tdiff,θ) accounts for the time-dependent

components. As N → ∞, seq dominates and the model samples from the equilibrium model, see
Appendix A.4 for an example. By interpreting the score field as a velocity field, we can reformu-
late the DM as a continuous normalizing flow which we can use for Metropolized sampling of the
unbiased equilibrium distribution (Klein et al., 2023). The proposed factorization is principled, cor-
responding to a separation of the score of the transition density into a stationary and dynamic part,
where the first part is considered known, see Appendix A.5 for details. In practice, we first train seq
(if not provided) using equilibrium data. Then we train sdyn with unbiased, possibly off-equilibrium,
MD data while keeping seq fixed and we choose λ̂ performing hyper-parameter optimization, see
Appendix A.6 for details. We discuss alternative formulations of the score in Appendix A.7.
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4.3 BOPITO INTERPOLATORS

A significant issue in MD simulations is the unbiased sampling of transitions over high free-energy
barriers, e.g. channels in µ(x) with very little probability mass, typically coinciding with mixing
on Ω. This difficulty leads to an inability to predict time-correlation statistics for large Nτ . With
BoPITO we can define an interpolation between models trained on off-equilibrium simulations and
the equilibrium distribution. In this manner, we can approximate dynamics not seen explicitly in
the data. For a time-dependent model, sdyn, trained on off-equilibrium simulations with maximum
training lag, Nmax, we define a BoPITO interpolator as a model with the following score function:

s(xtdiff ,xt, Nint, tdiff) = seq(x
tdiff , tdiff) + λ̂Nintsdyn(x

tdiff ,xt, Nmax, tdiff), (15)
with Nint ≥ Nmax. This defines an interpolator because Nint = Nmax generates samples from the
model distribution with maximum lag andNint → ∞ generates samples from the equilibrium model.

Inspired by methods in molecular biophysics (Kolloff & Olsson, 2023; Olsson et al., 2017; Bottaro
& Lindorff-Larsen, 2018; Salvi et al., 2016), we propose to choose the interpolation parameter, Nint,
as the most consistent with an unbiased dynamical observable, such as experimental data. That is,
for a lag N > Nmax and an unbiased dynamic observable O∗

N , we choose
Nint,N = argmin

Nint

|O∗
N −ONint |, (16)

where ONint is the dynamic observable estimated with samples from the BoPITO interpolator. This
way BoPITO can integrate off-equilibrium and equilibrium MD with experimental data. In practice,
we find the interpolator to generate some high-energy states. However, we can alleviate the high-
energy structures by alternating long-lag interpolation steps with short-lag non-interpolation steps
for local relaxation. We discuss how BoPITO interpolators alleviate out-of-distribution issues in
Appendix A.8.

5 RESULTS

For detailed parameters of the experiments below, we refer to Appendix A.9.

5.1 SYSTEMS

Prinz potential is a 1D potential commonly used for benchmarking MD sampling methods (Prinz
et al., 2011). We set the observable functions, a and b in eq. 3, to be the identity function for
computing dynamic observables. For details, see Appendix A.10.

Alanine Dipeptide is a small peptide with 22 atoms. We use publicly available data from Dibak
et al. (2022), containing 1µs simulation time split in 20 trajectories. Simulation is performed in an
implicit solvent with 2 fs integration time-step, and data is saved every 1 ps. We choose,

a(x) = b(x) =

[
sinϕ(x)
cosϕ(x)

]
, (17)

where ϕ(x) is a torsion angle involved in the slowest transition in the system. For details, see
Appendix A.11.

Chignolin (cln025) is a fast folding protein with 10 residues, 166 atoms and 93 heavy atoms. We
use molecular dynamics data previously reported by Lindorff-Larsen et al. (2011). The data is
proprietary but available upon request for research purposes. The simulations were performed in
explicit solvent with a 2.5 fs time-step and the positions was saved at 200 ps intervals. We extract
all heavy atoms positions from the simulations and train models on this data. We use the fraction of
native contacts Lindorff-Larsen et al. (2011) to define a dynamic observable with,

a(x) = b(x) =

∑Nres
i=1

∑Ni

j>i
1

1+e
10(dij(x)−d∗

ij
−1)

∑Nres
i=1Ni

, (18)

where the first sum in the numerator iterates over all Nres residues in the protein, while the second
sum considers the Ni native contacts of residue i separated by at least seven residues in the primary
sequence. Here, dij(x) and d∗ij represent the Cα − Cα distances of residues i and j in the structure
x and the native structure, respectively. This observable quantifies the protein’s foldedness, with
values ranging from 0 (unfolded) to 1 (folded). For a detailed explanation, refer to Appendix A.12.
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5.2 BOLTZMANN PRIORS FOR TRAINING DATA GENERATION

(a)

(b)

Figure 2: Absolute difference in corre-
lation with respect to long unbiased MD
simulations (lower is better) of mod-
els trained on trajectories initialized on
samples from a Boltzmann Generator
(BG) and a single structure (crystal, x =
0.75) for the Prinz Potential under direct
sampling. The former presents supe-
rior performance for different lag times
(number of trajectories = 50) (a) and
number of trajectories (b). The shaded
areas correspond to 95 % confidence in-
terval.

Modeling the transition density over Ω requires observ-
ing transitions across the state space. In the usual set-
ting, only one or a few initial conditions are available
when data collection starts. Here, we explore the case
where a BG is available before data collection and com-
pare it against the baseline, where only one initial condi-
tion is known. We use a BG trained on equilibrium data of
the Prinz potential to sample the initial conditions of our
training trajectories. We also generate trajectories using a
single starting point (crystal, x = 0.75) and compare their
performance with long simulations (Figure 2). We com-
pare the two different data generation strategies using the
metric, |∆correlation|, which measures the absolute dif-
ference of the time-correlation function (dynamic observ-
able) compared to the MD ground truth (Appendix A.13).
We find that the performance of models using Boltzmann
priors for data generation is superior for different lag
times (Figure 2a) and number of trajectories (Figure 2b).
The gap between BG and the crystal baseline increases
with lag-time, and as expected decreases with the number
of generated trajectories.

5.3 BOPITO EFFICIENTLY SAMPLES
LONG-TERM DYNAMICS IN A LOW-DATA CONTEXT

Fixing the equilibrium contribution to the score field ef-
fectively reduces the number of parameters that need to
be estimated. To test whether this prior information man-
ifests as an improved sample efficiency we compared ITO
and BoPITO models against each other with varying sizes
of training data.

We find that the BoPITO models achieve a higher ac-
curacy for long-term dynamics compared to ITO mod-
els when data is scarce, as the equilibrium distribution is
known a priori and does not need to be learned from sim-
ulation data (Figure 3). The inductive bias in BoPITO
models enables them to learn long-term dynamics, even
in scenarios where ITO models fail. For the Prinz Po-
tential, we find that while ITO suffers from poor perfor-
mance modeling long-term dynamics when data is scarce,
BoPITO models accurately capture long-term dynamics without worsening the performance on short
and medium time-scales. The results for Alanine Dipeptide and Chignolin show favorable scaling
with increasing system size: we find that an order of magnitude more data is needed to train an ITO
to the same accuracy as a BoPITO model trained on the same data. Moreover, we show in Appendix
A.14 that the energies of configurations sampled from our prior Boltzmann Generator used in our
experiments match closely the energies of MD samples.

5.4 INTERPOLATING BETWEEN MODELS TRAINED ON OFF-EQUILIBRIUM DATA AND THE
BOLTZMANN DISTRIBUTION WITH EXPERIMENTAL DATA

In practical settings, our MD data will be off-equilibrium, e.g. having sampled only one or a few of
the relevant modes in the Boltzmann distribution µ(x) in a given trajectory. Consequently, unless
extensive data across the domain Ω can be collected, models based on such data will be biased. An
alternative to collecting more simulation data is to use a multi-modal strategy where experimental
data is used to fill the gaps left by simulation data and bridge to long time-scale dynamics (Salvi
et al., 2016; Kolloff & Olsson, 2023). In this section we explore the potential of BoPITO inter-
polators to integrate dynamic observables with off-equilibrium simulation data to recover unbiased
long-term dynamics.
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Alanine Dipeptide ChignolinPrinz potential

ITO

BoPITO

Figure 3: Absolute difference in correlation with respect to long unbiased MD simulations (lower is
better, one-step sampling) of ITO (left) and BoPITO (right) split into short, medium, and long time-
scales against the number of training trajectories for the Prinz potential (top) and Alanine Dipeptide
(middle) and Chignolin (bottom). The shaded areas correspond to a 95 % confidence interval.

1050 1300 2200

Figure 4: Fitting an interpolator of a bi-
ased BoPITO model for Alanine Dipep-
tide. Both the ITO and BoPITO models
are trained on biased MD simulations of
Alanine Dipeptide. We fit a BoPITO in-
terpolator selecting the most consistent
ensemble with the unbiased correlation
function specified in eq. 16. Numbers
with blue arrows specify the interpola-
tion parameter, Nint.

We showcase BoPITO interpolators on Alanine Dipep-
tide. By removing the transitions between the modes of
the Boltzmann distribution corresponding to the slowest
process in the system, e.g. ϕ crossing 0 or 2, we generate
a biased simulation data, resembling a realistic scenario.
We then train ITO and BoPITO models using these biased
trajectories. For lags > 100, we sample the BoPITO in-
terpolator estimated by matching to an unbiased dynamic
observable defined by eq. 26, allowing us to overcome
a systematic error in the correlation function observed in
the biased MD data and for an ITO model trained on these
data (Figure 4).

