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Generative flow-based warm start of the
variational quantum eigensolver
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Hang Zou1, Martin Rahm2, Anton Frisk Kockum3 & Simon Olsson1

Hybrid quantum-classical algorithms like the variational quantum eigensolver (VQE) show promise for
quantum simulations on near-term quantum devices, but are often limited by complex objective
functions and expensive optimization procedures. Here, we propose Flow-VQE, a generative
framework leveraging conditional normalizing flowswith parameterized quantum circuits to efficiently
generate high-quality variational parameters. By embedding a generative model into the VQE
optimization loop through preference-based training, Flow-VQE enables quantum gradient-free
optimization and offers a systematic approach for parameter transfer, accelerating convergence
across related problems through warm-started optimization. We compare Flow-VQE to a number of
standard benchmarks through numerical simulations on molecular systems, including hydrogen
chains, water, ammonia, and benzene. We find that Flow-VQE generally outperforms baseline
optimization algorithms, achieving computational accuracy with fewer circuit evaluations
(improvements range from modest to more than two orders of magnitude) and, when used to warm-
start the optimization of new systems, accelerates subsequent fine-tuning by up to 50-fold compared
with Hartree–Fock initialization. Therefore, we believe Flow-VQE can become a pragmatic and
versatile paradigm for leveraging generative modeling to reduce the costs of variational quantum
algorithms.

The advent of noisy intermediate-scale quantum (NISQ)1 computers2–4

has spurred significant interest in hybrid quantum-classical algorithms5–8

that can leverage current quantumhardware capabilities whilemitigating
their limitations using conventional computation. Among them, the
variational quantum eigensolver (VQE)6,9 is a widely adopted approach
that uses parameterized quantum circuits, together with classical opti-
mization of the parameters, to approximate the ground state of a many-
body Hamiltonian. Although VQE does not overcome the worst-case
computational complexity of quantum simulation—unstructured var-
iational optimization is NP-hard10—it remains a promising heuristic
framework, combining physically motivated ansätze, initialization
schemes, and optimization strategies, whose practical value warrants
continued investigation6,11. Here, we propose a machine learning
approach for learning the distribution of good variational parameters
and producing promising initial parameter guesses, taking into account
physical information about the system.

A major challenge of variational quantum algorithms is that the
optimization landscape is typically highly nonconvex and noisy. Phenom-
ena such as barren plateaus12,13 and the proliferation of local minima14

substantially hinder convergence, often necessitating a large number of
quantumcircuit evaluations to achieve acceptable accuracy.Gradient-based
optimizationmethods incur considerable overhead fromquantum gradient
estimation15–17, whereas gradient-free methods typically require even more
queries and scale poorly with increasing parameter dimensionality18,19.
Furthermore, conventional optimization procedures tend to focus on iso-
lated optimal parameter configurations, and thus may not fully exploit the
underlying structure of the parameter landscape, which can limit their
capacity for transferring knowledge between related tasks.

One promising strategy to address these challenges is towarm-start the
variational search—beginning not from an uninformed point but from
states or parameters already shaped by physical principles or prior com-
putation. Based on the object the prior acts on, warm starts can be broadly
grouped into state-based, parameter-based, and cross-instance transfer
approaches. In practice, state-based routes bias initial states toward physi-
cally meaningful or otherwise simple approximations, such as chemistry-
inspired references20,21, classically guided initializations22–24, and tensor-
network pretraining compilations25–27. Parameter-based routes precondi-
tion the variational degrees of freedom using empirical regularities of the
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landscape. For example, effective-depth extrapolation progressively acti-
vates blocks and reuses shallow-depth optima to seed deeper circuits28–31. In
addition, cross-instance transfer commonly materializes as parameter-
based initialization, carrying forward learned parameters as priors to posi-
tion new but related problems close to trainable basins, where “related” is
grounded in domain structure—e.g., molecular geometry32, shared
symmetry33, smooth continuation in Hamiltonian parameters34, or graph
structure35. These categories are non-mutually exclusive and can be com-
bined—for example, pretraining compilation can dovetail seamlessly with
effective-depth extrapolation.

Building on the success of heuristic warm-start methods, recent efforts
have increasingly explored machine learning-based approaches that aim to
enhance flexibility and applicability across diverse problem settings.Models
trained on precomputed quantum data have been employed to produce
effective initial parameters through supervised learning36,37 and generative
modeling38,39, enabling generalization to unseen problem instances while
supporting extremely fast sampling during inference. In parallel, emerging
data-free paradigms integrate machine learning models directly into the
quantum optimization loop to provide dynamic guidance and modify the
cost landscape40–43. Extending this idea, meta-learning frameworks train
across a distribution of tasks to acquire generalizable optimization beha-
viors. Rather than fitting solutions, meta-learners directly interact with
optimization trajectories during training, progressively distilling shared
initialization strategies from multiple tasks to enable rapid adaptation to
new structures44–48.

In this article, we introduce Flow-VQE, a probabilistic framework
that learns the distribution of “high-quality” variational parameters
that yield low-energy quantum states. By modeling this distribution,
Flow-VQE equips VQE algorithms with an adaptable, learnable prior,
which allows for the one-shot generation of effective initial solutions
and significantly diminishes the need for costly iterative optimization
from scratch. Flow-VQE leverages flow-based generative models49–52 to
explicitly model conditional probability distributions over variational
parameters, conditioned on relevant contextual information of quan-
tum systems.We develop a preference-based optimization approach for
Flow-VQE, enabling efficient training while circumventing quantum
gradient calculations. In doing so, the generative model replaces the
classical optimizer, turning direct gradient-query interactions into a
sampling-based dialog with the quantum circuit. Additionally, training
the model on a suite of multi-objective tasks enables it to acquire meta-
initialized heuristics for new systems.

