CHAL

UNIVERSITY OF TECHNOLOGY

Cycle-domain plasticity modeling using neural networks and symbolic
regression

Downloaded from: https://research.chalmers.se, 2026-01-20 14:03 UTC

Citation for the original published paper (version of record):

Talebi, N., Meyer, K., Ekh, M. (2026). Cycle-domain plasticity modeling using neural networks and
symbolic regression. Computers and Structures, 321.
http://dx.doi.org/10.1016/j.compstruc.2025.108086

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Computers and Structures 321 (2026) 108086

Contents lists available at ScienceDirect

Computers
& Structures

sl

Computers and Structures

ELSEVIER journal homepage: www.elsevier.com/locate/cas

Cycle-domain plasticity modeling using neural networks and symbolic
regression

Nasrin Talebi*, Knut Andreas Meyer, Magnus Ekh

Division of Material and Computational Mechanics, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden

ARTICLE INFO ABSTRACT

Keywords: Simulation of many loading cycles with traditional time-domain material models, requiring discretization of each
Cycle-domain plasticity modeling cycle with several time steps, can result in high computational cost. One effective approach to speed up cyclic sim-
MﬁChiﬂ? learning) ulations is employing cycle-domain material models. Finite element simulations of rails subjected to many wheel
Data-driven modeling passages are a relevant application of such models. Proposing a per-cycle evolution equation for plastic strains

Neural networks

. . in cycle-domain models is, however, a challenge. To address this, we investigate the feasibility and accuracy of
Symbolic regression

using machine learning models as tools for formulating such an equation. Specifically, we enforce our knowl-
edge from constitutive modeling for elasticity and formulate the evolution law by employing feed-forward neural
networks with different inputs, as well as symbolic regression to discover an interpretable expression. Training,
validation, and test data have been generated using a cyclic time-domain plasticity model considering pulsating
uniaxial stress loadings with constant and variable strain ranges. The obtained results demonstrate the potential
of cycle-domain plasticity modeling using both uninterpretable and interpretable data-driven machine learning
as an alternative to time-domain material modeling. Furthermore, both approaches have revealed reasonably
good extrapolation performance beyond the training regime.

1. Introduction wheel passages. Cycle-domain material models have the advantage that
the FE algorithm is not modified, as only the applied material model is
changed, making the method suitable for industrial implementations.
In addition to geomechanical applications, for modeling the stiffness
degradation of short-fiber reinforced plastics, Kobler et al. [6] formu-
lated their fatigue damage model in the cycle domain. In the same
context, Magino et al. [7] proposed a hybrid log-cycle fatigue dam-
age model that combines time-domain accuracy in initial cycles with
the computational efficiency of cycle-domain models in high-cycle fa-
tigue regimes. The key challenge with formulating cycle-domain models
is to find suitable per-cycle evolution laws for the internal variables.
In this paper, we propose to do this by using Machine Learning (ML)
techniques.

The use of ML to enhance time-domain material modeling has been
a rapidly growing area of research in recent years. As reviewed by
Fung et al. [8], ML-based constitutive models can be categorized as
either uninterpretable or interpretable. Focusing on the former, Ali
et al. [9] trained a Feed-Forward Neural Network (FFNN) to pre-
dict the stress-strain response and texture evolution of single crystal
and polycrystalline materials under uniaxial tension and simple shear.

For structures subjected to cyclic loading where no stabilized behav-
ior is obtained, it is time-consuming to apply a non-linear constitutive
model and perform time steps in Finite Element (FE) simulations [1].
One approach to speed up the simulation of many loading cycles is to
extrapolate the response by using load sequence extrapolation with er-
ror control, as developed by Johansson and Ekh [2]. In this approach,
state variables and global responses obtained from FE simulations at cy-
cle N are extrapolated using a Taylor series expansion. Alternatively,
Brommesson et al. [3] proposed scaling the number of cycles in ex-
periments and recalibrating the material model parameters accordingly.
Although this reduces computational time linearly, calibrating multiple
sets of material parameters remains time-consuming.

An alternative approach is to use cycle-domain modeling as proposed
by Suiker and de Borst [4]. The model framework is based on standard
plasticity theory and is formulated as a viscoplastic model to simulate
the evolution of plastic deformations in ballasted tracks subjected to
many loading cycles. Based on that framework, Li et al. [5] developed
a three-dimensional FE simulation tool to predict long-term differen-
tial settlement in ballasted tracks to enable fast simulations of many

* Corresponding author.
Email address: nasrin.talebi@chalmers.se (N. Talebi).

https://doi.org/10.1016/j.compstruc.2025.108086
Received 12 August 2025; Accepted 20 December 2025

0045-7949/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.sciencedirect.com/science/journal/0045-7949
https://www.elsevier.com/locate/CAS

N

$\boldsymbol {t}$

$\textbf {{T}}$

$\boldsymbol {\epsilon }$

$\boldsymbol {\epsilon }^{{\textrm {e}}}$

$\boldsymbol {\epsilon }^{{\textrm {p}}}$

\begin {equation}\label {ieq1} {\boldsymbol {\epsilon }=\boldsymbol {\epsilon }^{\mathrm e}+\boldsymbol {\epsilon }^{\mathrm p} \;\rightarrow \; \boldsymbol {\epsilon }^{\mathrm e}(\boldsymbol {\epsilon },\, \boldsymbol {\epsilon }^{\mathrm p}) = \boldsymbol {\epsilon } - \boldsymbol {\epsilon }^{\mathrm p}}\end {equation}

$\boldsymbol {\sigma }$

\begin {equation}{\boldsymbol {\sigma } = \textbf {{E}}^{{\textrm {e}}}:\left (\boldsymbol {\epsilon }-\boldsymbol {\epsilon }^{{\textrm {p}}}\right)} \label {eq:hooks_law}\end {equation}

$\textbf {{E}}^{\textrm {e}}$

$\varPhi \left (\boldsymbol {\sigma }, \mathbb {A}\right)$

$(\varPhi < 0)$

$(\varPhi = 0)$

$\mathbb {A} = \lbrace {\boldsymbol {a}}_1,\ {\boldsymbol {a}}_2,\ \cdots ,\ {\boldsymbol {a}}_n\rbrace $

$\boldsymbol {\epsilon }^{\textrm {p}}$

\begin {equation}\label {ieq2} {\dot {\boldsymbol {{\epsilon }}}^{\textrm {p}}=\dot {\lambda } \, \frac {\partial \varPhi }{\partial \boldsymbol {\sigma }}}\end {equation}

$\boldsymbol {a}_i$

\begin {equation}\label {ieq3} {\dot {\boldsymbol {a}}_i=\dot {\lambda } \, g_i\left (\boldsymbol {\sigma }, \mathbb {A} \right)}\end {equation}

$\dot {\lambda }$

\begin {equation}{\varPhi \le 0, \quad \dot {\lambda } \ge 0, \quad \varPhi \, \dot {\lambda }=0} \label {eq:KKT}\end {equation}

${}^{n}t$

${}^{n}\dot \lambda = 0$

$\Delta \lambda = {}^{n}\lambda - {}^{n-1}\lambda = 0$

${}^{n}\boldsymbol {\sigma }$

${}^{n}\boldsymbol {\sigma }^{\textrm {tr}}$

${}^{n}\boldsymbol {\sigma } = {}^{n}\boldsymbol {\sigma }^{\textrm {tr}} = \textbf {{E}}^{{\textrm {e}}}:\left ({}^{n}\boldsymbol {\epsilon } - {}^{n-1}\boldsymbol {\epsilon }^{\textrm {p}}\right)$

${}^{n}\boldsymbol {a}_i = {}^{n-1}\boldsymbol {a}_i$

$\varPhi \le 0$

N

${}^{N}(\cdot)$

N

${}^{N-1}(\cdot)$

$N-1$

N

${}^{N}\epsilon _{11}$

${}^{N}\sigma _{11}$

${}^{N}\epsilon ^{\textrm {p}}_{11}$

N

\begin {equation}\frac {{\textrm {d}} \sigma _{11}}{{\textrm {d}} N} =E \, \frac {{\textrm {d}} \epsilon ^{\textrm {e}}_{11}}{{\textrm {d}}{N}} = E \left (\frac {{\textrm {d}} \epsilon _{11}}{{\textrm {d}} N} - \frac {{\textrm {d}} \epsilon ^{{\textrm {p}}}_{11}}{{\textrm {d}} N}\right) \label {eq:cycle_model_eq}\end {equation}

E

$f_{\textrm {ml}}$

$\boldsymbol {x}$

\begin {align}&\frac {{\textrm {d}} {}^{N}\epsilon ^{{\textrm {p}}}_{11}}{{\textrm {d}} N} = \mathcal {H}_\varPhi \left ({}^{N-1}{\epsilon }^{{\textrm {p}}}_{11}, {}^{N}{\sigma }^{\textrm {tr}}_{11}\right) f_{\textrm {ml}}\left (\boldsymbol {x}\right) \quad \label {eq:ml_based_evolution} \quad \text {where}\\ &\mathcal {H}_\varPhi \left ({}^{N-1}{\epsilon }^{{\textrm {p}}}_{11}, {}^{N}{\sigma }^{\textrm {tr}}_{11}\right) = \begin {cases} 0, \quad & \text {if} \quad {}^{N-1}\epsilon ^{\textrm {p}}_{11} = 0 \quad \text {and} \quad |{}^{N}\sigma ^{\textrm {tr}}_{11}| < Y_0 \\[6pt] 1, \quad & \text {otherwise} \end {cases} \nonumber \quad \text {and}\\ &{}^{N}\sigma _{11}^{\textrm {tr}} = E \left ({}^{N}\epsilon _{11} - {}^{N-1}\epsilon ^{\textrm {p}}_{11}\right)\nonumber \end {align}

