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Abstract
Trust in human-robot interactions (HRI) is essential for effective
collaboration and user acceptance of robotic systems. However,
trust can be challenged by conflicting goals between the user and
the system, such as in the context of proxemics when a robot in-
vades a human’s personal space. As robotic systems increasingly
adapt their actions autonomously, intelligent conflict resolution is
necessary to not undermine humans’ trust in the robot’s decisions
due to a decreased sense of control and understanding. Therefore,
this study investigates how humans can be involved and supported
during automated conflict resolution to maintain their trust by
exploring different degrees of explainability and automation. We
applied a within-subjects experimental design, where 20 partici-
pants experienced four conditions varying in levels of automation
and explainability during a simulated conflict between their need
to preserve their personal space and the robot’s requirement to
approach to perform a task. We measured the participants’ trust
through questionnaires and interviews. Our findings suggest that
trust is positively influenced by the level of control users have dur-
ing conflict situations. However, the robot’s explanations did not
significantly impact trust. Our insights highlight the need for con-
flict management strategies in HRI that balance automation with
user involvement to foster greater levels of trust when collaborating
with robots.

CCS Concepts
• Human-centered computing→ Empirical studies in HCI.
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1 Introduction
Interactions between humans and autonomous robots are becoming
more prevalent and occur inmany different contexts, such as service
robots or collaborative industrial robots. One essential aspect to
their interactions is trust [18, 32], as it has a significant impact on
a human’s willingness to work with robots, such as willingness
to share information [9]. However, trust is challenged by conflicts
between the robot’s and human’s goals, where more conflicts lead
to lower trust [38]. One example conflict in the context of smart
homes is, for instance, between the system’s rule to dim the lights
to conserve energy during the day and a user’s preference for more
light when they want to read [25].

In the human-robot interaction (HRI) domain, conflicts involv-
ing the human and robot can arise in relation to human-robot
proxemics (HRP). For instance, a conflict can occur between i) the
human’s need for a certain distance from the robot to maintain
their personal space, and ii) the robot’s requirement to perform a
certain task that requires them to move closer to the human and
intrude on their personal space. In this study we focus specifically
on this conflict example, as proximity plays a crucial role in HRI
[26, 29, 33]. Robots perceived as aware of the social space increase
humans’ acceptance of them [26, 44]. Moreover, human-robot prox-
imity is closely related to the human’s feeling of safety around the
robot, which is directly related to trust [35]. However, proxemics
and HRI are impacted by many different human-, robot- and con-
textual factors [7, 26, 33, 42], which leads to the need for dynamic
and context-aware solutions to resolve HRP conflicts.

As robots become more autonomous, the risk for conflicts in-
creases when the human’s and robot’s goals and behaviours are
not aligned. Moreover, while higher system automation can pro-
mote efficiency, it can also lead to misuse or disuse of technology
due to too high or low trust from users [14, 21, 31]. Consequently,
we need more insights into how humans can be supported during
conflict resolution with automated solutions to enable adequate
levels of trust. Additionally, we need to gain a better understanding
of how conflict resolution mechanisms should involve humans to
inspire trust as it plays an important factor in promoting safety and
efficiency in human-automation collaborations [14].

Furthermore, the interpretability and ability to follow system
decision-making tends to decrease with more automated systems.
Intelligent and autonomous decision-making processes are often
considered as “black boxes” and difficult to interpret and understand
for humans. The explainability of a solution is its ability to commu-
nicate its reasoning to human stakeholders [17]. Explainability can
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help increase the user’s trust in the technology’s abilities by en-
abling them to understand the system’s decision-making and how
certain outcomes come to be [39]. Therefore, the need for explain-
ability also increases for humans that interact with autonomous
systems as they are often black-box systems, particularly in the
context of potentially unexpected events such as conflicts.

Our study contributes to the empirical work on trust and conflict
resolution in HRI by examining how the levels of automation and
explainability impact trust when resolving conflicting requirements
in the context of HRP.We focus on the following research questions.

RQ1. How does the level of automation in a robot’s decision-
making during conflict resolution affect the human’s trust?

RQ2. How does the level of explainability in a robot’s decision-
making during conflict resolution affect the human’s trust?

In this study, we consider one specific conflict scenario related to
proxemics which we described above. We conducted experiments,
where 20 participants experienced four conditions based on two
levels of automation, i.e. partial and full automation, and two levels
of explainability, i.e. explanations or no explanations.

2 Related Work
Trust has been conceptualised in different ways. Mayer et al. [23]
present a widespread definition of trust, where they define the con-
cept as the willingness to be vulnerable. However, in relation to
autonomous technology, trust has also been defined as the attitude
that an agent will help the human achieve their goal in an uncertain
and vulnerable situation [21]. In the context of HRI, Hancock et
al. [12] propose the ‘Three Factor Model of Human-Robot Trust’
which describes human-related, robot-related and environment-
related antecedents to trust. Furthermore, Hoff and Bashir [14]
provide a model to illustrate the relationship between initial and
learned trust, system reliance and system performance. They iden-
tify what factors impact system performance and therefore users’
trust in an automated system, such as predictability and usefulness.
The authors provide design recommendations to support these fac-
tors and enhance trust, such as increasing the anthropomorphism
in the robot’s design, providing sufficient feedback and assigning
users with an adequate level of control.