We empirically validate Flow-VQE through state-vector simula-
tion experiments on various quantum chemical systems. For the sys-
tems we tested, Flow-VQE reaches computational accuracy in single-
molecule tasks with up to two orders of magnitude fewer circuit eva-
luations than gradient-descent algorithms. When used as a warm start
for subsequent fine-tuning, it delivers as much as 50-fold acceleration at
small learning rates, while the total training overhead remains no
greater than that required to optimize five molecules by conventional
methods. Our results comprehensively demonstrate that Flow-VQE
significantly reduces quantum circuit evaluations and reliably generates
high-quality variational parameters for initialization, paving the way
for its establishment as a foundational technique for future warm-starts
in variational quantum algorithms.

Results
Overview of flow-VQE
Generative modeling aims to maximize the likelihood of target data, a goal
seemingly ill-suited to VQE optimization, since it presupposes access to
optimal parameter samples—resources generally unavailable in this context.
Nonetheless, as we will show, this challenge can be overcome by leveraging
the flexibility of normalizing flows (NFs): they can be trained based on self-
sampled data, with the training process guided by external quality evalua-
tions. A compelling precedent for this paradigm is Boltzmann generators53,
which utilize NFs to learn complex equilibrium distributions by using a
physical energy function to guide training in the absence of explicit
training data.

Inspired by this approach, we treat the VQE energy expectation as an
implicit surrogate for distributional fitness, thereby guiding the flowmodel
to concentrateprobability density in low-energy regions of parameter space.
Here, the term “implicit” indicates that the model is trained not through
labels or targetparameters, but rather through indirect feedbackprovidedby
measured energy expectations.Themain ideaof Flow-VQEis as follows (see
Fig. 1):

Latent sampling: Draw samples z ~ p(z) from a simple, analytically
tractable prior p(z).
Conditional transformation:Use an invertible neural network fτ tomap z
into variational parameters θ = fτ(z; γ), conditioned on the problem-
specific context γ, yielding samples θ ~ pτ(θ∣γ).
Likelihood evaluation: Explicitly determine the log-likelihood of the
generated samples log pτðθjγÞ.
Energy measurement: Run parameterized quantum circuits with θ to
measure the energy expectation value EðθÞ ¼ hψðθÞjbHðγÞjψðθÞi, pro-
viding the implicit training signal for the generative model.
Preference-based training: Identify low-energy parameter sets, map them
back to the latent space via f �1τ ðθ; γÞ, and update themodel parameters τ
by maximizing the log-likelihood of these samples.
Thegeneral objective forFlow-VQE is tominimize the expectedenergy

across problem instances:

τ� ¼ argmin
τ

LðτÞ

¼ argmin
τ

Eγ Eθ�pτ ðθjγÞ½EðθÞ�
h i

:
ð1Þ

This objective defines a generic paradigm for generative initialization in
VQE, where the model distribution pτ(θ∣γ) specifies the sampling of para-
meters. In doing so, the model is encouraged to assign higher probability to
parameter regions that yield low energy across diverse problem instances.

A central challenge in Flow-VQE is optimizing the variational energy
functionalLðτÞ. The gradient with respect to the classical parameters,∇τL,
cannot be evaluated directly using standard gradient-computation techni-
ques like automatic differentiation54. This intractability arises because the
energy expectation, E(θ), is not a differentiable programmatic function but
an observable measured from a quantum processor. To address this chal-
lenge, we introduce a preference-based optimization that constructs a sur-
rogate objective from energy-based preferences, thereby circumventing the
prohibitive costs of quantum gradient estimators (e.g., the parameter-shift
rule55) and yielding a sample-efficient training paradigm for Flow-VQE, as
detailed next.

Fig. 1 | Schematic overview of the Flow-VQE fra-
mework. Latent samples z conditioned on the
molecular context γ are transformed into variational
parameters θ via normalizing flows and evaluated by
quantum circuits. Preference comparisons identify
low-energy winners, which are retained in a buffer
and used to update the model through maximum
likelihood training.
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Preference-based optimization
Drawing inspiration from recent advances in preference fine-tuning for
large language models56,57, we propose a preference-based optimization
approach for Flow-VQE, which leverages direct performance preferences
among sampled parameters to construct an informative supervision signal.

Specifically, we define a preference relation: θi ≻ θj if E(θi) < E(θj),
where E(θ) is the energy expectation value measured for a given sample θ.
We maintain and dynamically update an ‘elite memory buffer’
B ¼ fðθwk ; γkÞgMw¼1, which stores the topM samples under the energy-based
preference ordering for each molecular structure k. To optimize the Flow-
VQE distribution pτ(θ∣γ), we perform maximum likelihood training over
the samples from the buffer B:

LðτÞ ¼ �Eðθwk ;γkÞ�B½log pτðθ
w
k jγkÞ�; ð2Þ

where the log-likelihood can be explicitly computed by leveraging
normalizing flows [see (7) in theMethods section].

In contrast to standard generativemodeling, which focuses on samples
from a fixed target dataset, our method performs maximum likelihood
estimation on a self-sampled dataset whose quality is progressively
improved through dynamic selection based on the preference criterion.
Notably, the objective in (2) provides a specific guiding mechanism for the
general objective in (1), as both are functionally aligned to encourage the
generation of higher-quality samples.

