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ABSTRACT  
 

Confined water significantly impacts autonomous vessel navigation. 

This study introduces a novel method for rapidly generating inland 

waterway scenarios to validate vessel performance in dynamic confined 

conditions. A new formula models river hydraulics, incorporating cross-

sectional shifts, current fields, deposition, and erosion effects. Validated 

with U.S. River field data, the formula captures the lateral migration of 

the thalweg in bends. The hydraulic model was incorporated into a novel 

voyage planning simulation platform for operational analysis. The ship 

path following simulations reveal the profound influence of 

hydrodynamic effects on steering, highlighting the need to integrate 

bathymetric and current data into control systems to enhance 

navigational safety for autonomous vessels in confined waterways. 

 

KEY WORDS: Autonomous vessels; control; inland waterways; river 

hydraulics. 

 

INTRODUCTION 

 
Shifting from road to inland waterways is a promising solution for a 

sustainable mode of transport by reducing CO2 emissions (European 

Environment Agency, 2017). With the increasing degree of autonomy 

and sensor developments, autonomous inland waterway vessels (AIWVs) 

are regarded as a key factor in formulating intelligent waterborne 

transport networks to enhance traffic flow with lower crew and 

operational costs. Given the distinct nature of inland waterways that 

channels are constrained by water depth and width, it is particularly 

important to investigate vessel dynamics and energy consumption to 

ensure operational safety and efficiency.  This requires a voyage 

planning simulation platform, specifically designed for inland 

waterways that can capture the physics of vessel behaviour under these 

meandering rivers.  

 

Simulation platform, such as the development of marine simulators, is a 

popular research field in the maritime industry. The existing study on 

simulation platforms are mostly developed for standard commercial 

vessels in open-sea conditions (Perez et al., 2006; Rutkowski, 2018; 

Tsou, 2016). The voyage plan is executed and monitored based on a 

built-in electronic chart display and information system (ECDIS). While 

these advanced simulation platforms are well-developed for commercial 

shipping, the majority of them do not consider inland waterways. 

Navigation in inland water faces unique challenges such as dynamic 

water depth, narrow channel width, and the presence of artificial 

infrastructures (Norrbin, 1976; Vantorre et al., 2003). Vessels will be 

subject to additional hydrodynamic loads from shallow water and 

channel banks, which might affect their manoeuvrability. Besides, inland 

vessels are significantly influenced by various hydrological factors, 

including water currents, shape and curvature of the river channel, and 

changes in riverbed and morphology. Therefore, the voyage should be 

carefully examined by simulating the vessel performance under these 

effects since the operational space is fairly constrained in inland 

waterways. Nevertheless, the hydrodynamic impact, as well as the 

hydraulics features of rivers, are normally oversimplified or even 

neglected in most of those existing simulators.  

 

The inland ECDIS is relatively new and has been continuously 

developed during the past decades (CCNR, 2014). However, extracting 

detailed river profile information is often challenging as ECDIS 

normally comes integrated into built-in software. Moreover, these 

commercial simulators are typically complex and contain massive 

features, making them less applicable for research purposes. Hence, the 

aim of this study is to develop a holistic simulation platform. Hence, this 

study aims to develop a modular-based and efficient simulation platform 

specifically designed for AIWVs. This platform offers a holistic 

approach, enabling the evaluation of vessel performance from early 

design to operational stages. A key feature of the proposed platform is 

the incorporation of a novel hydraulic model, allowing for the rapid 

generation of arbitrary inland waterways for simulation analysis. By 

integrating manoeuvring, control and energy system performance 

models, this platform enables the simulation of AIWVs' navigation 

performance in various inland waterways and provides rapid energy 

consumption predictions. 
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HYDROLIC MODELLING 

 

Hydraulic model is a critical factor for analysing the vessel dynamics, 

especially in confined inland waterways. These models represent key 

features such as bathymetry profiles, channel geometry, and current 

fields along meandering waterways, which are essential for vessel 

handling (manoeuvring) and control design.  Most present study focuses 

on developing sophisticated control method while the waterway itself is 

normally over-simplified, e.g. based on straight or other simple channel 

shapes with constant water depth. Therefore, the hydraulic model in this 

study is presented into two phases: (a) waterway generation, which 

facilitates the creation of arbitrary meandering channels, and (b) cross-

sectional modelling, which presents a novel formula for capturing cross-

sectional shifts. 