Beyond reproducing the provided dynamic observable,
the interpolator also demonstrates a remarkable ability to
capture the underlying microscopic dynamics (Figure 5).
Even with excellent agreement, the generated ensembles
only slightly overestimates density in the transition state
region. However, this effect could easily be alleviated by
annealing a short MD simulation to the interpolation as
was recently shown (Viguera Diez et al., 2024).

6 LIMITATIONS AND FUTURE WORK

Choice of hyper-parameter λ̂ The hyper-parameter λ̂, defines a global relaxation or mixing time-
scale of the dynamics after which the model is guaranteed to sample equilibrium. In Appendix A.6
we describe a protocol to determine a bound for this parameter. However, developing a similar
protocol for a transferable BoPITO model would likely require modifications to accommodate the
diversity of global relaxation time-scales across different systems.

No Chapman-Kolmogorov Guarantee When training on biased or off-equilibrium data where
we rely on establishing ergodicity through interpolation we cannot guarantee self-consistency of the
dynamics in the Chapman-Kolmogorov sense.
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Surrogate model BoPITO inherits the current limitations of ITO, such as generalization over
chemical space and thermodynamic variables, and scaling. Furthermore, current models cannot
guarantee unbiased sampling dynamics for non-equilibrium ensembles, which would require closed-
form expressions for the target path probabilities.

0.
5 

ns
1 

ns
5 

ns
7.

5 
ns

Figure 5: BoPITO can incorporate unbiased dynamic observables to correct a model trained on
biased data. Rows of increasing time-lag (from top to bottom). Contour plots correspond to a
BoPITO interpolator. The first column shows conditional transition densities projected onto the
torsion angles ϕ and ψ (inset). The black cross indicates the initial condition. The second and third
columns show marginal distributions of ϕ and ψ, respectively. MSM stands for a Markov State
Model of the unbiased MD data.

7 CONCLUSION

We introduce Boltzmann Priors for Implicit transfer Operator Learning (BoPITO), a framework to
enhance ITO learning in three ways. First, a broad sampling of configuration space is used to ini-
tialize short off-equilibrium MD simulations. Second, we parameterize the transition density as an
interpolation towards a pre-trained Boltzmann Generator, improving sample efficiency by an order
of magnitude. BoPITO is a principled approach to embedding prior knowledge of the stationary dis-
tribution of Markovian dynamics as an inductive bias for long-term dynamical behavior. Third, our
approach enables interpolation between models trained on off-equilibrium data and the equilibrium
distribution, and we can recover accurate models of unseen dynamics when informed by unbiased
observables. Consequently, BoPITO is the first method to allow for the integration of multiple
sources of information into the generation of deep generative surrogates of molecular dynamics.
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Hao Wu and Frank Noé. Variational approach for learning markov processes from time series data.
Journal of Nonlinear Science, 30(1):23–66, aug 2019. doi: 10.1007/s00332-019-09567-y. URL
https://doi.org/10.1007%2Fs00332-019-09567-y.

Hao Wu, Antonia S. J. S. Mey, Edina Rosta, and Frank Noé. Statistically optimal analysis of state-
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A APPENDIX

A.1 DEFINITIONS

• Configuration space: Mathematical space in which all possible states or positions of a
physical system are represented. For example, in a classical MD simulation, the positions
of all the atoms in the simulation.

• Unbiased simulations: Simulations performed with standard MD, i.e. Langevin Dynam-
ics. They are unbiased because they generate samples from the underlying transition den-
sity. Particularly, for asymptotically large simulation times, unbiased simulations sample
the Boltzmann distribution µ(x). However, because of energy barriers in the potential
energy landscape, unbiased simulations may not explore some modes of the Boltzmann
distribution if the simulation time is not long enough. Therefore, generating samples with
unbiased MD often leads to off-equilibrium data.

• Off-equilibrium data: Simulation trajectories whose underlying statistics do not represent
well those of the equilibrium distribution. One example is lack of ergodicity: when the
simulation fails to explore some modes in the Boltzmann distribution. Even if having
explored the full state space, it is possible to have off-equilibrium trajectories because of
rare events, which require to be sampled “many” times to accurately represent equilibrium
statistics.

• Biased simulation: Simulations performed with modified versions of naive MD that speed
up the exploration of state space. These methods are a subset of enhanced sampling and
include meta-dynamics (Laio & Parrinello, 2002), replica exchange (Earl & Deem, 2005)
and others (Sidler et al., 2016; Pasarkar et al., 2023). Data generated with enhanced sam-
pling do not resemble the underlying transition density, but, often, can be re-weighted to
represent the equilibrium distribution.

A.2 EIGEN DECOMPOSITION OF THE TRANSFER OPERATOR AND TRANSITION DENSITY

The two-fold composition of the transfer operator, eq. 5, acting on an initial µ-weighted density, ρ,
is

[T 2
Ω(τ) ◦ ρ](xt+2τ ) =

∞∑

i=1

λi(τ)

〈 ∞∑

j=1

λj(τ)⟨ρ|ϕj⟩ ψj |ϕi
〉
ψi(xt+2τ )

=

∞∑

i=1

λi(τ)




∞∑

j=1

λj(τ)⟨ρ|ϕj⟩ ⟨ψj |ϕi⟩


 ψi(xt+2τ )

=
∞∑

i=1

λ2i (τ)⟨ρ|ϕi⟩ ψi(xt+2τ ),

where we have used the orthonormality of the eigenfunctions, that is ⟨ψj |ϕi⟩ = δij . Similarly,

[TN
Ω (τ) ◦ ρ](xt+Nτ ) =

∞∑

i=1

λNi (τ)⟨ρ|ϕi⟩ ψi(xt+Nτ ). (19)

The transition density can be re-written in terms of the spectral decomposition of the transfer op-
erator by choosing the initial density, p, as a Dirac delta function δxt

(x), that is ρ(x) =
δxt (x)

µ(x) .
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Then,

p(xt+Nτ |xt) = µ(xt+Nτ )

[
TN
Ω (τ) ◦ δxt

µ

]
(xt+Nτ )

= µ(xt+Nτ )
∞∑

i=1

λNi (τ)

〈
δxt

µ

∣∣∣∣ϕi
〉
ψi(xt+Nτ )

=
∞∑

i=1

λNi (τ) ⟨ δxt
(x)|ψi⟩ ψi(xt+Nτ ) µ(xt+Nτ )

=
∞∑

i=1

λNi (τ)ψi(xt)ϕi(xt+Nτ ).

A.3 IMPLICIT TRANSFER OPERATOR DETAILS

Implicit Transfer Operator (ITO) Learning (Schreiner et al., 2023) is a framework for learning
surrogate models of the transition density, p(xNτ |x0). ITO models are trained sampling tuples
(xti ,xti+Niτ , Ni) and training a generative model to mimic the empirical transition density at mul-
tiple time-horizons, Nτ . Training is done following Algorithm 1.

Algorithm 1 Training. DisExp is defined in Algorithm 4

Input: n MD-trajectories; X = {xj
0, . . . ,x

j
tj}nj=0, ITO score-model; ϵ̂θ, max lag; Nmax

X ′ = Concatenate({xj
0, . . . ,x

j
tj−Nmax

}nj=0)

while not converged do
xt ∼ Choice(X ′)
N ∼ DisExp(Nmax)
tdiff ∼ Uniform(0, T )
Take gradient step on:
∇θ

[
∥ϵ− ϵ̂θ(x̃

tdiff

t+Nτ ,xt, N, tdiff)∥2
]

end while
return ϵ̂θ

Once a model is trained, it can be sampled by following Algorithm 2.

Algorithm 2 Sampling from p̂θ(x0, N)

Input: initial condition x0, lag; N , diffusion steps; Tdiff , ITO score-model; ϵ̂θ
xTdiff

N ∼ N (0,1)
for tdiff = Tdiff . . . 1 do

ϵ ∼ N (0,1)

xtdiff−1
N = 1√

αtdiff

(
xtdiff

N − 1−αtdiff√
1−ᾱtdiff

ϵ̂θ(x
tdiff
N ,x0, N, tdiff)

)
+

√
βtϵ

end for
return x0

N

Several sampling steps can be annealed to sample longer lag-times as depicted in Algorithm 3.
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Algorithm 3 Ancestral sampling. Sampling from pθ is defined in Algorithm 2

Input: initial condition x0, lag N , ancestral steps n.
Allocate T ∈ R(n+1)×dim(x0)

T [0] = x0

for i = 1 . . . n do
xi ∼ p̂θ(T [i− 1], N)
T [i] = xi

end for
return T

Algorithm 4 Sampling from DisExp

Nlog ∼ Uniform(0, log(Nmax))
Return: floor(exp(Nlog))

BoPITO uses Algorithm 1 for training and Algorithm 2 for sampling as well, but uses the score
mode in eq. 14.