An alternative strategy is standard policy-gradient methods such as
REINFORCE58, which depend on noisy online rewards and therefore
exhibit high variance and poor sample efficiency, particularly in quantum
chemistry applications (see Section I of the Supplementary Information for
further discussion). In contrast, our preference-based approach decouples
model updates from immediate online sampling and focusing exclusively on
high-quality samples, thereby reducing distributional drift, lowering gra-
dient variance, and amplifying learning signals even in low-energy-
differential regimes. This mitigates the instability often observed in
policy-gradientmethodswhen low-quality samples dominate under limited
sampling budgets. As a result, the model can improve reliably with small
exploratory batches, substantially enhancing sample efficiency in quantum-
constrained settings.

The pseudocode for Flow-VQE training via preference optimization is
presented in Algorithm 1.

Algorithm 1. Training Flow-VQE based on preference optimization.
Require Molecular conditions fγkgKk¼1, Hamiltonians fbHðγkÞgKk¼1,

flow model pτ(θ∣γ), training epochs T, batch size B, buffer
sizeM

1: Initialize flow parameters τ, memory buffers B ¼ fDk ¼+gKk¼1
2: for epoch = 1 to T do
3: for each γk in fγkgKk¼1 do
4: Sample parameters from the flow model: fðθnewi ; log pτ
ðθnewi jγkÞÞgBi¼1 � pτðθjγkÞ

5: for i = 1 to B do
6: Evaluate energy: Enew

i  hψðθnewi ÞjbHðγkÞjψðθnewi Þi
7: Add to memory buffer: Dk Dk ∪ fðθnewi ; Enew

i Þg 8: end for
9: Sort Dk by ascending energy
10: if ∣Dk∣ >M then
11: Dk fðθwk ; Ew

k Þ 2 Dkjw 2 f1; . . . ;Mgg {Keep topM}
12: end if
13: end for
14: Preference optimization:
15: θW  +
16: for each Dk, corresponding to γk do
17: θW  θW ∪ fðθwk ; γkÞjðθwk ; Ew

k Þ 2 Dkg
18: end for
19: Compute loss: L �Eðθwk ;γkÞ2θW ½log pτðθ

w
k jγkÞ�

20: Update: τ τ � η∇τL
21: end for

21: return pτ(θ∣γ)

Simulated systems
Here, we simulate four molecular systems undergoing specific conforma-
tional changes to benchmark the Flow-VQE framework. The systems stu-
died are: a linear hydrogen chain (H4) with simultaneous stretching of
neighboring H–H bonds; water (H2O) with symmetric stretching of both
O–H bonds; ammonia (NH3) undergoing nitrogen pyramidal inversion
while its hydrogen atoms remain fixed in a plane; and benzene (C6H6) with
the stretching of a single C–H bond. Detailed atomic coordinates are pro-
vided in Section II of the Supplementary Information, and further details on
the basis sets and active spaces are available in the subsection Imple-
mentationdetailsof theMethods section.Weuse these systems to investigate
Flow-VQE in a dual role: as a standalone optimizer for direct energy
minimization, and as a warm-start parameter generator for conventional
VQE routines. We denote the two training regimes for Flow-VQE as Flow-
VQE-S (trainedona singlemolecular geometry) andFlow-VQE-M(trained
on multiple geometries).

Single-molecule optimization
We evaluate five optimization algorithms on H2O and H4 molecular sys-
tems: gradient descent (GD), quantum natural-gradient simultaneous
perturbation stochastic approximation (QNSPSA)18, Adam, and the two
variants of our Flow-VQE method (Flow-VQE-S and Flow-VQE-M).
While Flow-VQE-M is primarily designed as a parameter generator for
warm-starting downstream tasks, it inherently performs multi-objective
joint optimization. Accordingly, we include its convergence behavior in our
comparative assessment.

We adopt the number of quantum circuit evaluations, independent of
measurement shot counts, as the primary performance metric for com-
paring optimization algorithms. The total number of circuit evaluations
required by eachmethod is as follows: 2dNepoch for GD and Adam, where d
is the variational parameter dimension and Nepoch is the total number of
optimization iterations; 6Nepoch for QNSPSA, which is a gradient-free
algorithm with constant complexity; and BNepoch for Flow-VQE-S and
Flow-VQE-M, with a batch size of B = 2.

Figure 2 illustrates the number of circuit evaluations required by each
algorithm to achieve convergence within computational accuracy, defined
as an error not exceeding 1.6 × 10−3 Hartree relative to exact diagonalization
at the same level of theory59. Here, the exact diagonalization results are
assumed to be known for benchmarking purposes.

For the H2O molecule (Fig. 2a), Flow-VQE-S consistently out-
performs all baseline optimizers across the test structures, e.g.,
achieving improvements of one to two orders of magnitude over tra-
ditional GD.Compared to the competitiveAdambaseline, Flow-VQE-S
achieves approximately a two- to five-fold reduction in the number of
circuit evaluations.

Flow-VQE-M also performs comparably to Adam, despite being
trained in a more challenging multi-objective setting. While Flow-VQE-M
does not match the convergence efficiency of Flow-VQE-S, this is expected:
Flow-VQE-M is designed to generalize across multiple structures, rather
than optimize a single fixed instance. Thus, it trades off some task-specific
performance in favor of broader applicability and transferable warm-start
capability.