 

Waterway generation 

 
An arbitrary meandering river can be generated by using a combination 

of straight and curved sections with varying size (Fossen, 2011; Paulig 

& Okhrin, 2024). This study follows this method for waterway 

generation, as shown in Fig. 1. The waterway is constructed using a 

series of straight and curved segments (𝑆1, 𝑆2, … , 𝑆𝑖). Each segment is 

further divided into a set of cross-sections 𝑐𝑖,𝑗  by evenly distributed grid 

points according to its geometry. The rivers generated are assumed to 

have a constant width, represented by 15 grid points in the transverse 

direction, with a spacing of 15 m between adjacent points, resulting in a 

total width of 225 m. 

 

Straight segments are defined by a parameter controlling their segment 

length, except for the first segment, which also includes an arbitrary 

starting angle. Curved segments are generated according to two random 

variables: the radius 𝑟𝑖 and the segmental angle 𝜃𝑖 . It should be noted 

that each new segment is transformed to properly attach and align with 

the ending cross-section of the previous segment, maintaining continuity 

and geometric consistency. 

 
Fig. 1 Schematics of meandering waterway generation and cross-

sectional shift modelling. 

 

Cross-section modelling 

 

In the existing research, the shape of river cross-section is normally 

simplified into rectangular or trapezoidal. Most recent study can be 

found in Paulig and Okhrin (2024), where the shape function of channel 

cross-section is modelled using a normal distribution liked formula. 

However, the maximum depth is assumed locate always in river centre, 

meaning that the shifting of riverbed in curved segmented is neglected. 

Besides, the current filed did not include the impact of bathymetry and 

waterway geometry.  

 

To capture the characteristics of natural inland waterways, this paper 

proposes a new formula to model the hydrological change of cross-

sections. The depth profile is modelled using the equation below: 

 

ℎ𝑖,𝑗 = (1 + 𝜀ℎ) ∙ 𝐻𝑚𝑎𝑥 ∙ (
𝑦

min(𝑦)
) (1) 

 

where ℎ𝑖,𝑗   represent water depth of cross-section 𝑗  along the 𝑖𝑡ℎ 

segment, 𝜀ℎ  is a random perturbation in normal distribution with a 

standard deviation of 0.1, 𝐻𝑚𝑎𝑥  is the maximum depth of the cross-

section, 𝑦 represent the shape function of the riverbed, calculated using 

the equation: 

 

𝑦 = − (1 − (
𝑥

𝑏
)

2

) ∙ (1 + 𝛾𝑖,𝑗 ∙ (
𝑥

𝑏
)) (2) 

 

where 𝑥 is the lateral position, 𝑏 is the half width of the channel, and 𝛾𝑖,𝑗 

is a skewness factor which calculates the cross-sectional shifts depending 

on the shape of the waterway. This is given as: 

 

𝛾𝑖,𝑗 = 𝛼 ∙ (
𝜃𝑖

𝑚𝑎𝑥(𝜃)
) ∙ (1 − (

∆𝑖, 𝑗

(𝑟𝑖 ∙ 𝜃𝑖)/2
)

2

) 

 

(3) 

where 𝛼  is a constant to decide the direction segment curvature 𝛼 ∈
[−1,0,1], meaning that the skewness is 0 for straight segment, and being 

negative if the curvature towards left, and vice versa, 𝜃𝑖  is the angle of 

the segment, ∆𝑖, 𝑗 is arc distance between cross-section 𝑗 and the mid-

section within this segment (as shown in red box), and 𝑟𝑖 is the radius of 

the segment, as shown in Fig. 1. The equation above assumes that the 

maximum shift is located in the middle of a curved segment.  

