
Cycle-domain plasticity modeling using neural networks and symbolic
regression

Downloaded from: https://research.chalmers.se, 2026-01-20 14:03 UTC

Citation for the original published paper (version of record):
Talebi, N., Meyer, K., Ekh, M. (2026). Cycle-domain plasticity modeling using neural networks and
symbolic regression. Computers and Structures, 321.
http://dx.doi.org/10.1016/j.compstruc.2025.108086

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier.com/locate/cas

Cycle-domain plasticity modeling using neural networks and symbolic

regression

Nasrin Talebi∗, Knut Andreas Meyer, Magnus Ekh

Division of Material and Computational Mechanics, Department of Industrial and Materials Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden

A R T I C L E I N F O

Keywords:

Cycle-domain plasticity modeling

Machine learning

Data-driven modeling

Neural networks

Symbolic regression

A B S T R A C T

Simulation of many loading cycles with traditional time-domain material models, requiring discretization of each

cycle with several time steps, can result in high computational cost. One effective approach to speed up cyclic sim­

ulations is employing cycle-domain material models. Finite element simulations of rails subjected to many wheel

passages are a relevant application of such models. Proposing a per-cycle evolution equation for plastic strains

in cycle-domain models is, however, a challenge. To address this, we investigate the feasibility and accuracy of

using machine learning models as tools for formulating such an equation. Specifically, we enforce our knowl­

edge from constitutive modeling for elasticity and formulate the evolution law by employing feed-forward neural

networks with different inputs, as well as symbolic regression to discover an interpretable expression. Training,

validation, and test data have been generated using a cyclic time-domain plasticity model considering pulsating

uniaxial stress loadings with constant and variable strain ranges. The obtained results demonstrate the potential

of cycle-domain plasticity modeling using both uninterpretable and interpretable data-driven machine learning

as an alternative to time-domain material modeling. Furthermore, both approaches have revealed reasonably

good extrapolation performance beyond the training regime.

1 . Introduction

For structures subjected to cyclic loading where no stabilized behav­

ior is obtained, it is time-consuming to apply a non-linear constitutive

model and perform time steps in Finite Element (FE) simulations [1].

One approach to speed up the simulation of many loading cycles is to

extrapolate the response by using load sequence extrapolation with er­

ror control, as developed by Johansson and Ekh [2]. In this approach,

state variables and global responses obtained from FE simulations at cy­

cle 𝑁 are extrapolated using a Taylor series expansion. Alternatively,

Brommesson et al. [3] proposed scaling the number of cycles in ex­

periments and recalibrating the material model parameters accordingly.

Although this reduces computational time linearly, calibrating multiple

sets of material parameters remains time-consuming.

An alternative approach is to use cycle-domain modeling as proposed

by Suiker and de Borst [4]. The model framework is based on standard

plasticity theory and is formulated as a viscoplastic model to simulate

the evolution of plastic deformations in ballasted tracks subjected to

many loading cycles. Based on that framework, Li et al. [5] developed

a three-dimensional FE simulation tool to predict long-term differen­

tial settlement in ballasted tracks to enable fast simulations of many

wheel passages. Cycle-domain material models have the advantage that

the FE algorithm is not modified, as only the applied material model is

changed, making the method suitable for industrial implementations.

In addition to geomechanical applications, for modeling the stiffness

degradation of short-fiber reinforced plastics, Köbler et al. [6] formu­

lated their fatigue damage model in the cycle domain. In the same

context, Magino et al. [7] proposed a hybrid log-cycle fatigue dam­

age model that combines time-domain accuracy in initial cycles with

the computational efficiency of cycle-domain models in high-cycle fa­

tigue regimes. The key challenge with formulating cycle-domain models

is to find suitable per-cycle evolution laws for the internal variables.

In this paper, we propose to do this by using Machine Learning (ML)

techniques.

The use of ML to enhance time-domain material modeling has been

a rapidly growing area of research in recent years. As reviewed by

Fung et al. [8], ML-based constitutive models can be categorized as

either uninterpretable or interpretable. Focusing on the former, Ali

et al. [9] trained a Feed-Forward Neural Network (FFNN) to pre­

dict the stress-strain response and texture evolution of single crystal

and polycrystalline materials under uniaxial tension and simple shear.

∗ Corresponding author.

 Email address: nasrin.talebi@chalmers.se (N. Talebi).

https://doi.org/10.1016/j.compstruc.2025.108086

Received 12 August 2025; Accepted 20 December 2025

Computers and Structures 321 (2026) 108086

0045-7949/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://www.sciencedirect.com/science/journal/0045-7949
https://www.elsevier.com/locate/CAS

N

$\boldsymbol {t}$

$\textbf {{T}}$

$\boldsymbol {\epsilon }$

$\boldsymbol {\epsilon }^{{\textrm {e}}}$

$\boldsymbol {\epsilon }^{{\textrm {p}}}$

\begin {equation}\label {ieq1} {\boldsymbol {\epsilon }=\boldsymbol {\epsilon }^{\mathrm e}+\boldsymbol {\epsilon }^{\mathrm p} \;\rightarrow \; \boldsymbol {\epsilon }^{\mathrm e}(\boldsymbol {\epsilon },\, \boldsymbol {\epsilon }^{\mathrm p}) = \boldsymbol {\epsilon } - \boldsymbol {\epsilon }^{\mathrm p}}\end {equation}

$\boldsymbol {\sigma }$

\begin {equation}{\boldsymbol {\sigma } = \textbf {{E}}^{{\textrm {e}}}:\left (\boldsymbol {\epsilon }-\boldsymbol {\epsilon }^{{\textrm {p}}}\right)} \label {eq:hooks_law}\end {equation}

$\textbf {{E}}^{\textrm {e}}$

$\varPhi \left (\boldsymbol {\sigma }, \mathbb {A}\right)$

$(\varPhi < 0)$

$(\varPhi = 0)$

$\mathbb {A} = \lbrace {\boldsymbol {a}}_1,\ {\boldsymbol {a}}_2,\ \cdots ,\ {\boldsymbol {a}}_n\rbrace $

$\boldsymbol {\epsilon }^{\textrm {p}}$

\begin {equation}\label {ieq2} {\dot {\boldsymbol {{\epsilon }}}^{\textrm {p}}=\dot {\lambda } \, \frac {\partial \varPhi }{\partial \boldsymbol {\sigma }}}\end {equation}

$\boldsymbol {a}_i$

\begin {equation}\label {ieq3} {\dot {\boldsymbol {a}}_i=\dot {\lambda } \, g_i\left (\boldsymbol {\sigma }, \mathbb {A} \right)}\end {equation}

$\dot {\lambda }$

\begin {equation}{\varPhi \le 0, \quad \dot {\lambda } \ge 0, \quad \varPhi \, \dot {\lambda }=0} \label {eq:KKT}\end {equation}

${}^{n}t$

${}^{n}\dot \lambda = 0$

$\Delta \lambda = {}^{n}\lambda - {}^{n-1}\lambda = 0$

${}^{n}\boldsymbol {\sigma }$

${}^{n}\boldsymbol {\sigma }^{\textrm {tr}}$

${}^{n}\boldsymbol {\sigma } = {}^{n}\boldsymbol {\sigma }^{\textrm {tr}} = \textbf {{E}}^{{\textrm {e}}}:\left ({}^{n}\boldsymbol {\epsilon } - {}^{n-1}\boldsymbol {\epsilon }^{\textrm {p}}\right)$