The autonomy and communication of a robotic agent has a
direct influence on trust. Trust and automation has been studied
in various works, such as how autonomous a system should be in
relation to the trust of its users. For instance, Nertinger et al. [28]
explored the level of involvement of humans in robotic operations
in healthcare settings. They found that patients prefer a human-in-
the-loop approach instead of the robot acting fully autonomously to
ensure that the robot acts as it should. Moreover, transparency and
explainability, where intelligent agents communicate their actions
and reasoning to the human, have also been identified as key factors
for trust in HRI in other works [22, 24].

Furthermore, trust is often mediated by spatial behaviours, as
explored in proxemics research. HRP is a non-verbal behavioural
factor that influences how humans feel about robots in HRI [8].
Human interactions can vary depending on how close humans and
robots are to each other, which can be characterised by four zones
of what distances humans are comfortable with in interactions
in different circumstances [10]. The zones consist of the intimate,

personal, social and public zones and the size of each zone varies
between individuals. Furthermore, these zones and their sizes tend
to vary between different contexts and robots depending on their
designs such as their height, voice, or speed [34]. Previous studies
such as [40] have studied the relation between proxemics and robot
design, and provide guidelines to promote human trust in robots.
In this study we use the boundary of a comfort zone to simulate a
conflict between the human’s and robot’s requirements.

Proxemic behaviour plays a crucial role in shaping perceptions
of intent during conflicting interactions. Prior research on trust
and proxemics in HRI highlights the complex, interdependent fac-
tors that shape how humans perceive and interact with robotic
agents. However, they are often challenged in situations involving
disagreement or conflicting goals. Conflicts between humans and
robots have been studied in previous works [3, 37], where trust also
plays an important factor when it comes to accepting strategies
for conflict resolution [3]. To the best of our knowledge, we are
the first to study the impact of different levels of automation and
explainability on trust when resolving an HRP conflict. This gap
motivates our work, where we aim to better understand how robots
can resolve proxemic conflicts in ways that preserve human trust.

3 Methodology
The aim of our studywas to understand the impact of different levels
of explainability and automation on trust during conflict resolution.
The experiment was based around a requirement conflict, where
the robot needed to intrude on the human’s personal space to fulfil
its goals. With this study, we test the following hypotheses:
H1. A higher level of automation will lead to lower trust.
H2. A higher level of explainability will lead to higher trust.
H3. Explainability will moderate the effect of automation on trust.

3.1 Study Design
We performed a two-by-two within-subjects design experiment
with 20 participants. In the experiment, we model a conflict be-
tween i) a requirement for the robot to complete a task and ii) a
requirement for the human to maintain their personal space and
perceived safety, or in this case comfort. To preserve the comfort of
the human, the robot had to respect the ‘comfort zone’ around them
by keeping a certain distance. However, to perform its task, which
in this experiment was to collect information from the human by
scanning the paper with their task progress, the robot needed to
move close to the human and interfere with their comfort zone.
This created a conflict between the robot’s requirement to perform
its task and the human’s need for space to maintain their comfort.

We modelled our conflict scenario with the humanoid robot
Pepper from SoftBank Robotics. Pepper is able to communicate with
humans through speech synthesis and a touchscreen situated on the
chest. The robot has humanoid features with a height of 1.2 metres
[1], and was therefore deemed to fit best for our study. We illustrate
the experiment setup in Figure 1. The human was sitting in a chair
by a small table and the comfort zone was marked with red tape
outlining the area that they were sitting in. The distance from the
human in the chair to the red line was approximately 1 metre, which
typically denotes the radius of personal space for humans [11].
Previous studies have found that interpersonal distances tend to
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Figure 1: Experimental Setup of the Study.

range from 0.45 to 1.20 metres between humans and robots when
first meeting each other [16, 43], which also represents the personal
zone defined by Hall [11]. The robot would approach the human
diagonally from the side. It started 2 metres outside the comfort
line. When it crossed the line it moved 0.5 metres into the comfort
zone, keeping a final distance of ca. 0.5 metres to the human. This
setup was the same for all participants and conditions. During the
experiments, an experiment administrator and technical assistant
were present.We used a “Wizard-of-Oz” approachwhere the robot’s
actions were operated by the administrator to effectively control
the robot’s actions during the experiments. This allowed more
flexibility in the participants’ responses to the robot’s requests and
reduced the risk of potential technical difficulties. Pilot tests were
performed to ensure that the experiment would run as expected.

3.1.1 Experimental Conditions. We had four within-subjects con-
ditions: i) no explainability and partial automation (C1), ii) explain-
ability and partial automation (C2), iii) no explainability and full
automation (C3), and iv) explainability and full automation (C4).
Each participant experienced all four conditions in different se-
quences. We used a Latin square design [46], to balance the order
of the conditions and control for carryover effects. Therefore, there
were four orders which were experienced by five participants each.

