CHAL

UNIVERSITY OF TECHNOLOGY

PACE: Procedural Abstractions for Communicating Efficiently

Downloaded from: https://research.chalmers.se, 2026-01-21 01:03 UTC

Citation for the original published paper (version of record):

Thomas, J., Silvi, A., Dubhashi, D. et al (2025). PACE: Procedural Abstractions for Communicating
Efficiently. Proceedings of the Annual Meeting of the Cognitive Science Society, 47

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
PACE: Procedural Abstractions for Communicating Efficiently

Permalink
https://escholarship.org/uc/item/2mfom2c3)

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 47(0)

Authors

Thomas, Jonathan
Silvi, Andrea
Dubhashi, Devdatt

Publication Date
2025

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2mf0m2c3
https://escholarship.org/uc/item/2mf0m2c3#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

PACE: Procedural Abstractions for Communicating Efficiently

Jonathan Thomas Andrea Silvi

Devdatt Dubhashi

Moa Johansson

Chalmers University of Technology and University of Gothenburg

Abstract

A central but unresolved aspect of problem-solving in Al is
the capability to introduce and use abstractions, something hu-
mans excel at. Work in cognitive science has demonstrated
that humans tend towards higher levels of abstraction when
engaged in collaborative task-oriented communication, en-
abling gradually shorter and more information-efficient utter-
ances. Several computational methods have attempted to repli-
cate this phenomenon, but all make unrealistic simplifying as-
sumptions about how abstractions are introduced and learned.
Our method, Procedural Abstractions for Communicating Effi-
ciently (PACE), overcomes these limitations through a neuro-
symbolic approach. On the symbolic side, we draw on work
from library learning for proposing abstractions. We combine
this with neural methods for communication and reinforce-
ment learning, via a novel use of bandit algorithms for con-
trolling the exploration and exploitation trade-off in introduc-
ing new abstractions. PACE exhibits similar tendencies to hu-
mans on a collaborative construction task from the cognitive
science literature, where one agent (the architect) instructs the
other (the builder) to reconstruct a scene of block-buildings.
PACE results in the emergence of an efficient language as a
by-product of collaborative communication. Beyond provid-
ing mechanistic insights into human communication, our work
serves as a first step to providing conversational agents with
the ability for human-like communicative abstractions.

Keywords: efficient communication; reinforcement learning;
abstractions learning.

Introduction

Procedural tasks such as cooking and programming require
executing a sequence of actions to achieve a desired goal.
A natural approach to reduce their complexity and improve
generalisation to new tasks is to introduce abstractions for
common sequences of actions (Solway et al, [2014). For ex-
ample, in cooking, techniques such as sautéing or kneading
serve as foundational building blocks that simplify complex
recipes. Similarly, abstractions emerge in repeated commu-
nication between human dyads when collaborating on shared
tasks (Krauss and Weinheimer, |1964; Hawkins et al., |2020;
McCarthy et al.| [2021)). Over time, as new abstractions are in-
troduced into the shared language, communication becomes
more concise. This can improve cooperation and allow to
reach the goal more easily.

How communication shapes abstractions is of much inter-
est within the Al and Cognitive Science communities (Lee|
1996 Ho et al) 2019). A compelling principle is Effi-
cient Communication, which argues that languages are un-

Correspondence to: silvifchalmers.se.

977

: horizontal
: vertical

@ : horizontal
@ : vertical
& :smallO

77 Q

7,
a\\\‘é

Figure 1: Two artificial agents playing the architect-builder
game, starting from a small artificial language. Initially, the
architect messages refer to horizontal or vertical blocks (a).
After multiple interactions, the architect tries to introduce
an abstraction (b), which after a learning period allows for
shorter communication to solve the task (c).

der pressure to be informative whilst minimising cognitive
load (Kemp and Regier, [2012;|Gibson et al., 2017 |Zaslavsky
et al., 2019; \Gibson et al., 2019). This provides insights into
the abstractions humans converge to in semantic domains
such as colour, kinships and others (Xu et al., 2020; [Regier
et al., [2015; [Kemp and Regier} [2012; |Yin et al.| 2024). Here
we want to explore the principle of Efficient Communication
with artificial agents in collaborative procedural tasks: how
do the pressures for efficient communication manifest and im-
pact abstraction introduction and use?