A.4 DECAY OF TIME-DEPENDENT SCORE TERM

In Figure 6, we show the average time-dependent component of the score,

sN = Ei∼I,tdiff∼U(0,T )

[
|λ̂Nsdyn(xtdiff

ti+Nτ ,xti , N, tdiff,θ)|
]
, (20)

of a trained BoPITO model of the Prinz Potential with λ̂ = 0.994. The expectation for I correspond-
ing to the sampling of tuples as during training (Alg. 1). The model remains flexible for small lags
but eventually decreases to 0, sampling from the equilibrium model.
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Figure 6: Average time-dependent component of the score, eq. 20, of a trained model BoPITO
model of the Prinz Potential.
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A.5 THE SCORE OF THE TRANSITION PROBABILITY AND BOPITO

The score of the transition probability can be written as

∇xNτ
log p(xNτ |x0, N) =

∞∑

i

λi(τ)
N ψi(x0)

p(xNτ |x0, N)
∇xNτ

ϕi(xNτ )

=
∇xNτ

µ(xNτ )

p(xNτ |x0, N)
+

∞∑

i=2

λi(τ)
N ψi(x0)

p(xNτ |x0, N)
∇xNτ

ϕi(xNτ )

=
∇xNτ

µ(xNτ )

µ(xNτ )

µ(xNτ )

p(xNτ |x0, N)

+ λ̂N
∞∑

i=2

(
λi(τ)

λ̂

)N
ψi(x0)

p(xNτ |x0, N)
∇xNτ

ϕi(xNτ ).

∇xNτ
µ(xNτ )

µ(xNτ )
= ∇xNτ

logµ(xNτ ) is the score of the Boltzmann distribution and can be modeled

with the score of a Boltzmann Generator, seq(xtdiff , tdiff).
µ(xNτ )

p(xNτ |x0,N) → 1 as N → ∞ and can be

modeled with a scalar neural network 1 + λ̂Nfθ(x
tdiff
Nτ ,x0, N, tdiff). The last term can be modeled

with gθ(xtdiff
Nτ ,x0, N, tdiff). The corresponding score model is

sθ(x
tdiff
Nτ ,x0, N, tdiff) = seq(x

tdiff , tdiff)(1 + λ̂Nfθ(x
tdiff
Nτ ,x0, N, tdiff) + λ̂Ngθ(x

tdiff
Nτ ,x0, N, tdiff)

= seq(x
tdiff , tdiff) + λ̂N

(
seq(x

tdiff , tdiff)fθ(x
tdiff
Nτ ,x0, N, tdiff) + gθ(x

tdiff
Nτ ,x0, N, tdiff)

)
︸ ︷︷ ︸

sdyn(x
tdiff
Nτ ,x0,N,tdiff)

.

We can aggregate f and g to a single neural network component, sdyn(xtdiff
Nτ ,x0, N, tdiff), to get

sθ(x
tdiff
Nτ ,x0, N, tdiff) = seq(x

tdiff , tdiff) + λ̂Nsdyn(x
tdiff
Nτ ,x0, N, tdiff). (21)

For simplicity, we incorporate the structure of the transition density into the diffusion model, not
only for tdiff = 0 (the learned data distribution), but for all tdiff > 0. We do not observe this choice
to limit model expressivity in our experiments.

A.6 FITTING λ̂

The hyperparameter λ̂ controls the time-scale at which the BoPITO model transitions to sampling
the equilibrium model. Ideally, λ̂ should be similar to the eigenvalue corresponding with the slowest
process in the system, λ2. However, its value is not generally available and requires extensive
unbiased simulation data to be accurately estimated. If λ̂ is too small, the model may prematurely
relax to equilibrium, limiting its ability to capture non-equilibrium dynamics. Conversely, if λ̂ is too
large, the benefits of the BoPITO framework could diminish. Therefore, careful tuning of λ̂ can be
crucial for optimal performance.

As illustrated in Figure 7, grid-search hyper-parameter tuning can select an appropriate λ̂ for a
single-system model. Too small values of λ̂ can hinder the model’s ability to capture long-time-
scale dynamics, leading to increased loss. We recommend choosing the smallest λ̂ that yields a
plateau in the λ̂-loss curve (elbow rule), as demonstrated in Figure 7 (b) for the Prinz potential.
However, practitioners should be cautious about sampling longer lags than the implied time-scale
defined by λ̂ if they cannot guarantee the system relaxes to equilibrium for those time-scales. Fitting
curves for Alanine Dipeptide and Chignolin are shown in Figure 8.

A.7 ALTERNATIVE SCORE FORMULATIONS

The score in eq. 14 is principled and resembles the score of the transition density. However, in
practice, we found that this score can lead to suboptimal performance in learning short time-scales
if the dynamic component fails to dominate the equilibrium component for small N . We only
observed this for Chignolin. We relate this issue to numerical limitations due to very different scale
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(a) (b)

Figure 7: Average loss against training epochs for the Prinz potential for different values of λ̂ (a) and
average final loss versus λ̂ (b). Averages are taken w.r.t. 10 runs. Final losses are computed as the
average between epochs 190 and 200. The greatest eigenvalue of the system under our simulation
parameters is 0.994.

(a) (b)

Figure 8: Average final loss against different values of λ̂ for Alanine Dipeptide (a) and Chignolin
(b). The smallest value of λ̂ that allowed numerically stable training for Chignolin was 0.9995.
Orange cross symbolizes that the trainings crashed because of numerical instability reasons.
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in neural network weights for different values of N . We remark that short time-scales are the least
relevant since they can be easily sampled with MD. Still, to mitigate this effect we propose the
following alternative factorization,

sθ(x
tdiff
Nτ ,x0, N, tdiff) = f(N)seq(x

tdiff , tdiff) + λ̂Nsdyn(x
tdiff
Nτ ,x0, N, tdiff), (22)

where f(N) is an increasing function and tends to 1 for large N . One potential option that does not
introduce extra hyper-parameters is

sθ(x
tdiff
Nτ ,x0, N, tdiff) =

λ̂−2N − λ̂2N

λ̂−2N + λ̂2N
seq(x

tdiff , tdiff) + λ̂Nsdyn(x
tdiff
Nτ ,x0, N, tdiff). (23)

Moreover, to ensure adequate convergence to the equilibrium distribution and avoid over-fitting to
unbiased MD for long time-scales, we use the following decay score for N > Ndecay,

sθ(x
tdiff
Nτ ,x0, N, tdiff) = seq(x

tdiff , tdiff) + λ̂Nsdyn(x
tdiff
Nτ ,x0, Ndecay, tdiff). (24)

We use this version for the experiments conducted on Chignolin and set Ndecay = 3t2, where t2 is
the unitless characteristic time of the slowest process in the system, t2 = −1

log λ2
.

A.8 HOW BOPITO INTERPOLATORS MITIGATE OUT-OF-DISTRIBUTION EFFECTS

BoPITO interpolators mitigate out-of-distribution effects by, first, fixingN = Nmax as the argument
of sdyn. This choice ensures that none of our neural networks are evaluated outside of the training
domain. Second, we alter long-lag interpolation steps with short-lag non-interpolation steps for local
relaxation. Since we in practice see that the long-lag steps occasionally generates ‘off data manifold’
states, e.g. structures with potential high energies, the local ‘relaxation’ steps projects us back onto
the data manifold. In practice, just one short-lag non-interpolation step is sufficient to overcome this.
Third, we use dynamic observables to fit the interpolation parameter. Without any additional source
of information we don’t know how to choose Nint. However, when we use dynamic observables,
we can select the interpolated ensemble which is the most consistent with experimental observables.
So this helps calibrate the time-scales to stay “in distribution”.

A.9 EXPERIMENTAL PARAMETERS

A.9.1 BOLTZMANN PRIORS FOR DATASET GENERATION

For different numbers of trajectories, n, we train 5000/n ITO models on n Prinz potential trajecto-
ries of length 150. Trajectories do not overlap among different trainings. The maximum model lag
is 100 steps.

A.9.2 BOPITO SAMPLES EFFICIENTLY LONG-TERM DYNAMICS IN DATA-SPARSE SCENARIOS

Prinz potential 10 models are trained on non-overlapping trajectory sets for different numbers of
trajectories. The trajectories length is 10, 000 and the maximum model lag is 1, 000. We consider
lags of 10, 25, and 50 as short, 100, 200, and 300 as medium, and 500, 750, and 1, 000 as long time-
scales in our experiments, see Figure 10 (b) for a visual reference. λ̂ is set to 0.994 for all BoPITO
experiments.

Alanine Dipeptide 10 models are trained on potentially overlapping random trajectory sets for
different numbers of trajectories. The trajectories length is 12, 500 and the maximum model
lag is 10, 000. We consider lags of 5, 10, and 50 as short, 100, 500, and 1000, as medium, and
2500, 7500, and 10000 as long time-scales in our experiments, see Figure 11 (b). λ̂ is set 0.9996 for
all BoPITO models.

Chignolin 4 models are trained on potentially overlapping random trajectory sets for differ-
ent numbers of trajectories. The trajectories length is 35, 000 and the maximum model lag is
30, 000. We consider lags of 10, 50, and 100 as short, 500, 1000, and 5000, as medium, and
10000, 20000, and 30000 as long time-scales in our experiments, see Figure 13 (b). λ̂ is set 0.9995
for all BoPITO models. BoPITO models are trained using the score in eq. 23 and the decay function
in eq. 24.
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Diffusion steps 500
Noise schedule Sigmoidal

Batch size 2, 097, 152
Learning rate 0.001

Layers 3
Embedding dimension 256

Net dimension 256
Optimizer Adam

Inference ODE steps 50

Diffusion steps 1, 000
Noise schedule Polynomial

Batch size 1, 024/32
Learning rate 0.001
Score layers 5

Embedding layers 2
n features 64
Optimizer Adam

Inference ODE steps 100 /50

Table 1: Architectural and training parameters of MB-ITO models (a) and SE3-ITO (b). Batch sizes
and inference ODE steps refer to Alanine Dipeptide and Chignolin experiments respectively.