$\mathcal {H}_\varPhi (\cdot)$

$|{}^{N}\sigma ^{\textrm {tr}}_{11}|$

Y_0

${}^{N-1}\epsilon ^{\textrm {p}}_{11} = 0$

$f_{\textrm {ml}}$

\begin {align}\label {ieq4} {\textbf {{E}}^{\textrm {e}} = 2 \, G \, \textbf {{I}}^{\textrm {dev}} + K_{\textrm {b}} \, \boldsymbol {I}\otimes \boldsymbol {I} \rightarrow } \, \boldsymbol {\sigma } = 2 \, G\,\boldsymbol {\epsilon }^{\textrm {e}}_{\textrm {dev}} + K_{\textrm {b}} \, {\textrm {tr}}(\boldsymbol {\epsilon }^{\textrm {e}}) \, \boldsymbol {I},\quad K_{{\textrm {b}}} = \frac {E \, G} {3\left (3 \, G-E\right)}\end {align}

G

$K_{\textrm {b}}$

E

$\boldsymbol {I}$

$\boldsymbol {\epsilon }^{\textrm {e}}_{\textrm {dev}}$

$\textbf {{I}}^{\textrm {dev}} = \boldsymbol {I}\overline {{\otimes }}\boldsymbol {I}-\boldsymbol {I}\otimes \boldsymbol {I}/3$

$\overline {\otimes }$

$\boldsymbol {a} \, \overline {\otimes } \, \boldsymbol {b}=a_{ik} \, b_{jl} \, \boldsymbol {{e}}_{i} \,{\otimes } \, \boldsymbol {{e}}_{j} \, {\otimes } \, \boldsymbol {{e}}_{k} \,{\otimes } \, \boldsymbol {{e}}_{l}$

$\mathbb {A} = \lbrace \boldsymbol {\beta } \rbrace $

$\boldsymbol {\beta }$

\begin {equation}\varPhi = \sqrt {\frac {3}{2} \, \boldsymbol {\sigma }^{\textrm {red}}_{\textrm {dev}}:\boldsymbol {\sigma }^{\textrm {red}}_{\textrm {dev}}} - Y_0 \le 0 \quad \text {with}\quad \boldsymbol {\sigma }^{\textrm {red}}_{\textrm {dev}}= \boldsymbol {\sigma }_{\textrm {dev}}-\boldsymbol {\beta } \label {eq:phi_eq}\end {equation}

$\boldsymbol {\sigma }_{\textrm {dev}}$

$\boldsymbol {\epsilon }^{\textrm {p}}$

\begin {equation}\label {ieq5} \dot {\boldsymbol {{\epsilon }}}^{\textrm {p}}=\dot {\lambda } \, \frac {\partial \varPhi }{\partial \boldsymbol {\sigma }} = \dot {\lambda } \boldsymbol {\nu } \quad \text {with} \quad \boldsymbol {\nu } = \sqrt {\frac {3}{2}} \, \frac {\boldsymbol {\sigma }^{\textrm {red}}_{\textrm {dev}}}{|\boldsymbol {\sigma }^{\textrm {red}}_{\textrm {dev}}|}\end {equation}

$\dot {\lambda }$

$\boldsymbol {\beta }$

\begin {equation}\label {ieq6} \dot {\boldsymbol {\beta }}= -\frac {2}{3} \, H_{{\textrm {kin}}} \, \dot {\lambda }\left [-\boldsymbol {\nu } + \frac {3} {2} \, \frac {\boldsymbol {\beta }} {{\beta }_{\infty }}\right]\end {equation}

$H_{{\textrm {kin}}}$

${\beta }_{\infty }$

E

G

Y_{0}

$H_{{\textrm {kin}}}$

$\beta _{\infty }$

$\Delta \epsilon _{11}$

$0.2~\%$

$3.0~\%$

$0.0~\%$

$3.0~\%$

$\Delta \epsilon _{11}$

$\Delta \epsilon _{11}$

$0.39~\%$

$0.77~\%$

$\Delta \epsilon _{11}$

$3.0~\%$

$0.39~\%$

$0.77~\%$

$3.0~\%$

$2.94~\%$

$\{{}^{N}\sigma _{11}, {}^{N-1}\epsilon ^{\textrm {p}}_{{{\textrm {11}}}}, \,{{\text {d}}{}^{N}\epsilon ^{\textrm {p}}_{11}}/{\text {d}}{N}\}$

$\{{}^{N}\sigma _{11}, {}^{N-1}\epsilon ^{\textrm {p}}_{{{\textrm {11}}}}, {}^{N-1}\sigma _{11},\break {} {{\text {d}}{}^{N}\epsilon ^{\textrm {p}}_{11}}/{\text {d}}{N}\}$

${}^{N}\sigma _{11}$

N

${}^{N-1}\sigma _{11}$

${}^{N-1}\epsilon _{{{\textrm {11}}}} ^{{\textrm {p}}}$

$N-1$

${{\text {d}}{}^{N}\epsilon ^{\textrm {p}}_{11}}/{\text {d}}{N}$

$N-1$

N

${}^{N}\sigma _{11}$

${}^{N-1}\epsilon ^{\textrm {p}}_{{{\textrm {11}}}}$

${{\text {d}}{}^{N}\epsilon ^{\textrm {p}}_{11}}/{\text {d}}{N}$

${{\text {d}}{}^{N}\epsilon ^{\textrm {p}}_{11}}/{\text {d}}{N}$

$\Delta \epsilon _{11}$

$\Delta \epsilon _{11}$

${{\text {d}}\epsilon ^{\textrm {p}}_{11}}/ {\text {d}}{N}$

$80~\%$

$10~\%$

$10~\%$

$\mathcal {H}_\varPhi $

\begin {equation}\label {ieq7} \hat {L}\left (\boldsymbol {x}\right) = \frac {1}{k} \sum _{i=1}^{k} {\left ({\left (\hat {\frac {{\textrm {d}} {}^{N}{\epsilon }^{\mathrm p}_{11}}{{\textrm {d}}{N}}} \right)}_{i} - f_{{\textrm {ml}}}\left (\boldsymbol {x}_{i}\right)\right)}^2 \quad \text {where} \,\, f_{{\textrm {ml}}}\left (\boldsymbol {x}\right) = f_{{\textrm {nn}}}\left (\boldsymbol {x}\right) \, \text {or} \, f_{{\textrm {sr}}}\left (\boldsymbol {x}\right)\end {equation}

k

$\hat {\frac {{\textrm {d}} {}^{N}{\epsilon }^{\mathrm p}_{11}}{{\textrm {d}}{N}}}$

$\frac {{\textrm {d}} {}^{N}{\epsilon }^{\mathrm p}_{11}}{{\textrm {d}}{N}}$

$\left [0,1\right]$

$f_{{\textrm {nn}}}\left (\boldsymbol {x}\right)$

$f_{{\textrm {sr}}}\left (\boldsymbol {x}\right)$

$\boldsymbol {x}$

${}^{N}\sigma _{11}$

${}^{N-1}\epsilon ^{\textrm {p}}_{11}$

$\frac {{\textrm {d}} {}^{N}{\epsilon }^{\mathrm p}_{11}}{{\textrm {d}}{N}}$

$0.0~\% \le {}^{N-1}\epsilon ^{\textrm {p}}_{11} \le 0.3~\%$

${}^{N-1}\epsilon ^{\textrm {p}}_{11}$

$0.500~\% \le {}^{N-1}\epsilon ^{\textrm {p}}_{11} \le 0.541~\%$

${}^{N-1}\sigma _{11}$

$0.500~\% \le {}^{N-1}\epsilon ^{\textrm {p}}_{11} \le 0.541~\%$

$\boldsymbol {x}_0$

$\boldsymbol {y}$

$\boldsymbol {y} = f_{\textrm {nn}}\left (\boldsymbol {x}_0\right)$

m

l

$a_{l}\left (\cdot \right)$

\begin {align}\label {ieq8} \boldsymbol {x}_l = a_{l}\left (\underline {\boldsymbol {W}}_l \, \boldsymbol {x}_{l-1} + \boldsymbol {b}_{l}\right) \quad \text {where} \quad a_{l}\left (x\right) = \begin {cases} \dfrac {1}{1 + e^{-x}} & l = 1,\dots ,\,m-1\\[6pt] \max \left (0,x\right) & l = m \end {cases}\end {align}

$\underline {\boldsymbol {W}}_l$

$\boldsymbol {b}_{l}$

l

$\boldsymbol {y}$

\begin {equation}\label {ieq9} \boldsymbol {y} = a_{m+1} \left (\underline {\boldsymbol {W}}_{m+1} \, {\boldsymbol {x}}_{m} + \boldsymbol {b}_{m+1}\right) \quad \text {where} \quad a_{m+1}\left (x\right) = {\textrm {tanh}}\left (x\right)\end {equation}