${}^{n}\boldsymbol {a}_i = {}^{n-1}\boldsymbol {a}_i$

$\varPhi \le 0$

N

${}^{N}(\cdot)$

N

${}^{N-1}(\cdot)$

$N-1$

N

${}^{N}\epsilon _{11}$

${}^{N}\sigma _{11}$

${}^{N}\epsilon ^{\textrm {p}}_{11}$

N

\begin {equation}\frac {{\textrm {d}} \sigma _{11}}{{\textrm {d}} N} =E \, \frac {{\textrm {d}} \epsilon ^{\textrm {e}}_{11}}{{\textrm {d}}{N}} = E \left (\frac {{\textrm {d}} \epsilon _{11}}{{\textrm {d}} N} - \frac {{\textrm {d}} \epsilon ^{{\textrm {p}}}_{11}}{{\textrm {d}} N}\right) \label {eq:cycle_model_eq}\end {equation}

E

$f_{\textrm {ml}}$

$\boldsymbol {x}$

\begin {align}&\frac {{\textrm {d}} {}^{N}\epsilon ^{{\textrm {p}}}_{11}}{{\textrm {d}} N} = \mathcal {H}_\varPhi \left ({}^{N-1}{\epsilon }^{{\textrm {p}}}_{11}, {}^{N}{\sigma }^{\textrm {tr}}_{11}\right) f_{\textrm {ml}}\left (\boldsymbol {x}\right) \quad \label {eq:ml_based_evolution} \quad \text {where}\\ &\mathcal {H}_\varPhi \left ({}^{N-1}{\epsilon }^{{\textrm {p}}}_{11}, {}^{N}{\sigma }^{\textrm {tr}}_{11}\right) = \begin {cases} 0, \quad & \text {if} \quad {}^{N-1}\epsilon ^{\textrm {p}}_{11} = 0 \quad \text {and} \quad |{}^{N}\sigma ^{\textrm {tr}}_{11}| < Y_0 \\[6pt] 1, \quad & \text {otherwise} \end {cases} \nonumber \quad \text {and}\\ &{}^{N}\sigma _{11}^{\textrm {tr}} = E \left ({}^{N}\epsilon _{11} - {}^{N-1}\epsilon ^{\textrm {p}}_{11}\right)\nonumber \end {align}

$\mathcal {H}_\varPhi (\cdot)$

$|{}^{N}\sigma ^{\textrm {tr}}_{11}|$

Y_0

${}^{N-1}\epsilon ^{\textrm {p}}_{11} = 0$

$f_{\textrm {ml}}$

\begin {align}\label {ieq4} {\textbf {{E}}^{\textrm {e}} = 2 \, G \, \textbf {{I}}^{\textrm {dev}} + K_{\textrm {b}} \, \boldsymbol {I}\otimes \boldsymbol {I} \rightarrow } \, \boldsymbol {\sigma } = 2 \, G\,\boldsymbol {\epsilon }^{\textrm {e}}_{\textrm {dev}} + K_{\textrm {b}} \, {\textrm {tr}}(\boldsymbol {\epsilon }^{\textrm {e}}) \, \boldsymbol {I},\quad K_{{\textrm {b}}} = \frac {E \, G} {3\left (3 \, G-E\right)}\end {align}

G

$K_{\textrm {b}}$

E

$\boldsymbol {I}$

$\boldsymbol {\epsilon }^{\textrm {e}}_{\textrm {dev}}$

$\textbf {{I}}^{\textrm {dev}} = \boldsymbol {I}\overline {{\otimes }}\boldsymbol {I}-\boldsymbol {I}\otimes \boldsymbol {I}/3$

$\overline {\otimes }$

$\boldsymbol {a} \, \overline {\otimes } \, \boldsymbol {b}=a_{ik} \, b_{jl} \, \boldsymbol {{e}}_{i} \,{\otimes } \, \boldsymbol {{e}}_{j} \, {\otimes } \, \boldsymbol {{e}}_{k} \,{\otimes } \, \boldsymbol {{e}}_{l}$

$\mathbb {A} = \lbrace \boldsymbol {\beta } \rbrace $

$\boldsymbol {\beta }$

\begin {equation}\varPhi = \sqrt {\frac {3}{2} \, \boldsymbol {\sigma }^{\textrm {red}}_{\textrm {dev}}:\boldsymbol {\sigma }^{\textrm {red}}_{\textrm {dev}}} - Y_0 \le 0 \quad \text {with}\quad \boldsymbol {\sigma }^{\textrm {red}}_{\textrm {dev}}= \boldsymbol {\sigma }_{\textrm {dev}}-\boldsymbol {\beta } \label {eq:phi_eq}\end {equation}

$\boldsymbol {\sigma }_{\textrm {dev}}$

$\boldsymbol {\epsilon }^{\textrm {p}}$

\begin {equation}\label {ieq5} \dot {\boldsymbol {{\epsilon }}}^{\textrm {p}}=\dot {\lambda } \, \frac {\partial \varPhi }{\partial \boldsymbol {\sigma }} = \dot {\lambda } \boldsymbol {\nu } \quad \text {with} \quad \boldsymbol {\nu } = \sqrt {\frac {3}{2}} \, \frac {\boldsymbol {\sigma }^{\textrm {red}}_{\textrm {dev}}}{|\boldsymbol {\sigma }^{\textrm {red}}_{\textrm {dev}}|}\end {equation}

$\dot {\lambda }$

$\boldsymbol {\beta }$

\begin {equation}\label {ieq6} \dot {\boldsymbol {\beta }}= -\frac {2}{3} \, H_{{\textrm {kin}}} \, \dot {\lambda }\left [-\boldsymbol {\nu } + \frac {3} {2} \, \frac {\boldsymbol {\beta }} {{\beta }_{\infty }}\right]\end {equation}

$H_{{\textrm {kin}}}$

${\beta }_{\infty }$

E

G

Y_{0}

$H_{{\textrm {kin}}}$

$\beta _{\infty }$

$\Delta \epsilon _{11}$

$0.2~\%$

$3.0~\%$

$0.0~\%$

$3.0~\%$

$\Delta \epsilon _{11}$

$\Delta \epsilon _{11}$

$0.39~\%$

$0.77~\%$

$\Delta \epsilon _{11}$

$3.0~\%$

$0.39~\%$

$0.77~\%$

$3.0~\%$

$2.94~\%$

$\{{}^{N}\sigma _{11}, {}^{N-1}\epsilon ^{\textrm {p}}_{{{\textrm {11}}}}, \,{{\text {d}}{}^{N}\epsilon ^{\textrm {p}}_{11}}/{\text {d}}{N}\}$

$\{{}^{N}\sigma _{11}, {}^{N-1}\epsilon ^{\textrm {p}}_{{{\textrm {11}}}}, {}^{N-1}\sigma _{11},\break {} {{\text {d}}{}^{N}\epsilon ^{\textrm {p}}_{11}}/{\text {d}}{N}\}$

