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Abstract We evaluate the Machine Learning (ML) model generalization for State of Polarization
(SOP)-based event classification across spectral bands and links. Results show strong intra-system
accuracy of up to 98.6% but limited cross-system generalizability, whereas multi-system training improves
performance, highlighting the need for specific system-level knowledge. © 2025 The Author(s)

Introduction

Fiber optic networks, essential to modern com-
munications for high-speed, long-distance data
transmission, are increasingly used for sensing
and security monitoring applications[1]. Optical
fiber sensors enable high-precision monitoring by
leveraging scattering, interferometric effects, and
light propagation changes to detect environmental
perturbations[2]. The State of Polarization (SOP)
is particularly sensitive to such perturbations, mak-
ing it a valuable metric for network monitoring pur-
poses, i.e., detecting external events and anoma-
lies that affect the physical layer in the Open Sys-
tems Interconnection (OSI) model, thereby impact-
ing the higher layers involved in data transmission
through the fibers[3].

The interest in SOP-based sensing has grown
significantly in recent years, largely due to the
fact that coherent receivers inherently capture
polarization-resolved optical field information. This
enables software-based estimation of the SOP,
making SOP-based network monitoring a promis-
ing and cost-effective approach[4]. Despite this
advantage, effectively interpreting SOP signatures
remains a challenge. Traditional monitoring sys-
tems that rely on rules and thresholds often fail to
capture the complexity of real-world fiber events,
particularly those that introduce subtle or transient
SOP changes[5].

To address these limitations, recent studies ex-
plored the potential of Machine Learning (ML) for
detecting SOP variations caused by various dis-
turbances, enabling more robust and intelligent
sensing capabilities[6]. For instance, in our prior
work, we developed approaches based on Su-
pervised Learning (SL)[7]–[9] and Deep Learning
(DL)[10] for SOP analysis to detect fiber eavesdrop-
ping and mechanical vibrations from the incurred
SOP alterations on a channel using the O-band.
Other studies investigated the application of ML

to enhance event detection and classification in
the C-band using SOP features[11]–[14]. In general,
existing efforts are confined to SOP data collected
from a single spectral band and link. It is however
interesting to analyze how an ML model trained on
a given link and band behaves when tested on a
different setup.

Polarization dynamics in optical fibers is influ-
enced by wavelength-dependent physical-layer ef-
fects such as birefringence, Polarization Mode Dis-
persion (PMD), and varying modal coupling char-
acteristics. These effects can cause the SOP to
evolve differently across spectral bands. Hence,
knowledge about SOP features extracted in one
system may not directly translate to another, rais-
ing concerns about the transferability of ML mod-
els trained on data in a specific band and link.
There is a lack of studies that examine the gen-
eralization of ML model performance when they
are trained on one band and fiber link and applied
to a different link on a different band. This raises
a fundamental question: even if similar physical
events produce qualitatively comparable SOP sig-
natures, do ML models for event detection general-
ize across bands and fiber links without retraining
or adaptation? We address this question by an-
alyzing the generalization capabilities of an ML
model, eXtreme Gradient Boosting (XGBoost), in
classifying SOP-based signatures across two dif-
ferent fiber links using two spectral bands. We
collect three distinct signatures from a real-world,
noisy environment of the HEAnet live metro net-
work (which operates in the C-band)[15] and com-
pare the results with those obtained from a field
dark fiber in the O-band. XGBoost was selected
due to its consistent performance in our prior SOP-
based studies[7]–[9] and its superior accuracy dur-
ing preliminary testing. We train one XGBoost
model per system and assess their performance
when tested either on the same system or on a



different one. We compare the performance to a
multi-band model trained on an aggregate of both
systems. Our study provides the first empirical
evidence of band and link dependency of the ML
classifier performance, indicating that polarization-
based features learned in one system may not be
directly transferable to another.