A.9.3 INTERPOLATING BETWEEN MODELS TRAINED ON OFF EQUILIBRIUM DATA AND THE
BOLTZMANN DISTRIBUTION

We remove the transitions resembling the slowest process in the system, ϕ crossing 0 or 2, to gen-
erate biased simulation data. When a transition occurs, we remove one frame before and after the
transition and split the trajectory. We train both biased ITO and BoPITO models with a maximum
model lag of 100 on the resulting biased dataset. For lags> 100, we sample the BoPITO interpolator
fitted on the unbiased dynamic observable defined by eq. 26, see Figure 4. We perform interpolation
by sampling with the score model in eq. 15 followed by one round of non-interpolation sampling
with lag 100 steps for local relaxation.

A.9.4 ARCHITECTURAL, TRAINING AND INFERENCE DETAILS

We use MB-ITO as the architecture of models for the Prinz potential, and SE3-ITO, an
SE(3)−equivariant neural network, for Alanine Dipeptide, both introduced in Schreiner et al.
(2023). We report architectural and training hyper-parameters in Table 1. Models are trained until
convergence in the log-log loss plot.

A.10 PRINZ POTENTIAL

The Prinz potential is a 1D potential commonly used for benchmarking MD sampling methods. The
potential is defined as

U(x) = 4
(
x8 + 0.8e−80x2

+ 0.2e−80(x−0.5)2 + 0.5e−40(x+0.5)2
)
. (25)

We generate trajectories using an Euler-Maruyama integrator using the library Deeptime (Hoffmann
et al., 2021). We set the integrator time-step to 1 · 10−5, and the temperature, mass, and damping
factor to 1. In Figure 9 we show histograms of the position of a particle after N steps, starting from
0.75, and in Figure 10 (a) we report an implied time-scales plot. We use the identity function to
define a dynamic observable/correlation function of this system and show it in Figure 10 (b).

A.11 ALANINE DIPEPTIDE

Alanine Dipeptide is a small peptide with 22 atoms. We use publicly available data from Dibak et al.
(2022), containing a total of 1 µs simulation time split in 20 trajectories. Simulation is performed
in an implicit solvent with 2 fs integration time-step and data is saved every 1 ps. We choose,

a(x) = b(x) =

[
sinϕ
cosϕ

]
, (26)

to define a dynamic observable of this system. The torsion angle ϕ is involved in the slowest tran-
sition observed in the simulation, see Figure 12. We combine these vectors taking the inner product
for computing dynamic observables. We show this correlation function in Figure 11 (a), and implied
time-scales plot in Figure 11 (b) and a histogram of the torsions ϕ and ψ aggregating all simulation
data in Figure 12.
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Figure 9: Conditional density of a simulation of the Prinz potential starting at x = 0.75 for different
lags (steps). Long-term dynamics approaches the Boltzmann distribution.

(a) (b)

Figure 10: Implied time-scales (a) and dynamic observable under the identity function (b) for the
Prinz Potential. Errors in (b) are smaller than the dots. In (a), the implied time-scales of the 5 slowest
processes in the system are computed for different lags. The color order, from longest to shortest
implied time-scale, is blue, orange, green, red, and purple.
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(a) (b)

Figure 11: Implied time-scales for Alanine Dipeptide computed with a Markov State Model on
torsional angles ϕ and ψ (a) and dynamic observable in eq. 26 (b). In (a), the implied time-scales of
the 5 slowest processes in the system are computed for different lags. The color order, from longest
to shortest implied time-scale, is blue, orange, green, red, and purple.

ψϕ

Figure 12: Histogram of the torsional angles ϕ and ψ of Alanine Dipeptide (insert). Data is aggre-
gated among all trajectories in the dataset introduced in Dibak et al. (2022).
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Figure 13: Time evoluation of ‘foldedness’ in a subset of the reference MD simulation (a) and
dynamic observable in eq. 27 (b).

A.12 CHIGNOLIN

Chignolin (cln025) is a fast folding protein with 10 residues, 166 atoms and 93 heavy atoms. We
use molecular dynamics data previously reported by Lindorff-Larsen et al. (2011). The data is
proprietary but available upon request for research purposes. The simulations were performed in
explicit solvent with a 2.5 fs time-step and the positions was saved at 200 ps intervals. We extract
all heavy atoms positions from the simulations and train models on this data. We use the reaction
coordinate proposed in Lindorff-Larsen et al. (2011) as to define a dynamic observable,

a(x) = b(x) =

∑Nres
i=1

∑Ni

j>i
1

1+e
10(dij(x)−d∗

ij
−1)

∑Nres
i=1Ni

, (27)

where the first sum in the numerator iterates over all Nres residues in the protein, while the second
sum considers the Ni native contacts of residue i separated by at least seven residues in the primary
sequence. We define native contacts as residue pairs separated by at least seven residues in the
primary sequence and with Cα atoms closer than 10 Å in the native structure. Moreover, dij(x)
and d∗ij represent the distances between the Cα atoms of residues i and j in the structure x and
the native structure, respectively. This observable quantifies the protein’s foldedness, with values
ranging from 0 (unfolded) to 1 (folded). In Figure 13 (a) we show the evolution of eq. 27 on a
subset of the reference simulation data and we observe how the protein undergoes transformations
between the folded and unfolded states. In Figure 13 (b) we visualize the corresponding dynamic
observable.

A.13 METRICS

We evaluate models computing differences in the dynamic observables introduced in section 5.1
w.r.t. long MD simulations,

|∆correlation|N = |O∗
N −Omodel

N |, (28)

where O∗
N is the normalized observable predicted by MD for lag N and Omodel

N is the model’s
prediction. See Appendix A.15 for details on normalization. We report the average difference over
different training runs.

A.14 ENERGIES FOR ALANINE DIPEPTIDE

In Figure 14 we observe a remarkable agreement in energy densities of samples generated with our
Boltzmann Generator and MD. GBSAOBForce is the implicit solvent model energy.
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Figure 14: Energy and energy components of samples generated with a Boltzmann Generator (BG)
and MD.

A.15 CORRELATION FUNCTION NORMALIZATION

We subtract the mean and divide by correlation at lag 0 to normalize our dynamic observables.
Subtracting the mean guarantees that the correlation function asymptotically decays to 0, and we
divide by the correlation at lag 0 so that correlation can be read as a fraction of correlation at time
0. The resulting normalized correlation function is

E[(f(xt)− E[f(xt)]) (g(xt+∆t)− E[g(xt+∆t)])]

E[(f(xt)− E[f(xt)]) (g(xt)− E[g(xt)])]
. (29)

When comparing different methods, we compute E[f(xt)], E[g(xt+∆t)] and
E[(f(xt)− E[f(xt)]) (g(xt)− E[g(xt)])] using long MD simulations and use these same
normalizing factors for all methods.
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Abstract

Machine learning (ML) provides effective computational tools for exploring
the chemical space via deep generative models. Here, we propose a new
reinforcement learning scheme to fine-tune graph-based deep generative models
for de novo molecular design tasks. We show how our computational framework
can successfully guide a pre-trained generative model towards the generation
of molecules with a specific property profile, even when such molecules are not
present in the training set and unlikely to be generated by the pre-trained model.
We explored the following tasks: generating molecules of decreasing/increasing
size, increasing drug-likeness, and increasing bioactivity. Using the proposed
approach, we achieve a model which generates diverse compounds with predicted
DRD2 activity for 95% of sampled molecules, outperforming previously-reported
methods on this metric.
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Abstract

Machine learning (ML) provides effective computational tools for exploring the

chemical space via deep generative models. Here, we propose a new reinforcement

learning scheme to fine-tune graph-based deep generative models for de novo molecu-

lar design tasks. We show how our computational framework can successfully guide a

pre-trained generative model towards the generation of molecules with a specific prop-

erty profile, even when such molecules are not present in the training set and unlikely

to be generated by the pre-trained model. We explored the following tasks: gener-

ating molecules of decreasing/increasing size, increasing drug-likeness, and increasing

bioactivity. Using the proposed approach, we achieve a model which generates diverse

compounds with predicted DRD2 activity for 95% of sampled molecules, outperforming

previously-reported methods on this metric.
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Introduction

Deep generative models (DGM) are a class of machine learning models which seek to

approximate the underlying distribution of data. DGMs importantly allow for sampling —

or generation — of new, synthetic data from a learned distribution. Consequently, DGMs

can aid in creative scientific processes, such as the design of new medicines, by helping

researchers design molecules which optimise over a desired property profile, as has been

experimentally demonstrated in several studies.1–4

DGMs have already seen success across several domains and support diverse tasks such

as text,5 music6 and image7 synthesis. Chemists are also increasingly adopting DGMs for

applications to complex design tasks such as drug discovery3 and materials design,8 lead-

ing to the emergence of the sub-field of generative chemistry .9 Previous work has already

explored a broad array of neural network ‘architectures,’ including recurrent neural net-

works (RNN),10–13 variational autoencoders (VAE),14–18 and generative adversarial networks

(GAN),19–21 which have all successfully been used in DGMs for de novo molecular design.