${}^{N}\sigma _{11}$

N

${}^{N-1}\sigma _{11}$

${}^{N-1}\epsilon _{{{\textrm {11}}}} ^{{\textrm {p}}}$

$N-1$

${{\text {d}}{}^{N}\epsilon ^{\textrm {p}}_{11}}/{\text {d}}{N}$

$N-1$

N

${}^{N}\sigma _{11}$

${}^{N-1}\epsilon ^{\textrm {p}}_{{{\textrm {11}}}}$

${{\text {d}}{}^{N}\epsilon ^{\textrm {p}}_{11}}/{\text {d}}{N}$

${{\text {d}}{}^{N}\epsilon ^{\textrm {p}}_{11}}/{\text {d}}{N}$

$\Delta \epsilon _{11}$

$\Delta \epsilon _{11}$

${{\text {d}}\epsilon ^{\textrm {p}}_{11}}/ {\text {d}}{N}$

$80~\%$

$10~\%$

$10~\%$

$\mathcal {H}_\varPhi $

\begin {equation}\label {ieq7} \hat {L}\left (\boldsymbol {x}\right) = \frac {1}{k} \sum _{i=1}^{k} {\left ({\left (\hat {\frac {{\textrm {d}} {}^{N}{\epsilon }^{\mathrm p}_{11}}{{\textrm {d}}{N}}} \right)}_{i} - f_{{\textrm {ml}}}\left (\boldsymbol {x}_{i}\right)\right)}^2 \quad \text {where} \,\, f_{{\textrm {ml}}}\left (\boldsymbol {x}\right) = f_{{\textrm {nn}}}\left (\boldsymbol {x}\right) \, \text {or} \, f_{{\textrm {sr}}}\left (\boldsymbol {x}\right)\end {equation}

k

$\hat {\frac {{\textrm {d}} {}^{N}{\epsilon }^{\mathrm p}_{11}}{{\textrm {d}}{N}}}$

$\frac {{\textrm {d}} {}^{N}{\epsilon }^{\mathrm p}_{11}}{{\textrm {d}}{N}}$

$\left [0,1\right]$

$f_{{\textrm {nn}}}\left (\boldsymbol {x}\right)$

$f_{{\textrm {sr}}}\left (\boldsymbol {x}\right)$

$\boldsymbol {x}$

${}^{N}\sigma _{11}$

${}^{N-1}\epsilon ^{\textrm {p}}_{11}$

$\frac {{\textrm {d}} {}^{N}{\epsilon }^{\mathrm p}_{11}}{{\textrm {d}}{N}}$

$0.0~\% \le {}^{N-1}\epsilon ^{\textrm {p}}_{11} \le 0.3~\%$

${}^{N-1}\epsilon ^{\textrm {p}}_{11}$

$0.500~\% \le {}^{N-1}\epsilon ^{\textrm {p}}_{11} \le 0.541~\%$

${}^{N-1}\sigma _{11}$

$0.500~\% \le {}^{N-1}\epsilon ^{\textrm {p}}_{11} \le 0.541~\%$

$\boldsymbol {x}_0$

$\boldsymbol {y}$

$\boldsymbol {y} = f_{\textrm {nn}}\left (\boldsymbol {x}_0\right)$

m

l

$a_{l}\left (\cdot \right)$

\begin {align}\label {ieq8} \boldsymbol {x}_l = a_{l}\left (\underline {\boldsymbol {W}}_l \, \boldsymbol {x}_{l-1} + \boldsymbol {b}_{l}\right) \quad \text {where} \quad a_{l}\left (x\right) = \begin {cases} \dfrac {1}{1 + e^{-x}} & l = 1,\dots ,\,m-1\\[6pt] \max \left (0,x\right) & l = m \end {cases}\end {align}

$\underline {\boldsymbol {W}}_l$

$\boldsymbol {b}_{l}$

l

$\boldsymbol {y}$

\begin {equation}\label {ieq9} \boldsymbol {y} = a_{m+1} \left (\underline {\boldsymbol {W}}_{m+1} \, {\boldsymbol {x}}_{m} + \boldsymbol {b}_{m+1}\right) \quad \text {where} \quad a_{m+1}\left (x\right) = {\textrm {tanh}}\left (x\right)\end {equation}

${\text {tanh}}(x)$

$m=5$

$m=10$

1.81×10^{-5}

1.22×10^{-5}

$(-0.4 \,x+ \exp (15.5 \, y - 16.5)) + 0.5$

$+, -, \times $

$\exp $

x, y

$(-0.4 \, x+ \exp (15.5 \, y - 16.5)) + 0.5$

$\exp $

$\tanh $

$\left \langle \bullet \right \rangle $

$\hat {L}_{\textrm {train}}$

9.6×10^{-5}

5.4×10^{-5}

5.9×10^{-5}

5.4×10^{-5}

$\hat {L}_{\textrm {train}}$

$\hat {L}_{\textrm {valid}}$

7.3×10^{-5}

4.4×10^{-5}

$\hat {L}_{\textrm {test}}$

5.7×10^{-5}

${{\textrm {d}}\epsilon ^{\mathrm p}_{11}}/{{\textrm {d}}{N}}$

$z-$

${{\textrm {d}}\epsilon ^{\mathrm p}_{11}}/{{\textrm {d}}{N}}$

${}^{N-1}\sigma _{11}$

4×10^{4}

2×10^{5}

${{\textrm {d}}\epsilon ^{\mathrm p}_{11}}/{{\textrm {d}}{N}}$

$\hat {L}_{\textrm {train}}$

3.6×10^{-5}

3.0×10^{-5}

2.4×10^{-5}

1.8×10^{-5}

$\hat {L}_{\textrm {valid}}$

$\hat {L}_{\textrm {test}}$

1.7×10^{-5}

2.1×10^{-5}

${}^{N-1}\sigma _{11}$

$66~\%$

$61~\%$

$63~\%$

4×10^{4}

2×10^{5}

$f_{\textrm {nn}}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

$0.007~\%$

$0.002~\%$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

$0.2~\%$

$2.7~\%$

$\sigma _{11}$

${}^{N}\sigma _{11}$

${}^{N-1}\epsilon _{{{\textrm {11}}}} ^{{\textrm {p}}}$

${}^{N-1}\sigma _{11}$

6.68×10^{-5}

6.01×10^{-5}

5.76×10^{-5}

$\hat {L}_{\textrm {train}}$

$\hat {L}_{\textrm {valid}}$

${}^{N-1}\hat {\sigma }_{11}$

$\hat {L}_{\textrm {train}}$

$\hat {L}_{\textrm {valid}}$

1.8×10^{-5}

1.7×10^{-5}

5.4×10^{-5}

4.4×10^{-5}

$\hat {L}_{\textrm {train}}$

$\hat {L}_{\textrm {valid}}$

${}^{N}\hat {\sigma }_{11}$

${}^{N-1}\hat {\epsilon }_{{{\textrm {11}}}} ^{{\textrm {p}}}$

${}^{N-1}\hat {\sigma }_{11}$

${}^{N}\sigma _{11}$

${}^{N-1}\epsilon _{{{\textrm {11}}}} ^{{\textrm {p}}}$

${}^{N-1}\sigma _{11}$

$\sigma _{11}$

$\sigma _{11}$

$\sigma _{11}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

$0.018~\%$

$\sigma _{11}$

$\epsilon ^{{\textrm {p}}}_{11}$

$\sigma _{11}$

$\epsilon ^{{\textrm {p}}}_{11}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}[\%]\,\,(\times 10^{-2}$

$f_{\textrm {nn}}$

$f_{\textrm {nn}}$

$f_{\textrm {sr}}$

$\sigma _{11}$

$\epsilon ^{{\textrm {p}}}_{11}$

$\sigma _{11}$

$\hat {L}_{\textrm {train}}$

$\hat {L}_{\textrm {valid}}$

$\hat {L}_{\textrm {test}}$

$\hat {L}_{\textrm {train}}\,(\times 10^{-5}$

$\hat {L}_{\textrm {valid}}\,(\times 10^{-5})$

$\hat {L}_{\textrm {test}}\,(\times 10^{-5})$

$f_{\textrm {nn}}$

$f_{\textrm {nn}}$

$f_{\textrm {sr}}$

$\sigma _{11}$

$\sigma _{11}$

$f_{\textrm {nn}}$

$f_{\textrm {nn}}$

$f_{\textrm {sr}}$

$\sigma _{11}$

$\epsilon ^{\textrm {p}}_{11}$

mailto:nasrin.talebi@chalmers.se
https://doi.org/10.1016/j.compstruc.2025.108086
https://doi.org/10.1016/j.compstruc.2025.108086
http://creativecommons.org/licenses/by/4.0/

N. Talebi, K.A. Meyer and M. Ekh

For modeling anisotropic plane-stress plasticity under multiaxial load­

ing, Gorji et al. [10] demonstrated the potential of Recurrent Neural

Networks (RNNs) with the use of a large amount of training data. Linka

et al. [11] introduced a new approach by incorporating constitutive

modeling knowledge directly into the architecture of FFNNs, allowing

for efficient training with a moderate amount of data and resulting in

improved extrapolation performance.