 

Current field 

 
As suggested by Odgaard (1989), in river meaner the distribution of 

stream velocity in transverse direction generally complies with its 

corresponding water depth. Therefore, the current field generation 

follows a similar process in the previous section. The equation of current 

velocity is  

 

𝑢𝑐𝑖,𝑗
= (1 + 𝜀𝑐) ∙ 𝑢𝑚𝑎𝑥 ∙

(− (1 − (
𝑥
𝑏

)
2

) ∙ (1 + 𝛾𝑖,𝑗 ∙ (
𝑥
𝑏

)))

min (𝑦)
 

(4) 

 

where 𝑈𝑚𝑎𝑥  is the maximum flow velocity, 𝜀𝑐  is the disturbance to 

include uncertainties of flow speed. It can be found from the equation 

that, the current speed distribution along the transvers direction is near 

parabolic shaped in straight segments, and in curved segments the 

maximum flow speed is located based on the shifting of the depth profile. 

Moreover, it should be noted that the flow direction is perpendicular to 

each cross-section.  Meaning that the vortex flow or secondary flows 

cannot be modelled, and they are thus neglected.  
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VOYAGE PLANNING PLATFORM 

 
This section presents the development of a voyage planning platform 

specifically designed to AIWVs. The model is modular and is designed 

to rapidly predict energy consumption during ship navigation by 

integrating key factors such as hydrodynamics, manoeuvrability, 

bathymetry, and control algorithms, as shown in Fig.  2. The primary 

goal of this platform is to provide a holistic system for assessing the 

performance of a virtual AIWV under dynamic conditions. This system 

encompasses the following components: 

1. A ship design model, which formulating the speed-power 

relationship of inland vessel based on loading, resistance and 

propulsion. 

2. A manoeuvring model that calculates rigid body vessel 

dynamics under confined inland water. 

3. A control model, designed for heading and speed control to 

ensure path following. 

4. A hydraulic model, capable of generating arbitrary river 

meanders, including current and depth profiles. 

With these models, a voyage planner is developed for operational 

analysis. The outcome is mainly divided into two-fold: (a) vessel 

trajectories and navigable zones, and (b) dynamic feedback of power 

demand and energy consumption based on the encountered waterway 

conditions.  

 

 
Fig.  2. Structure of the voyage planning platform for AIWVs. 

 

Ship energy performance modelling 

 
The primary function of the ship performance model is to provide rapid 

feedback on energy consumption by formulating the speed-power 

relationship. Such a model is important for autonomous systems, as it 

enables the monitoring of dynamic energy demand during navigation—

a prerequisite for the optimal utilisation of fuel or electricity. 

Nevertheless, it is challenging to predict the energy consumption of 

autonomous vessels, especially in the early design stage since the 

available information and parameters are very limited. In our previous 

study (Zhang et al., 2023), a physics-based ship performance model, 

ShipCLEAN-IWV, was developed to establish the energy system of 

inland vessels, as shown in Fig.  3. This model consists of pure empirical 

and analytical methods. The resistance prediction includes a modified 

formula to account for shallow-water and bank impact from inland water. 

Following by ducted-propeller design, and engine modelling, the total 

fuel consumption can be calculated using equation: 

 

𝐹𝐶 = 𝑆𝐹𝑂𝐶(0 . 5 𝜌𝐹𝑊
 𝑆𝑊

 𝐶𝑇
 𝑉𝑆

2  + 𝑅𝑆
 + 𝑅𝐵𝐴𝑁𝐾)𝑉𝑆/𝜂𝐻/𝜂𝑂/𝜂𝑅/𝜂𝑆 (5) 

            

where the specifical fuel oil consumption (𝑆𝐹𝑂𝐶) rate is derived from a 

regression method (Hidouche et al., 2015), 𝜌𝐹𝑊 is the fresh water density, 

𝑆𝑊  is the wetted surface area, 𝐶𝑇  is the total resistance coefficient in 

deepwater, 𝑅𝑆 is shallow water resistance, and 𝑅𝐵𝐴𝑁𝐾 is bank induced 

resistance, 𝑉𝑆  is the vessel speed, 𝜂𝐻  is the hull coefficient, 𝜂𝑂  is 

propeller open water coefficient, 𝜂𝑅  is the relative rotative efficiency, 

and 𝜂𝑆 is the shaft transmission efficiency, detailed parameters can be 

found in Zhang et al. (2023).  

