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Abstract

We present a new way to control the unfolding of definitions in dependent type theory. Traditionally,
proof assistants require users to fix whether each definition will or will not be unfolded in the remainder
of a development; unfolding definitions is often necessary in order to reason about them, but an excess of
unfolding can result in brittle proofs and intractably large proof goals. In our system, definitions are by
default not unfolded, but users can selectively unfold them in a local manner. We justify our mechanism
by means of elaboration to a core theory with extension types — a connective first introduced in the context
of homotopy type theory — and by establishing a normalization theorem for our core calculus. We have
implemented controlled unfolding in the cooltt proof assistant, inspiring an independent implementation
in Agda.

Keywords: dependent type theory; proof assistants; categorical type theory

1. Introduction

In dependent type theory, terms are type-checked modulo definitional equality, a congruence gen-
erated by -, 8-, and n-laws, as well as unfolding of definitions. Unfolding definitions is to some
extent a convenience that allows type checkers to silently discharge many proof obligations, for
example, a list of length 1 4 1 is without further annotation also a list of length 2. It is by no means
the case, however, that we always want a given definition to unfold:

o Modularity: Dependent types are famously sensitive to the smallest changes to definitions,
such as whether (+) recurs on its first or its second argument. If we plan to change a definition
in the future, it may be desirable to avoid exposing its implementation to the type checker.

o Usability: While unfolding may simplify proof states, it also has the potential to complicate
them, resulting in unreadable subgoals, error messages, efc. A user may find that certain
definitions are likely to be problematic in this way and thus opt not to unfold them.

Many proof assistants accordingly have implementation-level support for marking definitions
opaque (unable to be unfolded), including Agda’s abstract (The Agda Team 2021) and Coq’s
Qed (The Coq Development Team 2022). But unfolding definitions is not merely a matter of con-
venience: to reason about a function, we must unfold it. For example, if we make the definition of
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2 D. Gratzer et al.

(4) opaque, then (+) is indistinguishable from a variable of type N — N — N and so cannot be
shown to be commutative, satisfy 1 + 1 =2, efc.

In practice, proof assistants resolve this contradiction by adopting an intermediate stance: def-
initions are transparent (unfolded during type checking) by default, but users are given some
control over their unfolding. Coq provides conversion tactics (cbv, simpl, etc.) for applying
definitional equalities, each of which accepts a list of definitions to unfold; its Opaque and
Transparent commands toggle the default unfolding behavior of a transparent definition; and
the SSReflect tactic language natively supports a “locking” idiom for controlling when defini-
tions unfold (Gonthier et al. 2016). Agda allows users to group multiple definitions into a single
abstract block, inside of which those definitions are transparent and outside of which they are
opaque; this allows users to define a function, prove all lemmas that depend on the function’s
definition, and then irreversibly make the function and lemmas opaque.

These mechanisms for controlling unfolding pose interesting trade-offs for users: which defini-
tions should be transparent, and which should be opaque? Transparency is in some cases necessary
and in many cases convenient, but it is problematic both from an engineering perspective -
because any edit to a transparent definition can break the well-typedness of any number of its
use sites — and from a performance perspective — because checking definitional equality of type
indices often requires unfolding nested definitions into large normal forms.

In addition, the behavior of these mechanisms is more subtle than it may at first appear. In
Agda, definitions within abstract blocks are transparent to other definitions in the same block,
but opaque to the types of those definitions; without such a stipulation, those types may cease
to be well-formed when the earlier definition is made opaque. Furthermore, abstract blocks
are anti-modular, requiring users to anticipate all future lemmas about definitions in a block.!
Coq’s conversion tactics are more flexible than Agda’s abstract blocks, but being tactics, their
behavior can be harder to predict. The lock idiom in SSReflect is more predictable because it
creates opaque definitions but comes in four different variations to simplify its use in practice.

1.1 Contributions

We propose a mechanism for fine-grained control over the unfolding of definitions in dependent
type theory. We introduce language-level primitives for controlled unfolding that are elaborated
into a core calculus with extension types, a connective first introduced by Riehl and Shulman
(2017). We justify our elaboration algorithm by establishing a normalization theorem (and hence
the decidability of type checking and injectivity of type constructors) for our core calculus, and we
have implemented our system for controlled unfolding in the experimental cooltt proof assistant
(RedPRL Development Team 2020).

Definitions in our framework are opaque by default but can be selectively and locally unfolded
as if they were transparent. Our system is finer-grained and more modular than Agda’s abstract
blocks: we need not collect all lemmas that unfold a given definition into a single block, mak-
ing our mechanism better suited to libraries. Our primitives have more predictable meaning and
performance than Coq’s unfolding tactics because they are implemented by straightforward elab-
oration into a core Martin-Lo6f type theory (MLTT) extended with new types and declaration
forms.

In particular, we refine earlier approaches to representing definitions within type theory
(Dreyer et al. 2003; Harper & Stone 2000; Milner et al. 1997; Sterling and Harper 2021) in order
to more faithfully represent definitions as they are actually used in practice: as neither fully
opaque or transparent but instead a mix of the two. Drawing inspiration from cubical type theory
(Angiuli et al. 2018, 2021; Cohen et al. 2017), we extend MLTT with proof-irrelevant proposition
symbols p, dependent products {p} A over those propositions, and extension types {A|p < a}, the
subtype of A consisting of the elements of A that definitionally equal a4 under the assumption that
p is true. For readers familiar with cubical type theory, extension types are similar to path types
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(Path A ag a;), which classify functions out of an abstract interval I that are definitionally equal to
ap and a; when evaluated at the interval’s endpoints 0, 1 : IL

Encoding definitions through particular types confers a number of benefits. For instance, our
mechanism for definitions and unfolding are automatically invariant under definitional equiv-
alence: replacing one term by a definitionally equal alternative cannot change the unfolding
behavior of a program. Furthermore, using extension types to encode definitions ensures that
our elaboration algorithm is extremely modular and predictable: the rules for extension types are
simple and, once grasped, it becomes easy to predict the interactions between unfolding defini-
tions and other features within the language. This elaboration algorithm then serves as a reference
for the behavior of our mechanism, against which other implementation strategies may be
checked.

Like many elaboration algorithms for dependent type theory, executing our elaboration algo-
rithm requires deciding the equality of types in the core language. To show that our elaboration
algorithm can be implemented, we prove a normalization theorem for our core calculus, charac-
terizing its definitional equivalence classes of types and terms and as a corollary establishing the
decidability of type checking. This is more subtle than it may appear: the heart of our normaliza-
tion proof amounts to correctly tracking when definitions are allowed to unfold as well as when
they should remain opaque. In the face of higher-order programs and dependent types, this is
quite difficult.

Another benefit to shifting from opaque definitions to extension types is their well-studied
metatheory. Specifically, we are able to adapt and extend Sterling’s technique of synthetic Tait
computability (STC) (Sterling 2021; Sterling and Angiuli 2021; Sterling and Harper 2021) to prove
normalization for our core language. Our proof is fully constructive, an improvement on the prior
work of Sterling and Angiuli (2021); we have also corrected an error in the handling of universes
in an earlier revision of Sterling’s doctoral dissertation (Sterling 2021) that was detected while
preparing this paper.

1.2 Outline

In Section 2, we introduce our controlled unfolding primitives by way of examples, and in
Section 3 we walk through how these examples are elaborated into our core language of type
theory with proposition symbols and extension types. In Section 4, we present our elaboration
algorithm, and in Section 5 we discuss our implementation of the above in the cooltt proof assis-
tant. In Section 6, we establish normalization and its corollaries for our core calculus. We conclude
with a discussion of related work in Section 7.

2. A Surface Language with Controlled Unfolding

We begin by describing an Agda-like surface language for a dependent type theory with controlled
unfolding. In Section 4, we will give precise meaning to this language by explaining how to elab-
orate it into our core calculus; for now, we proceed by example, introducing our new primitives
bit by bit. Our examples will concern the inductively defined natural numbers and their addition

function:
(+): N> N->N
ze4+n=n

sum-+n=su(m+n)
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2.1 Asimple dependency: length-indexed vectors

In our language, definitions such as (4) are opaque by default - they are not unfolded auto-
matically. To illustrate the need to selectively unfold (+), consider the indexed inductive type of
length-indexed vectors with the following constructors:

[]:vecze A
(:):A—vecnA—vec(sun)A

Suppose we attempt to define the append operation on vectors by dependent pattern matching on
the first vector. Our goals would be as follows:

(®):vecmA— vecnA— vec(m—+n)A
[l®&v= ?:vec(ze+n)A

(a::u)®v= 2:vec(sum+n)A

As it stands, the goals above are in normal form and cannot be proved; however, we may indi-
cate that the definition of (+) should be unfolded within the definition of (@) by adding the
following top-level unfolds annotation:

() unfolds (+)

(®):vecmA—>vecnA—vec(m+n)A
With our new declaration, the goals simplify:

[[@&v= 2:vecnA

(a::u)®v= ?2:vec(su(m+n)) A

The first goal is solved with v itself; for the second goal, we begin by applying the vcons
constructor:

(a::u)®v=a: ?2:vec(m+n) A
The remaining goal is just our induction hypothesis u @ v. All in all, we have:

@) unfolds (+)

1dv=

(
(®):vecmA—vecnA—vec(m+n)A
(
(a:uw)®dv=a:udv)

2.2 Transitive unfolding

Now suppose we want to prove that map distributes over (®). In doing so, we will certainly need
to unfold map, but it turns out this will not be enough:

map:(A— B) > vecnA— vecnB
map f [1 =]
mapf(a::u)=fa:mapfu
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map-® unfolds map

map-®:(f:A— B)(u:vecmA) (v:ivecnA) > mapf (udv)=mapfudmapfv
map-@f [lv= ?2:mapf([]@v)=[]®mapfv

map-®f (a::u)v= 2:mapf(a:u)@®v=(fa: mapfu)®mapfv

To make further progress, we must also unfold (6):
map-® unfolds map;(®)
map-®:(f:A— B)(u:vecmA) (vivecnA) > mapf(u@v)=mapfu®mapfv
map-®f []v= ?2:mapfv=mapfv
map-®f (a::u)v= 2:fa:xmapfudv)=(fa:mapfu) ®mapfv
In our language, unfolding (@) has the side effect of also unfolding (+): in other words,
unfolding is transitive. To see why this is the case, observe that the unfolding of (a::u) @ v:
vec (sum + n) A, namely a:: (u® v) :vec(su(m+ n)) A, would otherwise not be well-typed.