For the H4 system (Fig. 2b), which spans a broader range of bond
lengths (0.6Å to 2.8Å), Flow-VQE-S generally outperforms the baseline
optimizers across most bond lengths. The only exception arises at 0.6Å,
where the optimization target is close to the initial state, allowing Adam to
converge quickly. While Flow-VQE-S still retains an overall advantage, its
margin over Adam is reduced—an effect that may be attributed to themore
rugged energy landscapes introduced by the hardware-efficient ansatz,
whose trainability remains a significant challenge. Furthermore, the per-
formance gap between Flow-VQE-M and Flow-VQE-S narrows in this
setting, implying that broader distributional exploration may contribute to
avoiding certain optimization traps.
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Generating potential-energy surfaces
We illustrate the generative capability of Flow-VQE-M by analyzing its
performance in producing approximate variational parameters for the
ansätze along the potential energy surfaces (PESs) ofH2OandH4molecular
systems. For experimental evaluation, we train Flow-VQE-M on six
molecular geometries of H2O and eight of H4. After 5000 training epochs
(equivalent to 10,000 circuit evaluations per molecule), we evaluate per-
formance by uniformly selecting 50 molecular structures across the bond-
lengthdomain. For each structure,we sample 16parameter vectors from the
flow model and assess both the minimum and mean energies as primary
metrics.

The results presented in Fig. 3, which include the PESs of the repre-
sentative systems H2O and H4, substantiate the high quality of parameters
generated by Flow-VQE-M.When evaluated in the corresponding ansätze,
these generated parameters yield energy expectation values closely align
with the exact solutions, significantly outperforming Hartree–Fock (HF)
baselines. Overall, energy errors increase in stretched bond-length regions
due to strong correlation effects60 and the limited expressivity of the
employed ansätze. Nevertheless, Flow-VQE-M maintains high-quality
results, demonstrating robust performance even under these challenging
conditions. Notably, most generated points already achieve computational
accuracy, leading to high-quality PESs. These points can therefore serve as

strong initializations for VQE, facilitating rapid convergence to the desired
precision.

Warm-start post-training
We select high-error samples from the previous example of H2O andH4 for
post-training with the Adam optimizer, comparing convergence behavior
under different learning rates. Concurrently, we demonstrate the perfor-
mance gap between Flow-VQE-M warm-start and HF initialization.

The results, presented in Table 1, show that across all settings, Flow-
VQE-M consistently demonstrates faster convergence and lower energy
errors. In practice, learning ratesη are typically chosenbetween 0.01 and0.1;
for our benchmarks we set η = 0.02. At this rate, Flow-VQE-M reduces the
number of circuit evaluations required to reach computational accuracy by
over 27-fold for H2O and more than 11-fold for H4. Moreover, this
advantage grows even more pronounced at smaller η. For instance, at η =
0.001, Flow-VQE-M cuts the required evaluations bymore than 50-fold for
H2O and over 36-fold for H4, while achieving significantly lower minimum
energy errors. Complete optimization trajectories corresponding to the
results in Table 1 are further provided in Figs. S1 and S2, in Section III of the
Supplementary Information. These results underscore the effectiveness of
Flow-VQE-M as a robust warm-start strategy that substantially enhances
sample efficiency and convergence precision in the post-training stage, even
under conservative optimization settings.

Estimate of cost advantage
Given the probabilistic nature of Flow-VQE’s inference mechanism,
deriving a general analytical expression for cost evaluation is infeasible and
inherently dependent on implementation details. To provide a repre-
sentative estimate, we conduct empirical case studies on the NH3 and C6H6

molecules under lightweight training, where both the number of iterations
and training configurations are deliberately limited to avoid generating
overly high-quality parameters too early and to retain room for warm-
started optimization.

Specifically, we train Flow-VQE-M on four configurations for each
molecule. For NH3, the training points correspond to nitrogen displace-
ments {−0.5,−0.17, 0.17, 0.5}Å along the inversion path, where 0Ådenotes
the geometric center of the hydrogen plane; each point involves 3000 circuit
evaluations (12,000 in total). ForC6H6, the configurations involve stretching
a single C–Hbond relative to its equilibrium length (1.084Å) by {−0.3, 0.0,
0.3, 0.6}Å, with 6000 evaluations per point (24,000 in total). The generated
PESs for both molecules are available in Fig. S3 in Section IV of the Sup-
plementary Information.

Additionally, we benchmark Flow-VQE-M against the conventional
parameter-transfer method in VQE (see the Methods section). In our PT
protocol, we choose the 0Å configuration as the reuse point for each
molecule and optimize it via Flow-VQE-S, using 2000 circuit evaluations for
NH3 and 6000 for C6H6 (sufficient to reach computational accuracy), thus
defining the pre-training cost for each system.

We use the number of circuit evaluations required to reach compu-
tational accuracy as the costmetric.As shownearlier in Fig. 2, Flow-VQE-M
incurs a number of evaluations during training comparable to that of
standard VQE with Adam. This suggests that, in the systems tested here,
Flow-VQE-M offers a clear quantum resource advantage when training
points are also required for a task, due to its additional generative capability.
In what follows, we focus exclusively on the cost evaluation for unseen test
configurations.

Let Cpre denote the total pre-training cost, and �Cpost the average post-
training cost, per test point. Although individual VQE procedures require
significantly different optimization efforts, we approximate the cost growth
using average values for simplicity. Accordingly, the total cost of using a
typical warm-start method (such as Flow-VQE or PT) for ntest test points is
Ctotal ¼ Cpre þ �Cpost � ntest. In contrast, standard VQE incurs a cost of
approximately �CVQE � ntest. Given that �Cpost < �CVQE, the gentler cost scaling
of warm-startmethods highlights their growing advantage as ntest increases.