${\text {tanh}}(x)$

$m=5$

$m=10$

1.81×10^{-5}

1.22×10^{-5}

$(-0.4 \,x+ \exp (15.5 \, y - 16.5)) + 0.5$

$+, -, \times $

$\exp $

x, y

$(-0.4 \, x+ \exp (15.5 \, y - 16.5)) + 0.5$

$\exp $

$\tanh $

$\left \langle \bullet \right \rangle $

$\hat {L}_{\textrm {train}}$

9.6×10^{-5}

5.4×10^{-5}

5.9×10^{-5}

5.4×10^{-5}

$\hat {L}_{\textrm {train}}$

$\hat {L}_{\textrm {valid}}$

7.3×10^{-5}

4.4×10^{-5}

$\hat {L}_{\textrm {test}}$

5.7×10^{-5}

${{\textrm {d}}\epsilon ^{\mathrm p}_{11}}/{{\textrm {d}}{N}}$

$z-$

${{\textrm {d}}\epsilon ^{\mathrm p}_{11}}/{{\textrm {d}}{N}}$

${}^{N-1}\sigma _{11}$

4×10^{4}

2×10^{5}

${{\textrm {d}}\epsilon ^{\mathrm p}_{11}}/{{\textrm {d}}{N}}$

$\hat {L}_{\textrm {train}}$

3.6×10^{-5}

3.0×10^{-5}

2.4×10^{-5}

1.8×10^{-5}

$\hat {L}_{\textrm {valid}}$

$\hat {L}_{\textrm {test}}$

1.7×10^{-5}

2.1×10^{-5}

${}^{N-1}\sigma _{11}$

$66~\%$

$61~\%$

$63~\%$

4×10^{4}

2×10^{5}

$f_{\textrm {nn}}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

$0.007~\%$

$0.002~\%$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

$0.2~\%$

$2.7~\%$

$\sigma _{11}$

${}^{N}\sigma _{11}$

${}^{N-1}\epsilon _{{{\textrm {11}}}} ^{{\textrm {p}}}$

${}^{N-1}\sigma _{11}$

6.68×10^{-5}

6.01×10^{-5}

5.76×10^{-5}

$\hat {L}_{\textrm {train}}$

$\hat {L}_{\textrm {valid}}$

${}^{N-1}\hat {\sigma }_{11}$

$\hat {L}_{\textrm {train}}$

$\hat {L}_{\textrm {valid}}$

1.8×10^{-5}

1.7×10^{-5}

5.4×10^{-5}

4.4×10^{-5}

$\hat {L}_{\textrm {train}}$

$\hat {L}_{\textrm {valid}}$

${}^{N}\hat {\sigma }_{11}$

${}^{N-1}\hat {\epsilon }_{{{\textrm {11}}}} ^{{\textrm {p}}}$

${}^{N-1}\hat {\sigma }_{11}$

${}^{N}\sigma _{11}$

${}^{N-1}\epsilon _{{{\textrm {11}}}} ^{{\textrm {p}}}$

${}^{N-1}\sigma _{11}$

$\sigma _{11}$

$\sigma _{11}$

$\sigma _{11}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

$0.018~\%$

$\sigma _{11}$

$\epsilon ^{{\textrm {p}}}_{11}$

$\sigma _{11}$

$\epsilon ^{{\textrm {p}}}_{11}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}[\%]\,\,(\times 10^{-2}$

$f_{\textrm {nn}}$

$f_{\textrm {nn}}$

$f_{\textrm {sr}}$

$\sigma _{11}$

$\epsilon ^{{\textrm {p}}}_{11}$

$\sigma _{11}$

$\hat {L}_{\textrm {train}}$

$\hat {L}_{\textrm {valid}}$

$\hat {L}_{\textrm {test}}$

$\hat {L}_{\textrm {train}}\,(\times 10^{-5}$

$\hat {L}_{\textrm {valid}}\,(\times 10^{-5})$

$\hat {L}_{\textrm {test}}\,(\times 10^{-5})$

$f_{\textrm {nn}}$

$f_{\textrm {nn}}$

$f_{\textrm {sr}}$

$\sigma _{11}$

$\sigma _{11}$

$f_{\textrm {nn}}$

$f_{\textrm {nn}}$

$f_{\textrm {sr}}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

mailto:nasrin.talebi@chalmers.se
https://doi.org/10.1016/j.compstruc.2025.108086
https://doi.org/10.1016/j.compstruc.2025.108086
http://creativecommons.org/licenses/by/4.0/

N. Talebi, K.A. Meyer and M. Ekh

For modeling anisotropic plane-stress plasticity under multiaxial load-
ing, Gorji et al. [10] demonstrated the potential of Recurrent Neural
Networks (RNNs) with the use of a large amount of training data. Linka
et al. [11] introduced a new approach by incorporating constitutive
modeling knowledge directly into the architecture of FFNNs, allowing
for efficient training with a moderate amount of data and resulting in
improved extrapolation performance.

The inclusion of physical principles into neural networks has been
shown to noticeably improve the ability to generalize outside the train-
ing regime in material modeling [12]. Raissi et al. [13] introduced
Physics-Informed Neural Networks (PINNs) to solve forward and in-
verse problems, while imposing physical constraints on the loss function.
Following this, Abueidda et al. [14] employed PINNs to solve partial
differential equations for displacement fields, and Haghighat et al. [15]
developed a PINN-based framework for constitutive modeling by em-
bedding elastoplastic inequality constraints into the loss function. Some
ML-based material modeling techniques aim to satisfy physical con-
straints by construction. For instance, Meyer and Ekre [16] proposed
embedding FFNNs directly into the evolution laws of internal vari-
ables. The framework inherently fulfills thermodynamics and material
objectivity. Fuhg et al. [17] suggested a thermodynamically consistent
framework, which is instead based on isotropic and nonlinear kinematic
hardening potentials. Following this approach, Jadoon et al. [18] de-
veloped an NN-based framework for finite strain elastoplastic material
modeling.

Despite the satisfactory results of the NN-based constitutive models,
their black-box nature remains a limitation [8]. In the context of inter-
pretable ML, Flaschel et al. [19] introduced a method based on sparse
regression to discover constitutive laws for isotropic hyperelastic mate-
rials using displacements and global force data, and later extended the
work to automatically discover constitutive laws for isotropic materials
with unknown categories of material behavior [20]. Combining sparse
regression and binomial searching, Meyer and Ekre [16] discovered an-
alytical expressions from NN-generated data for evolution equations of
internal variables. Alternatively, Symbolic Regression (SR), referring
to methods based on genetic algorithms [8], was applied by Versino
et al. [21] to discover flow stress equations for copper. Working with a
limited amount of experimental data, they addressed this constraint by
incorporating their expert knowledge to enhance the predictive accuracy
of the models. Based on micromechanical finite element simulations,
Bomarito et al. [22] demonstrated the potential of SR in discovering the
von Mises yield function and the plastic strain evolution equation. Using
the same methodology, Abdusalamov et al. [23] proposed an SR-based
approach to identify the strain energy density function for hyperelastic
materials. Bahmani et al. [24] suggested a hybrid framework to formu-
late the yield functions of perfectly plastic materials by expressing them
as polynomials composed of symbolic equations that replace trained
univariate neural networks.

In contrast to available studies on ML-based time-domain con-
stitutive modeling (e.g., [11,15-17]), this study proposes ML-based
cycle-domain plasticity modeling. Incorporating established knowledge
from material modeling for elasticity, we obtain the per-cycle evolution
law for plastic strains using either FFNNs (uninterpretable ML models)
or SR (an interpretable alternative). To focus on the differences be-
tween these approaches, we study one-dimensional problems. It should
be noted that, although cycle-domain models can be employed in dif-
ferent applications involving cyclic loadings, some assumptions in this
work are motivated from a railway mechanics point of view. The paper is
organized as follows: In Section 2, we explain the standard formulation
of a time-domain plasticity model, while the cycle-domain model formu-
lation for uniaxial stress loading is presented in Section 3. In Section 4,
the time-domain plasticity model adopted to generate artificial training,
validation, and test data, together with the corresponding data gener-
ation procedure, is described. In Section 5, we explain the considered
FFNNs and SR models, and finally, in Sections 6 and 7, we discuss and
summarize our findings.

Computers and Structures 321 (2026) 108086

2. Standard formulation of time-domain plasticity models

In this section, we present the standard formulation of a time-domain
plasticity model in a small strain setting. Note that, second-order tensors
are written in boldface, e.g. t, while fourth-order tensors are written in
capitalized, boldface, and upright form, e.g. T.

The total strain, €, is additively decomposed into an elastic strain,
€¢, and a plastic strain, €P,

e=¢c"+eP - €°(e, eP)=€—€P 1
The stress, o, can then be calculated using Hooke’s law
c=E®: (e—eP) 2)

where E€ is the elasticity tensor. The yield function @ (o, A) defines the
elastic domain (@ < 0) and the plastic domain (@ = 0), where A =
{a;, a,, -, a,} is a set of hardening stresses. The evolution of plastic
strains, €P, is typically assumed to follow an associative flow rule

P =) — 3

o 3
whereas for the hardening stresses, a;, non-associative evolution laws
provide better agreements with experimentally observed material be-
havior [25]

a; =g (c,h) 4

J is the plastic multiplier (rate of accumulated equivalent plastic strain)
and can be determined from the Karush-Kuhn-Tucker (KKT) loading/un-
loading conditions

®<0, i>0, ®i=0 (5)

To determine whether the material response is elastic or plastic, the
Karush-Kuhn-Tucker conditions given in Eq. (5) are used. Considering
the implicit backward Euler time integration scheme, we assume that,
at the time step "1, the material response is elastic, i.e., "4 = 0, thereby
AA="1-""1}=0. Accordingly, "o is equal to the calculated trial stress
"6 as: "¢ ="oT = E° : ("e —"~€P), and the hardening stresses do not
change: "a; = "~!a,. This assumption holds if @ < 0; otherwise, a system
of nonlinear equations must be solved. For further details, the reader is
referred, e.g., to [26].

The formulation of the cycle-domain material model introduced in
Section 3 is independent of the choice of a time-domain material model.
In this study, to train, validate, and test the ML-based cycle-domain
model, we have chosen a reference time-domain plasticity model with
a von Mises yield function, an associative evolution law for the plas-
tic strain, and a nonlinear evolution law for the hardening stress; see
Section 4.1 for further details.

3. Cycle-domain material model

To enhance the computational efficiency of cyclic simulations in-
volving many cycles, we propose replacing a standard time-domain
model with a cycle-domain model for pulsating uniaxial loading, in-
spired by Suiker and de Borst [4]. In the cycle-domain model, we predict
the peak stress and the corresponding plastic strain in each loading cy-
cle N, as shown in Fig. 1. This choice is motivated by the application of
railway mechanics, where rails are subjected to purely pulsating load-
ing [5,27]. The notation M (-) refers to cycle N, and V~!(-) refers to cycle
N — 1. Assuming small strains and Hooke’s law (Eq. (2)) for uniaxial
loading, we replace the time derivatives of quantities with their change
per unit cycle, N, as

doy; dey, _ dey, de{)l
v - Fav Tl Ty ©

where E is Young’s modulus. The challenge with cycle-domain models
is to propose a suitable per-cycle evolution equation for plastic strains.