From an implementation perspective, one can think of the transitivity of unfolding as necessary
for subject reduction. Having unfolded map, (&), and thus (+), we complete our definition:

cong:(f:A—>B)—>a=d —>fa=fd
cong f refl =refl

map-® unfolds map;(®)

map-®:(f:A— B) (u:vecmA) (vivecnA) - mapf(udv)=mapfudmapfv
map-® f [] v =refl

map-®f (a::u)v=cong(fa:)(map-®fuv)

2.3 Recovering unconditionally transparent/opaque definitions

There are also times when we intend a given definition to be a fully transparent abbreviation, in the
sense of being unfolded automatically whenever possible. We indicate this with an abbreviation
declaration:

abbreviation singleton
singleton: A — vec (suze) A
singletona=a::[]
Then the following lemma can be defined without any explicit unfolding:
abbrv-example : singleton 5= (5::[])
abbrv-example = refl

The meaning of the abbreviation keyword must account for unfolding constraints. For
instance, what would it mean to make map-@® an abbreviation?
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abbreviation map-®

map-&® unfolds map; (®)

We cannot unfold map-@® in all contexts, because its definition is only well-typed when map
and (@) are unfolded. The meaning of this declaration must, therefore, be that map-@ shall be
unfolded just as soon as map and (@) are unfolded. In other words, abbreviation ¥ followed by
¥ unfolds k1; . . . ; k, means that unfolding ¥ is synonymous with unfolding all of «y; . . . ; k.

Conversely, we may intend a given definition never to unfold, which we may indicate by a cor-
responding abstract declaration. Because definitions in our system do not automatically unfold,
the force of abstract ¥ is simply to prohibit users from including ¥ in any subsequent unfolds
annotations.

Remark 1. A slight variation on our system can recover the behavior of Agda’s abstract blocks
by limiting the scope in which a definition ¥ can be unfolded; the transitivity of unfolding dictates
that any definition ¥’ that unfolds ¢ cannot itself be unfolded once we leave that scope. We leave
the details to future work.

2.4 Unfolding within the type

The effect of a ¢ unfolds «1; . . . ; k,, declaration is to make «71; . . . k, unfold within the definition
of ¥, but still not within its type; it will happen, however, that a type might not be expressible with-
out some unfolding. First, we will show how to accommodate this situation using only features we
have introduced so far, and then in Section 2.5, we will devise a more general and ergonomic
solution.

Consider the left-unit law for (): in order to state that a vector u is equal to the vector [] @ u,
we must contend with their differing types vec n A and vec (ze + n) A, respectively. One approach
is to rewrite along the left-unit law for N; indeed, to state the right-unit law for (@), one must
rewrite along the right-unit law for N. But here, because (+) computes on its first argument,
vec n A and vec (ze + n) A would be definitionally equal types if we could unfold (+).

In order to formulate the left-unit law for (), we start by defining its type as an abbreviation
that unfolds (+):

abbreviation @ -left-unit-type
@-left-unit-type unfolds (+)
@-left-unit-type : vecn A — Type
®-left-unit-typeu=[1du=u
Now we may state the intended lemma using the type defined above:
®-left-unit : (u: vecn A) — @-left-unit-type u
@-left-unit u = ?2: ®-left-unit-type u

Clearly, we must unfold (+) and thus @-left-unit-type to simplify our goal:
@®-left-unit unfolds (+)
@-left-unit: (u:vecn A) — @-left-unit-type u
@-left-unitu= 2:[|Qu=u

https://doi.org/10.1017/5S0960129525100327 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129525100327

Mathematical Structures in Computer Science 7

We complete the proof by unfolding (@) itself, which transitively unfolds (4):

@®-left-unit unfolds (&)
®-left-unit : (u:vecn A) - ®-left-unit-type u
®-left-unit u = refl

2.5 Unfolding within subexpressions

We have just demonstrated how to unfold definitions within the type of a declaration by defining
that type as an additional declaration; using the same technique, we can introduce unfoldings
within any subexpression by hoisting that subexpression to a top-level definition with its own
unfolding constraint.

Unfolding within the type, revisited. Rather than repeating the somewhat verbose pattern of
Section 2.4, we abstract it as a new language feature that is easily eliminated by elaboration. In
particular, we introduce a new expression former unfold « in M that can be placed in any expres-
sion context. Let us replay the example from Section 2.4, but using unfold rather than an auxiliary
definition:

@-left-unit: (u:vecn A) — unfold (+)in[| B u=u
@-left-unitu = ?2:unfold (+)in[|® u=u
The type unfold (+) in [] @ u = u is in normal form; the only way to simplify it is to unfold

(4). We could do this with another inline unfold expression (see ®-left-unit’ below), but here we
will use a top-level declaration:

@-left-unit unfolds (+)
®-left-unit: (u:vecn A) — unfold (+)in[| B u=u
@-left-unitu= ?2:[|Qu=u

By virtue of the above, the unfold expression in our hole has computed away and we are left

with 2:[J@ u=u as (@) is still abstract in this scope. To make progress, we strengthen the
declaration to unfold (&) in addition to (+):

@-left-unit unfolds (&)
@-left-unit: (u:vecn A) — unfold (+)in[|Qu=u
®-left-unit u = refl

The meaning of the code above is exactly as described in Section 2.4: the unfold scope is
elaborated to a new top-level abbreviation that unfolds (+).

Expression-level vs. top-level unfolding. We noted in our definition of @-left-unit above that we
could have replaced the top-level unfolds () directive of ®-left-unit with the new expression-
level unfold (&) in as follows:

@-left-unit’ : (u:vecn A) — unfold (+)in[| D u=u
@®-left-unit’ u = unfold (&) in refl

The resulting definition of @-left-unit’ has slightly different behavior than @-left-unit above:
whereas unfolding @-left-unit causes (@) to unfold transitively, we can unfold @-left-unit’
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without unfolding (@) - at the cost of unfold (@) expressions appearing in our goal. This more
granular behavior may be desirable in some cases, and it is a strength of our language and its
elaborative semantics that the programmer can manipulate unfolding in such a fine-grained
manner.

For completeness, we show the elaborated version of @-left-unit’ resulting from eliminat-
ing expression-level unfolding from the definition. We defer a systematic discussion of this
transformation till Section 4.

abbreviation @ -left-unit’-type
@-left-unit’-type unfolds (+)
@-left-unit’-type : vec n A — Type
@-left-unit’-typeu=[]Pu=u

abbreviation @ -left-unit’-body

@-left-unit’-body unfolds (B)

@-left-unit’-body : (u: vec n A) — @-left-unit’-type u
@-left-unit’-body u = refl

@-left-unit’ : (u: vec n A) — ®-left-unit’-type u
@-left-unit’ u = @-left-unit’-body u

In our experience, expression-level unfolding seems more commonly useful for end users than
top-level unfolding; on the other hand, the clearest semantics for expression-level unfolding are
stated in terms of top-level unfolding. Because one of our goals is to provide an account of unfold-
ing that admits a reliable and precise mental model for programmers, it is desirable to include both
top-level and expression-level unfolding in the surface language.

3. Controlling Unfolding with Extension Types
Having introduced our new surface language constructs for controlled unfolding in Section 2,
we now describe how to elaborate these constructs into our dependently typed core calculus.

Again we proceed by example, deferring our formal descriptions of the elaboration algorithm to
Section 4.

3.1 A core calculus with proposition symbols

Our core calculus parameterizes intensional MLTT (Martin-Lof 1975) by a bounded meet semi-
lattice of proposition symbols p € P and adjoins to the type theory a new form of context extension
and two new type formers {p} A and {A|p < M} involving proposition symbols:

(contexts) I' == ... |T,p
(types) A == . | {ptA|{Alp— M}
The bounded meet semilattice structure on [P closes proposition symbols under conjunction
A and the true proposition T, thereby partially ordering IP by entailment p < q (“p entails q”)

satisfying the usual principles of propositional logic. We say p is true if T entails p; the context
extension I', p hypothesizes that p is true.
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Remark 2. Our proposition symbols are much more restricted than, and should not be confused
with, other notions of proposition in type theory such as h-propositions (Univalent Foundations
Program 2013, §3.3) or strict propositions (Gilbert et al. 2019). In particular, unlike types, our
proposition symbols have no associated proof terms.

The type {p} A is the dependent product “{_: p} — A,” that is, {p} A is well-formed when A is a
type under the hypothesis that p is true, and f : {p} A when, given that p is true, we may conclude
f : A. The extension type {A|p < ap} is well-formed when A is a type and a, : {p} A; its elements
a:{A|p < ap} are terms a : A satistying the side condition that when p is true, we havea =a,, : A.
We provide inference rules for the core calculus, including these connectives, in Section 4.1.

3.2 Elaborating controlled unfolding to our core calculus

Our surface language extends a generic surface language for dependent type theory with a new
expression former unfold and several new declaration forms: ¥ unfolds ;. . . ; k, for controlled
unfolding, abbreviation ¥ for transparent definitions, and abstract % for opaque definitions.
Elaboration transforms these surface-language declarations into core-language signatures, that
is, sequences of declarations over our core calculus of MLTT with proposition symbols.

Our signatures include the following declaration forms:

« prop p < q introduces a fresh proposition symbol p such that p entails g € P;
« prop p = q defines the proposition symbol p to be an abbreviation for q € P;
o const ¥ : A introduces a constant ¥ of type A.

We now revisit our examples from Section 2, illustrating how they are elaborated into our core
calculus:

Plain definitions
Recall our unadorned definition of (+) from Section 2:

(+):N—-N—-=N
ze+n=n
sum+n=-su(m+n)

We elaborate (4) into a sequence of declarations: first, we introduce a new proposition symbol
T4+ corresponding to the proposition that “(+) unfolds.” Next, we introduce a new definition
84+ : N — N — N satisfying the defining clauses of (+) above, under the (trivial) assumption of T;
finally, we introduce a new constant (4) involving the extension type of 6 along Y :

prop YL <T

3+ :{T}(mn:N)—> N
drzen=n

84+ (sum)n=su (54 mn)

const (+) : {N— N— N|T; — §;}
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Remark 3. In a serious implementation, it would be simple to induce &, to be pretty-printed as
(4) in user-facing displays such as goals and error messages.

Top-level unfolding

To understand why we have elaborated (+) in this way, let us examine how to elaborate top-level
unfolding declarations (Section 2.1):

@) unfolds (+)

(
(®):vecmA—>vecnA—vec(m+n)A
Nev=

(azuw)ydv=a:(udv)

To elaborate () unfolds (+), we define the proposition symbol Yg to entail Y, capturing
the idea that unfolding () always causes (+) to unfold; in order to cause (+) to unfold in the
body of (), we assume Y in the definition of 8g. In full, we elaborate the definition of (&) as
follows:

prop Tg <Yy

dg  {Yy}(u:vecmA)(v:vecnA) > vec(m+n)A
S [Jv=v

dg(azu)v=a:(bguv)

const (@) : {vecm A — vecn A — vec(m+ n) A| Vg — Sg}

Observe that the definition of 84 is well-typed because Y is true in its scope: thus, the exten-
sion type of (4) causes ze + n to be definitionally equal to §; ze n, which in turn is defined to
be n. The constraint Yq, <> 8¢ is well-typed because Yg entails Y.