Fig. 2 | Number of quantum circuit evaluations required to achieve computa-
tional accuracy with different optimizers. aH2O: optimization over six uniformly
spaced bond lengths in [0.8, 1.8]Å. b H4: optimization over eight bond lengths in
[0.6, 2.6]Å. The arrows in eachmolecular diagram represent changing bond lengths.
All baseline optimizers use a learning rate of η = 0.02.
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Figure 4 compares the training costs using standard VQE, PT, and
Flow-VQE-M warm-start strategies for NH3 and C6H6, along with corre-
sponding scaling estimates. For NH3, standard VQE requires an average of
�CVQE ¼ 5; 265 circuit evaluations per test point, reduced to �Cpost ¼ 2; 527
by Flow-VQE-M and �Cpost ¼ 4; 165 by PT. With pre-training costs of
Cpre ¼ 12; 000 for Flow-VQE-M and Cpre ¼ 2; 000 for PT, Flow-VQE-M
achieves a net cost advantage over standard VQE beyond five test points,
and over PT beyond six points. For C6H6, the respective values are
�CVQE ¼ 10; 787, �Cpost ¼ 2; 153 (Flow-VQE-M), and �Cpost ¼ 5; 873 (PT),
with corresponding pre-training costs of 24, 000 and 6, 000. Here, Flow-
VQE-M outperforms standard VQE after three test points and PT after five
points. These estimates are instance-dependent and not intended as

universal benchmarks, but they illustrate the practical advantages of Flow-
VQE-M in scenarios requiring repeated evaluations across chemical space.

We attribute these savings to Flow-VQE-M’s ability to embed pro-
blems into a latent space where similarity captures the closeness of the
optimal variational parameters, a shift from conventional PT. Unlike PT,
which relies on heuristic reuse based on geometrical proximity, Flow-VQE-
M conditions its parameter distribution on rich, task-specific embeddings
spanning diversemolecular configurations.While these embeddings are not
explicitly engineered to encode structural or electronic features, the model
benefits from exposure to a broad training distribution, allowing it to cap-
ture latent task similarities. Notably, advances in molecular descriptors61,62

provide a fertile ground for designing more informative embeddings.

Fig. 3 | Potential-energy surfaces (left) and corresponding errors (right) evaluated using parameters generated by Flow-VQE-M. Generation is performed on 50
uniformly spaced test points in [0.75, 1.9]Å for (a) H2O and [0.6, 2.8]Å for (b) H4. The training points are consistent with those used in Fig. 2.

Table 1 | Post-training comparison of Flow-VQE-M (FVM) andHF initializations for H2O at a bond length of 1.90Å andH4 at 2.58Å
under different learning rates (η)

Molecule η Nc.a. ΔEmin

FVM HF FVM HF

H2O 0.02 324 8748 5.932 × 10−4 5.932 × 10−4

0.005 432 30672 5.935 × 10−4 6.000 × 10−4

0.001 1944 102276 5.941 × 10−4 1.033 × 10−3

H4 0.02 770 8910 5.205 × 10−8 2.489 × 10−7

0.005 440 16720 1.319 × 10−9 3.202 × 10−9

0.001 1980 72270 1.053 × 10−10 2.579 × 10−4

After initialization, we perform standard VQE by running 1000 iterations of the Adam optimizer. Reported metrics include the number of circuit evaluations required to reach computational accuracy (Nc.a.)
and the minimum energy error achieved over iterations (ΔEmin). Bold numbers highlight the better results.
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Nevertheless, even in its current form, Flow-VQE-M is capable of gen-
eralizing beyond geometric similarity. This is exemplified in the case of
C6H6, where reused parameters from the 0 Å configuration yields unex-
pectedly fast convergence fordistant configurations, suggesting thepresence
of deeper task correlations not captured by geometry alone. In contrast to
the manual identification of transferable patterns required by PT, Flow-
VQE-M learns how contextual embeddings modulate the parameter dis-
tribution, enabling more consistent and scalable transfer across chemically
diverse settings.

Discussion
We propose Flow-VQE, a probabilistic approach that recasts variational
quantum optimization as a generative modeling task. By leveraging
preference-based training, Flow-VQE eliminates the need for quantum
gradient estimation and progressively refines its sampling distribution to
generate high-quality variational parameters. Our results on representative
molecular systems show that Flow-VQE enables lower quantum resource
costs during optimization and supports transferable warm starts by
extracting generalizable features from diverse molecular structures. When
generating hundreds of variational parameters, the classical training

component remains easily tractable, positioning Flow-VQE as a practical
and resource-efficient approach for variational quantum simulation.

Flow-VQE, as a black-box optimizer for VQE,may be less precise than
gradient-basedmethods in smooth, differentiable energy landscapes, where
local curvature can be finely exploited. However, its gradient-free nature
may offer improved robustness for noisy VQE—a hypothesis that remains
to be systematically validated. In addition, the preference-based optimiza-
tion in Flow-VQE tends to concentrate probability density over time, which
can reduce sample diversity and limit exploratory behavior. Mitigating this
limitation requires further investigation into entropy-regularized objectives
or diversity-promoting preference selection strategies63,64.

While our numerical experiments extend only to 12-qubit systems and
117 variational parameters, several features of Flow-VQE promise broad
quantum-resource savings, even when scaling to larger molecules. On the
classical side, the computational overhead in modern normalizing-flow
architectures scales linearly in data dimensions, keeping training and
inference practical even as the number of variational parameters (d) reaches
tens of thousands65. Expanding on this, our intuition is that the primary
bottleneck for scaling Flow-VQE will not be the classical generative model,
but rather the intrinsic properties of the VQE energy landscape itself.