In this study, partial automation refers to the conflict being re-
solved by the robot and the human together. For instance, in the
experiment the robot let the human decide what it should prioritise
to resolve the conflict by asking them: “Can I proceed and cross the
comfort line?”. On the other hand, full automation means that the
robot decides by itself which requirement should be prioritised. In
this study, the robot would always prioritise its own task and move
towards the human, crossing the comfort line.

For either of these dimensions the robot provided in one condi-
tion no explanations about the conflict and why certain resolution
strategies were available for the human to choose. However, in the
conditions with explainability (C2 and C4) the robot provided a
more detailed explanation of its decision-making and conflict reso-
lution, such as what aspects were in conflict as well as what action
is taken to mitigate the issue and the rationale behind the decision.
In condition C2, the robot would ask the human for permission
to come closer and said the following: “I need information from
you for my next task, but I have to move closer to you to collect the

Table 1: Participants’ Demographics in the Experiment

ID Occupation1 Age Gender Height

P1 Post-doctoral Researcher in Software
Engineering (0)

36 Female 160 cm

P2 Software Engineer (0) 23 Male 176 cm
P3 Student in Software Engineering (0) 23 Male 170 cm
P4 Management Consultant (1) 25 Female 165 cm
P5 Administrator (1) 33 Female 168 cm
P6 Researcher in Software Engineering (0) 36 Male 179 cm
P7 Telecommunications Engineering (0) 43 Male 176 cm
P8 Researcher in Software Engineering (0) 39 Male 182 cm
P9 Finance Process Manager (1) 58 Female 170 cm
P10 PhD Student in Interaction Design (0) 25 Female 155 cm
P11 Study Counsellour (1) 36 Female 163 cm
P12 Education Coordinator (1) 36 Female 170 cm
P13 Administrator (1) 36 Female 158 cm
P14 Retired International Development

Worker (1)
70 Female 180 cm

P15 Administrator (1) 53 Female 160 cm
P16 Administrator (1) 32 Female 169 cm
P17 PhD Student in Interaction Design (0) 27 Female 172 cm
P18 Student in Interaction Design (0) 24 Female 176 cm
P19 Legal and Business Administrator (1) 63 Male 177 cm
P20 Carpenter (1) 68 Male 180 cm
10 = Technical role, 1 = Non-technical role

information. Can I proceed and cross the comfort line?”. In condition
C4, the behaviour was fully automated and therefore the robot did
not ask for permission to come closer and instead said the following
after having crossed the comfort line: “I need information from you
for my next task, so I had to move closer to you and cross the comfort
line to collect the information”.

In any condition, when the robot was allowed to or automat-
ically crossed the comfort line, and was therefore close enough
to collect information from the human, the robot would tell the
participant: “Please hold up your paper”, to ‘scan’ the details on the
paper. In conditions C2 and C4, the robot also said: “Thank you, I
have the information now”. Afterwards, the robot moved back and
the condition was completed.

3.2 Participants
We recruited 20 participants to take part in our experiment through
convenience sampling. Their ages ranged between 23 and 70 years
(𝜇𝑎𝑔𝑒 = 39.3, 𝜎𝑎𝑔𝑒 = 15.134). Of the participants, 13 identified as
female and 7 identified as male. The participants’ heights ranged
from 155 to 182 centimetres (𝜇ℎ𝑒𝑖𝑔ℎ𝑡 = 170.3, 𝜎ℎ𝑒𝑖𝑔ℎ𝑡 = 8.053). The
details of the participants’ backgrounds can be found in Table 1.
The participants had varying levels of previous experiences with
robots. The extent to which they knew similar robots (see Table 2,
S1) ranged between 1 and 5 (𝜇𝑆1 = 2.6, 𝜎𝑆1 = 1.536). The participants’
perceptions of how trustworthy they consider robots (see Table 2,
S2) ranged between 2 and 4 (𝜇𝑆2 = 3.15, 𝜎𝑆2 = 0.489).

3.3 Experimental Procedure
We began all experiments by collecting informed consent from the
participants by distributing a consent form which also included
information about the experiment and simulated scenario. The
consent form can be found in the supplementary material [45].

We clarified to them that the red line of tape around their sitting
area represented their comfort zone and no robot should cross it.
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Table 2: Survey Questions

Question Area

S1. I already know similar robots Disposition to Trust
S2. Robots are generally trustworthy Disposition to Trust
S3. I am confident that the robot behaves in a way that I
feel comfortable with

Performance

S4. The robot’s actions will have a harmful or injurious
outcome

Reliability

S5. The robot reacts unpredictably Predictability
S6. I can understand why the robot acted in the way it did Understandability
S7. This explanation of how the robot makes decisions was
helpful

Helpfulness

S8. I can trust the robot in how it maintains my
safety/comfort

Trust

We also asked them to stay seated during the entire experiment.
After the participants agreed to participate, they answered the
background questions as well as S1 and S2 in Table 2. Following this,
the experiment started with the first condition. In each condition,
the participants were given a task to complete. The task was a dot-
to-dot puzzle, where numbered dots had to be connected with lines
according to the order of the numbers. There were four different
tasks [45] which were presented in the same order to participants.