If a definition ¢ unfolds multiple definitions «i;. . .;k,, we define Yy to entail (and define
8y to assume) the conjunction Y, A - -+ A Yy, ; if a definition ©* unfolds no definitions, then Ty
entails (and §y assumes) T, as in our (4) example.

Abbreviations

To elaborate the combination of the declarations abbreviation % and ¢ unfolds «y;. . . ; k,, we
define Ty to equal the conjunction Y, A --- A Yy, . For example, consider the following code
from Section 2.3:

abbreviation map-®
map-® unfolds map; (®)
map-®:(f:A— B) (u:vecmA) (vivecnA) > mapf(u@v)=mapfu®mapfv
map-® f [] v=refl
map-®f (a::u)v=cong((fa):: —)(map-®&f uv)

Let us write € for the following type:
(f:A—B)(u:vecmA)(v:vecnA)—mapf(udv)=mapfudmapfv
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The above example is then elaborated as follows:

Prop Tmap-¢ = Tmap A Tg

Smap-@ : {Tmap A Tg} €

Smap-o f (@a:u)v=cong((fa):: —) (bmap-o f uv)

const mMap-® : {€ | Yrmap-¢ > Smap-o}

Expression-level unfolding

The elaboration of the expression-level unfolding construct unfold « in M to our core calculus
factors through the elaboration of expression-level unfolding to top-level unfolding as described
in Section 2.5; we return to this in Section 4.3.

4. The Elaboration Algorithm

We now formally specify our mechanism for controlled unfolding by more precisely defining the
elaboration algorithm sketched in the previous section, starting with a precise definition of the
target of elaboration, our core calculus TTp.

4.1 The core calculus TTp

Our core calculus TTp is intensional MLTT (Martin-Lof 1975) with dependent sums and prod-
ucts, a Tarski universe, etc., extended with (1) a collection of proof-irrelevant proposition symbols,
(2) dependent products over propositions, and (3) extension types for those propositions (Riehl
and Shulman 2017).

Remark 4. We treat the features of MLTT and of our surface language somewhat generically; our
elaboration algorithm can be applied on top of an existing bidirectional elaboration algorithm for
type theory, for example, those described by Dagand (2013) and Gratzer et al. (2019), which may
separately account for features such as implicit arguments or dependent pattern matching.

In fact, TTp is actually a family of type theories parameterized by a bounded meet semilattice
(P, T, A) whose underlying set P is the set of proposition symbols of TTp; the semilattice structure
on P axiomatizes the conjunctive fragment of propositional logic with A as conjunction, T as the
true proposition, and < as entailment (where p < g is defined as p A g = p), subject to the usual
logical principlessuchasp Ag<pandpAg<qandp<T.

Remark 5. The judgments of TTp are functorial in the choice of P, in the sense that given any
homomorphism f : P — P’ of bounded meet semilattices and any type or term in TTp over P, we
have an induced type/term in TTp over I’. In particular, we will use the fact that judgments of
TTp are stable under adjoining new proposition symbols to IP.

The language TTp augments ordinary MLTT with a new judgment I" - p true (for p € IP) and
the corresponding context extension I', p (for p € P). The judgment I" - p true states that the
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proposition p is true in context I', that is, the conjunction of the propositional hypotheses in
I" entails p while I', p extends I" with the hypothesis that p is true.

I ctx peP pelP IpE 7 I'=ptrue
[, pctx [,pkptrue = ¢

I'=ptrue ' qtrue I'=ptrue pP=q

I'=T true I'=pAqtrue ' qtrue

The dependent product {p} A is defined as an ordinary dependent product:
I, p A type ILpEM:A '-M:{p}A I't-ptrue
I' = {p} A type C'E=(p)M:{p} A -M@p:A
,pEM:A ' ptrue '=M:pA

F'E({(p)M)@p=M:A FrEM={p)M@p):{p}A

The remaining feature of TTp is the extension type {A|p < a,}. Given a proposition p € P and
an element a, of A under the hypothesis p, the elements of {A|p < a,} correspond to elements of
A that equal a, when p holds.

'Fa:A
L,pkap:A
' A type I,ptap:A F,pra=a,:A T'ta:{Alp— a,}
['={Alp < a,} type [inya:{Alp<— ap} [~outya:A
'Fa:A ['=a:{Alp = ap}

['Fouty(inpa)=a: A ['inp(outya) =a: {Alp — a,}

I'=ptrue I'ta:{Alp— ap}
FFoutya=ap:A

4.2 Signatures over TTp

Our elaboration procedure takes as input a sequence of surface-language definitions and outputs
a well-formed signature, a list of declarations over TTp.

(sigs) X u= el|%,D
(decls) D == constx:A|propp<gq|propp=gq

A signature is well-formed precisely when each declaration in ¥ is well-formed relative to
the earlier declarations in X. Our well-formedness judgment - X sig — P, I" computes from X
the TTp context I' and proposition semilattice [P specified by ¥’s const and prop declarations,
respectively.

The rules for signature well-formedness are standard except for the prop p < g and propp=gq
declarations, which extend IP with a new element p satisfying p < q or p = g, respectively. Recalling
that our core calculus TTp is really a family of type theories parameterized by a semilattice IP, these
declarations shift us between type theories, for example, from TTp to TTg, where Q =P[p <q]
is the minimal semilattice containing IP and an element p satistying p < q. This shifting between
theories is justified by Remark 5.
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FXsig— P, T I" Fr1p A type
Fesig— {T},- F (X, constx:A)sig— P, (I, x: A)
FXsig— P,T qeP
F (X, propp <q)sig—> P[p<gq],T F (X, propp=gq)sig—> P[p=gq],T

4.3 Bidirectional elaboration

We adopt a bidirectional elaboration algorithm which mirrors bidirectional type-checking algo-
rithms (Coquand 1996; Pierce and Turner 2000). The top-level elaboration judgment X - S 3/
takes as input the current well-formed signature ¥ and a list of surface-level definitions S and
outputs a new well-formed signature ¥’.

We define X S ~~ £/ in terms of three auxiliary judgments for elaborating surface-language
types and terms; in the bidirectional style, we divide term elaboration into a checking judgment
;e <« A~ ¥/, M taking a core type as input and a synthesis judgment ;T Fe = A~
¥/, M producing a core type as output. All three judgments take as input a signature ¥ and a
context (telescope) over ¥ and output a new signature along with a core type or term.

We represent a surface-level definition S as a tuple:

(def O : A, abbrv?, abstr?, [k1, ...k, €)

In this expression, ¥ is the name of the definiendum, A is the surface-level type of the definition,
abbrv? and abstr? are flags governing whether 9 is an abbreviation (resp., is abstract), [k, . . . , k5]
are the names of the definitions that  unfolds, and e is the surface-level definiens.

The elaboration judgment elaborates each surface definition in sequence:

ThSw-1

Yi;-FA< type ~ 2o, A

So; Niey Y, - € <= A~ 5, M

let p = if abstr? then gensym () else Yy

let 11 :=if abbrv? then (=) else (<)

let X, := X3, prop p 4 A<, Y, const9 : {A| p — M}

TS (def 9 : A, abbrv?, abstr?, [Ky, ..., Kyl ) ~ X4

Remark 6. When a definition is marked abstract, the name of the unfolding proposition is gen-
erated fresh so that it cannot be accessed by any future unfold declaration. Conversely, when a
definition is marked as an abbreviation, its unfolding proposition is defined to be equivalent to
the conjunction of its dependencies rather than merely entailing its dependencies.

The rules for term and type elaboration are largely standard: for instance, we elaborate
a surface-dependent product to a core-dependent product by recursively elaborating the first
and second components. We single out two cases below: the boundary between checking and
synthesis, and the expression-level unfold.
YsTFe=sAXM XS0, TyhesA~S ;M let x := gensym ()
Y T-convAB let X5 := %y, const x : [ [ {A|Ty — M}
Y;T'Fe&B~ XM ;T unfold ¥ ine < A ~ ¥;; outy, x[I']

The first rule states that a term synthesizing a type A can be checked against a type B provided
that A and B are definitionally equal; in order to implement this rule algorithmically, we need
definitional equality to be decidable. Additionally, our (omitted) type-directed elaboration rules
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are only well-defined if type constructors are injective up to definitional equality, for example,
A—B=C— Difandonlyif A=Cand B=D.

Elaborating expression-level unfolding requires the ability to hoist a type to the top level
by iterating dependent products over its context, an operation notated [[- above. Because I'
can hypothesize (the truth of) propositions, this operation relies crucially on the presence of
dependent products {p} A.

5. Case Study: An Implementation in cooltt

We have implemented our approach to controlled unfolding in the experimental cooltt proof
assistant (RedPRL Development Team, 2020); cooltt is an implementation of cartesian cubical
type theory (Angiuli et al. 2021), a computational version of homotopy type theory whose syntac-
tic metatheory is particularly well understood (Huber 2019; Sterling 2021; Sterling and Angiuli
2021). The existing support for partial elements and extension types made cooltt particularly
hospitable for experimentation with elaborating controlled unfolding to extension types. The fol-
lowing example illustrates the use of controlled unfolding in cooltt, where path A x y is the cubical
notion of propositional equality (x = y):
def +:N— N— N:=

elim

|zero=n=n

| suc{_= ih} = n=suc {ihn}

unfold +
def +0L (x:N):pathN{+0x} x:=
i=>x
def +0R: (x: N) » path N{+ x 0} x :=
elim
| zero = +0L 0O
| suc {x = ih} =
equation N
| + 0 {sucy} =[+O0L {sucy}]
| suc {+ x 0} =[i = suc {ih i}]
| suc x

This example follows a common pattern: we prove basic computational laws (+0L) by unfold-
ing a definition, and then in subsequent results (4-OR) use these lemmas abstractly rather than
unfolding. Doing so controls the size and readability of proof goals and explicitly demarcates
which parts of the library depend on the definitional behavior of a given function.

We have also implemented the derived forms for expression-level unfolding:

deftwo:N:=+11

defthm : path N two 2 := unfold two + ini = 2

def thm-is-refl : path-p {i = path N two {thm i}} {i = two} thm :=
i j = unfold two 4 in 2
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def thm-is-refl’ : path {path N two 2} {i = unfold two + in two} thm :=
i j = unfold two 4+ in 2

The third and fourth declarations above illustrate two strategies in cooltt for dealing with a
dependent type whose well-formedness depends on an unfolding; in thm-is-refl, we use a depen-
dent path type but only unfold in the definiens, whereas in thm-is-refl’ we use a non-dependent
path type but must unfold in both the definiens and in its type.