 

 
Fig.  3. Overview of ShipCLEAN-IWV model, reproduced from Zhang 

et al. (2023). 

 

Manoeuvring and control  

 
The manoeuvring model is another critical component of the voyage 

planning system, as accurate and dynamic updates of vessel motion are 

essential during navigation. Inland vessels are typically equipped with 

twin propellers and multiple rudders to ensure adequate manoeuvrability 

in confined waterways. The coordinate systems used in this study are 

illustrated in Fig.  4. It is important to note that only two-dimensional 

(2D) planar ship motion (surge, sway and yaw) is considered, as inland 

vessels typically operate in calm water where vertical motion can be 

neglected. In the coordinate systems, 𝑜0 − 𝑥0𝑦0𝑧0  is the earth-fixed 

frame, 𝑜 − 𝑥𝑦𝑧 is the body-fixed frame locate in midship, 𝐺 is the centre 

of gravity (CoG), 𝑢 and 𝑣 denote the surge and sway speed, respectively.  

 

 
Fig.  4. Coordinate system of inland vessel with twin propeller multiple 

rudder configuration.  

 

Most existing studies on ship manoeuvring focus on conventional 

commercial vessels. These manoeuvring models are typically developed 

for open water conditions, which may not be directly applicable to inland 

waterways, as these channels are often constrained by limited width and 

shallow water depth. Therefore, this study adopts a modified version of 

manoeuvring modelling group (MMG) model with shallow water and 

bank effect (Zhang et al., 2024). The equation of motion is given as: 

 

(𝑚 + 𝑚𝑥)𝑢̇ − (𝑚 + 𝑚𝑦)𝑣𝑚𝑟 − 𝑥𝐺𝑚𝑟2 = 𝑋𝐻 + 𝑋𝑃 + 𝑋𝑅 + 𝑋𝐵

(𝑚 + 𝑚𝑥)𝑣̇𝑚 − (𝑚 + 𝑚𝑥)𝑢𝑟 + 𝑥𝐺𝑚𝑟̇ = 𝑌𝐻 + 𝑌𝑅 + 𝑌𝐵

(𝐼𝑧
 + 𝑥𝐺

2  𝑚 + 𝐽𝑍)𝑟̇ + 𝑥𝐺𝑚(𝑣̇𝑚
 + 𝑢 𝑟) = 𝑁𝐻 + 𝑁𝑅 + 𝑁𝐵

} 

 

(6) 
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where the left side shows the mass 𝑚 and inertia terms 𝐼𝑧, 𝑚𝑥 and 𝑚𝑦 

represent added mass in the corresponding direction, 𝑣𝑚  is the sway 

speed at mid-ship, 𝑟 is the yaw rate. The right side denote force and 

moment acting on the ship from different parts, the sub script 𝐻, 𝑃, 𝑅, 

and 𝐵  means load from hull, propeller, rudder and bank effect. It is 

important to note that shallow water effect is included in the hull force 

by a correction of resistance coefficient and hydrodynamic derivatives. 

The bank-induced force and bow-out moment are modelled using an 

average value of three methods (Ch'Ng et al., 1993; Norrbin, 1976; 

Vantorre et al., 2003).  

 

Guidance navigation and control 

 

AIWVs require precise control systems to ensure operational safety, as 

they frequently navigate in confined waterways. In addition to shallow 

water conditions, river currents can significantly impact course stability. 