Fig. 4 | Circuit evaluation costs for achieving computational accuracy under HF,
PT, and Flow-VQE-M initializations. For (a) NH3 and (b) C6H6, the upper panels
show circuit evaluation counts across different molecular geometries; the lower
panels present approximate average scaling as the number of test points increases,
where the intercept indicates the one-time pre-training cost for each strategy, and
the slope reflects the average post-training cost per additional test point. The arrows

in eachmolecular diagram representmodes of atomic displacement. Optimization is
performed using the Adam optimizer with a learning rate of η = 0.02. Note that
evaluation counts are recorded as integer multiples of the number of variational
parameters; hence, circuit evaluations with similar initialization contributions differ
by less than a full iteration, resulting in bars of identical height.
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Recent research shows that overparametrization induces a ‘computa-
tional phase transition’ in the optimization landscape: beyond a critical
parameter threshold, spurious local minima vanish and trainability
improvesmarkedly66. Flow-VQE is poised to leverage this regime, as its per-
epoch quantum cost scales with the batch size B rather than the parameter
dimension d. Consequently, it handles highly parameterized circuits effi-
ciently, reaping a landscape with fewer traps without the concern of
increased gradient-estimation cost.

Barren plateaus, however, pose a more fundamental challenge for
variational methods, as the exponentially flat landscape causes the feedback
signal to vanish. While not a complete remedy, Flow-VQE mitigates this
pathology. Beyond its inherent warm-start advantage, Flow-VQE offers a
practical mitigation strategy by adaptively scheduling computational
resources, chiefly the batch size B. Although we use B = 2 throughout this
study, the batch size (and the shot budget67) can be dynamically adjusted to
trade cost for signal quality. In an exploratory phase, one uses a small B to
sweep the landscape cheaply and globally. As the parameters enter the
ground-state basin, B are increased to reduce estimator variance and shar-
pen energy differences. Because this policy is independent of the variational
dimension d, it bypasses the quartic parameter growth typical of chemically
motivated ansätze68 and the even steeper scaling ofmany hardware-efficient
ansätze69.

Recent work links barren-plateau avoidance to classically simulable
polynomial subspaces and calls for rethinking the role of variational
computation70. In this spirit,we canviewFlow-VQEas anatural front end to
quantum subspace methods71–73. A trained flow model can, in essentially
constant time per sample, generate many diverse parameter sets whose
associated trial states havehighground-state overlap. Thesenon-orthogonal
yet linearly independent states span a compact subspace, thereby reducing
the effective dimensionality of the ensuing (generalized) eigenvalue pro-
blem. In this reframing, Flow-VQE acts as an auxiliary sampler to shift the
objective from “finding one optimum” to “sampling a high-quality basis”,
echoing calls for quantum-enhanced classical simulation.

In our present experiments, Flow-VQEwarm-starts optimization only
across different geometries of the same molecule; transfer across molecular
species remains outside our current scope. We anticipate that cross-species
generalization will be feasible when paired with explicit molecular repre-
sentation learning to distill transferable and chemistry-aware features61,62 to
distill themost relevant features. Furthermore, when approximate reference
data are available — such as historically calculated inaccurate data — the
flow model can be pre-trained entirely with classical computation on this
corpus, and then fine-tuned through its standard interaction with the
quantumdevice. This two-stage regimen shifts the bulk of optimization off-
hardware and making larger systems economically accessible. Capitalizing
on these gains, our immediate priority is to scale Flow-VQE to systems
exceeding 20 qubits, thereby furnishing a decisive, empirical assessment of
its ability to treat larger, more chemically realistic molecules.

We want to emphasize that the most stubborn training obstacles in
VQE stem largely from the ansatz structure itself 13,74. Genuine progress
requires Flow-VQE and ansatz designs to advance together. To this end,
Flow-VQE can be extended beyond fixed templates to generate circuits
directly as symbolic gate sequences. By treating gate selection and ordering
as a unified ‘operator space’, this approach enables end-to-end optimization
and provides a principled foundation for quantum architecture search75.
Prior studies have shown that operator orderings crucially affect ansatz’s
expressivity and accuracy76–79. Leveraging discrete normalizing flows80,81

allows Flow-VQE to efficiently search such combinatorial space. This
facilitates the automated discovery of expressive, Hamiltonian-aware cir-
cuits and sets the stage for multimodal quantum circuit generation82.

Although the present work focuses on VQE, the framework extends
naturally to other variational quantum algorithms—such as the quantum
approximate optimization algorithm83—whenever a well-defined loss
function exists. Overall, this work highlights the promise of integrating
generative modeling with quantum optimization to expand the algorithmic
design space and advance hybrid quantum-classical computing.

Methods
Variational quantum eigensolver
The VQE algorithm is a hybrid quantum-classical optimization framework
designed to approximate the ground-state energies of complex quantum
systems6,9,84. Given a Hamiltonian operator bH defined on an n-qudit (D-
level quantum system) Hilbert space H 2 CDn ×Dn

, the VQE seeks to
determine its minimal eigenvalue E0, defined as

E0 ¼ min
ψ2H;jψj¼1

hψjbHjψi: ð3Þ

Although the VQE can in principle be applied to arbitrary multilevel
quantum systems, in this work, we focus on the case D = 2, i.e., standard
qubit circuits. To do so, the VQE involves preparing a trial quantum state
using a variational ansatz U(θ):

ψðθÞ ¼ UðθÞ 0j i�n; ð4Þ

where θ ¼ ðθ1; θ2; . . . ; θdÞ 2 Rd is a vector of d trainable parameters, and
UðθÞ : Rd ! Uð2nÞ is a smoothmapping from the parameter space to the
unitary group acting on H. This formulation rephrases the eigenvalue
problem as a variational optimization problem in θ:

θ� ¼ arg min
θ2Rd

LðθÞ; ð5Þ

where LðθÞ :¼ hψðθÞjbHjψðθÞi is the variational energy functional (expec-
ted energy of the trial state).