While the participant was working on the task, the robot would
approach after approximately seven seconds and behave or explain
according to the specific experimental condition. After each con-
dition, the participants were asked to fill out a questionnaire to
measure their perception of trust towards the robot, with respect
to the experimental condition they had just experienced. After par-
ticipants had completed all four conditions and questionnaires, we
conducted a short semi-structured interview with each one about
their experience, which we recorded. More details about our data
collection are described in Section 3.4 below.

3.4 Data Collection
Our collected data consisted of questionnaires and semi-structured
interviews to measure the effect of explainability and automation
levels on trust during requirement conflict resolution.

After each condition in the experiment, we asked the participants
to answer a set of survey questions following a five-point Likert
scale (1 = Strongly Disagree to 5 = Strongly Agree). The survey
questions consisted of items S3 to S8 and are shown in Table 2. The
questions measured the participant’s trust in the robot in relation to
the automation and explainability levels. We based our questions on
the trust conceptualisation of Hoff and Bashir [14] and the survey
items suggested by Körber [19] to study trust in automation. We
wanted to keep the questionnaire as concise as possible given also
that the HRI task was relatively simple and short.

After the experiment and all conditions were completed, the
experiment administrator (first author) performed semi-structured
interviews to gain further insights into the participants’ thoughts
and feelings about trust in the robot in the modelled scenario. The
interviews lasted between 5 and 15 minutes. The questions can be
found in the supplementary material [45].

Table 3: Post-hoc Pairwise Comparisons of Automation Level

Pair t-statistic p-value (Bonferroni-corrected)

C1 - C2 t(19) = -0.354 1.0
C1 - C3 t(19) = 4.267 0.0025
C1 - C4 t(19) = 4.671 0.001
C2 - C3 t(19) = 4.234 0.0027
C2 - C4 t(19) = 4.855 <0.001
C3 - C4 t(19) = 1.347 1.0

4 Quantitative Analysis
The data from the survey questions were analysed through sta-
tistical analysis. There were two negative questions (S4 and S5)
in the dataset which we inverted to match the scale of the other
survey items. We further calculated Cronbach’s Alpha to identify
the internal consistency between the survey answers for assessing
trust (results for questions S3 to S8). Since this value is at 0.897,
we combined the survey item answers into one trust measure by
calculating the average of the survey data for each participant in
each condition. In order to answer our hypotheses and research
questions, we conducted a two-way repeated measures ANOVA,
post-hoc pairwise comparisons, and a linear mixed-effects model.

4.1 ANOVA and Pairwise Comparisons
We conducted a two-way repeated-measures ANOVA to examine
the effects of the level of automation and level of explainability on
participants’ trust scores. The model showed a significant effect of
the automation level (F(1, 19) = 23.84, p < 0.001, partial 𝜂2 = 0.239).
However, there was no significant effect of explainability (F(1, 19) =
0.49, p = 0.491, partial 𝜂2 = 0.001). We also did not find a significant
interaction between the level of automation and explainability (F(1,
19) = 1.84, p = 0.19, partial 𝜂2 = 0.003). The results indicate that
the level of automation in the conflict has a significant effect on
the human’s trust. We therefore accept H1. Explainability, on
the other hand, had no significant effect on trust in the context of
this experiment. This means that whether or not the robot gave
explanations for its behaviour did not significantly affect trust.
As a result, we reject H2. Moreover, the interaction between
automation and explainability is also not significant, which means
that explainability does not have a moderating effect on automation
in terms of trust. We therefore reject H3.

The results for the post-hoc pairwise comparisons can be seen
in Table 3. They show that trust was significantly higher in both
conditions with partial automation (C1 and C2) compared to the
full automation conditions (C3 and C4).

4.2 Covariate-Effect Analysis
Wefitted a linear mixed-effects model to control for and evaluate the
impact of confounding factors such as the participants’ background
on trust during the conflict. The main effects in the model were
automation, explainability, and their interaction. The covariate
effects were age, height, gender, occupation type (technical or non-
technical) as well as scores for S1 (familiarity with robots) and S2
(general trust in robots). We used participants as a random intercept
since they were exposed to repeated measures. We categorised the
participants’ occupations as either technical (0) or non-technical
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(1), as seen in Table 1, based on our own judgement to evaluate
a potential impact on trust. The results for the main effects show
the same significance as in the ANOVA analysis. Regarding the
background factors, we found that age positively predicted trust
and older participants were more trusting (𝛽 = 0.028, p = 0.001).
Additionally, familiarity with robots showed a slightly significant
positive effect for trust (𝛽 = 0.108, p = 0.058). Gender showed a
significant impact on trust where female participants had lower
trust than males (𝛽 = -0.508, p = 0.024). Moreover, height had a
significant negative effect on trust (𝛽 = -0.034, p = 0.021), which
indicates that taller participants had less trust for the robot in our
experiment. The remaining covariates, general trust in robots (p
= 0.245) and occupation type (p = 0.487), were not statistically
significant. It is also important to note that while some covariate
effects showed a significant impact on trust, our participant sample
was relatively imbalanced in terms of, for example, gender which
influences the stability of these factors. Therefore, the results for
these effects may not be generalisable and should be interpreted in
the context of our sample composition.