Our cooltt implementation deviates in a few respects from the presentation in this paper: in
particular, the propositions Y are represented by abstract elements i, : I of the interval via the
embedding [ — F sending i to (i =g 1).

cooltt utilizes a standalone library to compute entailment of cofibrations called Kado (Hou
(Favonia) 2022), created by Kuen-Bang Hou (Favonia). To support our experiment, Favonia mod-
ified Kado to support inequalities of dimension variables i <yj in addition to the cofibrations
needed for cooltt’s core theory. As a result, the modifications to cooltt were quite modest. After
the changes to Kado - which could in principle be reused in any proof assistant for the same
purpose — the entire change required only a net increase of 996 lines of OCaml code.

6. The Metatheory of TTp

In Section 4, we described an algorithm elaborating a surface language with controlled unfolding
to TTp. In order to actually execute our algorithm, it is necessary to decide the definitional equality
of types in T'Tp; as is often the case in type theory, type dependency ensures that deciding equality
for types also requires us to decide the equality of terms. In order to implement our elaboration
algorithm, we therefore prove a normalization result for TTp.

At its heart, a normalization algorithm is a computable bijection between equivalence classes
of terms up to definitional equality and a collection of normal forms. By ensuring that the equality
of normal forms is evidently decidable, this yields an effective decision procedure for definitional
equality. In our case, we attack normalization through a synthetic and semantic approach to nor-
malization by evaluation called STC (Sterling and Angiuli 2021; Sterling, 2021, 2025; Sterling and
Harper 2021).

Neutral forms for TTp. The semantic analysis of normalization by evaluation rests on the obser-
vation of Fiore (2002) that normal forms, though not stable under arbitrary substitutions, are
nonetheless stable under renamings - substitutions that replace variables with variables (not nec-
essarily injective). Therefore, decisive aspects of the normalization algorithm can be expressed
internally to a topos of variable sets (presheaves) over the category of contexts and renamings;
in order to instrument the semantic normalization algorithm with its proof of correctness, one
passes to a larger topos obtained from the former by gluing. STC then instantiates the standard
topos model of MLTT to substantially simplify various details that would otherwise be exceedingly
tedious by means of a form of higher-order abstract syntax.

This appealingly simple story for normalization is substantially complicated by the boundary
law for extension types:

[+ ptrue [,pkay:A I'Fa:{Alp— ay}
[Fout,a=a,: A

When defining normal forms for TTp, we might naively add a neutral form out, to represent
out,. In order to ensure that normal and neutral forms correspond bijectively with equivalence
classes of terms, however, we should only allow out, to be applied in a context where p is not true;
if p were true, out,, a is already represented by the normal form for ay,.

A similar problem arises in the context of cubical type theory (Angiuli et al. 2021; Cohen et al.
2017) where some equalities apply precisely when two dimensions coincide. The same problem
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arises: either renamings must exclude substitutions that identify two dimension terms, or neutral
forms will not be stable under renamings. In their proof of normalization for cubical type the-
ory, Sterling and Angiuli (2021) refined neutral forms to account for this tension by introducing
stabilized neutrals. Rather than cutting down on renamings, they expand the class of neutrals by
allowing “bad” neutrals akin to out, e in a context where p is true. They then associate each neu-
tral form with a frontier of instability: a proposition that becomes true when the neutral is no
longer “stuck.” Crucially, although well-behaved neutrals may not be stable under renamings, the
frontier of instability is stable and can therefore be incorporated into the internal language.

We adapt Sterling and Angiuli’s stabilized neutrals to the simplified setting of TTp and estab-
lish its normalization theorem. In so doing, we refine the approach of op. cit. to obtain a fully
constructive® normalization proof. We also carefully spell out the details of the universe in
the normalization model, correcting an oversight in an earlier revision of Sterling’s dissertation
(Sterling 2021).

6.1 Type theories as categories with representable maps

While any number of logical frameworks are available (generalized algebraic theories (Cartmell
1978), essentially algebraic theories (Freyd 1972), locally cartesian closed categories (Gratzer and
Sterling 2020), etc.), Uemura’s categories with representable maps (Uemura, 2021, 2023) are par-
ticularly attractive because they express exactly the binding and dependency structure needed for
type theory: a second-order version of generalized algebraic theories.

Definition 7. A category with representable maps (CwR) €'is a finitely complete category equipped
with a pullback-stable class of representable maps % C Arr(%) such that pullback along f € % has
a right adjoint (dependent product along f).

Definition 8. A morphism of CwRs is a functor between the underlying categories that preserves
[finite limits, representability of maps, and dependent products along representable maps.

Definition 9. CwRs, morphisms between them, and natural isomorphisms assemble into a (2, 1)-
category CwR.

Uemura’s logical framework axiomatizes the category of judgments of TTp as a particular cat-
egory with representable maps T. The finite limit structure of T encodes substitution as well as
equality judgments, while the class of representable maps carves out those judgments that may be
hypothesized. Uemura (2023) develops a syntactic method for presenting a CwR as a signature
within a variant of extensional type theory, which he has rephrased in terms of second-order gen-
eralized algebraic theories in his doctoral dissertation (Uemura 2021). Although we will use the
type-theoretic presentation for convenience, the difference between these two accounts is only
superficial.

Each judgment of TTp is rendered as a (dependent) sort, while operators are modeled by ele-
ments of the given sorts. In order to record whether a given judgment may be hypothesized, the
sorts of the type theory are stratified by meta-sorts « C [J where A :  signifies that A is a repre-
sentable sort (i.e., a context-former) and can be hypothesized, whereas B : [J cannot parameterize
a framework-level dependent product.

Proposition 10. Let T be the free category with representable maps generated by a given logical

framework signature; then the groupoid of CwR functors hom CWwRT& is equivalent to the groupoid
of interpretations of the signature within &.
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We will often refer to a category with representable maps T as a type theory; indeed, as the
category of judgments of a given type theory, T is a suitable invariant replacement for it.

Proposition 10 describes the universal property of a type theory generated by a given signature
in a logical framework. Type theories qua CwRs thus give rise to a form of functorial semantics in
which algebras (interpretations) arrange into a groupoid of CwR functors hom CwRTé&.

This is an appropriate setting for studying the syntax of type theory, but it is somewhat inappro-
priate for studying the semantics of type theory — in which one expects models to correspond to
structured CwFs (Dybjer 1996) or natural models (Awodey 2018), which themselves arrange into
a (2,1)-category. The second notion of functorial semantics, developed by Uemura in his doctoral
dissertation (Uemura 2021), is a generalization of the theory of CwFs and pseudo-morphisms
between them (Clairambault and Dybjer 2014; Newstead 2018).

Note that we may always regard a presheaf category Pr % as a CwR with the representable
maps being representable natural transformations, that is, families of presheaves whose fibers at
representables are representable (Awodey 2018).

Definition 11. A model of a type theory T is a category M, together with a CwR functor
M:T — PrM.,.

Models are arranged into a (2,1)-category Mod T (see Appendix A). Essentially, a morphism
of models M — N is given by a functor o, : M, — N, together with a natural transformation
M — a*N € homcyr (T, Pr M,,) that preserves context extensions up to isomorphism; an iso-
morphism between morphisms of models is a natural isomorphism between the underlying
functors satisfying an additional property.

For each CwR T, Uemura has shown the following theorem:

Proposition 12. The (2,1)-category of models Mod T has a bi-initial object 1, whose category of
contexts L, is the smallest full subcategory of T closed under the terminal object and pullbacks along
representable maps.

Remark 13. If one takes T to be for example, MLTT, the bi-initial model I can be realized by the
familiar initial CwF built from the category of contexts.

6.2 Encoding TTp in the logical framework

We begin by defining the signature for a category with representable maps T containing exactly
the bare judgmental structure of TTp, namely the propositions and the judgments for types and
terms. In our signature, we make liberal use of the Agda-style notation for implicit arguments. As
always, p ranges over IP:

{p) %

tm:tp=—
_Huv:{p)l=u=v
_Hot(ANicn Pid} = (px)
i Y= (A i)

Note that already this signature encodes the necessary theory of propositions for TTp. For
instance, if p < g in P, then a combination of the final two implications in the signature implies
(p) = (q). We next extend the above to include the type formers of TTp, writing T for the CwR
generated by the full signature.
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(P} =u=v
1<n pl>} = pk>
> }:></\1<npi>

ext : (A:tp) (a: {p}tmA)=tp

inp:(A:tp) (@a:{p}tmA) (u:tmA) {_: {plu=a} = tm (ext, Aa)

out,: (A:tp) (a: {p}tmA) (u:tm (extpAa)) =tmA

_t(Actp) (@:{p}tmA) (u:tm (ext,Aa)) {-: (p)} = out,Aau=a
_t(A:tp) (a:{p}tmA) (u: th){,:{p}u:a}:>outpAa(inpAau):u
_t(Astp) (@a:{p}tmA) (u:tm (ext,Aa)) =>in,Aa(outpAau)=u

part,: (A:{p}tp) =>tp

lam,, : (A:tp) (a: {p}tmA) = tm (part, A)

app, : (A:tp) (u:tm (part, A)) = {p} tm A
_:(A:tp) (a:{p}tmA) = app, A (lam,Aa)=a
~:(A:tp) (a:tm (part,A)) = lam, A (app,Aa) =a

Figure 1. The non-standard aspects of the LF signature for TTp.

Notation 14. Given X :{_:(p)} = U, we will write {p} X to further abbreviate the Agda-
style implicit function space {_: (p)} — X. Note that {p} X still associates with the right and so
{p}A — B signifies {p}(A — B).

For instance, the following constants specify the rules of extension types given in Section 4.1:

extp: (A:tp(a: {p}tmA) = tp
iny:(A:tp(a:{p}tmA) (u:tmA) {_: {p} u=a} = tm(extp A a)
outy: (A:tp(a:{p}tmA) (u:tm(extp A a)) = tmA
_:(A:tp(a:{p}tmA) (u:tm(extpAa)) {_: (p)} = out,Aau=a
_(Aztp(a:{p}tmA) (u:tmA) {_:{plu=a}=out,Aa(inpAau)=u
_:(A:tp(a:{p}tmA) (u:tm(extpAa)) =>in,Aa(out, Aau)=u
The full list of non-standard constants is specified in Figure 1. Once the signature is complete,

we obtain from Uemura’s framework a category with representable maps T together with a bi-
initial model I.