The architect-builder game introduced in [McCarthy et al.
(2021) provides a simple framework to study the use of ab-
stractions in collaborative tasks. It is a repeated game with
two participants, the architect and the builder, who must com-
plete a collaborative building task. In each round, the archi-
tect observes the goal-scene on their screen and conveys some
instructions in natural language to the builder. The builder,
who cannot see the original scene, interprets these instruc-

In D. Barner, N.R. Bramley, A. Ruggeri and C.M. Walker (Eds.), Proceedings of the 47th Annual Conference of the Cognitive Science
Society ©2025 the author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

tions and attempts to reconstruct the shapes by placing blocks
within the grid. The architect may send further instructions to
help the builder. McCarthy et al.| (2021) showed that in early
rounds human participants use lengthy utterances, while later
realizing it is beneficial to introduce abstractions for com-
monly occurring shapes (e.g. an L-shape). By doing this they
move towards a more compact language, thereby leading to
more efficient communication. Creating such abstractions is
a key feature of human collaboration. In this work, we de-
velop a computational framework of artificial agents to solve
this kind of collaborative task (Figure[T)). Previous work pro-
vides computational models of this process (McCarthy et al.}
20215 Jergéus et al., 2022), but rely on simplifying assump-
tions, limiting the ability to capture the collaborative dynam-
ics of language learning, which we address in this work.

We propose a novel multi-agent neuro-symbolic method
called Procedural Abstractions for Communicating Effi-
ciently (PACE). We integrate both neural and symbolic learn-
ing methods from the computer science literature. On the
symbolic side, library learning (Ellis et al) 2021} Bowers
et al.} 2023), a method from program synthesis that aims to
abstract common subprograms into new, more easily reusable
terms. On the neural side, emergent communication (EC)
(Foerster et al. [2016; [Lazaridou and Baroni), [2020), and re-
inforcement learning (RL) (Sutton and Barto, |1998)), enable
the development of a flexible, learnable communication lan-
guage. PACE offers a unified framework for studying the for-
mation and evolution of abstractions across multi-round in-
teractions.

In previous work, EC has been used to explain how com-
municative pressures for efficient communication shape the
language structure in other settings, such as [Carlsson et al.
(202110). Here, we apply EC techniques to study how pres-
sures manifest within abstraction learning.

We evaluate PACE on the Architect-Builder game, which
we extend to artificial agents. In our extension, the architect
composes programs to describe the goal-scene in an artificial
symbolic language (Figure |I|a). The programs are neurally
encoded as messages, following conventions from EC, and
are then interpreted by the builder, who tries to reconstruct
the scene. After several rounds, the architect’s internal sym-
bolic language is extended with a new abstraction for a com-
monly occurring subprogram (Figure[T]b). Each new abstrac-
tion provides alternative shorter ways to express goal-scenes,
but require the agents to learn how to communicate and un-
derstand them. This contention between shorter but unestab-
lished programs and more verbose established programs is
handled via RL over repeated rounds of interaction (Figure
¢). We find that it exhibits similar tendencies to humans —
a development toward a richer language that allows for more
concise utterances. Interestingly, after a number of abstrac-
tions have been introduced, our model naturally converges to
a stable language, after which no more abstractions are intro-
duced. Moreover, we show that in this setting languages that
are closer to optimality in terms of the trade-off between aver-

978

age morphosyntactic complexity and language size are easier
to learn, connecting our work with the Efficient Communica-
tion literature. Our approach addresses limitations of existing
approaches and provides a valuable framework for future ex-
ploration in this area.

Set-up: Architect-Builder Game

In the Architect-Builder Game, the architect is provided with
a set of goal-scenes depicting two adjacent shapes on a (9x9)
grid. Each shape is a variable-size combination of 2x1 hori-
zontal and 1x2 vertical blocks. The architect needs to com-
municate instructions to the builder (who does not know the
goal state) that allow it to construct the goal-scene starting
from a blank grid. This is inspired by the human experiments
in McCarthy et al.| (2021).

Dataset We extend the dataset from|[McCarthy et al.| (2021}
for our experiments. We increase the size going from 3 to 31
unique shapes, with multiple sub-shapes reoccurring in dif-
ferent shapes. Our shapes are of different sizes and resemble
either uppercase or lowercase letters from the English alpha-
bet. As before, the dataset consists of scenes composed of
two shapes placed side by side. Our dataset contains 961
goal-scenes (compared to the original 9), which enables us
to use it for training neural agents. We split the dataset into
930 training scenes and 31 test scenes. These splits are con-
structed to ensure the distribution over shapes is the same.
However, in the test set, the ordered pair of shapes constitut-
ing each goal-scene, does not appear in the training set.