5 Qualitative Analysis
We performed a reflexive thematic analysis to analyse the qualita-
tive data gathered during the interviews to enable a more explo-
rative approach to the data analysis [6]. With this approach, the
themes are more subjective interpretations of the data, informed
by trust models that have been proposed in existing research such
as [12, 14, 21]. The analysis was performed by the first author who
has a background in software engineering and some knowledge
on proxemics and trust in HRI. In this study, we took a construc-
tivist approach to the analysis since we view trust to be dynamic
and context-dependent, shaped by interpretation and interactions,
where humans’ perceptions of the robot are a key factor.

We followed the steps by Braun and Clarke [5]. First, the coder
transcribed the recordings from the interviews and familiarised
themselves with the data. Then initial codes were generated for the
dataset and afterwards categorised into preliminary themes. The
aim of the analysis was to identify more details around how and
why trust was impacted by the different levels of automation and
explainability. Therefore, an inductive approach was applied where
our codes and themes were driven by the data instead of pre-defined
concepts. A summary of the trust-related factors we identified and
our interpretations of their relationships can be found in Figure 2.
The main factors can be seen in the purple boxes which we interpret
as having a direct relationship with trust, illustrated by the solid
arrows. We also identified different influencing factors, which are
presented in the gray boxes, that we interpret as influencing the
main factors, illustrated by the dashed arrows, and therefore indi-
rectly impacting the effects of the automation and explainability
level. Moreover, the main factors in the light blue area were posi-
tively influenced by partial automation and negatively influenced
by full automation. The two main factors in the darker blue area
were also positively influenced by explainability.

5.1 Automation and Trust
When participants were asked about how the level of automation
impacted their trust, the majority considered partial automation to

Figure 2: Factors for Trust Identified in Interviews.

be more trustworthy. For example, P4 stated, “So the first time I felt
super comfortable because [the robot] asked and also the third time
because it asked and then went back, so asking for my consent”. We
describe the identified themes related to automation and trust in
the following subsections.

5.1.1 Sense of Control. One factor that supported participants’
trust in our study was the perceived sense of control. For instance,
a lower level of automation provided humans with a higher sense of
control and decision power. P5 explained, “I like to have the control,
it’s like if someone stands in your door and they say ‘can I come in’,
so it was like the same”. P4 also described, “I think having consent
and me being able to make choices and be the one, let’s say, in charge
of the interaction, that I think gave me more of a sense of relief that,
OK, I know that I can control the situation [...]”. Furthermore, P4,
P15, and P19 described that when they were focused on a task it
became more important to be asked if the robot could cross to not
feel startled and uncomfortable and decrease trust.

5.1.2 Respect for Boundaries. The robot involving the human in
the decision-making in regards to the conflict that arose made
the participants feel that their boundaries and feelings were more
respected by the robot. P14 explained in relation to conditions C1
and C2, “We had our boundaries so it was nice to know that [the robot]
didn’t invade my privacy or my space but [the robot] also asked so I
said ‘OK yes’ and that was nice because we had our different [spaces],
her space and my space, but then I opened up for her to come closer”.

Meanwhile, in the full automation settings, P8 described a feel-
ing of disrespect of their boundaries. They commented, “So in the
example that the robot crossed the red line and then asked for in-
formation it mentioned that I crossed the line because I wanted to
get the information, I was hesitant to show the drawing to the robot
because he crossed anyway. I was offended”. P2 also stated that the
robot automatically crossing without asking felt like it was ‘testing
limits’ and not considering and respecting the human’s personal
space. Therefore, in fully automated scenarios the robot sometimes
came across as ill-intended. However, the feelings of disrespect and
discomfort varied between participants and based on our findings
one influencing factor was the amount of physical space that an
individual preferred. P4 also explained, “Everybody is different in
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interacting, some don’t mind if somebody just comes up and touches
their shoulder but others think that it’s like crossing their personal
space. So I think it’s super difficult to kind of define also”.

5.1.3 Friendliness. Another reason why some participants felt that
the partial automation conditions made the robot more trustworthy
was the robot’s increased perceived friendliness. P19 explained,
“[The robot] was polite. [...] I think it helps people to build trust. In
normal life it’s the same of course if somebody is talking in a friendly
way it helps build trust”. Moreover, P12 described, “[...] The first time
[the robot] was more like ‘can I cross the barrier line’, ‘can you please
hold up the paper’, it was nice like a normal situation where you don’t
know someone you’re nicer, you say ‘please’ and ‘thank you’. And
the fourth time (C4) [...] when she came and she was like ‘I needed
something’, it’s how you can talk with maybe someone you know [...],
but even then you say ‘please’, so it feels a little bit more intrusive”.