Therefore, the design of the Guidance, Navigation, and Control (GNC) 

module in this study accounts for these disturbances. The primary 

objective is to execute effective rudder control to maintain the vessel's 

heading along predefined waypoints while minimizing cross-track error 

(𝑋𝑇𝐸). The demonstration of the GNC module is shown in Fig.  5. The 

heading control is implemented based on the Line of Sight (LOS) scheme, 

where the desired heading angle is calculated from the current position 

and heading. The desired heading angle is determined using the 

following equation: 

 

𝜓𝑟𝑒𝑓 = 𝜓𝑊𝑃𝑇 + 𝜓𝑐𝑟𝑜𝑠𝑠 − 𝛽 (7) 

 

where 𝜓𝑊𝑃𝑇  is the angle between the next and current waypoint as 

guidance from course, 𝜓𝑐𝑟𝑜𝑠𝑠 is the angle to offset the cross-track error 

by including an advance distance 𝑋𝐷 . The control design adopts a 

proportional-integral-derivative (PID) controller to update the rudder 

angle 𝛿𝑐, the equation is: 

 

𝛿𝑐(𝑡) = 𝐾𝑝 (𝜓𝑒(𝑡) + 𝑇𝑑(𝜓𝑒(𝑡) − 𝜓𝑒(𝑡 − 1)) +
1

𝑇𝑖
(∑ 𝜓𝑒𝑙

𝑡

𝑙=0

)) (8) 

 

where 𝜓𝑒(𝑡) represents the heading error at the current time step 𝑡, 𝐾𝑝 is 

the controller's proportional gain, and  𝑇𝑑 and 𝑇𝑖 are the derivative and 

integral time constants, respectively. 

 

 
Fig.  5. Heading control under river current. 

 

RESULTS 

 
This section presents the simulation results from the voyage planning 

system. First, a validation study of cross-sectional modelling is 

conducted using field measurements of river bathymetry data. 

Subsequently, route planning and control simulations are carried out to 

evaluate the operational performance of the AIWV under various inland 

waterway scenarios. 
 

Bathymetry Prediction and Validation 

 
It is important to ensure that the propose hydrological formula can 

capture the cross-sectional shift of river meanders. Hence, this formula 

is validated using real field measurements taken at the confluence of the 

Wabash and Embarras Rivers in the United States. (Parsons et al., 2013). 

The multibeam bathymetry data is shown in Fig.  6, and cross-section 4 

is selected as an example for maximum depth shift analysis. It should be 

noted that, this cross-section is located relatively in the middle of the 

curved river, where a significant depth profile shifting towards outer 

bank is observed, as shown in the figure. Therefore, the skewness factor 

in Eq. 3 is assumed to be 1 for prediction. Then the remaining parameters 

are the maximum cross-sectional water depth 𝐻𝑚𝑎𝑥  and the channel 

width 2𝑏. As shown in the depth profile, the 𝐻𝑚𝑎𝑥 is 12 m, and the river 

width is 140 meters approximately instead of 125 m in transversal 

direction. The discrepancy arises because the sonar measurements have 

gaps near each side of the banks, which is also the reason the measured 

depth did not start with 0 m, as seen in Fig.  6.  

 

The cross-section can be predicted based on these parameters, and the 

result is shown Fig.  7. The results demonstrate that the proposed 

equation accurately predicts the trend of cross-sectional shifting. The 

location of the maximum water depth aligns well with the measurements. 

Deviations can be also noticed especially in the inner (left) bank, but 

accurately predicting the deformation of riverbed slopes is normally very 

challenging, as it involves complex river hydrodynamics and sediment 

transport modelling. The primary objective of this formula is to provide 

a fast and efficient method for capturing the general shifting of cross-

sections in river meanders. 

 

 
Fig.  6. Field measurements of Wabash River (Parsons et al., 2013). 
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Fig.  7. Bathymetry profile and simulation results of cross-section 4.  