The optimization proceeds as a quantum-classical loop, where a clas-
sical optimizer iteratively updatesparameters basedonanobjective function
evaluated on a quantum device. The parameter update strategy generally
falls into two categories. Gradient-based methods such as gradient descent,
while common, are computationally expensive; estimating quantum gra-
dients via techniques like the parameter-shift rule55 incurs a cost ofOðdÞ per
iteration, making it substantially more expensive than classical back-
propagation, which computes all parameter derivatives in a single pass.
Alternatively, gradient-free methods can be developed under different
designprinciples andhave received significant attention18,19,85–87. By avoiding
explicit gradient computations, these approaches can potentially be more
practical in scenarios where evaluating quantum gradients is costly or
infeasible, such as under hardware noise or in the presence of non-
differentiable objectives.

Normalizing flows
Normalizingflows (NFs)49,50,52 are a class of generativemodels predicated on
the principle of invertible maps between probability densities. To see how
NFs work, consider a latent vector z 2 Rd with an associated simple base
distribution pZ(z), typically a multivariate Gaussian distribution N ðμ;ΣÞ.
The fundamental objective is to construct a bijective and differentiable
(diffeomorphic) map f τ : R

d ! Rd with model parameters τ 2 Rp,
which transforms pZ(z) into a modeling distribution pX(x) that approx-
imates a complex, unknown data distribution.

The transformation is governed by the change-of-variables formula:

pXðxÞ ¼ pZðzÞ det
∂z
∂x

����
���� ¼ pZðf �1τ ½x�Þj det Jðf �1τ ½x�Þj; ð6Þ

where Jðf �1τ ½x�Þ denotes the Jacobian matrix of the inverse mapping f �1τ
evaluated at point x. Tomodel complex distributions tractably, NFs employ
compositional transformations: f τ ¼ f τK � f τK�1 � � � � � f τ1 , where K is the
number of transformations.

In the training phase, NFs apply the inverse transformation to map
each data point from the empirical data set D ¼ fxi 2 RdgNi¼1 into the
latent space via z ¼ f �1τ ðxÞ. The corresponding log-likelihood can be
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evaluated by

log pXðx; τÞ ¼ log pZðzÞ þ
XK
j¼1

log det Jðf �1τj
½x�Þ

��� ���: ð7Þ

The model parameters τ are trained via maximum likelihood estimation
over the target data:

Lðτ;DÞ ¼ �Ex�D½log pXðx; τÞ�: ð8Þ

At inference (generation) time, we sample z ~ pZ(z) from the base
distribution and execute the forward transformation x = fτ(z). For com-
positional flows, this entails a sequential application of transformations:

z � pZðzÞ!
f τ1

hð1Þ !
f τ2

hð2Þ !... !
f τK

x; ð9Þ

where h(j) denotes the intermediate output after the j-th transformation.
The compositional design of NFs makes the model highly expressive

while keeping each Jacobian tractable. Nonetheless, log-likelihood evalua-
tion remains computationally intensive, since computing Jacobian deter-
minants at each layer scales asOðKd3Þ for general diffeomorphic maps. To
alleviate this cost, modern flow architectures often employ sparse Jacobians
that permit more efficient determinant algorithms, such as affine coupling
flows88,89, autoregressiveflows90,91, and spline-basedflows92,93. In contrast, the
generation process exhibits remarkable efficiency, withOðKdÞ complexity,
as it involves mere function evaluations without determinant calculations,
enabling rapid sample synthesis.

Gaussianization flows
We use Gaussianization flows94 as the backbone NF architecture in this
work. Gaussianization flows support efficient likelihood evaluation for fast
training, enable rapid sampling, exhibit greater robustness to data trans-
formations, and generalize more effectively on small datasets than other
mainstream flow models94.

Gaussianization flows construct a structured diffeomorphism onRd ,
built upon the rotation-based iterative Gaussianization95. Each layer alter-
nates (i) marginal Gaussianization, where dimension-wise monotonemaps
push forward empiricalmarginals to a univariateGaussian distribution, and
(ii) orthogonal rotations, which redistribute dependencies across coordi-
nates while preserving Gaussianmarginals. Formally, the bijectivemapping
is constructed through L alternating layers:

f τ ¼ ΨτL
� RL � � � � � Ψτ1

� R1: ð10Þ

Each marginal Gaussianization layer Ψτi
acts independently on the coor-

dinates of x,

Ψτi
ðxÞ ¼ Ψð1Þτi ðx

ð1ÞÞ; . . . ;ΨðdÞτi ðx
ðdÞÞ

� �>
; ð11Þ

where each dimension-wise component is defined as

ΨðkÞτi ðx
ðkÞÞ ¼ Φ�1 FðkÞτi xðkÞ

� �h i
; k ¼ 1; . . . ; d: ð12Þ

Here,Φdenotes the cumulative distribution function (CDF) of the standard
Gaussian, andΦ−1 is its inverse. The intermediatemapping is parameterized
as

FðkÞτi ðx
ðkÞÞ ¼ 1

P

XP
j¼1

Φ exp aðkÞi;j
� �

xðkÞ þ bðkÞi;j
h i

; ð13Þ

a combination of P rescaled and shifted Gaussian CDFs with learnable
parameters aðkÞj ; bðkÞj

n oP

j¼1
. To remove dependencies across coordinates,

each marginal Gaussianization layer is followed by an orthogonal rotation

Ri ¼ exp Ai � A>i
� �

; ð14Þ

where Ai 2 Rd × d is a learnable parameter matrix. The skew-symmetric
form Ai � A>i guarantees that the exponential map lies in the orthogonal
groupwith unit determinant, ensuring invertibility and stability throughout
training. These parameterizations of FðkÞτi andRi are not unique, but adopted
here for simplicity and stability.