The agents The architect is a neuro-symbolic agent: build-
ing instructions are constructed symbolically and encoded
and communicated neurally. The builder is a purely neural
agent and its task is to learn to decode instructions to recon-
struct the scenes step-by-step. The architect has an internal
symbolic action language A for constructing programs p of
building instructions for goal scenes. Initially, the language
has only two primitives: iy = {@noriz, vert }» corresponding
to placing either a horizontal or vertical block. A program of
length [takes the form p = [ay, ..., a;], where initially, each g;
is one of {appriz, Aver }

PACE: Selection, Communication and
Abstraction

There are three phases to PACE, Selection, Communica-
tion and Abstraction (see Figure[2)). The architect must first
choose a program to communicate. For this purpose the ar-
chitect is initialised with a table of programs written in A;,;
for each scene in the training set. Initially there is one pro-
gram per scene. Secondly, the architect learns how to com-
municate (neurally) instructions to the builder via EC, allow-

'We note that along with each action a; we also attach positional
information. As our goal is to learn abstractions of shapes, posi-
tions are irrelevant. Hence we assume positional encodings are pre-
determined and omit them from further notation.

Selection and Communication phases, repeat for some rounds

>

P Introduce an abstraction

Select programs Communicate programs

A

Figure 2: Interaction between the architect and builder in
PACE proceeds as follows: (1) given a goal-scene the archi-
tect chooses the program to communicate, and (2) the archi-
tect and builder communicate via EC. After multiple interac-
tions, an abstraction is introduced. Then the loop repeats.

ing them to learn a language for collaboration. After some
rounds, the architect enters the Abstraction phase, where it
uses a library learning mechanism to identify common sub-
sequences to abstract. The new abstraction is then used to
add additional (shorter) programs for the relevant scenes. In
the next Communication phase, the architect thus has multi-
ple programs to choose from. We use reinforcement learning
techniques to learn to choose between alternative programs.
We next describe these three phases in more detail.

Selecting programs The architect initially has one pro-
gram to construct each scene from an empty grid. As ab-
stractions are introduced, there will be multiple alternative
programs of different lengths available to the architect. They
may differ in reconstruction accuracy, in particular, programs
containing a new abstraction will initially have lower accu-
racy, as the builder has not been exposed to them. Hence, this
is a classic exploration vs. exploitation problem for which re-
inforcement learning with bandit technique are well-suited
(Sutton and Barto, 1998} [Lattimore and Szepesvari, 2020)
More specifically, we view the selection between programs as
a contextual multi-armed bandit with combinatorial actions:
in general each goal-scene has multiple programs to choose
from, corresponding to the arms of the bandit. To estimate the
quality of each program, we maintain a table of Q-values, one
for each action in A4, with the quality of the program being the
product of the Q-values of its actions: Q(p) = Hlill yQ(a,-)
This captures the trade-off between program length and the
communicative accuracy of instructions. We empirically de-
termine a value of ¥ = 0.99, which results in a small bias
for shorter programs. To ensure that the architect also ex-
plores new programs, we adopt an e-greedy strategy, where
with probability 1 — € a random program (arm) is selected.
We fix € at a constant value of 0.1, ensuring a constant level of
exploration. After the communication of the program (see be-
low) we update the estimated value of its component actions
as Q(a) < QO(a) + o(r — Q(a)), where r is the reconstruc-
tion accuracy which is 1 if this instruction was successfully
interpreted by the builder and O otherwise. This approach en-

Zan analogy coming from a gambler repeatedly having to select
which arm of a slot machine to play.

3We empirically found that initialising the Q-values to 0 works
best in practice.

979

sures that the new programs introduced after each Abstraction
phase will be explored by the architect.

Communicating a program Having selected a program, p,
the architect and builder play a one-step signalling game for
each of its instructions ;. This takes the form of (x;,a;,x;+1):
the grid state x; is transformed into x;y; by action a;. The
architect learns a neural communication policy T.ymm, Which
produces a message m; = Tomm(a;). Similarly, the builder
learns a policy Ttp4- Which estimates the next grid-state, and
is defined as X;1 1 = Mg (x;,m;). These are both implemented
as fully-connected neural networks. Since our messages are
discrete, we use the gumbel-softmax relaxation to sample
from discrete messages which makes our model end-to-end
differentiable (Jang et al., |2017). The policies are jointly
trained to minimise the binary cross-entropy loss between the
target next state x;; and the builder’s output x;; 1. We also
introduce a bias for positive signalling |[Eccles et al.|(2019)) in
the architect’s loss to encourage the architect’s messages to
carry meaningful information about the instruction they rep-
resent.