Reinforcement learning (RL) is a machine learning technique where a computational

agent interacts with an environment and obtains a reward by measuring the quality of its

actions. Broadly, RL explores algorithms which train agents to encourage some desired be-

haviour, e.g., playing a game or designing molecules with specific properties. Indeed, RL

has been used to fine-tune DGMs towards generation of compounds with targeted properties

using a variety of molecular representations. Previous RL efforts have focused on fine-

tuning models that represent molecules as strings.22–27 However, RL has also been applied

to fingerprint-28 and graph-based29 models. The latter, compared to string-based methods,

allow direct learning from the graph structure, better handling of complex molecular struc-

tures (e.g., aromatic heterocycles), and more direct integration of 3D information.30 Previous

work applying RL to molecular DGMs which explicitly treat molecules as graphs is limited,

and consists of (1) a graph convolutional network (GCN)-based model for targeted molec-

ular graph generation using policy gradient methods,29 and (2) a Deep-Q Network which

2



generates molecular graphs from scratch and without model pre-training.28

Two closely-related molecular DGMs have inspired this work:

• REINVENT,27 a string-based DGM, which uses RNNs to generate targeted molecular

strings via policy gradient RL, and

• GraphINVENT,31 which uses graph neural networks (GNNs) to generate molecular

graphs.

Here, we combine the graph-based DGMs from GraphINVENT with a policy gradient RL

framework as in REINVENT. We describe a RL strategy for fine-tuning graph-based DGMs

for drug discovery applications. We test the proposed RL framework by fine-tuning a pre-

trained GraphINVENT model to favour property profiles relevant in drug design, including

increasing pharmacological activity. We model bioactivity using a quantitative structure-

activity relationship (QSAR) ML model for dopamine receptor type D2 (DRD2) activity.

Optimisation for DRD2 activity is a widely used de novo design bioactivity benchmark

and allows us to easily compare to previous work.22,27,32 While RL has been applied to

many string-based methods for de novo molecular design,22–26 our results encourage the

possibility of future work in RL for graph-based molecular design targeting more complex

design objectives, as well as prospective experimental validation studies.

Methods

Our graph-based de novo design model consists of three main components:

1. a graph-based molecular DGM,

2. a RL framework with a memory-aware loss,

3. and a scoring model.
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Graph-based molecular DGM

Following the GraphINVENT33 approach we use a model based on a Gated Graph Neural

Network (GGNN) to generate molecules by iteratively sampling actions which build upon

an input graph. The action space is divided into three possible actions: ‘add atom’, ‘add

bond’, and ‘terminate graph’. Using such a set of actions, A, we can formulate the task of

generating a molecular graph, G, as a Markov decision process, where an ‘agent’ generates

molecules by sampling a sequence of actions from statistical distributions over these actions,

leading to G. These statistical distributions are called the action probability distributions

(APD) (see Supporting Information). Here we model the APD at any given step in the

generation sequence using a DGM. That is, given the current graph state, which includes

what atoms and bonds have been placed in previous steps, our DGM returns the probabilities

of the next available actions.

More formally, we build molecules using a sequence of n actions A = {a0, a1, . . . , an−1},

where ai ∼ APDi and f : Gi 7→ APDi. Here, f represents our GGNN-based model, which

maps a sub-graph built with i actions to APDi, shorthand for APD(A|Gi). Starting from an

empty graph G0, and ending with the final graph Gn, the graph generation process proceeds

as follows: G0 → a0 ∼ APD0 → G1 → · · · → an−1 ∼ APDn−1 → Gn.

Molecules are broken into a sequence of actions using a breadth-first algorithm to generate

the target APD. The model is trained by imitating the inverse process. Particularly, the

average Kullback-Leibler divergence (DKL) between target (APDt) and predicted (APDp)

APDs (Eq. 1) is minimised during training.

DKL(APDt||APDp) =
∑

a∈A
APDt(a) log

APDt(a)

APDp(a)
(1)

The set of chosen hyperparameters is the result of an exhaustive search and is detailed

in the Supporting Information. The best model was selected at the epoch which minimised

the validation loss and used as the ‘prior’ in the RL framework.
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Memory-aware RL framework

Prior log-like

3. RL framework
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Figure 1: RL loop. The BAR loss is defined in Eq. 2. Augmented log-likelihood refers to the
second term in Eq. 3 and consists of the reference likelihood and the weighted score.

We build on the previously reported REINVENT algorithm for fine-tuning.22 The goal

is to update the agent policy π from the prior policy πPrior to increase the expected score for

the action sequences used to build more desirable graphs. Here, the policy is parameterised

using our graph-based model that predicts an APD given an input graph.

The loss we propose here uses a reward shaping mechanism.34 Compared to REINVENT,

we introduce a loss term which keeps track of the best agent so far and is updated every few

learning steps. By doing so, we remind the current agent of sets of actions that can lead

to high-scoring compounds, in turn accelerating agent learning. The best agent reminder

(BAR) loss takes the form

J(θ) = (1− α)JA(A,P;θ) + αJÃ(A, Ã;θ). (2)

Above, α ∈ [0, 1] is a scaling factor that we treat as a hyperparameter. P is the prior model.

The current agent and best agent are respectively A and Ã. Then,

JS(B,R;θ) = EpS

[
[logP (A)B − (logP (A)R + σS(A))]2

]
. (3)
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Above, S represents the agent used for sampling and R represents the reference model. σ

is a scaling factor for the score that we treat as a hyperparameter. EpS denotes the average

with respect to molecules generated by agent S. A refers to the sequence of actions taken

to build a molecule by agent S. APDB(ai|Gi) is the probability of sampling action ai given

the input graph Gi and model B, P (A)B =
∏n−1

i=0 APDB(ai|Gi) is the probability of taking

the sequence of actions A computed with model B, and P (A)R is the analogous probability

given by the reference model R for the same sequence of actions. S(A) is the score for the

molecule generated following actions A. Eq. 3 corresponds to a mean square error loss of the

log-likelihood of model B and the augmented log-likelihood, logP (A)R + σS(A). Intuitively,

the score modulates the log-probabilities given by the reference model and ensures that those

of poorly scoring molecules are lowered relative to those of highly scoring molecules.

The learning process (Fig. 1) consists of the following steps:

1. Initialise the current and best agents to the prior model. For the prior, we use the

pre-trained DGM.

2. Generate a batch of molecules with the current and the best agents, saving the actions.

3. Score all generated molecules.

4. Compute the following:

i. the probabilities which the prior model P and current agent A assign to A, the

set of actions taken by the current agent,

ii. and the probabilities which the current agent A and best agent Ã assign to Ã, the

set of actions taken by the best agent.

5. Compute the BAR loss (Eq. 2).

6. Update the current agent parameters so as to minimise the loss.
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7. Repeat from step 2, potentially updating the best agent every 5 learning steps.a

Scoring model

The scoring model should be designed for each specific optimisation task. Here, we

implemented four different scoring functions. The goals of the scoring functions were to:

1. change the average size of molecules by either increasing or decreasing the number of

heavy atoms,

2. promote ‘drug-likeness’ in molecules,

3. and promote DRD2 activity.

The first two scoring functions were used to test the operation of the RL framework. The

final scoring function was designed to be representative of a drug discovery optimisation

task.

During scoring, molecules which are invalid, improperly terminated and/or duplicates

are assigned a score of 0 so as to discourage their sampling in future iterations.

Reducing and increasing the average size of the molecules

On average, molecules sampled from the prior contain 26 heavy atoms. As such, we

began exploring the RL framework with the simple task of shifting the distribution of the

number of nodes in the sampled molecules towards smaller and larger molecules.

We accomplished these two tasks by defining a scoring function that creates a maximum

reward for molecules with 10 and 40 heavy atoms, respectively. More specifically:

Ssize(A) =





0 if not {PT, valid and unique},

1− |nnodes−n?
nodes|

maxnodes−n?
nodes

otherwise,
(4)

aThe best agent is updated if the average score of 1K generated molecules is the largest observed, with
1K chosen as a trade-off between speed and sufficient sampling.
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where n?
nodes is the target number of heavy atoms in sampled molecules and was set to 10 or

40 for the tasks of reducing and increasing molecular size, respectively. Here, A is the set of

actions taken to build the molecule, PT stands for properly terminated, nnodes is the number

of heavy atoms in the molecule, and maxnodes is the maximum number of nodes allowed in

the model (72 here).

Promoting drug-like molecules

The next scoring function is based on the quantitative estimate of drug-likeness (QED)35

implementation from RDKit:36

SQED(A) =





0 if not {PT, valid and unique},

QED(Mol(A)) otherwise.
(5)

Here, Mol(A) refers to the molecule generated via actions A. QED values can range between

0 and 1, with higher values indicating a molecule is more drug-like and thus more desirable.

It should be noted that QED does not necessarily correlate with pharmacological activity.

Promoting DRD2 active molecules

Finally, we investigated a scoring model to fine-tune our DGM towards the generation of

drug-like, DRD2-active molecules. Here, we used a QSAR model37 to predict DRD2 activity

in sampled compounds. It consists of a probabilistic Support Vector Machine Classification

model trained to discriminate active compounds from inactive ones based on their 2048-bit

radius 2 Morgan fingerprint representations and the ExCAPE-DB dataset.38 This dataset

has been proven to share similar physico-chemical property distributions to ChEMBL, and

this QSAR model has been previously used to predict the DRD2 activity of compounds in

this dataset.39
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Our scoring model for this task takes the form:

Sactivity(A) =





1 if PT, valid, unique, QED > 0.5 and activity > 0.5,

0 otherwise.
(6)

Like QED, predicted activity ranges from 0 to 1, with 1 indicating that a molecule is likely

active. However, as the QED and QSAR models are not perfect indicators of pharmacological

activity,35 we used a threshold of 0.5 to classify molecules as either ‘active’ (QED and activity

> 0.5) or ‘inactive’ (QED or activity < 0.5). We found the chosen threshold values to work

well for ensuring stable training and the subsequent generation of high-scoring molecules.