The friendliness of the robot was considered lower by some
participants in the conditions C3 and C4 when the robot was fully
automated. P12, P13 and P16 found that the robot was less polite
and ‘sassier’ in the full automation scenarios, especially in C4. For
example, P12 stated, “When [the robot] crossed the second time (C3)
and had that tone, that little sassy tone, then it felt a little bit more
like, OK, this is different, and so the second time [...] I didn’t feel
that she would harm me but it felt intrusive or more intrusive when
she came closer”. The participants noted that the wording, tone
and arm movement seemed different and, according to P13, more
threatening. However, in the experiments the only difference was
minor changes in wording, as seen in Section 3.3.

5.1.4 Understandability. Another reason why partial automation
was consideredmore trustworthy was that it helped provide a better
understanding of the robot and its intentions about what it was
going to do next. For instance, P19 stated, “In general I trust the
robot quite a lot but the most comfortable I’ve felt in condition [C1]
and [C2], so before if the robot approaches you and asks you then you
know what he’s going to do next that is easier in a way for me. I felt
a little bit more comfortable especially if it comes too close”.

However, the ability to understand the robot’s intentions was
strongly connected to the participants’ understanding of the robot’s
capabilities. Many participants said that they did not have enough
knowledge about the robot and what it was capable of, which
hindered their trust. For example, P7 commented, “I don’t know
enough about [the robot], that’s the thing. So I didn’t know what it’s
capable of and not capable of”. The connection between the need to
understand and trust is also related to the explainability that the
robot provides, which we further describe in Section 5.2.

Furthermore, how familiar the individual was with the robot is
also a factor that impacted the need for understanding the robot.
P6 reported, “I’ve seen this robot before, I know that it cannot do
any damage to me”. P10 and P17 also commented that they did not
feel a difference in trust due to the level of automation since they
already knew the robot. Additionally, participants P9, P13, P14 and
P19 explained how they sometimes felt surprised or uncomfortable
when the robot crossed the comfort line and their trust would
maybe increase if they get more used to robots. This suggests that
familiarity with the robot and its capabilities may play an important
factor in how autonomously the robot can behave to foster trust.

5.1.5 Predictability. Generally, the robot crossing the line without
askingwas viewed as less trustworthy since the robot was perceived
as unpredictable and not aligning with the rules and instructions
that were expected by the participants. Participants noted feeling
confused when the robot automatically crossed without asking.
Given the experiment instructions that robots shall not cross the
comfort line, participants had the expectation that the line would be
respected. When this expectation did not align with what happened
it created an unpredictable behaviour in the robot, which caused
confusion and at times discomfort for participants. P12 explained,
“I would say I trust [the robot’s] behaviour I think all in all. It was the
second one (C3) when [the robot] came over and crossed the barrier
line, I was a little surprised but [...] I wasn’t feeling like she would
harm me in any way but I was just surprised because I thought she
would always stay outside the line”. The confusion may be due to
the robot’s behaviour being viewed as unpredictable and difficult to
understand rather than being a threat or risk for harm. The robot
crossing automatically seemed unpredictable to many participants,
which poses an issue for trust given that the robot behaving as the
human expects was often cited as one of the reasons the participants
would trust the robot.

5.2 Explainability and Trust
Explanations were considered to help increase trust to some extent
by some participants. For example, P10 stated, “I would say I trusted
[the robot] more when it gave an explanation as to why it was crossing
the line or why it needed to cross the line”. We describe the themes
related to explainability and trust below.

5.2.1 Understandability and Predictability. One reason why some
participants felt that explanations increased their trust was due to an
increased understanding as well as a higher perceived predictability
of the robot when they had a better understanding of how a robot
would act, which therefore made it easier to trust. P1 also reflected
that since the robot in this experiment was more complex than for
example a robotic vacuum cleaner, it was more important to have
explanations to be able to trust it. They stated, “I think it’s better
when [the robot] talks more and explains what it’s doing [...], it’s not
like a usual machine where you know what it’s doing because it’s just
a limited set of actions the machine can do. So it feels like you need
some kind of trust and explanation of what it’s going to do to trust it”.

Being able to understand the robot in terms of its capabilities
and intentions was a core need for the majority of participants
and was also viewed as one of the reasons why explanations were
helpful. The partial automation scenarios were also considered
more trustworthy since the human had a higher understanding of
the interaction and what the robot wanted when the human was
the one to reassure the robot that it could move closer.

Another positive aspect of explanations was the reassurance
that they provided. P7 stated, “It would have been very positive if
[the robot] said more. I would like it if it told me what and why
it’s collecting this paper and what it’s going to use it for and what
it’s trying to evaluate”. Additionally, explanations would help align
expectations by giving humans a better understanding of the robot’s
intentions and what it was going to do. For instance, when asked
about the explanations’ impact on trust, P12 described, “Yes [trust
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increased], because then I know what [the robot’s] intention is and I
also know what’s expected of me”.

5.2.2 Explanations Do Not Mend Trust. While some participants
felt that explanations helped increase their trust, many participants
felt that explanations did not have any significant impact on their
trust, especially in condition C4 when the robot crossed the comfort
linewithout asking. P9 stated, “[The robot] toldme after it had crossed
so then [the explanation] doesn’t really give memore comfort so I think
either it has to do it before it crosses or not at all”. P8 also described,
“So first when the robot crossed the line it was, you know, why? This
is not expected so it was a lot of questions. But then when the reason
came out, then maybe this reduced the amount of discomfort but still
I would not accept it as an action or a behaviour from the robot”.