Introducing Abstractions After some rounds of commu-
nication, the architect enters the abstraction phase, where it
searches for novel abstractions allowing for shorter programs
for describing goal scenes. Abstractions are constructed by
an improved version of the procedure used in McCarthy et al.
(2021), where we are able to remove the explicit upper-size
limit on the library size.

The architect evaluates the set of candidate abstractions ex-
tracted from their programs and picks the one which max-

imises (I)):

N
o HP(p,-|ﬂU {acana}t)

i=1

P(AU{acana Y {pi}Y1) (1)

where a.qnq is the new candidate abstraction, { p,-}ﬁ\': , are the
known programs so far. The right side of the equation is fur-
ther defined in[2] It provides a measure of the expected reduc-
tion in program length, which is defined in terms of the mini-
mum description length (MDL) —the shortest program achiev-
able using also the new candidate abstraction.

P(Pi|/qU {aeand}) = exP(—MDL(Pi|ﬂU {acand})) 2

Efficient Communication in PACE

As in other settings like recursive numeral systems (Deni¢
and Szymanikl 2024), programs in the Architect-Builder
game can be perfectly informative even with a minimal vo-
cabulary — precisely of size two, with one term referring to the
horizontal primitive block and the other referring to the verti-
cal one. With just the two initial action-words the architect
can describe infinitely complex goal-scenes, given enough
time! This is because the semantics of the environment are

10-

Average Program Length

- —— No abstractions
—— Greedy
— PACE

9 10 11 12 13 14 15 16 17 18 19

Steps

8

7

1.00-

0.95-

o
©
o

Test Accuracy
o
foe]
&

0.80-

~ —— No abstractions
—— Greedy

0.70. — PACE
9 10 11 12 13 14 15 16 17 18 19
Steps

7 8

6

Figure 3: Comparison between PACE, Greedy and No abstractions in terms of program length and test reward over time. Line
indicates mean value and shaded regions indicate the 95% confidence interval.

compositional. Thus, as [Deni¢ and Szymanik| (2024)) show
for recursive numeral systems, we expect that the pressures in
competition to shape the agents’ languages in the Architect-
Builder game are the average morphosyntactic complexity
of the programs describing the goal-scenes and the language
size. In our case this corresponds to a trade-off between the
average length of the programs communicated by the archi-
tect, and the number of lexicalised terms, i.e. the number of
primitives plus abstractions in A4, the architect’s lexicon.

Implementation Details

The neural agents are deep neural networks which have 1 and
2 hidden layers of size 200, respectively. The architect’s out-
put layer is of size 30, its maximum vocabulary size. While
the output layer of the builder is of size 81, the size of the
grid. We use the gumbel-softmax relaxation with the hard
parameter so that the networks can be differentiated end-to-
end. We use a learning rate of 0.0009 in conjunction with the
ADAM optimiser (Kingma and Ba, |2014)). The bandit hyper-
parameters o, Y, € and g;,;; are set to 0.5, 0.99, 0.1, and 0.0
respectively. Note, that before an abstraction is introduced we
prune all but the 3 best programs (determined empirically) for
each goal-scene in the architects symbolic table to not incur
an exponential growth in the number of programs for each
goal-scene. We also set the number of epochs e to 40. All hy-
perparameters chosen are experimentally determined through
grid search.

Results & Discussion

Through empirical experimentation we want to investigate
the following questions: 1) Does PACE display conversa-
tional tendencies which are similar to humans, allowing for
more concise communication after multiple interactions? 2)
Does communicative pressures impact what abstractions get
adopted? If so, which abstractions are adopted and which are
discarded? The behaviour of PACE is compared to two naive
baselines, to assess the impact of each of PACE components
better. The first, No abstractions, is PACE without the ab-

980

straction phase. The second, Greedy, always picks the short-
est program, eliminating the bandit. We use reward (also re-
ferred to as reconstruction accuracy) and average morphosyn-
tactic complexity to compare these approaches. Unless oth-
erwise stated results obtained are averaged over 16 runs.