 

Waterway generation 

 
Arbitrary-shaped inland waterways can be generated by using a series of 

straight and curved segments using the hydraulic model. An example 

river section with a length of 10 km is showcased in Fig.  8, where this 

section is constructed using 20 individual segments, including 10 straight 

ones lengthening randomly between (300 and 600) m and other ten 

curved segments with a radius ranging from 300 to 500 m and angles 

between 30° to 90°. The 𝐻𝑚𝑎𝑥  value varies at each cross-section 

following a normal distribution 𝑁(9, 0.32). It can be clearly seen from 

the colour map that, in straight segments, the maximum water depth 

follows the river centre, while significant shifting of the maximum water 

depth is observed at sharp bends, e.g. at bends 4, 6 and 9 (highlighted in 

red text).  
 

 
Fig.  8. An example of a generated waterway with depth profile. 

 

Voyage simulation and operational analysis 

 
Vessel profile 

 

A classic pusher-barge convoy is used in this study as the base model to 

represent a typical type of autonomous inland vessels. The convoy 

consists of one pusher boat and one rake barge to formulate the 11BP 

system. The convoy equipped with a steering system including twin 

propeller and four rudders. The main dimensions, propeller, and rudder 

profile of the convoy are listed in Table 1. The hydrodynamic derivatives 

of the pusher-barge model are taken from the model test conducted under 

three water depth to draught ratios (𝐻/𝑇): 19.3 for deep water, 1.5 for 

medium shallow water, and 1.2 for shallow water. These coefficients are 

detailed in Koh and Yasukawa (2012). During simulations, the 

hydrodynamic derivatives are interpolated based on the current water 

depth using regression results.  To prevent incorrect extrapolations, the 

minimum water depth is constrained to 𝐻/𝑇 = 1.2 if it falls below this 

value. 

 

Table 1. Dimensions and profile of propeller and rudder  
Parameters Pusher Rake-barge Convoy 

Length, 𝐿 [m] 40.00 60.96 100.96 

Ship Beam, 𝐵 [m] 9.00 10.67 10.67 

Draught, 𝑇 [m] 2.20 2.74 2.74 

Displacement, ∇ [m3] 494.7 1646.2 2140.9 

Block coefficient, 𝐶𝐵 [-] 0.633 0.924 0.725 

Propeller and rudder configuration 

Propeller diameter, 𝐷𝑃 [m] 1.8 

Revolution speed, 𝑛𝑃 [rpm] 300 

Rudder span, 𝐵𝑅 [m] 2.0 

Rudder chord length, 𝐶𝑅 [m] 2.0 

Rudder area, 𝐴𝑅 [m2] 4.0 

 

Case 1: sailing along channel centre 

 

The first scenario of voyage planning for AWIVs is river centre 

navigation, which is a very typical condition when the waterway is clear. 

If the traffic condition allows, sailing at river centre helps avoid shallow 

water regions and minimises disturbances from bank effect. In this 

scenario, the vessel keeps a constant 80% engine load with a fixed 

propeller speed of 250 rpm while navigating under upstream current with  

𝑢𝑚𝑎𝑥 of 1.2 m/s. Fig.  9 presents the simulation results, showing that the 

vessel follows the desired track well, particularly at straight segment, as 

demonstrated in the blue box. At river bends, the vessel trajectory shows 

some deviations due to disturbance from the current and the inherent 

delay from the vessel's turning response. Despite these deviations, the 

overall tracking performance demonstrates the effectiveness of the 

control design under this scenario. 