The inclusion of physical principles into neural networks has been

shown to noticeably improve the ability to generalize outside the train­

ing regime in material modeling [12]. Raissi et al. [13] introduced

Physics-Informed Neural Networks (PINNs) to solve forward and in­

verse problems, while imposing physical constraints on the loss function.

Following this, Abueidda et al. [14] employed PINNs to solve partial

differential equations for displacement fields, and Haghighat et al. [15]

developed a PINN-based framework for constitutive modeling by em­

bedding elastoplastic inequality constraints into the loss function. Some

ML-based material modeling techniques aim to satisfy physical con­

straints by construction. For instance, Meyer and Ekre [16] proposed

embedding FFNNs directly into the evolution laws of internal vari­

ables. The framework inherently fulfills thermodynamics and material

objectivity. Fuhg et al. [17] suggested a thermodynamically consistent

framework, which is instead based on isotropic and nonlinear kinematic

hardening potentials. Following this approach, Jadoon et al. [18] de­

veloped an NN-based framework for finite strain elastoplastic material

modeling.

Despite the satisfactory results of the NN-based constitutive models,

their black-box nature remains a limitation [8]. In the context of inter­

pretable ML, Flaschel et al. [19] introduced a method based on sparse

regression to discover constitutive laws for isotropic hyperelastic mate­

rials using displacements and global force data, and later extended the

work to automatically discover constitutive laws for isotropic materials

with unknown categories of material behavior [20]. Combining sparse

regression and binomial searching, Meyer and Ekre [16] discovered an­

alytical expressions from NN-generated data for evolution equations of

internal variables. Alternatively, Symbolic Regression (SR), referring

to methods based on genetic algorithms [8], was applied by Versino

et al. [21] to discover flow stress equations for copper. Working with a

limited amount of experimental data, they addressed this constraint by

incorporating their expert knowledge to enhance the predictive accuracy

of the models. Based on micromechanical finite element simulations,

Bomarito et al. [22] demonstrated the potential of SR in discovering the

von Mises yield function and the plastic strain evolution equation. Using

the same methodology, Abdusalamov et al. [23] proposed an SR-based

approach to identify the strain energy density function for hyperelastic

materials. Bahmani et al. [24] suggested a hybrid framework to formu­

late the yield functions of perfectly plastic materials by expressing them

as polynomials composed of symbolic equations that replace trained

univariate neural networks.

In contrast to available studies on ML-based time-domain con­

stitutive modeling (e.g., [11,15–17]), this study proposes ML-based

cycle-domain plasticity modeling. Incorporating established knowledge

from material modeling for elasticity, we obtain the per-cycle evolution

law for plastic strains using either FFNNs (uninterpretable ML models)

or SR (an interpretable alternative). To focus on the differences be­

tween these approaches, we study one-dimensional problems. It should

be noted that, although cycle-domain models can be employed in dif­

ferent applications involving cyclic loadings, some assumptions in this

work are motivated from a railway mechanics point of view. The paper is

organized as follows: In Section 2, we explain the standard formulation

of a time-domain plasticity model, while the cycle-domain model formu­

lation for uniaxial stress loading is presented in Section 3. In Section 4,

the time-domain plasticity model adopted to generate artificial training,

validation, and test data, together with the corresponding data gener­

ation procedure, is described. In Section 5, we explain the considered

FFNNs and SR models, and finally, in Sections 6 and 7, we discuss and

summarize our findings.

2 . Standard formulation of time-domain plasticity models

In this section, we present the standard formulation of a time-domain

plasticity model in a small strain setting. Note that, second-order tensors

are written in boldface, e.g. 𝒕, while fourth-order tensors are written in

capitalized, boldface, and upright form, e.g. T.

The total strain, 𝝐, is additively decomposed into an elastic strain,

𝝐e, and a plastic strain, 𝝐p,

𝝐 = 𝝐e + 𝝐p → 𝝐e(𝝐, 𝝐p) = 𝝐 − 𝝐p (1)

The stress, 𝝈, can then be calculated using Hooke’s law

𝝈 = Ee ∶
(

𝝐 − 𝝐p
)

(2)

where Ee is the elasticity tensor. The yield function 𝛷 (𝝈,A) defines the

elastic domain (𝛷 < 0) and the plastic domain (𝛷 = 0), where A =
{𝒂1, 𝒂2, ⋯ , 𝒂𝑛} is a set of hardening stresses. The evolution of plastic

strains, 𝝐p, is typically assumed to follow an associative flow rule

𝝐̇p = 𝜆̇ 𝜕𝛷
𝜕𝝈

(3)

whereas for the hardening stresses, 𝒂𝑖, non-associative evolution laws

provide better agreements with experimentally observed material be­

havior [25]

𝒂̇𝑖 = 𝜆̇ 𝑔𝑖 (𝝈,A) (4)

𝜆̇ is the plastic multiplier (rate of accumulated equivalent plastic strain)

and can be determined from the Karush-Kuhn-Tucker (KKT) loading/un­

loading conditions

𝛷 ≤ 0, 𝜆̇ ≥ 0, 𝛷 𝜆̇ = 0 (5)

To determine whether the material response is elastic or plastic, the

Karush-Kuhn-Tucker conditions given in Eq. (5) are used. Considering

the implicit backward Euler time integration scheme, we assume that,

at the time step 𝑛𝑡, the material response is elastic, i.e., 𝑛𝜆̇ = 0, thereby

Δ𝜆 = 𝑛𝜆− 𝑛−1𝜆 = 0. Accordingly, 𝑛𝝈 is equal to the calculated trial stress
𝑛𝝈tr as: 𝑛𝝈 = 𝑛𝝈tr = Ee ∶

(𝑛𝝐 − 𝑛−1𝝐p
)

, and the hardening stresses do not

change: 𝑛𝒂𝑖 = 𝑛−1𝒂𝑖. This assumption holds if 𝛷 ≤ 0; otherwise, a system

of nonlinear equations must be solved. For further details, the reader is

referred, e.g., to [26].

The formulation of the cycle-domain material model introduced in

Section 3 is independent of the choice of a time-domain material model.

In this study, to train, validate, and test the ML-based cycle-domain

model, we have chosen a reference time-domain plasticity model with

a von Mises yield function, an associative evolution law for the plas­

tic strain, and a nonlinear evolution law for the hardening stress; see

Section 4.1 for further details.

3 . Cycle-domain material model

To enhance the computational efficiency of cyclic simulations in­

volving many cycles, we propose replacing a standard time-domain

model with a cycle-domain model for pulsating uniaxial loading, in­

spired by Suiker and de Borst [4]. In the cycle-domain model, we predict

the peak stress and the corresponding plastic strain in each loading cy­

cle 𝑁 , as shown in Fig. 1. This choice is motivated by the application of

railway mechanics, where rails are subjected to purely pulsating load­

ing [5,27]. The notation 𝑁 (⋅) refers to cycle 𝑁 , and 𝑁−1(⋅) refers to cycle

𝑁 − 1. Assuming small strains and Hooke’s law (Eq. (2)) for uniaxial

loading, we replace the time derivatives of quantities with their change

per unit cycle, 𝑁 , as

d𝜎11
d𝑁

= 𝐸
d𝜖e

11
d𝑁

= 𝐸

(

d𝜖11
d𝑁

−
d𝜖p

11
d𝑁

)

(6)

where 𝐸 is Young’s modulus. The challenge with cycle-domain models

is to propose a suitable per-cycle evolution equation for plastic strains.