N. Talebi, K.A. Meyer and M. Ekh

Computers and Structures 321 (2026) 108086

)) Strain history
Time-domain
model Cycle-domain model
1 N-1
€11 2
— e NG
— o 5
-~
\7: \611
MT ®
.o N cee
€11
) t
Predicted stresses and plastic strains
Time-domain
model Cycle-domain model
1 N—-1
oo 011 24 . 011
foa! "\.11’-—\3‘0-11 .
: . e e e 0
© t
N
\\, 011
1.p 2 N—-1_p
611/\‘&1)1 =
— ® .
3.p
\: /\.El
a . .o
Ty N b
L]
t

Fig. 1. Schematic illustration of the cycle-domain material model in cyclic simulations. The solid blue lines represent the input strain history to the time-domain
model and its simulated first half-cycle. The red circles show the peak strain ¥e,,, as well as the peak normal stress Yo, and the corresponding plastic strain e},
predicted by the cycle-domain model for the loading cycle N. The dashed light blue lines denote the strain histories and responses from the time-domain model.

We aim to discover this equation with machine learning. Specifically,
we will train a model, f;,;, with inputs x

N _ P
del1

dN

=Hg (V' Nof) fmt (%)

where (@)
0, if NP =0 and |Noll| <Y,

and
1, otherwise

Hgp () is introduced to ensure that no plastic strain increment occurs
when the material response is elastic (i.e., |V oﬁ | is smaller than the ini-
tial yield stress ¥,) with no previous plasticity (Y='¢?, = 0). Accordingly,
the cycle-domain model will behave equivalently to the time-domain
model for elastic-only loading (corresponding to high cycle fatigue load-
ing). This has been found to facilitate the training of f,; later in the ML
procedure described in Section 5. Note that we use a semi-implicit dis-
cretization scheme between the loading cycles. When using the model,
the first half-cycle is simulated with the time-domain model, before
applying the cycle-domain model to predict the subsequent cycles, as
illustrated in Fig. 1.

4. Data generation

This section presents the reference time-domain plasticity model
adopted to generate artificial data and the corresponding data genera-
tion procedure. The data will be used for training, validation, and testing
of the cycle-domain model with different ML-based evolution equations
for plastic strains.

4.1. Reference time-domain cyclic plasticity model

Based on the general small strain plasticity model formulation de-
scribed in Section 2, a specific reference model is described in the
following. The elastic behavior is linear isotropic, i.e.,

EG
33G-E)
®

EC=2GI" + K, I®I >0 =2Ge +Kytr(e) I, K,=

where G, Ky, and E are the shear, bulk, and Young’s moduli, respec-
tively. I is the second-order identity tensor, and eg_ is the deviatoric
elastic strain. The fourth-order deviatoric identity tensor is defined as
Y - IQI-1Q®1 /3, where the non-standard open product ® between
two second-order tensors is given by a®b = a; bjje;®@e; ®e;Re.
The model considers kinematic hardening and has the hardening stress
A = {B}, where B is the back-stress. Using the von Mises effective stress,

the yield function is then defined as

3
2 o.red .

= 2 “dev ’

red _ : red _ _
Ogey ~ Y0 <0 with o4 =640y — B

©)]

where 6 4., is the deviatoric stress. The evolution of the plastic strain,
eP, follows the associative flow rule

0D 3 oh
P=l—=Jv with v=4/2 =L
do 2 |O-red|

dev

(10)

where the plastic multiplier, 4, can be determined from the KKT load-
ing/unloading conditions, as described in Section 2. The evolution of the
back-stress, B, is assumed to be of the Armstrong-Frederick type [28]

1D

N. Talebi, K.A. Meyer and M. Ekh

Table 1
Material model parameter values for the reference time-
domain cyclic plasticity model.

Material parameters E G Yy Hyin B

200 75 400 150 500
Unit GPa GPa MPa GPa MPa

Hy;, is the kinematic hardening modulus, and f, is the saturation value
of the back-stress. The values of the material model parameters, in-
spired by those calibrated based on experimental data for isotropic R260
pearlitic rail steel [29], are listed in Table 1.

4.2. Training, validation, and test data generation

In this study, data required for training, validation, and testing of the
considered ML models are generated artificially using the time-domain
cyclic plasticity model described in Section 4.1. The data are employed
to train an NN and to discover a symbolic equation representing the per-
cycle evolution equation for plastic strains in the cycle-domain material
model. They are also used for model validation and testing. Data gen-
eration is performed through material point simulations. Each dataset
consists of 100 loading cycles, with each loading cycle discretized into
400 time steps. Cyclic pulsating strain-controlled uniaxial stress loadings
with both constant and variable strain ranges are applied. For constant
strain range loadings, 400 logarithmically spaced strain range values,
Ae,;, spanning from 0.2 % (corresponding to the elastic limit) to 3.0 %
are considered. The lower limit of the strain range is chosen to avoid
elastic material responses without previous plasticity. Logarithmic spac-
ing is chosen to generate a higher density of datasets in the transition
region from elastic shakedown to plastic shakedown behavior, where
small changes in strain ranges significantly affect the material response.
Variable strain range values are randomly generated between 0.0 % and
3.0 % 400 times, following a uniform distribution. These procedures pro-
duce a total of 800 artificial datasets, covering a wide range of material
behavior.

Some results from the time-domain material model under loadings
with constant Ae,; are presented in Fig. 2(a)-(c). For the lower Ae;; of
0.39 % (Fig. 2(a)), the material response shows elastic shakedown be-
havior following the first loading cycle. However, a higher strain range
value of 0.77 % (Fig. 2(b)) causes a reduction in the peak stresses before
stabilizing into a plastic shakedown state. Under more severe loading
conditions, with Ae; of 3.0 %, the material reaches a plastic shakedown
state from the second loading cycle, see Fig. 2(c). In contrast to the load-
ings with constant strain ranges, from Fig. 2(d), no stabilized behavior
after 100 cycles can be observed.

Training, validation, and test data are prepared in the form of
N-1¢P ,dNeP /dN}) for the two-input NN and SR models. For
the three-input models, the data are structured as {¥ o, V~! ef SR
dN efl /dN}; see Section 5 for more details regarding the models and
their inputs. For completeness, the relevant variables are reintroduced
in this section, even though some of them are defined in Section 3. Vo,
denotes the peak stress in loading cycle N, N~lg,;, as well as ¥ "efl,
are the peak stress and plastic strain values in loading cycle N — 1, and
dv 61131 /dN is the plastic strain increment from cycle N — 1 to N. As an
example, Fig. 3 illustrates Noy;, N='e}|, and dVeP /dN corresponding
to a dataset obtained from loading with variable strain ranges. One ob-
servation is the occurrence of negative dv efl /dN, resulting from a cycle
with a high Ae¢;, followed by a cycle with a much lower A¢;.

{NO'H,

o11» o11»

5. Machine Learning (ML) models

In this work, we investigate two approaches to formulate the per-
cycle evolution equation for plastic strains, def ,/dN, in the cycle-domain
material model: training an NN and SR. The artificially generated
datasets are split into 80 % for training, 10 % for validation, and 10 % for

Computers and Structures 321 (2026) 108086

testing. Considering the datasets with variable strain range loading, a
few data points corresponding to elastic material behavior with no pre-
vious plasticity are filtered out according to the H function (see Eq. (7))
in the cycle-domain model formulation.

In both alternative approaches, the loss function, minimizing the dif-
ference between the predictions of the models and the target values, is
chosen to be of the mean-squared error type and is formulated as

N 2

R k dNep

Pw=1 Y| | - ot ()
i=1

where fi (X) = fon (X) or fg (%)

12

where k denotes the total number of data points included in the train-
AN P
11

ing, validation, or test sets, and is the min-max normalized #.
Since there is a significant difference in the orders of magnitude of the
input variables, all the input and output variables of the studied mod-
els are scaled to the interval [0, 1] (min-max normalized). f,, (x) and
S5 (x) represent an NN and SR model, respectively, with input vari-
ables x. We first evaluate the performance of the models with two
input variables: ¥o,, and ¥ “efl. The corresponding training data is il-
lustrated in Fig. 4(a), showing a surface-like distribution of data with
dNeP
slight dispersion. The data spans a range of dN” , transitioning from
large positive values, through zero, to negative values. Further, the dis-
tribution is inhomogeneous, with a noticeably higher sparsity in the
region approximately defined by 0.0 % < ¥ ‘lei < 0.3 %. In this re-
gion, some data points also deviate from the general surface trend,
as shown by the red circle. Further analysis of the training data dis-
tribution for different intervals of N~'e? shows that nearly the same
inputs correspond to multiple outputs. This behavior is exemplified in
Fig. 4(b) for 0.500 % < N‘lei < 0.541 %. Due to the non-unique
input-output mapping, the NN or SR model can only learn an ap-
proximate solution based on the provided input information. Thus, we
introduce V16, as an additional input, forming three-input models,
to assess the extent of performance improvement over the two-input

models.

5.1. Feed-Forward Neural Network (FFNN)

One investigated approach to obtain the per-cycle evolution equation
for plastic strains is using a fully connected FFNN. Although RNNs
have been used to model history-dependent behavior, see e.g. [10,30],
we have chosen to base our ML-based cycle-domain model on a time-
domain plasticity model and have employed an FFNN, as one component
of the model, to formulate the per-cycle evolution law. It should be
noted that the material model formulation can be considered a recurrent
architecture, as each step depends on the previous state.

In a fully connected FFNN, each neuron in a given layer is connected
to all neurons in the subsequent layer [31]. The network establishes
a mapping from the input vector x to the output vector y, denoted as
¥ = fun (%0). The information propagates sequentially through m hidden
layers before reaching the output layer. Each hidden layer / computes its
output using a nonlinear function, referred to as the activation function

a; ()

1
1+e>

x;=a (W,x,_, +b) where a (x)=

max (0,x) I=m

13)

W, and b, are trainable weight matrices and bias vectors associated with
layer 1, respectively. The output vector y is computed as

Y=a,, (Kmﬂ X, +b,.) where a,, (x)=tanh(x) 14)

tanh(x) is chosen for the output layer to allow for both positive and
negative plastic strain increments, as stated in Section 4.2.