Experimental setup

The experimental setup used in this study is illus-
trated in Fig. 1, which depicts two distinct systems
designed to investigate the generalization ability
of SOP-based event detection. The first system
setup (labeled System1), operating in the O-band,
consists of a 21 km (round-trip) dark fiber link ac-
cessed via the OpenIreland testbed. A Continu-
ous Wave Distributed Feedback (CW-DFB) laser
is used as the source, and the fiber under test
is a standard Single Mode (SM) G.652 fiber. We
used a field fiber rather than a lab spool in or-
der to consider a more realistic noisy environment.
The second system setup (labeled System2), op-
erating in the C-band, is implemented over a live
production metro network in the Dublin area, oper-
ated by Ireland’s National Education and Research
Network HEAnet[15]. Access to this network is
provided via the OpenIreland laboratory at Trin-
ity College Dublin through a dedicated dark fiber
connection. The HEAnet metro ring comprises
six Reconfigurable Optical Add-Drop Multiplexer
(ROADM) nodes and spans a total fiber length
of 77 km, and an External Cavity Laser (ELS) is
used as the source. For our experiments, a 400
GHz spectral window ranging from 192.8 to 193.2
THz was allocated as a Spectrum-as-a-Service
slice. To capture polarization signatures resulting
from physical disturbances on the transmission
line, we adopt the experimental setup from[10] at a
wavelength in the C-band.

The transmission line is subjected to various ac-
tions that emulate real-world tampering and eaves-
dropping scenarios capable of inducing measur-
able changes in the SOP of the transmitted sig-
nal. To extract signatures for each specific event,
we use the methodology from[10]. For each sig-
nature and band, SOP samples are captured ev-
ery 0.5 ms over a 20-minute interval, yielding 2.4
million samples per event. Numerical Polariza-
tion State Variation (NPSV) values are computed
as distances between consecutive points on the
Poincaré sphere and segmented into 500-sample
windows. Each segment undergoes Fast Fourier
Transform (FFT) analysis with 512 frequency bins
using a Hamming window[16], resulting in a power
spectrum dataset with 4,800 time slots (samples)
and 512 frequency bins (features). This process
generates two datasets, one for each band, which
serve as the input for ML-based classification.
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Fig. 1: A schematic of the two experimental systems used in
the study. System 1 (top) shows the O-band setup and system

2 (bottom) illustrates the C-band deployment.

Collected signatures and ML pre-processing

The ML analysis is based on one dataset per
band, containing three distinct event signatures:
relaxed (rlx), eavesdropping (eav ), and soft bend-
ing (sbd). rlx represents the baseline state of the
fiber, with only background environmental noise
and no intentional disturbances. sbd simulates
non-harmful physical handling during routine main-
tenance where the fiber is gently bent to a radius
of approximately 2 cm at 10-second intervals, mim-
icking typical patch-panel manipulation. eav mod-
els a malicious eavesdropping attempt, where the
fiber is bent using a specialized coupler with a
4 mm radius and a 25-degree angle, resulting in
approximately 0.3 dB attenuation and 3% signal
coupling, as described in[17].

The C-band dataset from the HEAnet network
contains three collected signatures denoted as
rlx2, eav2, and sbd2, each initially comprising
4,800 samples, resulting in a total of 14,400 data
points. We applied a post-processing filtering step
to the eav2 and sbd2 classes to remove samples
collected between two consecutive events, i.e.,
samples that represented the fiber in a relaxed
state. As a result, the filtered dataset contains 644
samples for eav2 and 773 samples for sbd2. An
80/20 train-test split was applied across all classes,
resulting in a total of 4,973 training and 1,244 test-
ing samples.

The O-band dataset contains the same three
event signatures, denoted as rlx1, eav1, and sbd1,
with 4,800 samples per class, totaling 14,400 data
points. This dataset did not require any filtering,
as its signatures were collected with clearly sepa-
rated event intervals, resulting in inherently clean
and well-isolated samples. Using the same 80/20
split, this dataset yields 11,520 training and 2,880
testing samples overall.