PACE reduces average morphosyntactic complexity
PACE does indeed reduce morphosyntactic complexity as
seen in Figure 3| (left). Starting from an average morphosyn-
tactic complexity of 9.95, over successive interaction steps,
PACE is able to reduce average morphosyntactic complexity
consistently and finally converges around a value of 4.92 +
0.20 . When we compare PACE to the No abstraction vari-
ant, the average morphosyntactic complexity is halved, going
from an average of 10, indicating that a more efficient lan-
guage has been derived. The Greedy variant reduces program
lengths even more, however, this comes at a price. In Figure
[3] (right) we see drastic drops in accuracy for Greedy every
time an abstraction is introduced, whereas PACE’s slower in-
troduction leads to smaller drops in accuracy. For a while,
both strategies manage to recover near full accuracy, but af-
ter some time, the Greedy communication fails to recover and
becomes progressively worse.

Why does PACE converge? As more terms are introduced
and the average morphosyntactic complexity reduces, we find
that it becomes harder to introduce new abstract terms. This
explains why the Greedy approach diverges as it is forced
to use new abstractions in its programs. This raises a pro-
found question which is of interest within efficient communi-
cation: why does PACE introduce some abstractions whereas
others are omitted? To understand this we conduct an exper-
iment where at each step, before the communicative phase,
we gather all candidate abstractions, group them for their size
(as in how big the shape the abstraction refers to is in terms
of primitive blocks) and frequency in our dataset, and then
introduce them one by one into 4. For each candidate ab-
straction, we let the architect and builder communicate until

10y

©o
7o ema cum

®
fmed am

AdoﬁtionhRat"é

o
3
« em
ety

Average Program Length

o

2 3 4 5 6
Size of A

Figure 4: Adoption rate of possible abstractions by language
size. As the language grows, fewer new abstractions are
adopted. The dashed line represents the interpolation of the
(discrete) Pareto Frontier calculated as the trade-off between
average program length and size of the language 4. The grey
area represents unachievable languages.

convergence and then probe the final language to check if the
tested abstraction has been adopted or not. ﬁ] This provides
an exhaustive search of differing abstractions and allows us to
analyse their ease of adoption or learnability into the current
language (Steinert-Threlkeld and Szymanik, [2020), based on
how much reduction in average morphosyntactic complexity
they can potentially lead to. At the next step, the experiment
is repeated with the new symbolic language A4 augmented
with the new abstraction introduced at the previous Abstrac-
tion phase, making each step of this experiment conditioned
on the current language of PACE.

We plot the results in Figure[d We find that when A4 is only
composed of primitive terms (the language is small), abstrac-
tions are generally always adopted but as A4 grows abstrac-
tions which would result in languages that are further away
from the Pareto Frontier become harder to learn. Eventually,
introducing new abstractions becomes infeasible, resulting in
PACE’s convergence. This demonstrates how communica-
tive efficiency impact language formation within PACE, and
connects with Steinert-Threlkeld and Szymanik|(2020) which
show that simplicity and ease of learning are intertwined.

Which Abstractions are Adopted? As discussed, PACE’s
final language does not include all abstractions suggested. In
Figure 5] we show some that experience different fates. Fig-
ure [5] (left) shows the Q-value and frequency for the tower
abstraction, consisting of two stacked vertical blocks, which
is retained in PACE’s final language. Figure | (right) instead
shows the same for a more complex abstraction resembling
an H rotated by 90 degrees, which after a trial period was not

4Note that to make this experiment computationally tractable we
limit to sampling 3 abstractions for each frequency and size, wher-
ever we have more than 3.

981

retained, judged as too hard to be learnt by the builder and
thus discarded by the architect via the bandit. This is con-
nected to the different frequencies of these two shapes in our
dataset, with the tower being more than 20 times more com-
mon than the rotated H, resulting in the first one being easier
for the builder to understand and ultimately adopted by the
architect into their language.

In Figure[6] we show how the composition of our language
changes throughout the repeated interactions. The relative
proportion of primitives is reduced in favour of abstractions
referring to either one of the 31 discrete shapes in the dataset
(roughly 40%), or a sub-shape (roughly 20%). We show how
this change in distribution impacts the composition of pro-
grams in Figure [/| with two goal-scenes examples. We see
that the introduction of new abstractions enables for programs
to be rewritten much more compactly.