Conditional architecture
Here, we employ conditional Gaussianization flows, making the invertible
blocks explicitly aware of the molecular context, as illustrated in Fig. 5. To
achieve this, we introduce conditioner networks implemented asmultilayer
perceptrons (MLPs).Theoverall set of trainable parametersτ comprises two
components: (i) the parameters of the MLPs themselves, and (ii) the
learnablematrices that specify the orthogonal rotations.During the forward
pass, the MLP takes γ as input and generates the layer-specific parameters
that configure the marginal Gaussianization maps. This division of labor
allows MLPs to specifically adapt the marginal distributions based on the
molecular input, while the learned rotations provide a stable, problem-
agnostic mechanism to mix coordinates. Once this conditional mapping is
defined, the training process takes the candidate parameters as input,
mapping them to the latent space via the inverse transformation f �1τ ðθ; γÞ.

Parameter transfer in the variational quantum eigensolver
Traditional parameter transfer (PT) accelerates the VQE algorithm by
reusing optimized parameters from structurally adjacent problem
instances32,35. Let θ�k denote the optimized variational parameters for a VQE
task T k. The PT strategy initializes the subsequent task T kþ1 using θ

�
k as a

warm start: θð0Þkþ1 :¼ θ�k . The selection of transferable task pairs typically
relies on certain heuristics that aim to preserve underlying similarity
between instances. One example is using small geometric perturbations32,
such as those along apotential energy surface,where configurationsdiffer by
a small Euclidean distance, e.g., ∥Rk+1 − Rk∥ ~ 0.1Å. In the absence of
further task-specific guidance, such perturbations are commonly assumed

Fig. 5 | Conditional normalizing flow architecture
used in this work. During training, the inverse
mapping (θ→ z) is realized by L repeated Gaus-
sianization flow layers, each comprising a marginal
Gaussianization block parameterized by an MLP
conditioned on themolecular context γ, followed by
a learnable orthogonal rotation. All trainable para-
meters τ reside in the MLPs and the rotations.
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—with high empirical confidence—to keep θ�k within the attraction basin of
T kþ1, thereby enabling efficient parameter reuse.

Implementation details
Molecular Hamiltonians are constructed with OpenFermion96, based on
one- and two-electron integrals obtained in the chosen basis sets (STO-3G
forH2O,NH3, andC6H6; cc-pVDZ forH4). Active spaces are chosen as (4e,
4o) for H4, (6e, 5o) for H2O, and (6e, 6o) for NH3 and C6H6. The fermionic
Hamiltonians are mapped to qubit Hamiltonians using the Jordan–Wigner
transformation, resulting in the following qubit requirements: 5 qubits for
H4 (after applying Z2 symmetry tapering97), 10 qubits for H2O, and 12
qubits for both NH3 and C6H6.

Quantum-circuit simulations are carriedout inPennyLane98, using a
10-layer hardware-efficient RY-linear ansatz

99 for H4 (55 parameters) and a
Givens-based singles and doubles (GSD) ansatz100,101 for the other mole-
cules, resulting in 54 parameters for H2O and 117 parameters for bothNH3

and C6H6. Further details of the ansatz structures are provided in Section V
and Figure S5 of the Supplementary Information.

Gaussianization flows are implemented in PyTorch102 with Zuko103.
Each flow layer employs a mixture of 32 Gaussian CDFs. Each Gaussiani-
zation transformation is parameterized by a multi-layer perceptron com-
prising three hidden layers with 256 units each and exponential linear unit
(ELU) activation functions104. The base distribution uses a multivariate
normalN ðμ ¼ 0;Σ ¼ 0:01 � IÞ, ensuring that initial samples remain close
to theHF reference point.We use seven flow layers for H4 and ten layers for
all other systems in Flow-VQE-S. For Flow-VQE-M, we employ 20 flow
layers for eachmolecule. To guide conditional generation, we construct the
context vector γ for each molecular geometry by passing its coefficients of
Pauli Hamiltonian.

We train the flow models using the Adam optimizer105 on a single
Nvidia A40 GPU (48 GB) or on an Apple M4 Pro with 24 GB unified
memory, using a learning rate and weight decay of 0.0001, empirically
selected from small-scale simulations. To enhance exploration and reduce
overfitting under limited sample regimes, we add zero-meanGaussiannoise
with variance 0.001 to the winning parameters before evaluating sample
likelihoods during Flow-VQE training. In preference-based optimization,
all experiments use a batch size ofB=2per sampling and abuffer size ofM=
2, retaining at most twowinning samples permolecular configuration. This
deliberately small-scale setup demonstrates the sample efficiency of our
method in low-budget scenarios.

Data availability
All data and trained models supporting the findings of this study are
available at https://doi.org/10.5281/zenodo.17278313.

Code availability
The code used to perform the numerical simulations is available at https://
github.com/olsson-group/Flow-VQE.
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