These datasets are structured for a supervised
ML classification task, where each sample is la-
beled according to its corresponding event class.



Tab. 1: Classification accuracy (Acc) for the different
training/testing scenarios.

Scenario Training Testing Acc.
S1 System1 System1 88.85%
S2 System2 System2 98.63%
S3 System1 System2 8.11%
S4 System2 System1 60.59%
S5 System1+2 System1+2 91.11%

Results
We initially evaluated the performance of ten dif-
ferent ML classifiers from the Scikit-Learn library
to identify the most suitable model for SOP-based
event classification. Among them, the XGBoost
classifier demonstrated superior accuracy across
both O-band and C-band datasets. Thus, we limit
the scope of this analysis to XGBoost.

We test XGBoost on five scenarios: S1 (training
and testing both in System1), S2 (training and test-
ing both in System2), S3 (training on System1 and
testing on System2), S4 (training on System2 and
testing on System1), and S5 (training and testing
on a combined dataset from both System1 and
System2). Table 1 reports the classification ac-
curacy for each scenario, with confusion matrices
shown in Figs. 2 - 4.
1) Intra-system classification (S1 and S2): The
performance of the model in intra-system scenar-
ios S1 and S2 is illustrated in Fig. 2. The model
achieves high classification accuracy for both sys-
tems, i.e., 88.85% in System1 and 98.63% in Sys-
tem2 (see Table 1). In S1 (System1), the model
correctly classifies most samples, although some
confusion occurs between the eav and the other
two classes. Nonetheless, the diagonal domi-
nance of the matrix confirms that the event classes
can be distinguished by the model. In S2 (Sys-
tem2), the model achieves near-perfect classifi-
cation, with 100% accuracy for rlx, i.e., no false
positives, and over 93% accuracy for eav and sbd.
2) Cross-system generalization (S3 and S4):
The performance of the model in cross-system
scenarios S3 and S4 is illustrated in Fig. 3. In S3

(System1 training → System2 testing), the classi-
fier’s accuracy drops dramatically to only 8.11%
(see Table 1). This performance is worse than a
naive classifier, which could theoretically achieve
33.3% accuracy by random guessing. The confu-
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Fig. 2: Confusion matrices for intra-system classification
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Fig. 3: Confusion matrices for cross-system generalization
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Fig. 4: Confusion matrix for multi-system classification

sion matrix in Fig. 3(a) shows that the model fails
to correctly classify most of the events, assign-
ing the majority of test samples to the class eav1.
This indicates that the SOP signatures learned by
the model from System1 do not apply to System2
data. In contrast, scenario S4 (System2 training
→ System1 testing) yields an accuracy of 60.59%
(see Table 1), suggesting partial generalization,
i.e., higher accuracy than a naive classifier. No-
tably, in both cross-system scenarios, one class is
completely misclassified: rlx1 in S3 and eav2 in S4,
which indicates a higher susceptibility of certain
event signatures to misclassification when transi-
tioning between systems. These results suggest
that optical network monitoring based on SOP sig-
natures and ML exhibits a substantial degree of
system sensitivity.
3) Multi-system classification (S5): The confu-
sion matrix in Fig. 4 illustrates strong per-class
performance of the model trained and tested on a
combined System1 and System2 dataset, achiev-
ing an overall accuracy of 91.11%. Despite some
misclassifications, particularly between the eav
and other classes, these results indicate that multi-
system training significantly improves robustness
and generalization, effectively mitigating the limita-
tions observed in cross-system scenarios.

Conclusion
Our study on the generalization capability of ML
models for SOP-based event detection indicates
high accuracy (up to 98.63%) in intra-system clas-
sification, a dramatic performance drop and asym-
metric generalization in cross-system, and a ben-
eficial trade-off (91.11%) in multi-system training
scenarios. To refine generalizability, in our future
work we will investigate domain adaptation and
transfer learning strategies.
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