6.3 The atomic figure shape and its universal property

For each context I" and type I', " - A type, it is possible to axiomatize the normal forms of type A;
unfortunately, this assignment of sets of normal forms does not immediately extend to a presheaf
on the category of contexts I, precisely because normal forms are not a priori closed under sub-
stitution. In fact, closing normal forms under substitution is the purpose of normalization, so we
are not able to assume it beforehand.

Normal forms are, however, closed under substitutions of variables for variables (often called
structural renamings), and in our case we shall be able to close them additionally under the “phase
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transitions” T, (p) — I, (q) when ', p - g true is derivable. We shall refer to these substitutions
as atomic substitutions, and we wish to organize them into a category.

It is possible to inductively define a category of “atomic contexts” whose objects are those of
I, and whose morphisms are atomic substitutions, but this construction obscures a beautiful and
simple (2,1)-categorical universal property first exposed by Bocquet et al. (2021) that leads to a
more modular proof. To explicate this universal property, first note that the theory T axiomatizes
exactly the structure of variables and phase transitions, and that the initial model I of T is, by
restriction along Ty — T, also a model of Ty.

Definition 15. An atomic substitution model over a fixed T-model M is given by a model A of the
bare judgmental theory Ty, together with a morphism of models a : A — M in Mod Ty such that
atp t A(tp) — o (M(tp)) € Pr A, is an isomorphism.

Atomic substitution model over M arrange themselves into a (2,1)-category, a full subcategory
of Mod T | M. The following result is due to Bocquet et al. (2021).

Proposition 16. The bi-initial atomic substitution model (A, « : A — 1) over I exists.

When (A, o : A — I) is the bi-initial atomic substitution model over I as in Proposition 16,
we shall refer to an object I € A as an atomic context and a morphism y : A —TI' in A as an
atomic substitution. We shall assume without loss of generality that A(tp) = o™ I(tp) so that the
component iy is the identity map.

6.4 Computability spaces by gluing along the atomic figure shape

We shall use the bi-initial atomic substitution model over I as a figure shape in the sense of Sterling
(2021, $4.3) to instantiate STC. Here, we transition into the 2-category of Grothendieck topoi,
geometric morphisms, and geometric transformations, guided by a phase distinction between
“object-space” and “meta-space” (Sterling 2021);* object-space refers to the object language
embodied in the model I, whereas meta-space refers to the metalanguage embodied in the
model A. Later on, we will construct a glued topos in which we may speak of constructs that have
extent in both object-space and meta-space. We follow Vickers (2007) and Anel and Joyal (2021)
in emphasizing the distinction between a topos x and the category of sheaves Sh x presenting it:

Definition 17. We denote by | and A the object-space and meta-space topoi, respectively, with
underlying categories of sheaves Sh1=Pr 1, and Sh A= Pr A,.

Definition 18. The functor a., : A, — 1, gives rise under precomposition to a continuous and
cocontinuous functor Pr1, — Pr A, that shall serve as the inverse image part of an (essential)
geometric morphism o : A — | named the atomic figure shape.

That o : A— | is essential means that its inverse image o* : Sh1— ShA has a left adjoint
o) :ShA — Sh; from the point of view of presheaves, this is precisely the Yoneda extension of

Qo : Ay — I, as depicted below:

Ao
A, — 1,

YA, Vi,

PrA, ----+ Prl
TrAgy o ril,
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Definition 19. We denote by G the closed mapping cylinder (Johnstone 1977) of the geometric mor-
phism o : A — |; in other words, Sh G is the comma category ShA | a*. We will write j: 1 — G and
i: A G for the open and closed subtopos immersions.

Following Sterling (2025), we shall refer to a sheaf on G as a computability space. A com-
putability space X € Sh G is then identified with a family 7x : i*X — «*j*X in Sh A. Because the
assignment mrx is natural in computability spaces X, it corresponds to a 2-cell  : jo @ — i in the
2-category of Grothendieck topoi. The universal property of G is then expressed by the fact that
7 :joo — iisaco-comma cell in the 2-category of Grothendieck topoi:

Remark 20 (Relation to Kripke computability predicates). Unraveling Definition 19, a computabil-
ity space is precisely a family X’ of presheaves on A, indexed in the restriction of a given presheaf
X onI, along a,, : Ay — I,. When the family X’ is valued in subterminal presheaves and the base
X is representable, we have precisely the classical notion of a Kripke computability predicate (Jung
and Tiuryn 1993); a computability space in our sense is then a generalized, proof-relevant version
of a Kripke computability predicate.

6.4.1 Reflection of object and meta-space
By definition, the inverse image functors j*, i* have fully faithful right adjoints j, : Sh1<— Sh G
and i, : Sh A — Sh G,respectively. These are computed as follows:

joE=(E, 1g*g : «*E — & E)
i,A=(1Shl, 1, :A— ShA=a*Shl)
Thus, the adjunctions j* - j, and i* - i, exhibit Sh 1 and Sh A as reflective subcategories of Sh G:

(1) The essential image of the reflective embedding j, : Sh 1 < Sh G is spanned by computability
spaces X for which my : i*X — o*j*X is an isomorphism, that is, such that x is terminal in
the slice ShA | o*j*X.

(2) The essential of image of the reflective embedding i, : Sh A < Sh G is spanned by computabil-
ity spaces X such that j*X is terminal in Sh l.

Definition 21 (Vocabulary for reflective subcategories). When a computability space lies in the
essential image of j, : Shl < Sh G, we shall refer to it as lying in object-space. Likewise, when
a computabiltiy space lies in the essential image of i, : ShA <> Sh G, we shall say that it lies in
meta-space.

6.4.2 Coreflection of object- and meta-space
Both the open and closed immersions are essential morphisms of topoi, in the sense that we have
additional (necessarily fully faithful) left adjoints j, 4*: ShG — Shl and i, 4i*: ShG — ShA
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that are computed as follows:
JE=(E o+ : ShA— o™ E)
WA= (A, na:A— oa*aA)

Thus, Sh 1 and Sh A are not only reflective in Sh G - they are also coreflective.

6.5 The language of STC

As I and A are both subtopoi of G, their reflections (Section 6.4.1) can be expressed in the inter-
nal language of Sh G by means of a pair of complementary lex idempotent monads (o, e). The
internal language of Shl is presented by the o-modal or object-space types and ShA is pre-
sented by e-modal or meta-space types. Because they form an open/closed partition, these modal
subuniverses admit a particularly simple formulation:

Theorem 22. There exists a proposition obj : Q such that

(1) atype X is o-modal/object-space iff X — (obj — X) is an isomorphism;
(2) atype X is e-modal/meta-space iff obj x X — obj is an isomorphism.

Remark 23. In fact, the coreflection of Shl in Sh G lifts smoothly into the internal language
(though we shall not use this fact) by the idempotent comonadic modality [ - o that sends X
to the product X = obj x X. On the other hand, the coreflection of ShA in Sh G cannot be
expressed directly in the internal language.

Notation 24. We will use extension types {A|¢p < a} in the internal language of Sh G as real-
ized by the subset comprehension of topos logic, treating their introduction and elimination rules
silently. Here, ¢ will be an element of the subobject classifier, in contrast to the situation in our
object language, where it ranged over fixed proposition symbols.

Remark 25. We assume a subuniverse €24, € Q2 of the subobject classifier that is closed under
finite disjunctions and contains obj; then Q4. will ultimately be a subuniverse spanned by point-
wise/externally decidable propositions (Angiuli et al. 2021), but this fact will not play a role in the
synthetic development.

Notation 26. We will reuse Notation 14 and write {0obj} A rather than {_:obj} - A when
A:{_:obj}> %

As a presheaf topos, Sh G inherits a hierarchy of cumulative universes %;, each of which sup-
ports the strict gluing or (mixed-phase) refinement type (Gratzer et al. 2022): a version of the
dependent sum of a family of meta-space types indexed in an object-space type A that additionally
restricts within object-space to exactly A:

A : {obj} % B: ({obj} A) — % {obj}(a:A) > (Ba=)
(x:A) X Bx:{%;|obj— A} gl: {((x:{obj} A) x Bx) = (x:A) X Bx|obj — m}

Remark 27. In topos logic, it is a property for a function to have an inverse; thus, we have conve-
niently packaged the introduction and elimination rules for (x: A) x Bx into a single function gl
that is assumed to be an isomorphism.

Notation 28. We write [obj — a|b] for gl (a, b) and ungl x for nz(gl_lx). When constructing par-
ticularly complex inhabitants of (x : A) X B x, we will avail ourselves of copattern matching notation
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and write the following instead of ¢ = [obj <> alb]:

obje>c=a

unglc=">

Both o and e induce reflective subuniverses %, %/, < %; spanned by modal types, and these
universes are themselves modal. Following Sterling (2021), we use strict gluing to choose these
universes with additional strict properties:

Uy :AUi1|obj — Uy Uy :{Wiy1]0bj —)

[e]

Furthermore, the inclusion % < %; restricts to the identity under obj. With the modal universes
to hand, we may choose o : % — %; and e : % — %; to factor through % and %, respectively.
Henceforth, we will suppress the inclusions % , 24 < %; and write, for example, o : % — %. for
the reflections.

Remark 29. The strict gluing types, modal universes, and their modal reflections can be chosen
to commute strictly with the liftings %; — %1.

The interpretation of the TTp signature within Sh 1 internalizes into Sh G as a sequence of
constants valued in the subuniverse %2; for instance, we have:

tp: %

tm : tpZ2

(p) : Qgec (forpeP)

extp: (A:tp) — (a: {(p)}tmA) — tp

inp: (A:tp) (a: {(p)} tmA) — {tmA[(p) — a} =tm(extp A a)

Following Remark 27, we package the pair (in,, out,) as a single isomorphism inj,.

The presheaf of terms in the model A internalizes as a meta-space type of variables which by
virtue of the structure map A — I can be indexed over the object-space collection of terms. We
realize this synthetically as follows:

var: (A :tp) » {#Z|obj — tmA}

We refer to extensional type theory extended with these constants and modalities as the
language of STC.

Remark 30. To account for strict universes - those for which el commutes strictly with chosen
codes - some prior STC developments employed strict gluing along the image of el (Sterling 2021;
Sterling and Angiuli 2021). By limiting our usage of strict gluing to obj, we are able to execute
our constructions in a constructive metatheory. To model strict universes, we instead use the
cumulativity of the hierarchy of universes %; and the fact that all levels are coherently closed
under modalities and strict gluing.