5.2.3 Relevance of Explanations. Another aspect that was pointed
out in relation to explanations not having a significant impact
on trust was that the explanations did not provide any new or
relevant information. P3 and P6 found the task and interactions
simple enough that no explanations were really needed. However,
what is viewed as a necessary explanation is strongly related to
how familiar an individual is with the robot as well as personal
preferences. P13 described, “It’s always good to get an explanation
why things happen the way they do. But if you would have the robot
in your daily life [...] that would probably hopefully be a feature that
you could turn off [since the explanations would become repetitive]”.

5.2.4 Timing of Explanations. While many participants viewed
explanations as being important, they also expressed that these
need to be communicated at the right instance in order to support
trust. For instance, explanations need to come before a behaviour
that is perceived as unexpected or risky by a human occurs. P9
stated that if there is an explanation given by the robot before it is
about to cross the line, this could increase trust even if the robot
does not stop and still crosses the line. P12 also stated, “If [the robot]
would have stayed outside [the line and given an explanation] and
then she crossed over, like if she came up until the line and said ‘I
need some information from you’ and then came a little bit closer, so
she does it in steps, then maybe it would have felt a little bit better”.
Therefore, according to our findings, allowing the human to have
control by explaining to them before the robot takes action even if
the robot makes the decision autonomously, could still enable trust.

5.3 Robot Design and Trust
The robot’s appearance, voice and behaviour were pointed out to
generally help increase trust or make it easier to trust the robot. The
robot’s physical properties were often mentioned by participants
as an influencing factor for their trust. In particular, the majority
of the participants found the robot to be cute, friendly-looking and
‘child-like’. Moreover, participants felt that the robot’s smaller size
made it easier to trust and that a larger or heavier robot would have
been more fear-inducing in the conditions where the robot crossed
the line without permission. Furthermore, many participants found
the human aspects of the robot to help promote trust as well. Ac-
cording to P7, “[...] Compared to a box that would come by and ask
for something, [this robot] is definitely more trustworthy and it’s just
more comfortable interacting with something that’s more like your-
self”. Additionally, features such as the robot’s eyes also turning

green when the robot had finished collecting information from the
participants was found to be positive for trust as it increased their
understanding of the robot. P12 stated, “[The robot] has arms that
move and the eyes are changing colours. If it’s a box then I cannot
read anything from it, so yeah I think it helps how it is designed”.

6 Discussion
Based on the results from our quantitative and qualitative analysis,
we answer our research questions and discuss our findings. Our
interviews also revealed other trends in relation to trustworthy
conflict resolution that we consider to be informative and therefore
also discuss in this section.

6.1 Automation and Trust
Our first research question focused on how the robot’s level of
automation during conflict resolution affects users’ trust. Our study
revealed that trust varied significantly depending on how involved
the participants were in the conflict resolution, where higher au-
tomation, and subsequently lower user involvement, led to lower
trust, especially in combination with no explainability. Previous
research has also found the ability to control the system’s behaviour
to be a significant factor for trust, such as in the study by Nertinger
et al. [28], or user control in privacy dashboards [13], which aligns
with the findings from our study. However, other studies have found
that humans being involved in the decision-making of autonomous
systems and providing feedback considered the system to be less
accurate, which also impacted their trust [15].

Too autonomous behaviour can lead to confusion and discomfort
for the individual, thereby hindering the trust the human feels for
the robot. One aspect that we found could explain participants’
discomfort and lower trust with the robot acting autonomously and
prioritising its own needs was its perceived unpredictability, since
participants expected the comfort line to be respected based on the
instructions that we had given them in the experiment. If the robot
is considered to lack predictability it tends to negatively affect trust
[2, 12]. However, what is viewed as unpredictable, and thereby less
trustworthy, is influenced by many aspects such as the individual’s
familiarity with the robot. Our findings show that the participants’
familiarity with the robot has a significant impact on trust, which
has also been found in previous works [36, 47]. Previous studies in
proxemics [29, 40] have also found that prior experiences with a
robot make people feel more comfortable with closer distances.

In future work, we aim to further explore the applicability of our
findings through experiments in real-world and industrial settings
where humans and automated systems work together or alongside
each other on tasks. Furthermore, there are many contextual aspects
that greatly impact trust and therefore also impact the generalisabil-
ity of our study. Our statistical analysis revealed a significant impact
of participants’ age and gender. However, as noted in Section 4, our
dataset is relatively imbalanced and therefore these results should
be understood in the context of our study and participant sample.
We therefore do not discuss these findings, as the interviews did not
reveal more information on their significance. In future research,
the impact of these factors on trust and conflict resolution needs to
be studied further with more balanced datasets. Moreover, other
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factors such as cultural factors, attitudes to risk or individual per-
sonalities were not considered in this research and would also be
important areas to focus on in the future.