Computers and Structures 321 (2026) 108086

2

N. Talebi, K.A. Meyer and M. Ekh

Fig. 1. Schematic illustration of the cycle-domain material model in cyclic simulations. The solid blue lines represent the input strain history to the time-domain

model and its simulated first half-cycle. The red circles show the peak strain 𝑁 𝜖11, as well as the peak normal stress 𝑁𝜎11 and the corresponding plastic strain 𝑁 𝜖p

11
predicted by the cycle-domain model for the loading cycle 𝑁 . The dashed light blue lines denote the strain histories and responses from the time-domain model.

We aim to discover this equation with machine learning. Specifically,

we will train a model, 𝑓ml, with inputs 𝒙

d𝑁 𝜖p

11
d𝑁

= 𝛷
(𝑁−1𝜖p

11,
𝑁𝜎tr

11
)

𝑓ml (𝒙) where (7)

𝛷
(𝑁−1𝜖p

11,
𝑁𝜎tr

11
)

=

⎧

⎪

⎨

⎪

⎩

0, if 𝑁−1𝜖p

11 = 0 and |

𝑁𝜎tr
11| < 𝑌0

1, otherwise
and

𝑁𝜎tr
11 = 𝐸

(𝑁 𝜖11 − 𝑁−1𝜖p

11
)

𝛷(⋅) is introduced to ensure that no plastic strain increment occurs

when the material response is elastic (i.e., |𝑁𝜎tr
11| is smaller than the ini­

tial yield stress 𝑌0) with no previous plasticity (𝑁−1𝜖p

11 = 0). Accordingly,

the cycle-domain model will behave equivalently to the time-domain

model for elastic-only loading (corresponding to high cycle fatigue load­

ing). This has been found to facilitate the training of 𝑓ml later in the ML

procedure described in Section 5. Note that we use a semi-implicit dis­

cretization scheme between the loading cycles. When using the model,

the first half-cycle is simulated with the time-domain model, before

applying the cycle-domain model to predict the subsequent cycles, as

illustrated in Fig. 1.

4 . Data generation

This section presents the reference time-domain plasticity model

adopted to generate artificial data and the corresponding data genera­

tion procedure. The data will be used for training, validation, and testing

of the cycle-domain model with different ML-based evolution equations

for plastic strains.

4.1 . Reference time-domain cyclic plasticity model

Based on the general small strain plasticity model formulation de­

scribed in Section 2, a specific reference model is described in the

following. The elastic behavior is linear isotropic, i.e.,

Ee = 2𝐺 Idev +𝐾b 𝑰 ⊗ 𝑰 →𝝈 = 2𝐺 𝝐e
dev

+𝐾b tr(𝝐e) 𝑰 , 𝐾b = 𝐸 𝐺
3 (3𝐺 − 𝐸)

(8)

where 𝐺, 𝐾b, and 𝐸 are the shear, bulk, and Young’s moduli, respec­

tively. 𝑰 is the second-order identity tensor, and 𝝐e
dev

 is the deviatoric

elastic strain. The fourth-order deviatoric identity tensor is defined as

Idev = 𝑰⊗𝑰 − 𝑰 ⊗ 𝑰∕3, where the non-standard open product ⊗ between

two second-order tensors is given by 𝒂⊗ 𝒃 = 𝑎𝑖𝑘 𝑏𝑗𝑙 𝒆𝑖 ⊗ 𝒆𝑗 ⊗ 𝒆𝑘 ⊗ 𝒆𝑙.
The model considers kinematic hardening and has the hardening stress

A = {𝜷}, where 𝜷 is the back-stress. Using the von Mises effective stress,

the yield function is then defined as

𝛷 =
√

3
2
𝝈red

dev
∶ 𝝈red

dev
− 𝑌0 ≤ 0 with 𝝈red

dev
= 𝝈dev − 𝜷 (9)

where 𝝈dev is the deviatoric stress. The evolution of the plastic strain,

𝝐p, follows the associative flow rule

𝝐̇p = 𝜆̇ 𝜕𝛷
𝜕𝝈

= 𝜆̇𝝂 with 𝝂 =
√

3
2

𝝈red
dev

|𝝈red
dev

|

(10)

where the plastic multiplier, 𝜆̇, can be determined from the KKT load­

ing/unloading conditions, as described in Section 2. The evolution of the

back-stress, 𝜷, is assumed to be of the Armstrong-Frederick type [28]

𝜷̇ = −2
3
𝐻kin 𝜆̇

[

−𝝂 + 3
2

𝜷
𝛽∞

]

(11)

Computers and Structures 321 (2026) 108086

3

N. Talebi, K.A. Meyer and M. Ekh

Table 1

Material model parameter values for the reference time-

domain cyclic plasticity model.

Material parameters 𝐸 𝐺 𝑌0 𝐻kin 𝛽∞

200 75 400 150 500

Unit GPa GPa MPa GPa MPa

𝐻kin is the kinematic hardening modulus, and 𝛽∞ is the saturation value

of the back-stress. The values of the material model parameters, in­

spired by those calibrated based on experimental data for isotropic R260

pearlitic rail steel [29], are listed in Table 1.

4.2 . Training, validation, and test data generation

In this study, data required for training, validation, and testing of the

considered ML models are generated artificially using the time-domain

cyclic plasticity model described in Section 4.1. The data are employed

to train an NN and to discover a symbolic equation representing the per-

cycle evolution equation for plastic strains in the cycle-domain material

model. They are also used for model validation and testing. Data gen­

eration is performed through material point simulations. Each dataset

consists of 100 loading cycles, with each loading cycle discretized into

400 time steps. Cyclic pulsating strain-controlled uniaxial stress loadings

with both constant and variable strain ranges are applied. For constant

strain range loadings, 400 logarithmically spaced strain range values,

Δ𝜖11, spanning from 0.2 % (corresponding to the elastic limit) to 3.0 %
are considered. The lower limit of the strain range is chosen to avoid

elastic material responses without previous plasticity. Logarithmic spac­

ing is chosen to generate a higher density of datasets in the transition

region from elastic shakedown to plastic shakedown behavior, where

small changes in strain ranges significantly affect the material response.

Variable strain range values are randomly generated between 0.0 % and

3.0 % 400 times, following a uniform distribution. These procedures pro­

duce a total of 800 artificial datasets, covering a wide range of material

behavior.

Some results from the time-domain material model under loadings

with constant Δ𝜖11 are presented in Fig. 2(a)–(c). For the lower Δ𝜖11 of

0.39 % (Fig. 2(a)), the material response shows elastic shakedown be­

havior following the first loading cycle. However, a higher strain range

value of 0.77 % (Fig. 2(b)) causes a reduction in the peak stresses before

stabilizing into a plastic shakedown state. Under more severe loading

conditions, with Δ𝜖11 of 3.0 %, the material reaches a plastic shakedown

state from the second loading cycle, see Fig. 2(c). In contrast to the load­

ings with constant strain ranges, from Fig. 2(d), no stabilized behavior

after 100 cycles can be observed.