Related Literature

McCarthy et al.[(2021) propose a Bayesian model of proce-
dural abstractions that combines library learning (Ellis et al.,
2021)) with social reasoning-based communication (Goodman
and Frank, 2016). While effective in capturing human-like
trends, this model assumes a predefined mapping from in-
structions to builder’s actions, essentially defining a priori the
meaning of messages that might not have been introduced
yet. They also explicitly constrain language size to prevent
adding further abstractions after a certain number have been
introduced. Jergéus et al.| (2022) take a Deep Reinforcement
Learning approach but oversimplify interactions by assum-
ing the builder immediately understands abstractions, col-
lapsing the setup into a single-agent framework and removing
pressures for efficient communication. By using EC within
PACE, our approach enables both agents to learn interac-
tively, introducing abstractions organically and letting com-
municative pressures naturally limit language size.

Emergent Communication has been widely used to study
various human language phenomena, such as compositional-
ity (Mordatch and Abbeel, |2018};|Chaabouni et al.,|2020; |[Ren
et al.| [2020), the impact of populations (Kim and Oh} 2021}
Chaabouni et al.l 2022; Rita et al., |2022), and naming con-
ventions in semantic categories (Carlsson et al., 2024). The
architect-builder game presents a very challenging setting,
being a repeated game with multiple interactions per round
and sparse rewards. By incorporating symbolic methods with
emergent communication, we provide a more interpretable,
easy-to-use approach for modelling the introduction and use
of procedural abstractions into conversational Al dyads.

Conclusion

In collaborative task-orientated communication humans tend
towards more concise utterances by introducing procedu-
ral abstractions. In this work we propose a novel neuro-
symbolic algorithm called PACE which displays similar ten-
dencies. Our work serves as a bridge between procedural
abstraction learning and efficient communication (Kemp and

Frequency

0.0

9 10 11 12 13 14 15 16 17 18 19
Steps

6 7 8

(a) The tower abstraction being introduced successfully.

Q-value

1.0-

0.8-

o
o
Frequency

©
FS

16 17 18 19

Steps

15

(b) The rotated H abstraction gets eventually discarded.

Figure 5: Different abstractions being introduced. We show the mean and 95% confidence interval for Q-value (black) and
frequency (blue) versus epochs (of which there are 40 in a step).

1.0- Primitives
Subshapes

Shapes

° ° o
IN o o

Distribution over Language

o
N

6 7 8 9 10 11 12 13 14 15 16 17 18 19
Steps

001 2 3 4 s
Figure 6: Relative proportion of actions as the language
changes over training. Primitives refer to the initial actions,
shapes refer to one of the 31 discrete shapes appearing in

goal-scenes, and sub-shapes refer to anything else.

Regier,[2012;|Gibson et al., [2017;|Zaslavsky et al.L[2019; Gib-
son et al., 2019; |IDeni¢ and Szymanik, [2024; |Carlsson et al.|
2024). We demonstrate that more optimal languages are eas-
ier to learn reinforcing ideas relating learnability with effi-
cient communication.

In future work, we intend to extend our analysis to consider
other collaborative domains and deepen the comparison to
human behaviour. We also intend to explore how Large Lan-
guage Models understand and reason about these conversa-
tional dynamics. Significant research effort is being invested
into exploring the role of natural language as a mechanism for
humans to provide instructions to intelligent agents (Brohan
et al., 2023} |Shi et al., 2024). Providing these systems with
the capability of handling novel procedural abstractions can
facilitate improved cooperation between humans and agents.
We believe that PACE represents a step towards equipping
intelligent agents with flexible and extendable languages.

982

Initial program
08B0 s
{ ,,,,,,,,,,

Final program

7 7
.)
U =S, é ’ Ea§§§§ ' Yo

Initial program

D00, 0,8,0, 0,)
{,,,,,,,,

? % Final program
7
PRl

Figure 7: Two goal-scenes with representations of their initial
and final programs chosen by PACE.

Acknowledgments

This work was supported by funding from from the Wal-
lenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foun-
dation and the Swedish Research Council. The computa-
tions in this work were enabled by resources provided by the
Swedish National Infrastructure for Computing (SNIC). We
also extend our thanks to Emil Carlsson and Vikas Garg for
insightful discussions at various points throughout the project
and to Sandro Stucki for valuable comments on a previous
version of the manuscript that lead to this final one.

References

Matthew Bowers, Theo X Olausson, Lionel Wong, Gabriel
Grand, Joshua B Tenenbaum, Kevin Ellis, and Armando
Solar-Lezama. Top-down synthesis for library learning.
Proceedings of the ACM on Programming Languages, 7
(POPL):1182-1213, 2023.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol
Hausman, Alexander Herzog, Daniel Ho, Julian Ibarz,

Alex Irpan, Eric Jang, Ryan Julian, et al. Do as i can,
not as i say: Grounding language in robotic affordances.
In Conference on robot learning, pages 287-318. PMLR,
2023.