6.6 Normal and neutral forms

Internally to STC, we now specify the normal and neutral forms of terms, and the normal forms
of types. Following Sterling and Angiuli (2021), we index the type of neutral forms by a frontier
of instability, a proposition at which the neutral form is no longer meaningful. Our construction

https://doi.org/10.1017/5S0960129525100327 Published online by Cambridge University Press


https://doi.org/10.1017/S0960129525100327

Mathematical Structures in Computer Science 23

var: (x:varA) —ne, A L x
unst: {a:tmA} > ne,ATa
_t(a:tmA)(e:neq AT a) » e=unsta

ext, : nftp, A — ({p} nfe Aa) — nftp, (ext, A a)
in, :nftp, A — nfe Au— nf, (ext, Aa)u
out, : nftp, A — ne, (ext, Aa) g u—nes A (¢ V (p)) (in," u)

UPyni : Nee uni ¢ A — ({¢} nftp, (el A)) — nftp, (el A)

upel i neq uni 9 A — ({@} nftp, (elA)) — nes (elA) wa— ({9 V w}nf, (elA) a) —
nfe (el A) a

el:nequnip A — ({9} nfeuniA) — nfeuniA

_:(e:nequni TA) (u:nftp, A) — upynjeu=u

_i(e:nequni TA) (u:nfeuniA) —eleu=u

_{o V) (ea:nequnid A) (us: {0} nftp, (el A))(es:neq (el A) wa) (u,:nfe Aa)
— UPe| €A UA €q Ug = Uq

Figure 2. Selected rules from the definition of nf, ne, and nftp.

proceeds in two steps. First, we define a series of indexed quotient-inductive definitions (Kaposi
et al. 2019) specifying the meta-space components of normal and neutral forms:
nfe: (A:tp) — tmA — 722
nee : (A:tp) = Qec — tmA — 24
nftp, :tp — %2
Next, we use the strict gluing connective to define the types of normals, neutrals, and normal
types such that they lie strictly over tm and tp:
nfA=(a:tmA) x nfo Aa
neg A=(a:tmA)xne,A¢a
nftp = (A : tp) x nftp, A
We illustrate a representative fragment of the inductive definitions in Figure 2.
The induction principles for nf,, ne, and nftp, play no role in the main development, which
works with any algebra for these constants. These induction principles, however, are needed in
order to prove Theorem 48 and deduce the decidability of definitional equality and the injectivity

of type constructors. These same considerations motivate our choice to index ne, over Q. rather
than Q.

6.7 A glued normalization algebra

We can now construct a new TTp-algebra internally to Sh G, satisfying the constraint that each of
its constituents restricts under obj to the corresponding constant from the TTp-algebra inherited
from Sh I. We shall refer to this as the normalization algebra. For instance, we must define types
representing object types and terms:

tp™ : {2 ]0bj — tp} tm*: {tp* — 24 |obj — tm}
The meta-space component of the computability structure of types is given as a dependent

record below:
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record tp, (A : tp) : %, where
code : nftp, A
tm, :tmA — 2}
reflect: (a:tmA) (¢ : Q) (e:neq A a) — (ag : {¢p} tme a) — {tm, alp — ag}
reify : (a:tmA) > tmea— nf, Aa

The tm, field classifies the meta-space component of a given element; the reflect and reify
fields generalize the familiar operations of normalization by evaluation, subject to Sterling and
Angiuli’s stabilization yoga (Sterling and Angiuli 2021). We finally define both tp and tm using
strict gluing to achieve the correct boundary:

tp*=(A:tp) xtpe A

tm* A= (a:tmA) x (unglA).tmq a

Notation 31. Henceforth, we will write A.fld rather than (unglA).fld fo access a field of the closed
component of A.

We must also define (p)*: g4, for each p € P subject to the condition that obj implies
(p)* = (p). As there is no normalization data associated with these propositions, we define (p)* =
(p) which clearly satisfies the boundary condition. It remains to show that (tp*, tm*) are closed
under all the connectives of TTp. We show two representative cases: extension types and the
universe.

6.7.1 Extension types
Fixing A : tp*, p: P, a: {{p)} tm* A, we must construct the following pair of constants:

ext; Aa: {tp*|obj — ext*p A a}
in; Aa:{{tm* Al{p) — a} =tm* (ext; A a)|obj < in, A a}
Recalling the definition of tp as a strict gluing type, we observe that the boundary condition on
ext, already fully constrains the first component:

ext, Aa=[obj— extpAal ?:tp, (ext,Aa) |

In the above, we have used Notation 28 for constructing elements of a strict gluing type.
We define the second component as follows, using copattern matching notation:

(ext, A a).code = ext, A.code (A.reify a)
(exty A a).tm, x = o{A.tm, (in;lx)}|(p) <a
(exty A a).reify (nex) =in, A.code (A.reify x)
(ext, A a).reflect x ¢ e (nexy) =

A.reflect

ne [ (iny 1) (& v (p))
(outy A.codee) [¢ — x4|(p) — a]

In the clauses of reify and reflect, we were allowed to assume that the argument was of the
form nex where 1, is the unit of the modality e: 1, : A — eA. This is because we are mapping into
meta-space types and so this “pattern-matching” amounts to the bind operation of the monad e.
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record uni, A : %1 where

code : nf, uni A

el-code : nftp, (el A)

tm, 1 tm (el A) — 2%

reflect: (a:tmA) (¢ : Quec) — (e:nea AP a) — (ap : {¢} tmea) — {tmea | — ay}
reify: (a:tmA) - tmea —nfeAa

uni* : {tp* | obj < uni}
uni*.code = uni
uni*.tme A = @ (uni, A)
uni*.reify _ (neA) = A.code

obj < uni*.reflect A ¢ eg Ay = A
ungl (uni*.reflect A ¢ eq Ay) =
letAy: {¢}unis A=X —Ay; X;
Ne record
code = upyj eq Ag.code
el-code =el ey Ay.el-code
tmea=@((u:nfe Ax) x {¢}{a:Ay.tme a|Ag.reify a=u})
reflecta ye, ay =
letay : {y} (u:nfeAx) x...=x—ayx;
letay = Ay.reflect e, ay;
Ne(eles Ag.el-code e, [ — Ap.reify ag | W — 1 ayl, ag)

reify _ (1o (u, ) = u

Figure 3. The normalization structure on the universe.

Remark 32. Stabilized neutrals are crucial to the definition of (ext; A a).reflect above: without
them, we could not ensure that reflecting out, A.code e lies within the specified subtype of A.tm,.

The definition of iny, is now straightforward:
in; A ax=[obj < in, Aaxfunglx]

We leave the routine verification of the various boundary conditions to the reader; nearly all of
them follow immediately from the properties of strict gluing.

6.7.2 The universe

We now turn to the construction of the universe in the normalization algebra; it is here that the
complexity of unstable neutrals becomes evident. Once again the boundary conditions on uni
force part of its definition:

uni* = [obj < uni| =?:tm, uni ]
The second component of uni* is complex, and we present its definition in Figure 3. The

inclusion of el-code in uni, is necessary in order to define el*:

obj—el*A=elA

(el* (noA)).code = A.el-code

(el* (neA)).tm, = A.tm,

(el* (noA)).reflect = A.reflect

(el* (noA)).reify = A.reify
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Finally, we must show that uni is closed under all small type formers and that el preserves them.
This flows from the cumulativity of universes in Sh G; to close uni under, for example, products,
we essentially "redo” the construction of products in tp by altering its predicate to be valued in %
rather than %4.

6.7.3 The evaluation functor

In this section, we equip Sh G with the maximal CwR structure, in which all maps are repre-
sentable.” We have just now defined an interpretation of TTp’s signature (Section 6.2) in Sh G,
and so by the universal property (Proposition 10) of T as the classifying CwR for this signa-
ture, we obtain a unique CwR functor Isp 6 : T — Sh G sending every construct of TTp to its
interpretation.

6.8 The normalization algorithm

Having constructed the normalization algebra in Sh G (Section 6.7), we can now define the actual
normalization function using an argument based on those presented by Fiore (2002, 2022, §I1.2)
and Sterling (2025, §3.3), making use of the inserter model of atomic substitutions introduced by
Bocquet et al. (2021). As our results are constructive, our normalization function corresponds to
an actual normalization by evaluation algorithm - whose executable computational content Fiore
(2022) has demonstrated explicitly in the simply typed case.

6.8.1 Stripping of atomic contexts

We first must establish an intermediate result: that the functor A(—) : P — A, sendingeachp € P
to the associated unary atomic context is fully faithful and has a left adjoint, that is, that P is
reflective in A,. The left adjoint allows an atomic context to be “stripped” of anything that induces
variables, leaving only propositional assumptions. This result is ultimately used in Lemma 40 to
exhibit an isomorphism A(p) = o*I(p).

While it is straightforward to imagine how such a reflection can be defined by “induction on
atomic contexts and repeated weakening,” we have not given an inductive specification of A, and
instead opted to specify it through its universal property. Accordingly, we define this stripping
map using an model to which we may apply the universal property of A. Fundamentally, how-
ever, the resulting constructions are the same, but our insistence on using only these universal
properties enables us to avoid fixing a particular and explicit construction of atomic contexts.

Construction 33 (The stripping model). We consider a model P of T in which we set P, =P,
P(tp) = P(tm) = 1p,p, and P(p) = ypp. All the remaining constructs of the model are trivial by
virtue of these definitions. From the universal property of I as the bi-initial T-model, we obtain a
unique homomorphism of models Ip : I — P whose contextual component is a product preserving
functor I : I, — P.

Lemma 34. The component A(—) : P — A, of the bi-initial atomic substitution model over 1 is full

and faithful.

Proof. Any functor out of a poset is necessarily faithful. To see that A(—) : P — A, is full, we fix
a morphism A(p) — A(q) in A,; as this morphism is necessarily unique, it suffices to show that
p <qinP. We consider the image of A(p) — A(q) under the contextual component of the com-
posite homomorphism Ip o o : A — P of Ty-models, which gives precisely the desired inequality
p < g, recalling that each (r) is is representable in Ty and thus preserved by homomorphisms of
models.
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Lemma 35. The functor between categories of contexts induced by Ip o o : A — P is left adjoint to
the embedding A(—) : P — A..

Proof. The counit in PP is given by the identity inequality, as each (p) is representable in Ty and
thus preserved by homomorphisms. For the unit, we must construct a (necessarily unique) arrow
I' - A(Ip(aT")) in A, for each atomic context I'.

For this, we consider a new atomic substitution model E over A whose category of contexts E,,
is the following inserter object (Lack 2009, Section 6.5) in Cat:

1
o Ao
E, ------5 > Ao

~+ ¥

A,

Al-)olgoo,

Equivalently, E, is the full subcategory of A, spanned by atomic contexts I" for which there exists
an arrow I' = A(I(a,I")); as the codomain is subterminal, such arrows are necessarily unique.
We define all the constructs of Ty in E as in A, and it remains only to check that E has a terminal
object and is closed under context comprehension and phase comprehension.