Training, validation, and test data are prepared in the form of

{𝑁𝜎11,𝑁−1𝜖p

11
, d𝑁 𝜖p

11∕d𝑁} for the two-input NN and SR models. For

the three-input models, the data are structured as {𝑁𝜎11,𝑁−1𝜖p

11
,𝑁−1𝜎11,

d𝑁 𝜖p

11∕d𝑁}; see Section 5 for more details regarding the models and

their inputs. For completeness, the relevant variables are reintroduced

in this section, even though some of them are defined in Section 3. 𝑁𝜎11
denotes the peak stress in loading cycle 𝑁 , 𝑁−1𝜎11, as well as 𝑁−1𝜖p

11
,

are the peak stress and plastic strain values in loading cycle 𝑁 − 1, and

d𝑁 𝜖p

11∕d𝑁 is the plastic strain increment from cycle 𝑁 − 1 to 𝑁 . As an

example, Fig. 3 illustrates 𝑁𝜎11, 𝑁−1𝜖p

11
, and d𝑁 𝜖p

11∕d𝑁 corresponding

to a dataset obtained from loading with variable strain ranges. One ob­

servation is the occurrence of negative d𝑁 𝜖p

11∕d𝑁 , resulting from a cycle

with a high Δ𝜖11 followed by a cycle with a much lower Δ𝜖11.

5 . Machine Learning (ML) models

In this work, we investigate two approaches to formulate the per-

cycle evolution equation for plastic strains, d𝜖p

11∕d𝑁 , in the cycle-domain

material model: training an NN and SR. The artificially generated

datasets are split into 80 % for training, 10 % for validation, and 10 % for

testing. Considering the datasets with variable strain range loading, a

few data points corresponding to elastic material behavior with no pre­

vious plasticity are filtered out according to the 𝛷 function (see Eq. (7))

in the cycle-domain model formulation.

In both alternative approaches, the loss function, minimizing the dif­

ference between the predictions of the models and the target values, is

chosen to be of the mean-squared error type and is formulated as

𝐿̂ (𝒙) = 1
𝑘

𝑘
∑

𝑖=1

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

̂d𝑁 𝜖p11
d𝑁

⎞

⎟

⎟

⎠𝑖

− 𝑓ml

(

𝒙𝑖
)

⎞

⎟

⎟

⎠

2

where 𝑓ml (𝒙) = 𝑓nn (𝒙) or 𝑓sr (𝒙)

(12)

where 𝑘 denotes the total number of data points included in the train­

ing, validation, or test sets, and
̂d𝑁 𝜖p11

d𝑁 is the min-max normalized
d𝑁 𝜖p11

d𝑁 .

Since there is a significant difference in the orders of magnitude of the

input variables, all the input and output variables of the studied mod­

els are scaled to the interval [0, 1] (min-max normalized). 𝑓nn (𝒙) and

𝑓sr (𝒙) represent an NN and SR model, respectively, with input vari­

ables 𝒙. We first evaluate the performance of the models with two

input variables: 𝑁𝜎11 and 𝑁−1𝜖p

11. The corresponding training data is il­

lustrated in Fig. 4(a), showing a surface-like distribution of data with

slight dispersion. The data spans a range of
d𝑁 𝜖p11

d𝑁 , transitioning from

large positive values, through zero, to negative values. Further, the dis­

tribution is inhomogeneous, with a noticeably higher sparsity in the

region approximately defined by 0.0 % ≤ 𝑁−1𝜖p

11 ≤ 0.3 %. In this re­

gion, some data points also deviate from the general surface trend,

as shown by the red circle. Further analysis of the training data dis­

tribution for different intervals of 𝑁−1𝜖p

11 shows that nearly the same

inputs correspond to multiple outputs. This behavior is exemplified in

Fig. 4(b) for 0.500 % ≤ 𝑁−1𝜖p

11 ≤ 0.541 %. Due to the non-unique

input-output mapping, the NN or SR model can only learn an ap­

proximate solution based on the provided input information. Thus, we

introduce 𝑁−1𝜎11 as an additional input, forming three-input models,

to assess the extent of performance improvement over the two-input

models.

5.1 . Feed-Forward Neural Network (FFNN)

One investigated approach to obtain the per-cycle evolution equation

for plastic strains is using a fully connected FFNN. Although RNNs

have been used to model history-dependent behavior, see e.g. [10,30],

we have chosen to base our ML-based cycle-domain model on a time-

domain plasticity model and have employed an FFNN, as one component

of the model, to formulate the per-cycle evolution law. It should be

noted that the material model formulation can be considered a recurrent

architecture, as each step depends on the previous state.

In a fully connected FFNN, each neuron in a given layer is connected

to all neurons in the subsequent layer [31]. The network establishes

a mapping from the input vector 𝒙0 to the output vector 𝒚, denoted as

𝒚 = 𝑓nn

(

𝒙0
)

. The information propagates sequentially through 𝑚 hidden

layers before reaching the output layer. Each hidden layer 𝑙 computes its

output using a nonlinear function, referred to as the activation function

𝑎𝑙 (⋅)

𝒙𝑙 = 𝑎𝑙
(

𝑾 𝑙 𝒙𝑙−1 + 𝒃𝑙
)

where 𝑎𝑙 (𝑥) =

⎧

⎪

⎨

⎪

⎩

1
1 + 𝑒−𝑥

𝑙 = 1,… , 𝑚 − 1

max (0, 𝑥) 𝑙 = 𝑚

(13)

𝑾 𝑙 and 𝒃𝑙 are trainable weight matrices and bias vectors associated with

layer 𝑙, respectively. The output vector 𝒚 is computed as

𝒚 = 𝑎𝑚+1
(

𝑾 𝑚+1 𝒙𝑚 + 𝒃𝑚+1
)

where 𝑎𝑚+1 (𝑥) = tanh (𝑥) (14)

tanh(𝑥) is chosen for the output layer to allow for both positive and

negative plastic strain increments, as stated in Section 4.2.

Computers and Structures 321 (2026) 108086

4

N. Talebi, K.A. Meyer and M. Ekh

0 0.1 0.2 0.3 0.4
-600

-400

-200

0

200

400

600

800

0 0.2 0.4 0.6 0.8
-600

-400

-200

0

200

400

600

800

0 1 2 3
-1000

-500

0

500

1000

0 1 2 3
-1000

-500

0

500

1000

Fig. 2. The stress-strain responses from the time-domain material model for loadings under constant strain range of (a) 0.39 % (elastic shakedown), (b) 0.77 % (mean

stress relaxation), (c) 3.0 % (plastic shakedown) and under variable strain ranges over 100 cycles with maximum value of (d) 2.94 %.

Fig. 3. Training data from a dataset with variable strain ranges over 100 loading cycles.

In this paper, an NN comprising 𝑚 = 5 hidden layers with 6 neurons

per layer is considered. Expanding the network architecture (𝑚 = 10
with 50 neurons per layer) did not significantly improve the training

loss compared to the smaller network (from 1.81 × 10−5 to 1.22 × 10−5).
Therefore, we chose the former network architecture for its comparable

accuracy and higher computational efficiency. Starting from five distinct

random seeds, the NN is trained over four runs, with each consisting

of 50,000 epochs. For a given seed, the first training run begins with

randomly initialized network parameters, i.e., weights and biases. The

identified parameters with the lowest training loss are then selected as

Computers and Structures 321 (2026) 108086

5

N. Talebi, K.A. Meyer and M. Ekh

Fig. 4. (a) Training data for the two-input models and (b) training data for an

interval of 0.500 % ≤ 𝑁−1𝜖p

11 ≤ 0.541 %.

initial guesses for the subsequent training run. The goal of this approach

is to improve the chance that the optimization algorithm finds the global

optimum. The neural network model corresponding to the seed that

gives the lowest training loss is selected as the best model. In each

training run, the network parameters are identified using the gradient-

based Rectified Adam optimization algorithm [32] (RAdam) in the

open-source PyTorch library [33] with a learning rate of 0.002, and the

gradients are computed using the backpropagation algorithm. Although

these hyperparameters, obtained using trial-and-error, gave satisfactory

training performance, more efficient training may be achievable via

automatic hyperparameter tuning; see [34].