N. Talebi, K.A. Meyer and M. Ekh

800
600

0.1 0.2 0.3 0.4
en (%)
(a)

1000

500

o011 [MPa]
(=]

-500

-1000
0

w2

1 2
€11 [%}

(©)

011 [MP&]
(=)

Computers and Structures 321 (2026) 108086

1000

500

-500

-1000
0
€11 [%]

Fig. 2. The stress-strain responses from the time-domain material model for loadings under constant strain range of (a) 0.39 % (elastic shakedown), (b) 0.77 % (mean
stress relaxation), (c) 3.0 % (plastic shakedown) and under variable strain ranges over 100 cycles with maximum value of (d) 2.94 %.

1000
500

NO'H [MPa}

=)

o

=t
T

20 40

60 80 100

Cycle number

Fig. 3. Training data from a dataset with variable strain ranges over 100 loading cycles.

In this paper, an NN comprising m = 5 hidden layers with 6 neurons
per layer is considered. Expanding the network architecture (m = 10
with 50 neurons per layer) did not significantly improve the training
loss compared to the smaller network (from 1.81 x 1075 to 1.22 x 1073).
Therefore, we chose the former network architecture for its comparable

accuracy and higher computational efficiency. Starting from five distinct
random seeds, the NN is trained over four runs, with each consisting
of 50,000 epochs. For a given seed, the first training run begins with
randomly initialized network parameters, i.e., weights and biases. The
identified parameters with the lowest training loss are then selected as

N. Talebi, K.A. Meyer and M. Ekh

3.0

1.5

1.5

0.0
=

-1.5
15
3.0
1000
/ZJ 3.0
7
4 3.0
/%% 05 10 v \“70\
Y 1000 00 N-Y€
(a)
20l ‘ ‘ 0.54
0.53
— 14+ g
— p_u):
:J% 0.52T
° =
0.8F o
e e T 0.51
02— : : J 0.50
750 800 850 900
NUH [MPa]

(b)

Fig. 4. (a) Training data for the two-input models and (b) training data for an
interval of 0.500 % < ¥~'¢? <0.541 %.

initial guesses for the subsequent training run. The goal of this approach
is to improve the chance that the optimization algorithm finds the global
optimum. The neural network model corresponding to the seed that
gives the lowest training loss is selected as the best model. In each
training run, the network parameters are identified using the gradient-
based Rectified Adam optimization algorithm [32] (RAdam) in the
open-source PyTorch library [33] with a learning rate of 0.002, and the
gradients are computed using the backpropagation algorithm. Although
these hyperparameters, obtained using trial-and-error, gave satisfactory
training performance, more efficient training may be achievable via
automatic hyperparameter tuning; see [34].

5.2. Symbolic Regression (SR)

To circumvent the black-box nature of NN-based constitutive models,
we investigate whether the neural network can be replaced by a human-
interpretable mathematical expression that best fits the given data using
SR. This method does not require a prior assumption of functional forms,
in contrast to conventional regression methods adopted in constitutive
modeling. Instead, only building blocks such as basic mathematical op-
erators, functions, and numerical constants need to be defined [35]. In
addition, constraints to regulate the complexity of the resulting expres-
sions can be specified. In this contribution, we employ the open-source
PySR library [36], which implements a multi-population evolutionary

Computers and Structures 321 (2026) 108086

Internal node nary operator

()
(+] ©2)
@ U
Binary operator
@ Constant
Q@\ Variable

Terminal node

Fig. 5. Expression tree of the symbolic equation (0.4 x +exp(15.5 y—16.5))+0.5.

O
~
o
2
2
S
=z
I
~

Fig. 6. Mutation and cross-over operations applied to the candidate solutions.

algorithm based on the stochastic optimization method of genetic
programming.

The genetic-programming-based SR [36] starts with populations of
randomly generated candidate solutions, constructed using predefined
building blocks. The candidate solutions are represented as expression
trees with internal nodes (mathematical operations or functions) and ter-
minal nodes (variables or constants) [24,35]. Fig. 5 shows an example
of the expression tree of the candidate solution (—0.4x + exp(15.5y —
16.5)) + 0.5. The expression tree consists of binary operators (+, —, X),
a unary operator (exp), variables (x, y), and numerical constants. The
performance of each candidate solution in a population is evaluated ac-
cording to how well it fits the target values. These populations evolve
in parallel through a series of operations: mutation (Fig. 6), which ran-
domly changes a candidate solution by, e.g., adding a node or mutating
an operator, crossover (Fig. 6), which combines some information from
two candidate solutions, simplification of mathematical expressions, and
optimization of constants. These operations generate new sets of candi-
date solutions with improved fitness, and the process continues until a
defined stopping criterion is satisfied.

In the present study, the considered binary operators are addition,
subtraction, and multiplication, and the unary operators are chosen to
be similar to the activation functions in the NN models, namely exponen-
tial (exp), hyperbolic tangent (tanh), and the Macaulay bracket ({s)). For
parameter identification within a given expression, the gradient-based
BFGS optimization algorithm is employed. A total of 24 populations
are considered, each with 5000 iterations. The SR process terminates
when the total number of iterations across all populations is reached.
The result of the SR is a Pareto front of analytical expressions with

N. Talebi, K.A. Meyer and M. Ekh

different complexities and resulting training losses. We assume the
default expression complexity measure in PySR, the number of nodes
in a symbolic expression tree, with a maximum complexity of 30.

6. Results and discussions

In this section, we present the results of the two-input and three-input
NN, as well as SR models. In particular, we compare the corresponding
training and validation losses and evaluate the performance of the cycle-
domain material model when embedding the NN and SR models as the
per-cycle evolution equations for plastic strains in the material model
formulation.

6.1. Neural Networks (NN)

6.1.1. Two-input NN

The training procedure described in Section 5.1 resulted in the train-
ing and validation loss evolutions for the two-input NN presented in
Fig. 7 (left). The minimum normalized training loss, L.;,, decreased
from 9.6 x 107> in the first training run to 5.4 x 1073 in the last run;
however, after the second run, no noticeable improvement can be ob-
served, with the loss slightly decreasing from 5.9 x 10~ in the third run
to 5.4 x 1073 in the last run, see Fig. 7 (right). In contrast, the minimum
Lirain for the three-input NN continued decreasing until the last run, see
Section 6.1.2. The corresponding normalized validation losses, L4,
are 7.3x 1073 in the first run and 4.4 x 107> in the last run. This indicates
no sign of overfitting, as can be observed in Fig. 7 (left). Additionally,
the normalized test 10ss, Leg, 0f 5.7x 1075 in the last training run, shows
a good performance of the model on unseen data. Fig. 8 illustrates the
values of def1 /dN along the z—axis obtained by the trained NN, and the
colors represent relative errors with respect to the maximum value of all
output features considering training, validation, and test data. Overall,
there is good agreement between the surface-like distribution shown in
Fig. 4(a) and the one predicted by the NN. However, in regions with
lower data density and higher deviation from the surface-like trend, the
relative errors in de]]J1 /dN are higher. As discussed in Section 5 and
exemplified in Fig. 4(b), the NN model with two inputs results in an
approximate solution due to the presence of one-to-many mappings.
Therefore, we investigate, in the next section, whether informing the
network with the third input ¥~!6,, can lead to an enhancement of the
NN performance.

6.1.2. Three-input NN

Fig. 9 (left) presents the evolution of the training and validation
losses for the three-input NN. Retraining the NN reduced the minimum
Lyrgin from 3.6 x 1075 in the first training run, to 3.0x 10~ in the second,
2.4%1077 in the third, and 1.8x 107 in the last run, see Fig. 9 (right). The

10
10°
Z10°
-4
10 —— Training loss
—— Validation loss E
10° ’
10 100 100 100 100 10

Epochs

Computers and Structures 321 (2026) 108086

15.0
3.0
12.5
155 =
10.0 EC%
—_— <
X g
ad 0.0 :
s o
~ <]
15 £
50 =
(5]
0~
-3.0
1000 ’s
A
o}{ o 25 3.0 o
% -500 1.5 = :

1.0 A
Y 1000 00 05 Y
Fig. 8. Relative error in de‘]’l /dN from the two-input NN model considering
training data.

corresponding L,;;q and L. in the last run are 1.7x 1075 and 2.1x 1075,
respectively. A comparison between the three-input and two-input NNs
in the last training run shows that inclusion of the additional input fea-
ture, ¥~16,,, has reduced the training loss by approximately 66 %, the
validation loss by 61 %, and the test loss by 63 %. Moreover, a compari-
son of the validation losses indicates that expanding the input features of
the network has not resulted in overfitting, and the test loss comparison
implies improved generalizability.

To assess the performance of the cycle-domain material model, we
embed the trained NN, f,,, as the per-cycle evolution equation in the
formulation of the cycle-domain model; see Egs. (6) and (7) in Section 3.
As mentioned in Section 3, we simulate the first half loading cycle
with the time-domain material model, after which the cycle-domain
model predicts ¢,; and ef] for the following loading cycles. Fig. 10(a)
and (b) present predicted stress and plastic strain values for a case se-
lected among test datasets with variable strain ranges over 100 cycles,
using the two- and three-input NNs. Overall, the predictions from the
cycle-domain model show good agreement with the original data gen-
erated by the accurate time-domain material model, considering both
neural network models. The mean absolute error in ¢, is 15.7 MPa and
10.2 MPa for the two- and three-input NN models, respectively. The
corresponding relative errors in efl (with respect to the reference value
from the time-domain model) after 100 cycles are 0.007 % and 0.002 %.

Run 1
Run 2
Run 3
Run 4

Z10° “"‘W“ ——

—— Training loss

10 5% 10* 10° 2 % 10°

Epochs

Fig. 7. Training and validation loss evolutions for the two-input NN model (left). A zoomed-in view of the former between epochs 4 x 10* and 2 x 10° is shown in the
right figure. The vertical dashed lines correspond to the epoch number after each training run.