(1) For the terminal object, we see that A(I(c)) is already terminal.

(2) For the context comprehension, we fix I € E, and A € A(tp(I"), and we must check that there
exists a map I".A — A(Ig(ao(I".A))). As & o Ip is a homomorphism of models, it preserves
context comprehensions; unraveling definitions, we ultimately have I (cto (I".A)) = Iy (cto (I))
and so we are done.

(3) For phase comprehension, we fix I' € E, and p € P to check that there exists an arrow
[ A(p) = A(Ig(ao(T.A((p))))). But we have Ig(ao(I.A((p)))) = Ip(eo(I")) A p, s0O we may
use the projection I'.A(p) — A(p).

We evidently have a homomorphism of Ty-models 1 : E — A that exhibits E as a atomic sub-
stitution model over A. Postcomposing with the structure map o : A — I, we can view E as a
atomic substitution model over I. Thus, by the universal property of A, we have a universal section
Je:A— E to n: E— A. This shows that every atomic context I' € A, can be equipped with an
arrow I' = A(Ip (. T")). Assembling all these arrows together, we have the unit of the adjunction
Iy o 1 A(—).

The force of Lemma 35 is to show that [P is a reflective subcategory of As.

6.8.2 Computability spaces of atomic and computable substitutions

We will consider two computability spaces induced by an atomic context I': the computabil-
ity space [I']] of “computable substitutions into I'’” and the computability space (I')) of “atomic
substitutions into I'".”

Construction 36 (The computability space of computable substitutions). The computability space
[I"] of computable substitutions into an atomic context I' is defined in terms of the interpretation
of T into Sh G as follows, sending each atomic context to the computability space determined by
the algebra structure:
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Construction 37 (The computability space of atomic substitutions). We define an embedding
(—D:A,— ShG sending I" € A,, to the computability space (I') with j*(I') = YIl,a,I" and
i*(I') =YA,T', such that mqr) - YAc.Ta*YI oI is defined on generalized elements by the
functorial action of oy, : A; — L, as follows:

yr(]AFD(y A=>T)=oasy tacA — al

Miraculously, the coreflective embedding i; : ShA — Sh G sends YA,T" to precisely the com-
putability space (I"), up to isomorphism:
IYAGT = (YAGT, : YA,T — a*aYALT)
= (Yoo, 1 YA,T — o™ YLoa ")
=(r)

Note that the functors [ — ]|, ( — ) lift into the slice Cat | Sh | in the following sense:

shg

Notation 38. Let I' be an atomic context, and let A : (I")) — tp be an object-space type, which we
may regard as a morphism oI" — tp in T. We shall write [A]: [T'] — tp™* for the image of A under
the interpretation functor Ish g.

Lemma 39. Let ' be an atomic context, and let A : (I')) — tp be an object-space type (which we
may regard as a morphism a,I" — tp in T). Then we have the following cartesian squares:

GFAD — ZA:tp varA HFAH — ZA:tp* tm*A
(pa) v ™
I r *
() T) tp Y| W tp

Stated in the internal language, we have canonical isomorphisms (T.A)= 3 ) var (Ay) and
[T-AT =3, (g tm ([ATy).

Proof. The latter is the image of a pullback square in T under Isp g, which is finitely continuous.
The former can be seen by means of an explicit computation.

We now come to an important result relating the interpretation of (p) in I to the interpretation
of the same in A. Lemma 40 is the raison d’étre for the stripping model P in Section 6.8.1.

Lemma 40. We have a (necessarily unique) isomorphism A(p) = o*I{p).

Proof. As both presheaves are subterminal, it is enough to see that one is inhabited if and only if
the other is.
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(1) We may transpose a map ya,rr — a*I(p) to get a,I" — I(p); applying the functorial action
of I§ — I,IP, we have Ipa,I" < IgI(p) = p and by adjoint transpose with Lemma 35, we have
I — A{p).

(2) Conversely, given an arrow I' — A(p) we may apply the functorial action of s : Ay — I, to
obtain an arrow oI — oo A(p). As (p) is representable in Ty, it is preserved by morphisms
of models like « : A — I; thus, e A{p) = I(p) and so we have a,I" — I{p), which we may
transpose to obtain yo,r — a*I(p). 0

6.8.3 Hydration of atomic substitutions

A critical point in concrete normalization by evaluation algorithms is to “reflect” a vector of vari-
ables as an environment of (computable) values against which the computability interpretation
of an open term can be executed; in a concrete setting, this operation is defined by recursion on
the atomic contexts. The same process, which we shall refer to here as the hydration of atomic
substitutions, plays an equally important role in semantic proofs of normalization in the guise of
a certain hydration map /' :— (—))[ — ] in Cat | Sh | that we shall need to construct.

Just as in the definition of the stripping map, we are confronted by the fact that we have defined
the atomic contexts only by means of a universal property (the bi-initial atomic substitution model
over I), so we do not immediately have anything concrete to do recursion on. The innovation of
Bocquet et al. (2021) was to find the correct categorical induction motive that explains the usual
recursive argument purely in terms of the universal property of the bi-initial atomic substitution
model (likewise due to op. cit.). In what follows, we adapt their ideas to our setting and show how
to construct the desired hydration map.

We begin by defining a new model H of Ty that we shall refer to as the hydration model.
The category of contexts H,, is defined to be the underlying category of the inserter object for
(—D[—1:As— ShGin Cat| Shlas depicted below:

(-
H -, AL Sh G
| T

\\\ ylo © aO

) l
AY
e

Sh1

e

Explicitly, an object of H,, is a pair (I, hr) of an object I' € A, together with an arrow hr : (I') —
[T'] whose image under j* : Sh G — Sh 1 is the identity map on YI,o,I". An arrow from (A, ha)
to (I', hr) is given by an arrow y : A — I" in A, making the following square commute:

(A) —— (O
ha hr

[A] ——— [T

v

Clearly, H,, has a terminal object because [14,] is terminal. Anticipating that v, should lift to
a morphism of models exhibiting H as a atomic substitution model over A, we define H{p) =

~A(p) and H(tp) = ¥ X A(tp). In order to define H(tm), it will be easiest to first define context
comprehensions.
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Construction 41 (Context comprehensions in H,). Given a context (I', hr) in H,, and a type
A:Ya,I' = A(tp), we can lift the context comprehension I'.A € A, into H,, by finding a suit-
able map hr 4 : (T'.A) — [I".A]] whose image in Sh 1 is the identity. Recalling Lemma 39, we may
equivalently construct (from the internal point of view) the following map:

hra: {(Zy:qrbvar (A)/)) — Eyzﬂrﬂtm(ﬂA]]VNObj — AU. M}
hr a(y,x) =hry, [Al(hry).reflectx L (varx) (A_: L. %)

The projection p4 : I'.A — T tracks a morphism (I".A, hr o) — (I, hr), by definition of Ar 4.

Construction 42 (Phase comprehensions in H,). Given I € H,, and p € P, we must exhibit a map
hragp) : (C.A(p)) — [T".A{p)]. Using Lemma 39, we construct this by combining the assumed
map hr : (') — [I'] with the (necessarily unique) map (A(p)) — [A(p)] obtained from the
identity map on A(p) in the following way:

(1) First, we observe that [A(p)] = j.I{(p) as follows:

[A(P)] = Ish o A(p) by definition
= IshcI{p) « is a homomorphism
=j.I(p) by definition

(2) Then we proceed by adjoint calisthenics:
homgh g ((A(p))[A{p)]) =homsp e ((A(p)), j:L(p)) by the above

= homgp | G*(A{p)), I{p)) by adjoint transpose
= homgp | (1 A{p), I{p)) by definition of ( — |
= homgpa (A(p), @ 1(p)) by adjoint transpose
= homgpa (A(p), A{p)) by Lemma 40

Construction 43 (The presheaf of terms). We define H(tm) € PrH,, | H(tp) to send A€
H(tp)(T, hr) to the set of sections of the projection pa : (I".A, hr 4) — (T, Ar) in H,,.

Construction 44 (The hydration model). With the definitions that we have given, the projec-
tion functor v, : H, — A, easily extends to a morphism of models, exhibiting H as a atomic
substitution model over A.

Construction 45 (The hydration map). As we may compose ¥ : H— A with the structure map
a:A — 1, we can view H as a atomic substitution model over I as well, and thus by the uni-
versal property of A we have a universal section A — H to ¥ : H— A. Unraveling the section
A — H, we obtain precisely a natural assignment of hydration map component hr : (I') — [I']
from which we may assemble a single hydration map /:(— ) — [ —] in Cat | Shl.

6.8.4 Normalization and decidability

We can now show how to compute the normal form of a type I' - A type, which we regard as
an arrow A : o,I" — tp in T. Then we may apply the functorial action of the evaluation functor
Ishe : T — Sh G to obtain [A] : [T'] — tp* and then postcompose with the projection of normal
forms to obtain [A].code: [I'] — nftp. Unraveling the meaning of such a map in the gluing
category Sh G, we see that this amounts not to a normal form for A but instead to an assignment
of normal forms of A to computability witnesses for all the variables in the context I. It is precisely
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this gap that hydration fills:

norm,(I' = A type) = (T') £> [r ﬂ tp* LOdi nftp
The entire map above restricts within object-space, by construction, to the original type A, or (to
be more precise) its image in Sh G under j, : Sh1 — Sh G. The meta-space component of such a
morphism (I') — nftp is precisely a normal form for A.

Theorem 46. Normalization is sound and complete:

(1) Soundness. If normy(I" = A type) = normy, (I' = B type), then ' = A = B.
(2) Completeness. If I = A = B, then normgp (I = A type) = normyp (I" - B type).

Proof. Completeness holds by definition, as the normalization function is defined on the denizens
of the syntactic CwR rather than on raw terms. Soundness follows from the fact that normy,(I" -
A type) restricts in object-space to A itself.

In the same way, we can construct a normalization function for terms and prove that it is sound
and complete (though we do not do so here). Of course, deciding equality for terms is practically
important only insofar as it arises in the context of deciding equality for the types that mention
them.

Definition 47. An object X € Sh G has levelwise decidable equality when for each I' € A, the set
(7*X)T" has decidable equality where i : A — G is as in Definition 19.

Theorem 48. Viewed as objects of Sh G, the following have levelwise decidable equality:
nftp (A:tp) xnfA (A :tp) X (¢ : Rgec) X NEGA

From this, we obtain our main results concerning TTp:

Corollary 49. Definitional equality in TTp is decidable.