5.2 . Symbolic Regression (SR)

To circumvent the black-box nature of NN-based constitutive models,

we investigate whether the neural network can be replaced by a human-

interpretable mathematical expression that best fits the given data using

SR. This method does not require a prior assumption of functional forms,

in contrast to conventional regression methods adopted in constitutive

modeling. Instead, only building blocks such as basic mathematical op­

erators, functions, and numerical constants need to be defined [35]. In

addition, constraints to regulate the complexity of the resulting expres­

sions can be specified. In this contribution, we employ the open-source

PySR library [36], which implements a multi-population evolutionary

Fig. 5. Expression tree of the symbolic equation (−0.4 𝑥+exp(15.5 𝑦−16.5))+0.5.

Fig. 6. Mutation and cross-over operations applied to the candidate solutions.

algorithm based on the stochastic optimization method of genetic

programming.

The genetic-programming-based SR [36] starts with populations of

randomly generated candidate solutions, constructed using predefined

building blocks. The candidate solutions are represented as expression

trees with internal nodes (mathematical operations or functions) and ter­

minal nodes (variables or constants) [24,35]. Fig. 5 shows an example

of the expression tree of the candidate solution (−0.4 𝑥 + exp(15.5 𝑦 −
16.5)) + 0.5. The expression tree consists of binary operators (+,−,×),

a unary operator (exp), variables (𝑥, 𝑦), and numerical constants. The

performance of each candidate solution in a population is evaluated ac­

cording to how well it fits the target values. These populations evolve

in parallel through a series of operations: mutation (Fig. 6), which ran­

domly changes a candidate solution by, e.g., adding a node or mutating

an operator, crossover (Fig. 6), which combines some information from

two candidate solutions, simplification of mathematical expressions, and

optimization of constants. These operations generate new sets of candi­

date solutions with improved fitness, and the process continues until a

defined stopping criterion is satisfied.

In the present study, the considered binary operators are addition,

subtraction, and multiplication, and the unary operators are chosen to

be similar to the activation functions in the NN models, namely exponen­

tial (exp), hyperbolic tangent (tanh), and the Macaulay bracket (⟨∙⟩). For

parameter identification within a given expression, the gradient-based

BFGS optimization algorithm is employed. A total of 24 populations

are considered, each with 5000 iterations. The SR process terminates

when the total number of iterations across all populations is reached.

The result of the SR is a Pareto front of analytical expressions with

Computers and Structures 321 (2026) 108086

6

N. Talebi, K.A. Meyer and M. Ekh

different complexities and resulting training losses. We assume the

default expression complexity measure in PySR, the number of nodes

in a symbolic expression tree, with a maximum complexity of 30.

6 . Results and discussions

In this section, we present the results of the two-input and three-input

NN, as well as SR models. In particular, we compare the corresponding

training and validation losses and evaluate the performance of the cycle-

domain material model when embedding the NN and SR models as the

per-cycle evolution equations for plastic strains in the material model

formulation.

6.1 . Neural Networks (NN)

6.1.1 . Two-input NN

The training procedure described in Section 5.1 resulted in the train­

ing and validation loss evolutions for the two-input NN presented in

Fig. 7 (left). The minimum normalized training loss, 𝐿̂train, decreased

from 9.6 × 10−5 in the first training run to 5.4 × 10−5 in the last run;

however, after the second run, no noticeable improvement can be ob­

served, with the loss slightly decreasing from 5.9 × 10−5 in the third run

to 5.4 × 10−5 in the last run, see Fig. 7 (right). In contrast, the minimum

𝐿̂train for the three-input NN continued decreasing until the last run, see

Section 6.1.2. The corresponding normalized validation losses, 𝐿̂valid,

are 7.3×10−5 in the first run and 4.4×10−5 in the last run. This indicates

no sign of overfitting, as can be observed in Fig. 7 (left). Additionally,

the normalized test loss, 𝐿̂test, of 5.7×10−5 in the last training run, shows

a good performance of the model on unseen data. Fig. 8 illustrates the

values of d𝜖p11∕d𝑁 along the 𝑧−axis obtained by the trained NN, and the

colors represent relative errors with respect to the maximum value of all

output features considering training, validation, and test data. Overall,

there is good agreement between the surface-like distribution shown in

Fig. 4(a) and the one predicted by the NN. However, in regions with

lower data density and higher deviation from the surface-like trend, the

relative errors in d𝜖p11∕d𝑁 are higher. As discussed in Section 5 and

exemplified in Fig. 4(b), the NN model with two inputs results in an

approximate solution due to the presence of one-to-many mappings.

Therefore, we investigate, in the next section, whether informing the

network with the third input 𝑁−1𝜎11 can lead to an enhancement of the

NN performance.

6.1.2 . Three-input NN

Fig. 9 (left) presents the evolution of the training and validation

losses for the three-input NN. Retraining the NN reduced the minimum

𝐿̂train from 3.6×10−5 in the first training run, to 3.0×10−5 in the second,

2.4×10−5 in the third, and 1.8×10−5 in the last run, see Fig. 9 (right). The

Fig. 8. Relative error in d𝜖p11∕d𝑁 from the two-input NN model considering

training data.

corresponding 𝐿̂valid and 𝐿̂test in the last run are 1.7×10−5 and 2.1×10−5,
respectively. A comparison between the three-input and two-input NNs

in the last training run shows that inclusion of the additional input fea­

ture, 𝑁−1𝜎11, has reduced the training loss by approximately 66 %, the

validation loss by 61 %, and the test loss by 63 %. Moreover, a compari­

son of the validation losses indicates that expanding the input features of

the network has not resulted in overfitting, and the test loss comparison

implies improved generalizability.

To assess the performance of the cycle-domain material model, we

embed the trained NN, 𝑓nn, as the per-cycle evolution equation in the

formulation of the cycle-domain model; see Eqs. (6) and (7) in Section 3.

As mentioned in Section 3, we simulate the first half loading cycle

with the time-domain material model, after which the cycle-domain

model predicts 𝜎11 and 𝜖p

11 for the following loading cycles. Fig. 10(a)

and (b) present predicted stress and plastic strain values for a case se­

lected among test datasets with variable strain ranges over 100 cycles,

using the two- and three-input NNs. Overall, the predictions from the

cycle-domain model show good agreement with the original data gen­

erated by the accurate time-domain material model, considering both

neural network models. The mean absolute error in 𝜎11 is 15.7 MPa and

10.2 MPa for the two- and three-input NN models, respectively. The

corresponding relative errors in 𝜖p

11 (with respect to the reference value

from the time-domain model) after 100 cycles are 0.007 % and 0.002 %.

Fig. 7. Training and validation loss evolutions for the two-input NN model (left). A zoomed-in view of the former between epochs 4 × 104 and 2 × 105 is shown in the

right figure. The vertical dashed lines correspond to the epoch number after each training run.

Computers and Structures 321 (2026) 108086

7

N. Talebi, K.A. Meyer and M. Ekh

Fig. 9. Training and validation loss evolutions for the three-input NN model (left). A zoomed-in view of the former between epochs 4 × 104 and 2 × 105 is shown in

the right figure. The vertical dashed lines correspond to the epoch number after each training run.