N. Talebi, K.A. Meyer and M. Ekh Computers and Structures 321 (2026) 108086

10" 10° ;
— (gl o <
=1 =1 =] =]
- & & & 2
10 |
» 3 % - i
210 210
—4
10 — Training loss
—— Validation loss P R Training loss
-5 [_
10 s 5 i - .
10" 100 100 100 10t 10 N T 10° 2% 10°
Epochs Epochs

Fig. 9. Training and validation loss evolutions for the three-input NN model (left). A zoomed-in view of the former between epochs 4 x 10* and 2 x 10° is shown in
the right figure. The vertical dashed lines correspond to the epoch number after each training run.

Two-input NN model

0.00— 20 40 60 80 100
Cycle number

(a)

Three-input NN model

40 60 80 100
Cycle number

(b)

Fig. 10. Stress versus cycle number and plastic strain versus cycle number for a test dataset under loading with variable strain ranges over 100 loading cycles, when
using (a) the two-input NN model and (b) the three-input NN model in the cycle-domain model formulation. Circles and red plus signs correspond to the results from
the time-domain model and the cycle-domain model, respectively.

N. Talebi, K.A. Meyer and M. Ekh

2.5

2.00

1.50

en1 [7]

1.00y ,

050 °

©000000000000000000000000

660606000000000000000000000000000060000000

== J

0.00

1 10 20 30 40

Cycle number
(a)

Computers and Structures 321 (2026) 108086

0.10

0.08

0009G00000000000000000000000000000000000

000000

0.06

TG00000000000000000000000000

00

0.04

er1 [%]

0CUTTTUOT000006000000000000000000000050000

0.02

0Q00000000000000000000000000000000000000

©00

0000000

0.00 2

©00000000000000000000000000000000000

002515 20 30 40
Cycle number

(b)

Fig. 11. Plastic strain evolutions for (a) 25 training datasets under constant strain range loadings and (b) a subset of 10 datasets from (a) that exhibit elastic shakedown
from the second loading cycle. Circles and solid lines correspond to the results from the time-domain model and the cycle-domain model employing the three-input

NN, respectively. Only the first 40 loading cycles are shown.

Although there is overestimation or underestimation in ¢, in some load-
ing cycles, these errors have not led to accumulated error in ef] over
100 cycles. Additional results for selected cases among the training and
validation datasets are provided in Appendix A. It is worth mentioning
that the number of cycle increments in the cycle-domain model over 99
loading cycles is 98, in contrast to 39,600 time increments required by
the time-domain model. A comparative assessment of the different ML
models adopted in this study is presented in Section 6.3.

Considering the datasets under constant strain ranges, Fig. 11(a)
presents the evolution of plastic strains for 25 training datasets with
strain ranges from 0.2 % to 2.7 %. Since plastic strain saturates after a
few cycles, for illustration purposes, only the first 40 cycles are shown.
The cycle-domain model performs very well in predicting plastic strain
evolutions for cases with higher strain ranges (that lead to higher plastic
strains). However, when focusing on those datasets where elastic shake-
down occurs after the first loading cycle, as shown in Fig. 11(b), the
model’s accuracy in predicting the corresponding plastic strain evolu-
tions decreases. Nevertheless, in all cases, the plastic strains stabilize
after a few cycles. These findings highlight the importance of consider-
ing a broad range of material responses in training datasets when using
ML-based approaches in constitutive modeling to better understand and
address the limitations of such models. Despite the limitation of the

1000

model under certain loading scenarios with constant strain ranges, it has
shown satisfactory performance for variable strain range loadings. These
are important in applications such as railway rails, as they are subjected
to a wide range of vehicles with different axle loads, nominal/worn
wheel profiles, and speeds [37].

To evaluate the extrapolation capability of the NN-based cycle-
domain material model, we have simulated 5000 loading cycles with
randomly generated variable strain ranges. Fig. 12, which presents only
the last 100 cycles, demonstrates good agreement between the results
from the reference time-domain and cycle-domain material model. The
mean absolute error in o, after 5000 cycles is 10.1 MPa, showing
satisfactory extrapolation behavior of the cycle-domain model employ-
ing the three-input NN as the per-cycle evolution law.

6.2. Symbolic Regression (SR)

In this section, we present and discuss the results of using SR to find
the evolution equation for plastic strains in the cycle-domain material
model. As shown in Section 6.1, the performance of the three-input NN
was better than that of the two-input NN. Thus, we will only present
results for SR using three inputs: Noy;, V!¢, and N~'6,,. For this re-
gression task, the unary operators have been introduced sequentially:

500

0

o011 [MPa]

-500

-1000

4900 4925

4950 4975 5000

Cycle number

Fig. 12. Stress versus cycle number over 5000 loading cycles when employing the three-input NN in the cycle-domain model formulation. Only the last 100 loading
cycles are shown. Circles and red plus signs correspond to the results from the time-domain model and the cycle-domain model, respectively.

N. Talebi, K.A. Meyer and M. Ekh

10
—+— Training loss from SR
. —+— Validation loss from SR
10 "\ - Two-input NN
------ Three-input NN
107
—
10"
oS-]
1 10 20 30
Complexity

Fig. 13. Pareto front from PySR. The dashed gray and green lines show the
minimum normalized training losses in the last training runs from the two- and
three-input NN models, respectively.

first the exponential function, followed by the hyperbolic tangent, and
finally the Macaulay bracket. Although the first and the third cases
resulted in symbolic expressions with relatively low normalized train-
ing losses of 6.68 x 10~ and 6.01 x 107>, respectively (considering the
most complex equations), the second case with a slightly lower loss of
5.76 x 107> has been selected for further analysis and discussion in this
section.

Following the procedure described in Section 5.2, Fig. 13 presents
normalized training and validation losses (L, and L4, respectively)
against the complexity of the symbolic expressions discovered by PySR.
As expected, increasing equation complexity leads to improvements in
both losses. However, beyond the complexity level of 28, a plateau ap-
pears to be emerging. Furthermore, there is no indication of overfitting,
even at higher levels of complexity. It can be observed that the perfor-
mance of the three-input SR model approaches that of the two-input NN,
but not the three-input NN.

Among the discovered analytical expressions, five equations with dif-
ferent complexities are selected for further analysis and presented in
Table 2. The first three equations with complexity levels of 6, 12, and
20 do not include the third input variable Y~!5,,, in contrast to the
more complex equations that achieve lower values of Ly, and Lyaiq-

Table 2

Computers and Structures 321 (2026) 108086

A comparison between the results of the NN models and symbolic ex-
pressions shows that the training and validation losses of the equations
are higher than those of the three-input NN model (1.8 x 1075 and
1.7 x 1073, respectively), while they approximately converge to those
of the two-input NN model (5.4 x 10~ and 4.4 x 107).

We have embedded the equations presented in Table 2 into the for-
mulation of the cycle-domain material model following the procedure
described in Section 6.1. Fig. 14 presents a comparison of the predicted
o1, by the four symbolic expressions, considering a training dataset.
The mean absolute errors in ¢;; for the equations with complexity lev-
els of 12, 20, 26, and 30 are 44.4 MPa, 26.8 MPa, 19.1 MPa, and
10.9 MPa, respectively, showing more accurate predictions with increas-
ing complexity at the expense of reduced interpretability. Note that the
corresponding result from the simplest equation is excluded from Fig. 14,
due to its high error of 193.1 MPa in o,;.

We have selected the most accurate symbolic expression (with a com-
plexity level of 30) as the per-cycle evolution equation for plastic strains
in the cycle-domain material model and presented its predictions for o,
and efl for the test dataset in Fig. 15. A reasonably good fit to the results
from the time-domain model can be observed. The mean absolute error
in o, is 16.6 MPa, and the relative error in efl after 100 cycles is 0.018 %.
A similar conclusion to that in Section 6.1.2 can be drawn that the er-
rors in 6, did not noticeably influence the predicted 61131 values after 100
cycles. Table 3 summarizes the errors in ¢;; and e?l from the different
ML models for the considered test dataset, showing a reasonably good
performance from the NN-based and the SR-based cycle-domain mod-
els. Further discussion regarding the performance of the ML models is
presented in Section 6.3. Supplementary results for the selected training
and validation datasets are provided in Appendix A.

Regarding the extrapolation performance of the SR-based cycle-
domain model, the simulation of 5000 cycles has resulted in a mean
absolute error of 14.8 MPa in ¢;. This error is comparable to that of the
NN model and shows that the SR-based cycle-domain model extrapolates
similarly well beyond the training regime.

6.3. Comparison of different ML models

According to Table 4, presenting the normalized errors for the
ML models evaluated in this paper, the three-input NN model, with
199 parameters, has the lowest training, validation, and test losses.
Moreover, the SR model with complexity 30 performs similarly to the
two-input NN. A comparison of the errors in the predicted o, for the

Discovered symbolic expressions, along with their corresponding complexity levels, normalized training losses (L), and normalized validation losses (L,,;4)-
Ng,,, ¥-1¢?,, and V-6, represent the min-max normalized No,,, "'}, and Vs, ,, respectively.

Symbolic expression

Complexity L

train valid
0.24 (exp(¥éy) = Ve) 6 77x107 63x107
(—046 N-1gP +exp (15.52N6), — 1652)) +0.50 12 13x107 12x1073
exp (167.37V,, — 168.90) — exp(—8.75 x 107 exp (8.02V 5y,)) —0.59 tanh (V-1¢P, — 1.00) 20 38x10™ 38x107*
exp (167.38 V8, — 168.90) + 1.93 X 107* exp (7.16 ¥ 8y,) +0.47 —0.09 V=15, (N~16), + V1P) exp (N-1eP)) 26 7.1x10° 72x107°
<exp(167A36N&“ - 168.91) +0A46—tanh(lanh (tanh(0.0S exp (2""16"")(”"&“)2)>>>+ 123107 exp(exp(”&ll + 1.04)) 30 58x10° 57x107°

10

N. Talebi, K.A. Meyer and M. Ekh

Computers and Structures 321 (2026) 108086

1000 Complexity 12
_. 500 ° M 0 ° I -
“ (o] O
e ° 0
= 0 b
S -500 !

-1000

1000— =
_ 5000 ¢ i o iRk
m (o] D
£ | . & o %
= '
S -500

-1000

1000 Complexity 26
—, 5000 | ° 1 °
_ J
M v
S 0

& -500 f

21000 . '

1000 ——
—, 5000 ¢ ’ \ °
_ /
a9 P
z 0 "

& -500 . y

-1000 o

i 30 40 60 80 100

Cycle number

Fig. 14. Stress versus cycle number from symbolic expressions with different complexities according to Table 2, considering a training dataset. Circles and red plus
signs correspond to the results from the time-domain model and the cycle-domain model, respectively.