 

 
Fig.  9. Trajectory of navigation along the river centre.  
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Case 2: bridge passing and stopping test at lock 

 

In inland waterways, the presence of many artificial infrastructures, such 

as bridges and locks, makes the manoeuvring and control design should 

be carefully investigated since the operational space is significantly 

confined by these structures. Hence, the simulation presented in this 

subsection is aiming at evaluating the performance of the voyage 

planning system under scenarios involving bridge pillars and locks. The 

vessel maintains a constant propulsion speed until it approaches a bridge 

pillar or lock. When approaching these structures, the propeller speed 

must be reduced and, if necessary, reversed to stop the vessel 

successfully. The range is selected by the distance head 𝑆𝑑  between 

vessel to these structures, given as: 

 

𝑛 = {
0.5𝑛𝑚𝑎𝑥 , 𝑆𝑑 ≪ 2𝐿   (𝑏𝑟𝑖𝑑𝑔𝑒 𝑝𝑎𝑠𝑠𝑖𝑛𝑔)

−0.5𝑛𝑚𝑎𝑥 , 𝑆𝑑 ≪ 3𝐿      (𝑙𝑜𝑐𝑘 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔)
 (9) 

 

The equation above indicates that when the ship approaches a bridge 

within a distance of less than twice the ship's length, the propeller load 

is reduced to 50% to ensure safe passage. Additionally, the propeller 

needs to rotate astern to stop the ship when nearing river locks. Based on 

this configuration, the simulation results are presented in Fig.  10. In this 

scenario, the bridge is positioned in the middle of the river segment, 

which has an overall channel width of 225 m. The span between each 

bridge pier is 30 m. The river lock, located at the upper right part of the 

map, consists of two chambers designed to facilitate vessel passage 

through in double-lane. 

 

The aim of this simulation is to test the performance of the voyage 

planner under highly restricted conditions. From the results shown in the 

figure, it can be concluded that the vessel successfully follows the 

desired route, even under disturbances caused by river banks. The blue 

bounding box highlights the vessel's ability to safely pass through the 

bridge with reduced RPM. The heading angle aligns well with the route, 

and no significant drifting is observed during this manoeuvre. When the 

vessel approaches the lock, the propeller starts to rotate astern, 

effectively making the vessel stop within the lock chamber, as indicated 

by the red bounding box. This can be also reflected in the speed plot, as 

shown in Fig.  11. The vessel keeps a relatively constant speed for most 

of the time, with noticeable speed reductions when approaching the 

bridge and the lock. It is important to note that the vessel is considered 

fully stopped when its speed drops below 0.05 m/s. 

 

 
Fig.  10. Simulation for bridge passing and lock stopping test. 

 

 
Fig.  11. Time histories of surge and sway speed.  

 

Case 3: speed reduction simulation 

 

From the simulations presented in previous cases, it can be notice that 

course deviations occur during vessel turns due to the constant RPM 

maintained throughout navigation.  Therefore, in this case, the tracking 

performance is further analysed by implementing speed reduction based 

on the angle between upcoming waypoints, as shown in Fig.  12, the 

route deviation is determined using three consecutive waypoints, and the 

corresponding RPM range is selected according to Table 4. The analysis 

reveals that if the angle is relatively small, the route is considered as a 

straight course, and no speed reduction is needed. As the angle increases, 

the speed should be reduced accordingly. Speed reduction is necessary 

when vessel need to perform tight manoeuvres on sharp river bends 

while also saving energy since there is no benefit to operate with a high 

rpm under large drifting angles.  

 

 

 
Fig.  12 Waypoint angle for speed reduction.  

 
Table 2. Speed range based on route deviation. 
𝜑 (deg) Rpm [%] 

0-5 100 

5-10 90 

10-15 75 

15-20 60 

>20 45 

 
The simulation result is shown in Fig.  13. Notably, the zoomed-in path 

illustrates that by adapting speed reductions, the vessel trajectory (blue 

dashed line) showcases fewer deviations from the waypoints compared 

to the trajectory operating with constant RPM. Reducing the speed 

provides sufficient operational time for effective manoeuvring around 

river bends, thereby enhancing the tracking accuracy.  

 

Considering the inherent delay in the vessel's turning response, these 

deviations can be further minimised by pro-active rudder actions. 

Achieving this would require accurate calculations of advanced 

distances under different speeds and rudder angles to compensate 

vessel's turning behaviour effectively. 
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Fig.  13. Vessel trajectories with (blue line) and without (red line) 

speed reduction. 