We compare the molecules generated after RL using this scoring function with a dataset of

predicted DRD2 active molecules, which consists of 3627 predicted active molecules according

to Eq. 6. Comparison to this set allows us to evaluate if the model can learn to generate true,

known DRD2 actives despite that known actives were removed from the original training set.

Dataset details

The dataset used to train the prior was downloaded from40 and is a subset of ChEMBL41

with known DRD2 active molecules removed. Molecules in the remaining set are made up

of {H, C, N, O, F, S, Cl, Br} and < 50 heavy atoms.39 5 · 105 molecules were randomly

selected from ChEMBL to create the training set, with 5 · 104 for validation and 5 · 104 for

testing. The DRD2 ‘predicted actives’ dataset was downloaded from github.com/pcko1/

Deep-Drug-Coder/.40
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Results

Using the BAR loss function

When analysing the behaviour of the reinforcement learning framework using different

values of α in the loss function (Eq. 2) with the activity scoring function (Eq. 6), we observe

that a value of α = 0.5 helps to significantly improve learning (Fig. 2). As the score is discrete,

the model learns only when molecules satisfying all the desired criteria are sampled, and the

model does not generate many active molecules initially (see α = 0.0 in Fig. 2). Therefore,

it is especially helpful in this setting to have introduced a memory mechanism to the loss

via the α-modulated term which depends on the best recent agent. Without this term, the

agent is more likely to forget combinations of actions which result in high activities/scores.

We found that using α = 0.5 not only accelerated and stabilised learning, but also led to a

greater fraction of predicted actives sampled.

0 50 100 150 200
Learning step

0.0

0.1

0.2

0.3

0.4

0.5

0.6
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or

e

=0.00
=0.50

Figure 2: Comparison of the average score of the generated molecules as a function of learning
step during bioactivity optimisation. The results in blue are analogous to using the loss proposed
in REINVENT,27 which is recovered when α = 0.0. The results in orange correspond to keeping
contributions from the best recent agent in the loss with α = 0.5 (Eq. 2).

Tuning desired properties via the scoring function

We show here some results for the scoring functions defined above. To prove the ability

of the RL framework to fine-tune the DGM towards the generation of molecules with de-
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sired properties, we used the scoring functions previously defined in Eqs. 4, 5, and 6. For

hyperparameters, see the Supporting Information.

Score Fraction valid&pt Fraction unique

PT

Figure 3: Learning curves for the four different scoring functions investigated. Left: Evolution of
the average score of the generated molecules during learning. Centre: Evolution of the fraction of
generated molecules which are both valid and properly terminated (PT) during learning. Right:
Evolution of the fraction of unique molecules generated during learning. The values are computed
in all cases for 1000 molecules, taking averages over 10 runs. The error bars correspond to the
standard deviation. The hyperparameter values used are α = 0.5 for all four scoring functions,
σ = 10 for {Reduce, Increase, and QED}, and σ = 20 for Activity.

In Fig. 3 we show the evolution of the average score, the fraction of valid and properly

terminated molecules (those which do not violate any chemical rules and for which the

last sampled action was ‘terminate’), and the fraction of unique molecules sampled during

learning. Several observations can be made:

• Our model improves the average score of sampled molecules using all four scoring

functions. We highlight that the model was able to learn how to generate well-scoring

molecules even when we searched for active DRD2 molecules, of which no known true

positive examples were given during training.

• The percentage of valid and properly terminated molecules improves during learning

as we penalise invalid and improperly terminated molecules.

• The fraction of unique molecules decreases during learning when reducing molecular

size or promoting drug-like and active compounds. This behaviour is undesirable but

unsurprising, as we are updating towards a smaller chemical space.
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• The results are robust as most metrics exhibit very little noise.

We illustrate examples of molecules from the training set, samples from the pre-trained

model, and samples from the fine-tuned models in Fig. 4. We find that most generated

molecules look reasonable although some of them may be less stable due to the large macro-

cycles present in them. Less stable molecules are sampled more often from the models which

aim to either increase the size or drug-likeness of molecules.

Our approach is successful because it can generate molecules which improve on all four

scores tested here, compared to the pre-trained GraphINVENT model. One example is the

substantial change in the average size of the molecules sampled when reducing and increasing

the number of atoms in the molecules (Eq. 4). Similarly, the approach can also yield models

that generate molecules with higher QED scores (Eq. 5) and improved activity scores (Eq. 6).

The latter is particular remarkable, as 95% of sampled molecules are predicted to be active

by the QSAR model. Nonetheless, some of these predicted actives are not predicted to be

synthesizable, as highlighted in Fig. 4.

We break down the performance of the DGM optimising for DRD2 activity in Table 1.

We compared the fine-tuned models to the prior as follows:

1. First, we sampled 10K molecules from the prior model.

2. Then, we sampled 10K molecules from a single fine-tuned model.

3. Finally, we sampled and collected 1K molecules from 10 different fine-tuned models

(same set of hyperparameters, but different training/sampling runs).

For each set of sampled molecules, we computed their average QED, average DRD2

activity, and how many are predicted actives. We also computed the number of known

true actives generated by each model. We observe that both sets of fine-tuned molecules

show similar values for the first metrics, and are substantially improved compared to the

pre-trained model. Most importantly, while the prior model is not able to generate any
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known true DRD2 actives, both fine-tuned models are indeed able to sample known actives.

Notably, when the 10K molecules come from 10 different fine-tuned models, the number of

known actives sampled is 10-fold higher than when 10K molecules are sampled from a single

model. This follows from the previous reasoning about the RL-trained models being heavily-

dependent on the initial learning steps; as such, there is little overlap in sets of molecules

generated during different RL runs.

Table 1: Comparison of various evaluation metrics for three sets of 10K generated molecules: one
in which all are sampled from the pre-trained DGM without fine-tuning (Prior), another in which
all are sampled from a single fine-tuned model (Single), and another in which 1K molecules are
sampled from 10 separate fine-tuned models and combined (Comb.). Active refers to the percentage
of molecules which have predicted QED and activity scores > 0.5. Known true actives refers to the
small percentage of molecules from the DRD2 dataset which have been re-generated by each model.

Evaluation metric Prior Single Comb.

Average QED 0.59 0.72 0.76

Average DRD2 activity 0.03 0.92 0.94

Active (%) 1 94 97

Unique (%) 100 48 60

Active and unique (%) 1 45 58

Known true actives (%) 0 0.08 0.83

Synthesizability of generated molecules

To investigate the synthesizability of molecules generated by our model, we used AiZyn-

thFinder,42 an open-software platform for retrosynthetic planning based on a Monte Carlo

tree search guided by a policy neural network. The tree search recursively breaks down the

molecule to purchasable precursors in the ZINC dataset43 using reactions from the USPTO

dataset.44 The result of the search can be either positive, if a synthetic route is found, or

negative otherwise. Our analysis was performed using defaults settings. However, small

variations in our results could be observed depending on the available building blocks, as

has been previously reported.42
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In Table 2 we compare the fraction of synthesizable molecules in the training set with

those generated by the pre-trained model and the four fine-tuned models. Notably, the syn-

thesizability of molecules sampled from the pre-trained model is lower than measured for

the reference data (ChEMBL). This might be an indication that the graph-based models

implemented in GraphINVENT don’t optimally learn this property (synthesizability). How-

ever, we observe how the synthesizability of the generated molecules improves for all the

fine-tuned models, except in the scenario where the model aims to increase molecular size.

There are a few possible explanations for this. On the one hand, decreasing the size can

improve synthesizablity since fewer purchasable precursors are needed to build the molecule.

On the other hand, both drug-likeness and DRD2 activity are connected to greater synthetic

accessibility since molecules with these attributes tend to share common chemical moieties.

As such, increasing molecular size can lead to a decrease in the synthesis score due to both

the presence of more unique moieties in sampled molecules, and the fact that there were

few large molecules in the training set. This can be confirmed by visualising the sampled

molecules (Figure 4).

We compare the effect of using different surrogate models for synthesizability in the

Supporting Information.

Table 2: Synthesizability of molecules in the training set and in the various learning scenarios. The
pre-trained model is a GraphINVENT model trained on the ChEMBL dataset. For the different
RL tasks, 1K molecules are sampled from 10 separate fine-tuned models and combined.

Reference dataset/model Synthesizable molecules

Training set (ChEMBL) 51.4%

Pre-trained model 35.8%

Reduce size scenario (RL) 69.5%

Augment size scenario (RL) 33.1%

QED optimisation scenario (RL) 71.3%

Bioactivity optimisation scenario (RL) 81.0%
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Diversity of generated molecules

To analyse the diversity of the generated molecules, we first compute the average Tan-

imoto similarity of the generated molecules for the four different scenarios, as well as for

three reference sets, in Table 3. As expected, ChEMBL and molecules generated by the

pre-trained model show similar values. In a realistic task, one could expect the similarity

to increase after fine-tuning the model to optimise a certain property, as we observe for the

activity optimisation and size augmentation scenarios. However, in artificial tasks such as

reducing the size of molecules or promoting only QED, is it possible to observe a decline.

Particularly, the decrease of the similarity in the size reduction scenario might be due to

the relatively big structural change caused by changing a small number of atoms in a small

molecule.