Emil Carlsson, Devdatt P. Dubhashi, and Fredrik D. Johans-
son. Learning approximate and exact numeral systems via
reinforcement learning. Proceedings of the Annual Meet-
ing of the Cognitive Science Society, 43, 2021.

Emil Carlsson, Devdatt Dubhashi, and Terry Regier. Cultural
evolution via iterated learning and communication explains
efficient color naming systems. Journal of Language Evo-
lution, 9(1-2):49-66, 2024.

Rahma Chaabouni, Eugene Kharitonov, Diane Bouchacourt,
Emmanuel Dupoux, and Marco Baroni. Compositionality
and generalization in emergent languages. In Proceedings
of the 58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, Online, July 5-10, 2020,
pages 4427-4442. Association for Computational Linguis-
tics, 2020.

Rahma Chaabouni, Florian Strub, Florent Altché, Eugene
Tarassov, Corentin Tallec, Elnaz Davoodi, Kory Wal-
lace Mathewson, Olivier Tieleman, Angeliki Lazaridou,
and Bilal Piot. Emergent communication at scale.
In International Conference on Learning Representa-
tions,2022. URL https://openreview.net/forum?id=
AUGBfDIVOrLl

Milica Deni¢ and Jakub Szymanik. Recursive numeral sys-
tems optimize the trade-off between lexicon size and av-
erage morphosyntactic complexity. Cognitive Science, 48
(3):€13424, 2024. 10.1111/cogs.13424.

Tom Eccles, Yoram Bachrach, Guy Lever, Angeliki Lazari-
dou, and Thore Graepel. Biases for emergent communi-
cation in multi-agent reinforcement learning. Advances in
neural information processing systems, 32, 2019.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-
Meyer, Lucas Morales, Luke Hewitt, Luc Cary, Armando
Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder:
Bootstrapping inductive program synthesis with wake-
sleep library learning. In Proceedings of the 42nd ACpM
sigplan international conference on programming lan-
guage design and implementation, pages 835-850, 2021.

Jakob Foerster, Ioannis Alexandros Assael, Nando de Fre-
itas, and Shimon Whiteson. Learning to communicate with
deep multi-agent reinforcement learning. In Advances in
Neural Information Processing Systems, volume 29, 2016.

Edward Gibson, Richard Futrell, Julian Jara-Ettinger, Kyle
Mahowald, Leon Bergen, Sivalogeswaran Ratnasingam,
Mitchell Gibson, Steven T. Piantadosi, and Bevil R. Con-
way. Color naming across languages reflects color use.
Proceedings of the National Academy of Sciences, 2017.
ISSN 0027-8424.

Edward Gibson, Richard Futrell, Steven P. Piantadosi, Is-
abelle Dautriche, Kyle Mahowald, Leon Bergen, and
Roger Levy. How efficiency shapes human language.

983

Trends in Cognitive Sciences, 23(5):389 —407,2019. ISSN
1364-6613.

Noah D Goodman and Michael C Frank. Pragmatic language
interpretation as probabilistic inference. Trends in cogni-
tive sciences, 20(11):818-829, 2016.

Robert D Hawkins, Michael C Frank, and Noah D Goodman.
Characterizing the dynamics of learning in repeated refer-
ence games. Cognitive science, 44(6):e12845, 2020.

Mark K Ho, David Abel, Thomas L Griffiths, and
Michael L Littman. The value of abstraction. Cur-
rent Opinion in Behavioral Sciences, 29:111-116, 2019.
ISSN 2352-1546. https://doi.org/10.1016/j.cobeha.2019
.05.001. URL https://www.sciencedirect.com/
science/article/pii/S2352154619300026. Artificial
Intelligence.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparam-
eterization with gumbel-softmax, 2017. URL https://
arxiv.orqg/abs/1611.01144|

Erik Jergéus, Leo Karlsson Oinonen, Emil Carlsson, and Moa
Johansson. Towards learning abstractions via reinforce-
ment learning. In 8th International Workshop on Artifi-
cial Intelligence and Cognition, 2022. URL https://
doi.orqg/10.48550/arXiv.2212.13980.