 
Based on the dynamic power calculated at each time step, the total 

energy consumption is estimated through the regression model presented 

in Hidouche et al. (2015). This model was derived from measurements 

provided by various marine diesel engine suppliers across a range of 

power outputs, and the detail of the model is partially shown in Table 3, 

where the engine load 𝑋 is defined as the ratio of dynamic engine power 

at each time step over the engine limit. Using this approach, the total 

energy consumption under different operational modes and current 

directions is listed in Table 4. It is important to note that significant 

energy consumption reduction can be achieved via speed control, with 

fuel savings of 26.9% and 32.4% observed for upstream and downstream 

navigation, respectively. These results highlight the potential of 

optimised speed management in reducing operational energy demands. 

 

Table 3. Engine regression model.  
𝑃𝑚𝑎𝑥 [kW] 𝑋 [%] 𝑆𝐹𝑂𝐶 = 𝑓(𝑋) [g/kW/h] Error [%] 

100–300 0–20 398.89𝑋−0.1987 + 8.945 10 

 20–100 242.51 − 0.810𝑋 + 0.0065𝑋2 7 

300–500 0–20 342.077𝑋−0.1361 10 

 20–100 237.84 − 0.5957𝑋 + 0.0040𝑋2 7 

500–1000 0–20 327.708𝑋−0.1262 + 1.984 15 

 20–100 230.192 − 0.4496𝑋 + 0.0033𝑋2 10 

1000–2000 0–20 296.346𝑋−0.0963 − 1.06 10 

 20–100 236.786 − 0.7577𝑋 + 0.0064𝑋2 10 

 
Nevertheless, such significant fuel saving is achieved also by sacrificing 

the sailing time. The results indicate that the total voyage time with speed 

control is noticeably longer compared to maintaining a constant RPM. 

Therefore, future work should focus on conducting energy optimisation 

analyses under time constraints, where engine speed optimisation is 

performed to achieve a fixed estimated time of arrival (ETA). 

Additionally, the performance of various optimisation algorithms should 

be evaluated using two key metrics: fuel-saving percentages and course 

deviations (cross-track errors). This approach will ensure energy 

efficiency while maintaining precise navigations. 

 

Table 4. Energy consumption analysis including speed reduction 
rpm Direction Distance (m) Time (s) FC (kg) 

250 Upstream 10033.73 3244 218.48 

Speed control Upstream 10026.10 4879 159.52 

250 Downstream 10103.88 2156 145.86 

Speed control Downstream 10088.86 2568 98.56 

 

CONCLUSIONS 

 

This paper presented the development of a novel voyage planning system 

specifically designed for inland waterway transport. The platform 

provides rapid predictions of autonomous inland vessels' performance, 

spanning from ship design to dynamic operational analysis. 

 

The voyage planner includes a new hydraulic model that enables rapid 

generation of river segments while accurately capturing the bathymetry 

profiles of natural river meanders. This model was validated against field 

measurements from a river confluence in the United States. The results 

demonstrate that the proposed formula correctly modelled the cross-

sectional shift based on the position of the inner and the outer banks in 

the river bends. 

 

Simulations were conducted across different operational scenarios to 

evaluate the system's tracking performance. These included river centre 

navigation and near-bank sailing. The results confirm the effectiveness 

of the control design, enabling the vessel to follow the desired path under 

various disturbances such as shallow water, currents, and bank effects. 

Additionally, bridge-passing and lock-stopping tests demonstrated the 

platform's capability to navigate vessels in highly confined waterways. 

 

Lastly, an energy consumption analysis was performed using a speed 

reduction scheme based on route deviations. The findings highlight the 

necessity of dynamically adjusting engine speeds according to waterway 

conditions to optimise energy efficiency. Future work will focus on 

investigating energy consumption reduction using various optimisation 

algorithms under fixed ETA constraints, ensuring a balance between 

energy savings and operational efficiency. In addition, different steering 

systems, such as azimuth thrusters, will be compared and evaluated 

based on their manoeuvrability and tracking performance.  
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