6.8.5 Stronger normalization results
A few stronger results can be proved using routine extensions of the methods on display here.

(1) The external normalization function is surjective, which implies that normalization is idem-
potent. The main practical impact of normalization being surjective is to prove that the
normalization function is effectively computable, as in Sterling (2021) and Sterling and
Angiuli (2021); this step is redundant in the setting of the present paper, which has been
carried out constructively in order to ensure an implicit form of effective computability.

(2) Type constructors are injective in the sense that A — B=A"— B’ implies [FA=A’
and '+ B =B, etc. Injectivity of type constructors is the main ingredient to establishing
determinacy of the standard bidirectional elaboration algorithm. Injectivity is not strictly
needed for a type checker written on fully annotated terms, but practical systems involve the
elaboration of less-annotated terms to fully annotated terms; this process relies on injectivity.

(3) Normalization can be internalized into Sh G as an inverse tp — nftp to the projection nftp —
tp, as in Sterling (2021, 2025) and Sterling and Angiuli (2021). This implies, for example, that
the normalization function is invariant under variable renaming (or, more generally, atomic
substitutions).
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We do not detail these results here, but instead remark that detailed proofs for similar theories
can be found in the cited literature.

7. Related Work

Proof assistants already have support for various means of controlling the unfolding of definitions;
we classify these as either library- or language-level.

7.1 Library-level features

Various library-level idioms for abstract definitions are used in practice such as SSReflect’s lock
idiom. While such approaches are flexible and compatible with existing proof assistants, they are
often cumbersome in practice. For instance, lock relies on various tactics with subtle behavior,
which makes it difficult to use locking idioms in pure Gallina code.

7.2 Language-level features

Many proof assistants include a feature like Agda’s abstract blocks which marks a definition
as completely opaque to the remainder of the development. In Remark 1, we explained how to
recover Agda’s abstract definitions using controlled unfolding. Moreover, as controlled unfold-
ing does not require a user to decide up front whether a definition can be unfolded, it gives a more
realistic and flexible discipline for abstraction in a proof assistant. In practice, however, abstract
is often used for performance reasons instead of merely for controlling abstraction; unfolding
large or complex definitions can significantly slow down type checking and unification. While we
have not discussed performance considerations for controlled unfolding, the same optimizations
apply to our mechanism for definitions that are never unfolded. In total, controlled unfolding
strictly generalizes abstract blocks.

Recently, Kovacs ( 2023, 2024) has proposed a glued evaluation technique to both improve
the pretty-printing of goals and more efficiently handle unfolding during conversion testing.
Roughly, the proof assistant’s kernel may choose to unfold any definition but avoids doing so
whenever possible for efficiency and strives to never show unfolded goals to the user. Both glued
evaluation and controlled unfolding relate to the unfolding of definitions, and they are largely
orthogonal and complementary. In particular, glued evaluation does not require user interven-
tion, unlike controlled unfolding, but it does not actually preclude any unfolding from taking
place. Thus, glued evaluation does not impact the well-formedness of a program and can be
used as a “drop-in” technique for improving performance and usability. However, for the same
reasons, glued evaluation cannot be used to enforce modularity and independence in the same
way as controlled unfolding. Ideally, a proof assistant would support both glued evaluation and
controlled unfolding: the more advanced evaluation algorithm would improve baseline perfor-
mance and controlled unfolding would facilitate users enforcing stronger abstraction boundaries
within their programs and assisting the kernel by manually designating certain definitions as
opaque.

Program verifiers such as VeriFast and Chalice include similar unfolding mechanisms to cope
specifically with recursive definitions ( Jacobs et al. 2015; Summers and Drossopoulou 2013). Like
our mechanism, these features allow users fine-grained control over how definitions are unfolded.
However, these verifiers work only within simply typed theories and thus avoid the substantial
complexity of dependency. Moreover, these mechanisms manage a different problem than con-
trolled unfolding; they allow a user to unfold recursive definitions step-by-step, while controlled
unfolding is used to control when each definition can be fully inlined.
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7.3 Translucent ascription in module systems

Thus far we have focused on proof assistants, but similar considerations arise for ML-style mod-
ule systems ( Dreyer et al. 2003; Harper and Stone 2000; Milner et al. 1997; Sterling and Harper
2021). The default opacity for definitions in module systems is the same as in controlled unfold-
ing and opposite to proof assistants: types are abstract unless marked otherwise. The treatment
of translucent type declarations in module systems (Harper and Stone 2000) relies on singleton
kinds (Aspinall 1995; Stone and Harper 2006), which are the special case of extension types whose
boundary proposition is T. Generalizing from compiletime kinds to mixed compiletime-runtime
module signatures, Sterling and Harper have pointed out that transparent ascriptions are best han-
dled by an extension type whose boundary proposition represents the compiletime phase itself
(Sterling and Harper 2021). Thus, the translucency of compiletime module components can be
seen as a particular controlled unfolding policy in the sense of this paper.

7.4 Controlled unfolding in Agda

Inspired by our implementation of controlled unfolding in cooltt, Amélia Liao and Jesper Cockx
have implemented a version of this mechanism called opaque within Agda 2.6.4 (Liao and Cockx
2022). However, rather than using extension types, their Agda implementation simulates the nec-
essary behaviors by instrumenting conversion checking - a workaround made possible by the very
restricted ways in which our elaboration procedure relies on extension types. This demonstrates
that controlled unfolding can be adapted to proof assistants like Coq whose core calculi do not
presently support extension types.

At the time of writing, Agda’s opaque declarations are new enough that only two major Agda
libraries, the 1Lab (The 1Lab Development Team 2022) and the Cubical Agda library (The Agda
Community 2023), use them extensively; the Agda standard library may adopt opaque decla-
rations in a future major revision (The Agda Development Team 2023). As of publication, 65
modules in the 1Lab use opaque and 19 use unfolding, in addition to over 100 using abstract
blocks; in the Cubical Agda library, 27 modules use opaque, 6 use unfolding, and 35 use
abstract.

8. Conclusions and Future Work

We have proposed controlled unfolding, a new mechanism for interpolating between transparent
and opaque definitions in proof assistants. We have demonstrated its practical applicability by
extending cooltt with controlled unfolding; we have also proved its soundness through an elab-
oration algorithm to a core calculus whose normalization we establish using a constructive STC
argument.

In the future, we hope to see controlled unfolding integrated into more proof assistants and
to further explore its applications for large-scale organization of mechanized mathematics. As
mentioned above, some our mechanism has implemented in Agda, but features such as local
unfolds are still absent. Furthermore, in the context of our cooltt implementation, we have also
already begun to experiment with potential extensions, including one that allows a subterm to
be declared locally abstract and then unfolded later on as needed — a more flexible alternative to
Coq’s abstract f tactical. As we mentioned in Remark 1, we also are interested in facilities to
limit the scope in which it is possible to unfold a definition.
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Notes

1 Indeed, the Agda standard library (The Agda Development Team 2022) currently uses abstract only once.

2 https://github.com/coq/coq/blob/V8.16.0/theories/ssr/ssreflect.v/\ #1388

3 By constructive, we mean something that can be carried out in an elementary topos with a natural numbers object.

4 In his doctoral dissertation, Sterling referred to “object-space” and “meta-space” as syntactic and semantic, respectively
(Sterling 2021). However, there are compelling reasons to consider object-space more semantic than meta-space (in which
various admissibilities hold that will not be preserved by homomorphisms of models), so we have changed terminology to
avoid confusion.

5 It would be possible to choose a more restrictive class of representable maps for Sh G, but there is no reason to do so.
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A. The (2,1)-category of models

Uemura (2021) has observed that a model (Mo, M) in the sense of Definition 11 can be pack-
aged into a single functor M : T> — Cat, in which T™ freely extends T by a new terminal object
¢ and Cat is the 2-category of categories. From this perspective, a sort X € T is taken to the total
category M(X) = fM M(X) of a discrete fibration over M( ¢ ) = M,,. Here, we are using the equiv-
alence between DFlbf()"’ Pr €. The preservation of representable maps is then rendered here as
the requirement that for representable u : X — Y, each functor M(u) M(X) — M(Y) shall have
a right adjoint M(u) A g taking an element of M( ) to the generic element of M(X) in the
extended context.

Example 50. For the representable map it : tm — tp, the functorial action M(n) M(tm) — M(tp)
takes a term I' -a: A to the type I' = A; the right adjoint qgy () : : M(tp) — M(tm) sends a type
I' = A to the variableT,a: At a: A.

Definition 51. Given two models M,N of T, a morphism of models from M to N is given by
a natural transformation F: M — N € [T™, Cat] such that for each representable map u:X — Y
in T, the corresponding naturality datum F,, : N(u) oFx=Fyo M(u) depicted below

FX N(Ll)

Ey,

M(u) FY

satisfies the Beck-Chevalley condition in the sense the following 2-cell, obtained by conjugating with
units and counits, denotes an invertible natural transformation Fx o qg(,) = 9N, © Fy:

() Fx

n
€ E,

Fy 98w

Definition 52. Let M, N be two models of T, and let F, G: M — N be two morphisms of models.
An isomorphism h from F to G is defined to be an invertible modification between the underlying
natural transformations F, G. This amounts to choosing for each X € T% a natural isomorphism
hx : Fx — Gx in [M(X) N(X)] subject to the coherence condition that for each u: X — Y in T%
the following two wiring diagrams are equal:

Fx N(u) Fx N(u)
hx F,
G, .
M(u) Gy M(u) Gy
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Remark 53. Because each of the induced maps mm(x) : M(X) — M, and 7N(x) ¢ ﬁ(X) — N, into
the cone point are discrete fibrations, it suffices to check the modification condition of & on
only the cone maps X — ¢: as any discrete fibration is a faithful functor, it moreover follows
that A, : Fs — G, uniquely determines all the other hx if they exist. Unfolding further, given
X€E K’[(X) we are only requiring that (k) Gxx) = Fxx in the sense depicted below in the

discrete fibration N(X) over N,:

*
TTM(X) (

Fo(m(x)%) —— Go(Tm(x)%)
ho)ﬂM(X)

Thus, we have a (2,1)-category of models Mod T for any category with representable maps T.

B. The (2,1)-category of atomic substitution models

Definition 54. Given atomic substitution models o : A — 1 and o' : A" — 1, a morphism from
(A,a) to (A',) is given by a morphism F: A — A’ € Mod T together with an isomorphism
¢r o — o o Fin [A, 1] as depicted below:

a
Or
F o

Definition 55. Given two morphisms F,G: (A, a) — (A, &), an isomorphism from F to G is
given by an isomorphism h: F — G € [A, A’] such that the following wiring diagrams denote equal
isomorphisms ¢« — o’ o G:

a a

or (1)
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