ML models is provided in Table 5. The average mean absolute errors
over 100 loading cycles, considering all the training, validation, and
test datasets under variable strain range loadings, are noticeably re-
duced, from the two-input to the three-input NN model. Additionally,
the three-input symbolic expression shows similar errors to those from
the two-input NN, but with higher minimum values of the mean absolute
errors.

In general, the results show the potential of the evaluated ML models,
i.e., FFNNs and SR, as tools for formulating the per-cycle evolution law
of plastic strains in the cycle-domain plasticity model. However, each
approach has its limitations. In particular, as mentioned in Section 1,
FFNNs lead to uninterpretable models, where the influence of input fea-
tures or model parameters on the outputs can become highly difficult to

11

explain in networks with multivariate inputs [24] and complex archi-
tectures. Conversely, SR achieves explicit analytical equations, which
can allow for analyzing the model behavior. However, there is a trade-
off between interpretability and accuracy, but the resulting symbolic
expressions are more computationally efficient compared to FFNNs by
requiring fewer floating-point operations. Obtaining a well-performing
symbolic expression, however, requires providing suitable unary and/or
binary operators (and/or constraints on them) based on users’ prior
knowledge or based on the distribution of training data, despite the
advantage of not requiring a predefined functional form. Further, the
discovered expressions should be rigorously analyzed to ensure that
they lead to reliable results when employed in material point or FE
simulations.

N. Talebi, K.A. Meyer and M. Ekh

Computers and Structures 321 (2026) 108086

1000——

500
o | |

011 [MPa]

5000 ¢ L |

Three-input symbolic expression

-1000

0.02

ern[-]

0.01

0.00—

20 40

60 80 100

Cycle number

Fig. 15. Stress versus cycle number and plastic strain versus cycle number for a test dataset under loading with variable strain ranges over 100 loading cycles, when
using the three-input symbolic expression with complexity level of 30 in the cycle-domain model formulation. Circles and red plus signs correspond to the results

from the time-domain model and the cycle-domain model, respectively.

Table 3
Mean absolute error (MAE) in ¢,, over 100 loading cycles and relative
error (RE) in eﬁ’l in the last loading cycle for the considered test dataset.

Model MAE in o;; [MPa] ~ REin €], [%] (x1072)
Jfan (2 inputs) 15.7 0.7
fun (3 inputs) 10.2 0.2
fo (3 inputs, complexity 30) 16.6 1.8

Table 4
Normalized training, validation, and test losses (Lypin> Lyaria> @Nd Liegts
respectively) for different ML models.

Model Liain (X1075) Lygiq (X107%) Lygg (x1075)
fan (2 inputs) 5.4 4.4 5.7
fun (3 inputs) 1.8 1.7 2.1
fs (3 inputs, complexity 30) 5.8 5.7 6.1

Table 5
Error in o, for different ML models used in the cycle-domain material
model, considering all training, validation, and test datasets with vari-
able strain range loadings over 100 loading cycles. The values denote the
mean (minimum, maximum) of the mean absolute errors computed for each
dataset.

Model Train [MPa]

15.1 (5.6, 36.9)
10.2 (5.1, 19.5)
15.0 (9.0, 23.0)

Validation [MPa] Test [MPa]

15.6 (7.4, 24.9)
10.5 (6.1, 20.6)
15.1 (11.3, 21.1)

14.9 (7.7, 27.0)
10.5 (6.7, 18.0)
16.2 (11.2, 25.5)

fan (2 inputs)
fan (3 inputs)
fs (3 inputs,
complexity 30)

7. Concluding remarks

In this contribution, we have investigated the potential of using ML
to formulate the per-cycle evolution equation for plastic strains in cycle-
domain material models. Compared to traditional time-domain models,
these models aim to reduce the computational time of cyclic simula-
tions when involving many loading cycles, such as FE simulations of
many wheel over-rollings in railway mechanics. In the proposed frame-
work, we have enforced our knowledge from constitutive modeling for
elasticity and have employed FFNNs with different inputs to formulate
the evolution equation, in addition to SR as an ML tool for equation

12

discovery. To generate training, validation, and test data, cyclic pul-
sating uniaxial stress loadings with constant and variable strain ranges
over a load sequence of 100 cycles using a standard time-domain mate-
rial model have been considered. The proposed ML-based cycle-domain
model predicts the peak stress and the corresponding plastic strain in
each loading cycle.

The NN model with more input features resulted in lower training,
validation, and test losses, although all the ML tools demonstrated good
capability. Moreover, when embedded in the cycle-domain model for-
mulation as the evolution equation, the extended-input NN provided
better agreement with the reference time-domain model. Although the
discovered symbolic expressions are human-readable compared to the
NN models, their interpretability decreases with increasing accuracy.
Despite this, both ML tools performed effectively when extrapolated to
5000 loading cycles, which is more than 50 times the number of cycles
in the training data.

CRediT authorship contribution statement

Nasrin Talebi: Writing — original draft, Visualization, Validation,
Software, Methodology, Investigation, Formal analysis, Data curation,
Conceptualization. Knut Andreas Meyer: Writing — review & editing,
Supervision, Methodology, Data curation, Conceptualization. Magnus
Ekh: Writing — review & editing, Supervision, Project administration,
Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work is part of the ongoing activities within the National
Center of Excellence CHARMEC (www.chalmers.se/charmec). Parts of
the study have been funded by Europe’s Rail project IAM4RAIL under
grant agreement No. 101101966. The majority of the numerical simula-
tions in this study were enabled by resources provided by the National
Academic Infrastructure for Supercomputing in Sweden (NAISS) at
Chalmers Center for Computational Science and Engineering (C3SE)
partially funded by the Swedish Research Council through a grant
agreement No. 2022-06725.

www.chalmers.se/charmec
https://doi.org/10.13039/501100004359
https://doi.org/10.13039/501100004359

N. Talebi, K.A. Meyer and M. Ekh Computers and Structures 321 (2026) 108086

Appendix A. Cycle-domain performance evaluation considering training and validation datasets

This section presents the predicted ¢, and efl from the evaluated ML-based cycle-domain models for cases selected among the training datasets
(Fig. A.16) and validation datasets (Fig. A.17).

0.00— 20 40 60 80 100
Cycle number

(a) Results from the two-input NN model

0.00— 20 40 60 80 100
Cycle number

(b) Results from the three-input NN model

011 [MPa
(=)

-500 1

-1000

0.02

< 0.01

&b & ¥ ¥ ° b d s & N &) O

0.00— 20 40 60 80 100
Cycle number

(c) Results from the three-input symbolic expression with complexity level of 30

Fig. A.16. Stress versus cycle number and plastic strain versus cycle number for a training dataset under loading with variable strain ranges over 100 loading cycles,
when using different ML models in the cycle-domain model formulation. Circles and red plus signs correspond to the results from the time-domain model and the
cycle-domain model, respectively.

13

N. Talebi, K.A. Meyer and M. Ekh Computers and Structures 321 (2026) 108086

1000 ° s ® . oo ® ¢ & » ©
500 RIAvATRE " [|[|f

0.00— 20 40 60 80 100
Cycle number

(a) Results from the two-input NN model

0.00— 20 40 60 80 100
Cycle number

(b) Results from the three-input NN model

6® O $% o P Pe® P o R 50 ® Po ooe

&0 o b ¢ o X & o o)) & O $ o &

0.00— 20 40 60 80 100
Cycle number

(c) Results from the three-input symbolic expression with complexity level of 30

Fig. A.17. Stress versus cycle number and plastic strain versus cycle number for a validation dataset under loading with variable strain ranges over 100 loading
cycles, when using different ML models in the cycle-domain model formulation. Circles and red plus signs correspond to the results from the time-domain model and
the cycle-domain model, respectively.

14

N. Talebi, K.A. Meyer and M. Ekh

Data availability

Data will be made available on request.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Leidermark D, Simonsson K. Procedures for handling computationally heavy
cyclic load cases with application to a disc alloy material. Mater High Temp
2019;36(5):447-58. https://doi.org/10.1080/09603409.2019.1631587
Johansson G, Ekh M. On the modeling of large ratcheting strains with large
time increments. Eng Comput 2007;24(3):221-36. https://doi.org/10.1108/
02644400710734945

Brommesson R, Ekh M, Horngvist M. Correlation between crack length and load
drop for low-cycle fatigue crack growth in Ti-6242. Int J Fatigue 2015;81:1-9.
https://doi.org/10.1016/j.ijfatigue.2015.07.006

Suiker ASJ, de Borst R. A numerical model for the cyclic deterioration of railway
tracks. Int J Numer Methods Eng 2003;57(4):441-70. https://doi.org/10.1002/
nme.683

Li X, Ekh M, Nielsen JCO. Three-dimensional modelling of differential railway track
settlement using a cycle domain constitutive model. Int J Numer Anal Methods
Geomech 2016;40(12):1758-70. https://doi.org/10.1002/nag.2515

Kobler J, Magino N, Andrd H, Welschinger F, Miiller R, Schneider M. A com-
putational multi-scale model for the stiffness degradation of short-fiber rein-
forced plastics subjected to fatigue loading. Comput Methods Appl Mech Eng
2021;373:113522. https://doi.org/10.1016/j.cma.2020.113522

Magino N, Kébler J, Andrd H, Welschinger F, Miiller R, Schneider M. A space-
time upscaling technique for modeling high-cycle fatigue-damage of short-fiber
reinforced composites. Compos Sci Technol 2022;222:109340. https://doi.org/10.
1016/j.compscitech.2022.109340