Table 3: Average Tanimoto similarity of molecules in different reference sets and learning scenarios.
The pre-trained model is a GraphINVENT model trained on the ChEMBL dataset. ‘True actives’
refers to the set of known true actives from ExCAPE-DB with QED > 0.5. For the different RL
tasks, 1K molecules are sampled from 10 separate fine-tuned models and combined. Error is the
standard deviation.

Scenario Similarity

Training set (ChEMBL) 0.293 ± 0.06

Pre-trained model 0.278 ± 0.07

Reduce size scenario (RL) 0.095 ± 0.03

Augment size scenario (RL) 0.325 ± 0.06

QED optimisation scenario (RL) 0.208 ± 0.03

Bioactivity optimisation scenario (RL) 0.366 ± 0.09

True actives 0.301 ± 0.04

In evaluating the molecules generated in the bioactivity optimisation scenario, we observe

lower, yet comparable, diversity in the set of generated molecules with respect to the set of

true actives. Computing the Tanimoto similarity between the generated actives and the true

actives, we obtain a value of 0.278 ± 0.04, suggesting that the new predicted actives are on
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average quite different from known actives.

We also computed the number of unique Murcko scaffolds45 per molecule in the two

sets, obtaining 0.45 in the set of true actives and 0.39 for the generated set, suggesting the

generated set is less structurally diverse than the set of known actives. Moreover, 4.0%

of the scaffolds in the true actives were recovered from the generated set, such that 1.7%

of scaffolds in the generated set appear in that of true actives. These results suggest low

overlap between the set of generated actives and the set of true actives, in agreement with

the conclusions from Table 1.

As a case study, in Table 4 we report the similarity of sampled molecules from the bioac-

tivity optimisation task to 1-(o-anisyl)piperazine, which is a substituted arylpiperazine and a

known pharmacophore, by computing the number of molecules containing this substructure

in the generated and true actives sets. We observe that our model predicts the different ether

substitution patterns in the pharmacophore in the right ranking, with 55% of the generated

molecules containing the pharmacophore with the ether in the ortho substitution pattern.

Table 4: Percentage of molecules presenting the 1-(*-anisyl)piperazine pharmacophore generated
by our model in the activity task and in the set of true actives with QED > 0.5. The * indicates
the different possible ether substitution patterns.

Ether substitution pattern Generated True actives

ortho 55.08 % 9.8 %

meta 3.17 % 0.88 %

para 0.19 % 0.55 %

Discussion

Improvements from previous work

In contrast to the graph convolutional policy network (GCPN),29 the action space used

by our underlying model, GraphINVENT, is split into three possible action types, while the
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GCPN uses four possible action types, which in both cases are concatenated to make the

‘overall’ action space. This difference is more of a design choice, and ultimately both models

encode the action space similarly. While GCPN uses the GCN implementation, our models

use the GGNN,46 which was recently reported to outperform other GNN implementations in

graph-based molecular generation applications.31 With the exception of QED optimisation,

the other design tasks explored in this work are distinct from those explored previously;

namely, the generation of potential bioactive molecules was not explored with the GCPN.

Of all the tasks explored, our model shows particular promise for the task of generating

DRD2 actives, a popular benchmark for molecular DGMs as it simulates a ‘real’ drug discov-

ery task. Compared to previous work,39 our model is able to generate a much greater fraction

of predicted active molecules after removal of duplicates: 95% predicted active compounds,

compared to only 54% in the best model from the aforementioned work. Although the per-

centage of known true actives that our models are able to recover is very small (< 1%), we

highlight that the DGM has not seen any examples of known true active molecules at any

point during training and that there were no predicted actives generated before fine-tuning.

This finding suggests that the model could be used to generate actives in a challenging but

realistic drug discovery setting where little to no actives are known.

Memory mechanism

The goal of our approach is to enable the exploration of chemical space in a prioritised

manner, using it to search for promising new molecules that demonstrate pharmacological

activity. Use of the memory mechanism allows our model to train more smoothly, at the

cost of introducing some bias to it. However, by keeping track of the best agent rather than

the best molecules generated so far (another popular memory mechanism in DGMs23,26,27),

we believe that the model is less biased, and thus better able to balance exploration and the

generation of novel structures without forgetting actions that led to good molecules.

We believe the good performance of our model is due to the memory augmented loss
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function. By keeping track of the best agent seen so far during training, we were able to

stabilise learning and achieve better performance for all models. We speculate the origin

of the improved performance of the BAR loss is similar to that seen in momentum-based

optimisers in stochastic gradient descent. We leave a rigorous theoretical analysis of the loss

for future work. The trained models are robust, and show little variation between runs in

terms of the metrics of interest (Fig. 3), and only the fraction of unique samples varies notably

between runs when aiming to generate DRD2 actives. This task is extremely difficult, as it

depends strongly on the first active molecules generated by the model, which means the sets

of actives generated by a model during different runs generally have negligible overlap.

We can compare our model to previous work, the GCPN,29 for the task of QED optimi-

sation. Here, the authors report the top 3 QED values obtained from molecules generated

by their fine-tuned model: 0.948, 0.947, and 0.946. Similarly, we find the top 3 QED values

out of 1000 molecules sampled by our model after QED fine-tuning to be 0.948, 0.947, and

0.947. Furthermore, for 10 different runs of 1000 samples each, all top 3 QEDs are in the

range of 0.940-0.948. The models thus show similar performance for this task, where 0.948

is observed to be an upper limit for the task of QED optimisation.

Limitations

On par with that needed for other state-of-the-art molecular DGMs,47 the main drawback

of the proposed model is the amount of time and computational power needed to pre-train

the underlying GraphINVENT model (a few days on an NVIDIA Tesla K80); however, this

only has to be done once per dataset. After pre-training, fine-tuning the model with RL is

comparatively quick and requires only between 10− 40 minutes, where scoring the model is

the main bottleneck. Furthermore, the same pre-trained model can be fine-tuned for multiple

tasks, making our model competitive with other tools.

Some molecules generated by the models when increasing molecular size and QED appear

to have a larger fraction of (undesirable) macrocycles and unstable moieties. Additionally,
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the percent valid and properly terminated does not increase as much when fine-tuning the

model towards larger molecules as for the other scores (Fig. 3). We believe in these cases,

the model has not seen many examples on how to predict reasonable APDs, making it

difficult for it to learn actions that lead to large, stable molecules. We do not observe

this trend when reducing the size of the molecules, and we believe it is because the model

sees significantly more small sub-graphs during pre-training. QED is an equally challenging

property to optimise as it is highly non-linear. These challenges motivated the use of the

0.5 threshold in Eq. 6, which proved to work well. However, exploring better estimates

of molecular stability, drug-likeness, and synthetic accessibility in the scoring function are

possible ways to minimise the sampling of undesirable molecules, and is a topic of future

work.

Furthermore, approaches such as beam search48 and temperature sampling49 could be

used to boost sampling from a fine-tuned GraphINVENT model and provide automatic

prioritisation of the designs. While these techniques have been demonstrated to enhance

sampling in chemical language models, they could also be adapted to graph generation

under an autoregressive framework like GraphINVENT.

When optimising for bioactivity, we cannot guarantee all explored regions of the chemical

space will lie under the applicability domain of the QSAR model. However, we don’t consider

this to be especially problematic in this setting, given that the model was deliberately trained

using an imbalanced dataset in which only 6.7% of the compounds are active. There are

two advantages to having a small number of actives in the training set; first, it is closer to

a practical situation, and second, a molecule far from the applicability domain will have a

small probability of being predicted as active. Finally, in future studies we would like to

experimentally validate the properties of the generated molecules.
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Conclusions

Here, we have used policy-gradient RL to extend a graph-based de novo molecular design

tool for the generation of drug-like molecules with desired properties. As part of the model,

we proposed the best agent reminder (BAR) loss and show that it significantly improves

model training. Using this loss, the proposed RL framework shows a remarkable ability

for fine-tuning the pre-trained DGM towards production of molecules with desired sets of

properties, even in challenging situations where only a few or no examples of compounds

with the desired properties were seen by the initial model. We have shown how our model

is able to perform well in several tasks, most notably promoting the generation of DRD2

active molecules. While favouring certain properties, our RL framework also improves other

performance metrics, including increasing the percentage of valid and properly terminated

molecules, reaching validity rates comparable to that of state-of-the-art models.47,50,51

Many properties a molecule exhibits directly depend on its molecular graph. As such, we

believe the development of graph-based methods is key for the next generation of de novo

design tools, as graphs can naturally encode information about connectivity. Our tool is

thus an important stepping stone towards the design of more advanced molecular DGMs

and tools which will allow scientists to efficiently traverse the chemical space in search of

promising molecules. We believe the use of DGMs in fields like drug design has the potential

to help chemists come up with new ideas, and to accelerate the complex process of molecular

discovery.