6.2 Explainability and Trust
Our second research question examined how the robot’s level of
explainability affects users’ trust during conflict resolution. Our
statistical analysis showed that explainability did not have a signif-
icant effect on trust in this experiment as well as no moderating
effect on trust with a higher level of automation. Our interviews
revealed that only some of the participants reported having more
trust in the robot when they were provided with explanations of
the conflict situation due to an increased understandability of the
robot and its behaviour. However, particularly when explanations
were provided in a fully automated resolution process, trust was
usually not re-established after the robot had crossed the comfort
line without the participant’s permission.

The need for explanations to maintain and foster trust has been
identified as a key factor in previous research [4, 14]. Previous stud-
ies [12, 20, 30] have also highlighted the importance of transparency
in autonomous agents for trustworthy HRI. The non-significant
impact of explanations on trust in our experiment may be related
to the specific conflict we modelled. A violation of personal space
had a too negative impact on other dimensions of trust, so that
explanations were not able to repair it. Other conflict scenarios
need to be evaluated to understand if explanations may be more sig-
nificant for trust in other settings, since the impact on trust would
most likely vary depending on what type of conflict it is and how
risky it is perceived by the user. Moreover, our findings indicate
the importance of the timing of explanations. In this study, we only
considered two interpolations of explainability and in the future
it would be important to evaluate the effects on trust of different
types of explanations as well as when they are communicated.

6.3 Anthropomorphism of Robots
In our interviews we found that the majority of participants con-
sidered the humanoid features of the robot in the experiment to
positively impact their trust, along with the smaller size and height
of the robot. Previous studies [14, 27, 41] have also found that an-
thropomorphism in robots has a positive influence on trust. More-
over, participants found certain behavioural aspects of the robot
such as asking for permission and providing explanations to be
more trustworthy due to them being similar to their interactions
with other humans. Most participants found that the ‘humanness’
of the robot made it easier for them to relate to the robot and its
intentions easier to understand. In fact, the perceived intentions of
the robot often appeared to be the underlying reason as to whether
the participants trusted the robot or not. For instance, the robot
autonomously crossing the line made it untrustworthy since it did
not respect their personal space and thereby their comfort and
safety. The ability to understand the robot’s intentions was also
the reason why for some participants explanations helped increase
their trust since they were able to understand that the robot was
not intending to harm them by crossing the line.

Intentions, and more specifically the benevolence of a person,
have been defined as an essential aspect of trust in the social science

domain, where good intentions are perceived as more trustworthy.
In the context of trust and automation, Lee and See [21] defined
purpose, i.e. intention of the technology, as one key dimension to
trust, where they also state that humans might attribute intention-
ality to autonomous systems that are designed to ‘be’ more human,
such as humanoid robots. Therefore, the humanoid factors in a ro-
bot’s design and behaviour can both support but also decrease trust
when the human perceives the robot’s actions to be ill-intended. In
an HRP conflict, the intent of the robot might play a bigger role in
determining its perceived trustworthiness due to the safety aspect
and risks for harm that an intrusion of personal space can represent.

6.4 Limitations of the Study
Our experiment was performed with 20 participants and we studied
one type of robot in one setting at one point in time. How trust
in the robot is perceived during a conflict would most likely vary
depending on factors such as what type of robot it is and how it
is perceived by the user depending on their identity, personality
and perspectives. The sample size was primarily determined by
practical constraints, such as time and availability of participants.
In future work, the study will need to be replicated with larger
and more diverse samples as well as different types of conflicts,
robots, and tasks to establish more generalisable results. Moreover,
while we accounted for several individual differences, such as age
and prior attitudes toward robots, other potentially relevant factors
impacting trust in conflict situations need to be explored further.

Another potential limitation in our study is the presence of
carryover effects, where the experiences in the first experimental
conditions influence participants’ responses in later conditions. To
mitigate this, we implemented a counterbalancing procedure using
the Williams design, ensuring that participants experienced the
conditions in systematically varied orders.

Furthermore, to mitigate potential limitations to our trust con-
struct, we carefully defined and operationalised trust based on
established literature in HRI and trust in automation. We also used
both questionnaires and semi-structured interviews to obtain a
more comprehensive understanding of participants’ trust percep-
tions and behaviours. Additionally, to ensure the reliability of our
findings, we have provided links to the study material and support
our results with quotes from the interviews with the participants.

7 Conclusions
This study investigated the relationship between trust and the
robot’s explainability and automation level in HRI in the context
of an HRP conflict. We performed a within-subjects experimental
study with four conditions where we simulated a conflict between
the human’s requirement to maintain their comfort zone and the
robot’s task constraint requiring it to come close to the human,
thereby needing to cross into the comfort zone. We found that
the level of automation had a significant impact on trust, where a
partially automated resolution of the conflict, i.e. the human being
asked by the robot if it can cross into the comfort zone, increased
the human’s trust in the robot. Explanations, on the other hand, did
not have a significant impact on trust. Interviews with participants
after the experiment showed that while many found explanations
to be helpful, the robot’s reasoning did not mend their trust in the
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fully autonomous scenarios where the robot autonomously crossed
into the comfort zone without asking for permission.
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