Fuhg JN, Anantha Padmanabha G, Bouklas N, Bahmani B, Sun W, Vlassis NN,
Flaschel M, Carrara P, De Lorenzis L. A review on data-driven constitutive laws for
solids. Arch Comput Methods Eng 2024:1-43. https://doi.org/10.1007/s11831-
024-10196-2

Ali U, Muhammad W, Brahme A, Skiba O, Inal K. Application of artificial neural net-
works in micromechanics for polycrystalline metals. Int J Plast 2019;120:205-19.
https://doi.org/10.1016/j.ijplas.2019.05.001

Gorji MB, Mozaffar M, Heidenreich JN, Cao J, Mohr D. On the potential of recur-
rent neural networks for modeling path dependent plasticity. J Mech Phys Solids
2020;143:103972. https://doi.org/10.1016/j.jmps.2020.103972

Linka K, Hillgértner M, Abdolazizi KP, Aydin RC, Itskov M, Cyron CJ. Constitutive
artificial neural networks: a fast and general approach to predictive data-driven
constitutive modeling by deep learning. J Comput Phys 2021;429:110010. https:
//doi.org/10.1016/j.jcp.2020.110010

Rosenkranz M, Kalina KA, Brummund J, Késtner M. A comparative study on differ-
ent neural network architectures to model inelasticity. Int J Numer Methods Eng
2023;124(21):4802-40. https://doi.org/10.1002/nme.7319

Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: a deep
learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. J Comput Phys 2019;378:686-707. https://doi.org/
10.1016/j.jcp.2018.10.045

Abueidda DW, Lu Q, Koric S. Meshless physics-informed deep learning
method for three-dimensional solid mechanics. Int J Numer Methods Eng
2021;122(23):7182-201. https://doi.org/10.1002/nme.6828

Haghighat E, Abouali S, Vaziri R. Constitutive model characterization and discov-
ery using physics-informed deep learning. Eng Appl Artif Intell 2023;120:105828.
https://doi.org/10.1016/j.engappai.2023.105828

Meyer KA, Ekre F. Thermodynamically consistent neural network plasticity mod-
eling and discovery of evolution laws. J Mech Phys Solids 2023;180:105416.
https://doi.org/10.1016/j.jmps.2023.105416

15

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]
[33]

[34]

[35]
[36]

[37]

Computers and Structures 321 (2026) 108086

Fuhg JN, Hamel CM, Johnson K, Jones R, Bouklas N. Modular machine learning-
based elastoplasticity: generalization in the context of limited data. Comput
Methods Appl Mech Eng 2023;407:115930. https://doi.org/10.1016/j.cma.2023.
115930

Jadoon AA, Meyer KA, Fuhg JN. Automated model discovery of finite strain
elastoplasticity from uniaxial experiments. Comput Methods Appl Mech Eng
2025;435:117653. https://doi.org/10.1016/j.cma.2024.117653

Flaschel M, Kumar S, De Lorenzis L. Unsupervised discovery of interpretable hy-
perelastic constitutive laws. Comput Methods Appl Mech Eng 2021;381:113852.
https://doi.org/10.1016/j.cma.2021.113852

Flaschel M, Kumar S, De Lorenzis L. Automated discovery of generalized standard
material models with Euclid. Comput Methods Appl Mech Eng 2023;405:115867.
https://doi.org/10.1016/j.cma.2022.115867

Versino D, Tonda A, Bronkhorst CA. Data driven modeling of plastic deformation.
Comput Methods Appl Mech Eng 2017;318:981-1004. https://doi.org/10.1016/j.
cma.2017.02.016

Bomarito GF, Townsend TS, Stewart KM, Esham KV, Emery JM, Hochhalter JD.
Development of interpretable, data-driven plasticity models with symbolic re-
gression. Comput Struct 2021;252:106557. https://doi.org/10.1016/j.compstruc.
2021.106557

Abdusalamov R, Hillgédrtner M, Itskov M. Automatic generation of interpretable
hyperelastic material models by symbolic regression. Int J Numer Methods Eng
2023;124(9):2093-104. https://doi.org/10.1002/nme.7203

Bahmani B, Suh HS, Sun W. Discovering interpretable elastoplasticity models via
the neural polynomial method enabled symbolic regressions. Comput Methods
Appl Mech Eng 2024;422:116827. https://doi.org/10.1016/j.cma.2024.116827
Bari S, Hassan T. An advancement in cyclic plasticity modeling for multiaxial ratch-
eting simulation. Int J Plast 2002;18(7):873-94. https://doi.org/10.1016/50749-
6419(01)00012-2

Simo JC, Hughes TJR. Computational inelasticity. Springer; 1998. https://doi.org/
10.1007/b98904

Bernasconi A, Filippini M, Foletti S, Vaudo D. Multiaxial fatigue of a railway wheel
steel under non-proportional loading. Int J Fatigue 2006;28(5-6):663-72. https:
//doi.org/10.1016/j.ijfatigue.2005.07.045

Armstrong PJ, Frederick CO, et al. A mathematical representation of the multiaxial
Bauschinger effect, vol. 731. Berkeley Nuclear Laboratories Berkeley, CA; 1966.
https://doi.org/10.3184/096034007x207589

Talebi N, Andersson B, Ekh M, Meyer KA. Influence of a highly deformed surface
layer on RCF predictions for rails in service. Wear 2025:206173. https://doi.org/
10.1016/j.wear.2025.206173

Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa MA. Deep learning
predicts path-dependent plasticity. Proc Natl Acad Sci 2019;116(52):26414-20.
https://doi.org/10.1073/pnas.1911815116

Brunton SL, Kutz JN. Neural networks and deep learning. Cambridge University
Press; 2019. pp. 195-226. https://doi.org/10.1017,/9781108380690.007

Liu L, Jiang H, He P, Chen W, Liu X, Gao J, Han J. On the variance of the adaptive
learning rate and beyond [arXiv preprint] arXiv:1908.03265. 2019.

Paszke A. PyTorch: an imperative style, high-performance deep learning library
arXiv:1912.01703.[arXiv preprint] 2019.

Feurer M, Hutter F. Hyperparameter optimization. In: Automated machine learn-
ing: methods, systems, challenges. Springer International Publishing Cham; 2019.
pp. 3-33. https://doi.org/10.1007,/978-3-030-05318-5

Wang Y, Wagner N, Rondinelli JM. Symbolic regression in materials science. MRS
Commun 2019;9(3):793-805. https://doi.org/10.1557/mrc.2019.85

Cranmer M. Interpretable machine learning for science with PySR and
SymbolicRegression.jl arXiv:2305.01582.[arXiv preprint] 2023.

Magel EE. Rolling contact fatigue: a comprehensive review, Tech. rep., US
Department of Transportation, Federal Railroad Administration, 132 p. (2011).

https://doi.org/10.1080/09603409.2019.1631587
https://doi.org/10.1108/02644400710734945
https://doi.org/10.1108/02644400710734945
https://doi.org/10.1016/j.ijfatigue.2015.07.006
https://doi.org/10.1002/nme.683
https://doi.org/10.1002/nme.683
https://doi.org/10.1002/nag.2515
https://doi.org/10.1016/j.cma.2020.113522
https://doi.org/10.1016/j.compscitech.2022.109340
https://doi.org/10.1016/j.compscitech.2022.109340
https://doi.org/10.1007/s11831-024-10196-2
https://doi.org/10.1007/s11831-024-10196-2
https://doi.org/10.1016/j.ijplas.2019.05.001
https://doi.org/10.1016/j.jmps.2020.103972
https://doi.org/10.1016/j.jcp.2020.110010
https://doi.org/10.1016/j.jcp.2020.110010
https://doi.org/10.1002/nme.7319
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1002/nme.6828
https://doi.org/10.1016/j.engappai.2023.105828
https://doi.org/10.1016/j.jmps.2023.105416
https://doi.org/10.1016/j.cma.2023.115930
https://doi.org/10.1016/j.cma.2023.115930
https://doi.org/10.1016/j.cma.2024.117653
https://doi.org/10.1016/j.cma.2021.113852
https://doi.org/10.1016/j.cma.2022.115867
https://doi.org/10.1016/j.cma.2017.02.016
https://doi.org/10.1016/j.cma.2017.02.016
https://doi.org/10.1016/j.compstruc.2021.106557
https://doi.org/10.1016/j.compstruc.2021.106557
https://doi.org/10.1002/nme.7203
https://doi.org/10.1016/j.cma.2024.116827
https://doi.org/10.1016/S0749-6419(01)00012-2
https://doi.org/10.1016/S0749-6419(01)00012-2
https://doi.org/10.1007/b98904
https://doi.org/10.1007/b98904
https://doi.org/10.1016/j.ijfatigue.2005.07.045
https://doi.org/10.1016/j.ijfatigue.2005.07.045
https://doi.org/10.3184/096034007x207589
https://doi.org/10.1016/j.wear.2025.206173
https://doi.org/10.1016/j.wear.2025.206173
https://doi.org/10.1073/pnas.1911815116
https://doi.org/10.1017/9781108380690.007
http://arxiv.org/abs/1908.03265
http://arxiv.org/abs/1912.01703
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1557/mrc.2019.85
http://arxiv.org/abs/2305.01582
http://refhub.elsevier.com/S0045-7949(25)00444-4/sbr0185
http://refhub.elsevier.com/S0045-7949(25)00444-4/sbr0185

	Cycle-domain plasticity modeling using neural networks and symbolic regression
	1 Introduction
	2 Standard formulation of time-domain plasticity models
	3 Cycle-domain material model
	4 Data generation
	4.1 Reference time-domain cyclic plasticity model
	4.2 Training, validation, and test data generation

	5 Machine Learning (ML) models
	5.1 Feed-Forward Neural Network (FFNN)
	5.2 Symbolic Regression (SR)

	6 Results and discussions
	6.1 Neural Networks (NN)
	6.1.1 Two-input NN
	6.1.2 Three-input NN

	6.2 Symbolic Regression (SR)
	6.3 Comparison of different ML models

	7 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Cycle-domain performance evaluation considering training and validation datasets
	Data availability
	References