Data and Software Availability

Code for this work is available at https://github.com/olsson-group/RL-GraphINVENT.
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Figure 4: Examples of molecules. Top left: Training set. Top right: Pre-trained model. Centre
left: Model fine-tuned to reduce the size of sampled molecules; the value below each molecule
corresponds to its number of nodes. Centre right: Model fine-tuned to increase the size of the
generated molecules; the value below each molecule corresponds to its number of nodes. Bottom
left: Model fine-tuned to promote drug-likeness; the value below each molecule corresponds to
its QED. Bottom right: Model fine-tuned to promote the generation of drug-like, DRD2 active
molecules; the numbers below each molecule correspond to its QED (top) and activity estimate
(bottom). Shaded molecules indicate those predicted to not be synthesizable by AiZynthFinder.
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Abbreviations

• APD : action probability distribution

• BAR : best agent reminder

• DGM : deep generative models

• DRD2 : dopamine receptor D2

• GCN : graph convolutional network

• GCPN : graph convolutional policy network

• GGNN : gated graph neural network

• GNN : graph neural network

• KL : Kullback-Leibler

• ML : machine learning

• PT : properly terminated

• QED : quantitative estimate of drug-likeness

• QSAR : quatitative structure activity relationship

• RL : reinforcement learning

• RNN : recursive neural network

• VAE : variational autoencoder
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Hyperparameters

Generative model: GraphINVENT hyperparameters

The GraphINVENT model consists of two main components: the GGNN and the global

readout block. The hyperparameter values chosen in both models are those found to work

best in the original publication.1 Taking into account that, in the GGNN, the message size

must be equal to the number of hidden node features, the effective parameters to optimise

are shown in Table S1.

Table S1: Effective model parameters and their optimal values.

Parameter Value

Number of hidden node features 100

Graph embedding size 100

Hidden size of MLPs in GGNN 250

Depth of MLPs in GGNN 4

Dropout probability in GGNN 0

Number of message passes 3

Hidden size of MLPs in global readout 500

Depth of MLPs in global readout 4

Dropout probability in global readout 0

The parameter values used in the multi-layer perceptrons (MLPs) of the GGNN are

detailed in Table S2. Their weights are initialised from Xavier uniform distributions.2 The

activation functions used are SELUs.? The number of message passes in the message passing

phase is also shown in Table S2. These parameters relate the message passing and graph

readout parameters in the following way: hidden node features = input features, message

size = output features, and graph embedding size = output features.

The parameter values chosen in the MLPs of the global readout block are detailed in

Table S3. Again, weights are initialised from an Xavier normal distribution and the activation
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Table S2: Model hyperparameters used in the MLPs and the message passing phase of the GGNN
in GraphINVENT.

Parameter Value

Input features 100

Hidden features 250

Output features 100

Depth 4

Dropout probability 0

Message passes 3

functions are SELUs. The remaining parameters of the MLPs are chosen as needed to encode

all necessary information for the probabilities of adding an atom, connecting two nodes, or

terminating a graph. These sizes depend on another hyperparameter, the maximum number

of nodes in molecules in a given dataset.

Table S3: Common hyperparameters used in the MLPs of the global readout block in GraphIN-
VENT.

Parameter Value

Hidden features 500

Depth 4

Dropout probability 0

Other parameters which need to be specified in GraphINVENT are those related to the

dataset and its features. We use a ‘simple’ version of GraphINVENT which ignores aromatic

bonds, chirality, and hydrogens (neither explicit nor implicit). Additionally, we use canonical

node orderings and allow a maximum number of heavy atoms of 72 (largest molecule in the

DRD2 actives set).

Training of GraphINVENT is done using the Adam optimiser3 with no weight decay and

the OneCycleLR4 learning rate scheduler implemented in PyTorch. In the scheduler, we

have used the default parameters but disabled learning rate ‘warm-up’. Furthermore, we

4



take as many steps as epochs and set the fraction of steps for increasing the learning rate to

0.05. Other parameters such as the initial and final learning rates and the batch size must

be adjusted for each specific dataset via hyperparameter optimisation. For optimal training,

we trained for 30 epochs, used an initial learning rate of 10−4, a final learning rate of 10−7,

and a batch size of 1000 sub-graphs.

RL framework hyperparameters

When training the agent, we again used the PyTorch Adam optimiser with no weight

decay and the OneCycle learning rate scheduler (same settings as before). We found an

initial learning rate of 10−4, together with a final learning rate of 10−6, to work best during

RL-based training.

A batch size of 64 molecules was used in all RL settings (64 × 26 ∼ 1164 sub-graphs),

except for models in which the scoring function aimed to increase the size of the molecules,

where it was necessary to reduce the batch size to 32 molecules (∼ 832 sub-graphs) due to

memory constraints. However, these batch sizes are comparable to the ones used for training

GraphINVENT, where the batch size consists of 1000 sub-graphs.

The hyperparameter values used in the activity scoring function (Eq. 6 in Main text)

were σ = 20 and α = 0.5, and were the result of hyperparameter optimisation. α = 0.25

and 0.75 were also tried, though α = 0.5 was found to work best. For the other scoring

functions (Eqs. 4 and 5 in Main text) we used σ = 10 and α = 0.5, although these were not

as thoroughly optimised.

GraphINVENT details

Action space

GraphINVENT uses both the node- and graph-level information to predict the action

probability distribution, or APD, in the final (global) readout block. The APD specifies how
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to grow the input subgraphs, and is made up of three components: fadd, fconn, and fterm.

fadd contains probabilities for adding a new node to the graph. fconn contains probabilities

for connecting the last appended node in the graph to another existing node in the graph.

fterm is the probability of terminating the graph. fadd and fconn are multi-dimensional tensors

as they must encode for a variety of properties, including which atom to connect to, with

which each atom type, the identity of the new atom, etc. However, as the APD is a ‘vector’

property, fadd and fconn are flattened for concatenation with fterm before forming the final

APD. The shapes/indices of the three (unflattened) APD components are described in detail

in the original publication.1

As it is a probability distribution, the APD for each graph should sum to 1. Using

the learned node and graph embeddings, HL and g respectively, each APD is computed as

follows:

f ′add = MLPadd,1
(
HL

)

f ′conn = MLPconn,1
(
HL

)

fadd = MLPadd,2 ([f ′add, g])

fconn = MLPconn,2 ([f ′conn, g])

fterm = MLPterm,2 (g)

APD = SOFTMAX ([fadd, fconn, fterm])

Note that in practice this is done for a mini-batch of graphs simultaneously on a GPU.

Iterative molecular generation

To demonstrate how the APD is used in GraphINVENT, we show a schematic of the

generation loop in Figure S1.
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2. Generation using GraphINVENT
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Figure S1: Schematic of the generation loop in GraphINVENT.

Synthesizability analysis with SA and RA scores

We also performed synthesis score analysis using the synthetic accessibility (SA)5 and

retrosynthetic accessibility (RA) score.

SA score is a method for estimating the ease of synthesis of molecular structures based on

fragment contribution and a complexity penalty. Fragment contribution is computed based

on the analysis of one million representative molecules from PubChem,6 and complexity

takes into account the presence of non-standard structural features, such as large rings,

non-standard ring fusions, stereocomplexity, and molecule size. Lower score means better

synthesizability, ranging from 1 (easy to make) to 10 (very difficult to make).

RA score is an ML-based surrogate model for AiZynthFinder7 and is 4500 faster than the

former. This score ranges from 0 to 1, with a higher score corresponding to easier-to-make

molecules.8

We present our results for the SA score in Table S4 and Figure S2, and for the RA score

in Table S5 and Figure S3. Independently of the model used to estimate synthesizability, we

generally observe the best synthesizability scores for the fine-tuned models promoting QED

and activity. This is in agreement with the results obtained using AiZynthFinder, which are

presented in the Main text.

However, we also observe some discrepancies between the two methods. While SA scores
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Table S4: Average SA scores for molecules in the ChEMBL dataset, sampled from the pre-trained
model, and sampled under the different RL scenarios.

SA score

ChEMBL 2.96

Pre-trained 3.29

Reduce size 2.97

Augment size 3.20

QED 2.47

Activity 2.53

Table S5: Average RA scores for molecules in the ChEMBL dataset, sampled from the pre-trained
model, and sampled under the different RL scenarios.

RA score

ChEMBL 0.758

Pre-trained 0.757

Reduce size 0.921

Augment size 0.783

QED 0.935

Activity 0.952
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Figure S2: Kernel density estimates of the SA scores calculated for the reference data, molecules
sampled from a pre-trained GraphINVENT model, and molecules sampled in the different RL
scenarios.

A

1

Figure S3: Histogram of the RA scores calculated for the reference data, molecules sampled from
a pre-trained GraphINVENT model, and molecules sampled in the different RL scenarios. Insert:
zoomed-in estimates for the region with high RA scores

for molecules in ChEMBL suggest that these would be easier to synthesize than the molecules

generated by a pre-trained GraphINVENT model (same observation as with AiZynthFinder),

the RA score predicts almost identical estimates of retrosynthetic accessibility for both. On

the other hand, molecules generated by the size-reduction model are predicted to be more
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synthesizable than those in ChEMBL by using both the RA score and AiZynthFinder, in

disagreement with the predictions from the SA score. Nonetheless, both scores predict

these to be easier to synthesize than molecules sampled from the pre-trained model. Sur-

prisingly, both SA and RA scores predict that molecules generated by the model trained

to increase molecular size would be more synthesizable than those sampled from the pre-

trained model. Conversely, AiZynthFInder predicts them to be harder to make than both

the average molecule in ChEMBL and those sampled from the pre-trained GraphINVENT

model.

In the histograms presented in Figures S2 and S3, we observe heavier tails in the harder-

to-make region (right for SA, left for RA) for the pre-trained and increasing-size model.

Therefore, according to these metrics, it is more likely to sample a “very” difficult-to-make

molecule from these models. We observe again here a discrepancy among these two metrics

for the size-reduction model, where the SA score is predicted to have a heavier tail to the

right for this model compared to ChEMBL, in contrast to the RA score, which predicts a

light tail to the left (comparable with QED- and activity-promoting models) for this same

scenario.
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