Charles Kemp and Terry Regier. Kinship categories across
languages reflect general communicative principles. Sci-
ence (New York, N.Y.), 336:1049-54, 05 2012.

Jooyeon Kim and Alice Oh. Emergent communication un-
der varying sizes and connectivities. Advances in Neural
Information Processing Systems, 34:17579-17591, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Robert M Krauss and Sidney Weinheimer. Changes in refer-
ence phrases as a function of frequency of usage in social
interaction: A preliminary study. Psychonomic Science, 1:
113-114, 1964.

Tor Lattimore and Csaba Szepesvdri.
Cambridge University Press, 2020.

Bandit algorithms.

Angeliki Lazaridou and Marco Baroni. Emergent multi-agent
communication in the deep learning era, 2020.

Penny Lee. The Whorf theory complex: A critical reconstruc-
tion, volume 81. John Benjamins Publishing, 1996.

W. McCarthy, RD. Hawkins, C. Holdaway, H. Wang, and
J. Fan. Learning to communicate about shared procedural
abstractions. In Proceedings of the 43rd Annual Confer-
ence of the Cognitive Science Society, 2021.

Igor Mordatch and Pieter Abbeel. Emergence of grounded
compositional language in multi-agent populations. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

Terry Regier, Charles Kemp, and Paul Kay. Word Meanings
across Languages Support Efficient Communication. The
Handbook of Language Emergence, (January 2015):237—
263, 2015.

https://openreview.net/forum?id=AUGBfDIV9rL
https://openreview.net/forum?id=AUGBfDIV9rL
https://www.sciencedirect.com/science/article/pii/S2352154619300026
https://www.sciencedirect.com/science/article/pii/S2352154619300026
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://doi.org/10.48550/arXiv.2212.13980
https://doi.org/10.48550/arXiv.2212.13980

Yi Ren, Shangmin Guo, Matthieu Labeau, Shay B. Cohen,
and Simon Kirby. Compositional languages emerge in a
neural iterated learning model. In International Confer-
ence on Learning Representations, 2020. URL https://
openreview.net/forum?id=HkePNpVKPB.

Mathieu Rita, Florian Strub, Jean-Bastien Grill, Olivier
Pietquin, and Emmanuel Dupoux. On the role of
population heterogeneity in emergent communication.
In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=
5Qkd7-bZII.

Lucy Xiaoyang Shi, Zheyuan Hu, Tony Z. Zhao, Archit
Sharma, Karl Pertsch, Jianlan Luo, Sergey Levine, and
Chelsea Finn. Yell at your robot: Improving on-the-fly
from language corrections, 2024. URL https://arxiv
.org/abs/2403.12910.

Alec Solway, Carlos Diuk, Natalia Cérdova, Debbie Yee, An-
drew G. Barto, Yael Niv, and Matthew M. Botvinick. Op-
timal behavioral hierarchy. PLOS Computational Biology,
10(8):1-10, 08 2014. 10.1371/journal.pcbi.1003779. URL
https://doi.org/10.1371/journal.pcbi.1003779.

Shane Steinert-Threlkeld and Jakub Szymanik. Ease of learn-
ing explains semantic universals. Cognition, 195:104076,
2020.

Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, second edi-
tion, 1998.

Yang Xu, Emmy Liu, and Terry Regier. Numeral Sys-
tems Across Languages Support Efficient Communication:

From Approximate Numerosity to Recursion. Open Mind,
4:57-170, 2020.

Kayo Yin, Terry Regier, and Dan Klein. Pressures for com-
municative efficiency in american sign language. In Annual
Conference of the Association for Computational Linguis-
tics (ACL), August 2024.

Noga Zaslavsky, Charles Kemp, Naftali Tishby, and Terry
Regier. Color naming reflects both perceptual structure and
communicative need. Topics in Cognitive Science, 11(1):
207-219, 2019.

984

https://openreview.net/forum?id=HkePNpVKPB
https://openreview.net/forum?id=HkePNpVKPB
https://openreview.net/forum?id=5Qkd7-bZfI
https://openreview.net/forum?id=5Qkd7-bZfI
https://arxiv.org/abs/2403.12910
https://arxiv.org/abs/2403.12910
https://doi.org/10.1371/journal.pcbi.1003779

	Introduction
	Set-up: Architect-Builder Game
	PACE: Selection, Communication and Abstraction
	Efficient Communication in PACE
	Implementation Details

	Results & Discussion
	Related Literature
	Conclusion
	Acknowledgments