Fig. 10. Stress versus cycle number and plastic strain versus cycle number for a test dataset under loading with variable strain ranges over 100 loading cycles, when

using (a) the two-input NN model and (b) the three-input NN model in the cycle-domain model formulation. Circles and red plus signs correspond to the results from

the time-domain model and the cycle-domain model, respectively.

Computers and Structures 321 (2026) 108086

8

N. Talebi, K.A. Meyer and M. Ekh

Fig. 11. Plastic strain evolutions for (a) 25 training datasets under constant strain range loadings and (b) a subset of 10 datasets from (a) that exhibit elastic shakedown

from the second loading cycle. Circles and solid lines correspond to the results from the time-domain model and the cycle-domain model employing the three-input

NN, respectively. Only the first 40 loading cycles are shown.

Although there is overestimation or underestimation in 𝜎11 in some load­

ing cycles, these errors have not led to accumulated error in 𝜖p

11 over

100 cycles. Additional results for selected cases among the training and

validation datasets are provided in Appendix A. It is worth mentioning

that the number of cycle increments in the cycle-domain model over 99

loading cycles is 98, in contrast to 39,600 time increments required by

the time-domain model. A comparative assessment of the different ML

models adopted in this study is presented in Section 6.3.

Considering the datasets under constant strain ranges, Fig. 11(a)

presents the evolution of plastic strains for 25 training datasets with

strain ranges from 0.2 % to 2.7 %. Since plastic strain saturates after a

few cycles, for illustration purposes, only the first 40 cycles are shown.

The cycle-domain model performs very well in predicting plastic strain

evolutions for cases with higher strain ranges (that lead to higher plastic

strains). However, when focusing on those datasets where elastic shake­

down occurs after the first loading cycle, as shown in Fig. 11(b), the

model’s accuracy in predicting the corresponding plastic strain evolu­

tions decreases. Nevertheless, in all cases, the plastic strains stabilize

after a few cycles. These findings highlight the importance of consider­

ing a broad range of material responses in training datasets when using

ML-based approaches in constitutive modeling to better understand and

address the limitations of such models. Despite the limitation of the

model under certain loading scenarios with constant strain ranges, it has

shown satisfactory performance for variable strain range loadings. These

are important in applications such as railway rails, as they are subjected

to a wide range of vehicles with different axle loads, nominal/worn

wheel profiles, and speeds [37].

To evaluate the extrapolation capability of the NN-based cycle-

domain material model, we have simulated 5000 loading cycles with

randomly generated variable strain ranges. Fig. 12, which presents only

the last 100 cycles, demonstrates good agreement between the results

from the reference time-domain and cycle-domain material model. The

mean absolute error in 𝜎11 after 5000 cycles is 10.1 MPa, showing

satisfactory extrapolation behavior of the cycle-domain model employ­

ing the three-input NN as the per-cycle evolution law.

6.2 . Symbolic Regression (SR)

In this section, we present and discuss the results of using SR to find

the evolution equation for plastic strains in the cycle-domain material

model. As shown in Section 6.1, the performance of the three-input NN

was better than that of the two-input NN. Thus, we will only present

results for SR using three inputs: 𝑁𝜎11, 𝑁−1𝜖p

11
, and 𝑁−1𝜎11. For this re­

gression task, the unary operators have been introduced sequentially:

Fig. 12. Stress versus cycle number over 5000 loading cycles when employing the three-input NN in the cycle-domain model formulation. Only the last 100 loading

cycles are shown. Circles and red plus signs correspond to the results from the time-domain model and the cycle-domain model, respectively.

Computers and Structures 321 (2026) 108086

9

N. Talebi, K.A. Meyer and M. Ekh

Fig. 13. Pareto front from PySR. The dashed gray and green lines show the

minimum normalized training losses in the last training runs from the two- and

three-input NN models, respectively.

first the exponential function, followed by the hyperbolic tangent, and

finally the Macaulay bracket. Although the first and the third cases

resulted in symbolic expressions with relatively low normalized train­

ing losses of 6.68 × 10−5 and 6.01 × 10−5, respectively (considering the

most complex equations), the second case with a slightly lower loss of

5.76 × 10−5 has been selected for further analysis and discussion in this

section.

Following the procedure described in Section 5.2, Fig. 13 presents

normalized training and validation losses (𝐿̂train and 𝐿̂valid, respectively)

against the complexity of the symbolic expressions discovered by PySR.

As expected, increasing equation complexity leads to improvements in

both losses. However, beyond the complexity level of 28, a plateau ap­

pears to be emerging. Furthermore, there is no indication of overfitting,

even at higher levels of complexity. It can be observed that the perfor­

mance of the three-input SR model approaches that of the two-input NN,

but not the three-input NN.

Among the discovered analytical expressions, five equations with dif­

ferent complexities are selected for further analysis and presented in

Table 2. The first three equations with complexity levels of 6, 12, and

20 do not include the third input variable 𝑁−1𝜎̂11, in contrast to the

more complex equations that achieve lower values of 𝐿̂train and 𝐿̂valid.

A comparison between the results of the NN models and symbolic ex­

pressions shows that the training and validation losses of the equations

are higher than those of the three-input NN model (1.8 × 10−5 and

1.7 × 10−5, respectively), while they approximately converge to those

of the two-input NN model (5.4 × 10−5 and 4.4 × 10−5).
We have embedded the equations presented in Table 2 into the for­

mulation of the cycle-domain material model following the procedure

described in Section 6.1. Fig. 14 presents a comparison of the predicted

𝜎11 by the four symbolic expressions, considering a training dataset.

The mean absolute errors in 𝜎11 for the equations with complexity lev­

els of 12, 20, 26, and 30 are 44.4 MPa, 26.8 MPa, 19.1 MPa, and

10.9 MPa, respectively, showing more accurate predictions with increas­

ing complexity at the expense of reduced interpretability. Note that the

corresponding result from the simplest equation is excluded from Fig. 14,

due to its high error of 193.1 MPa in 𝜎11.
We have selected the most accurate symbolic expression (with a com­

plexity level of 30) as the per-cycle evolution equation for plastic strains

in the cycle-domain material model and presented its predictions for 𝜎11
and 𝜖p

11 for the test dataset in Fig. 15. A reasonably good fit to the results

from the time-domain model can be observed. The mean absolute error

in 𝜎11 is 16.6 MPa, and the relative error in 𝜖p

11 after 100 cycles is 0.018 %.

A similar conclusion to that in Section 6.1.2 can be drawn that the er­

rors in 𝜎11 did not noticeably influence the predicted 𝜖p

11 values after 100

cycles. Table 3 summarizes the errors in 𝜎11 and 𝜖p

11 from the different

ML models for the considered test dataset, showing a reasonably good

performance from the NN-based and the SR-based cycle-domain mod­

els. Further discussion regarding the performance of the ML models is

presented in Section 6.3. Supplementary results for the selected training

and validation datasets are provided in Appendix A.

Regarding the extrapolation performance of the SR-based cycle-

domain model, the simulation of 5000 cycles has resulted in a mean

absolute error of 14.8 MPa in 𝜎11. This error is comparable to that of the

NN model and shows that the SR-based cycle-domain model extrapolates

similarly well beyond the training regime.

6.3 . Comparison of different ML models

According to Table 4, presenting the normalized errors for the

ML models evaluated in this paper, the three-input NN model, with

199 parameters, has the lowest training, validation, and test losses.

Moreover, the SR model with complexity 30 performs similarly to the

two-input NN. A comparison of the errors in the predicted 𝜎11 for the

Table 2

Discovered symbolic expressions, along with their corresponding complexity levels, normalized training losses (𝐿̂train), and normalized validation losses (𝐿̂valid).
𝑁 𝜎̂11, 𝑁−1𝜖p

11
, and 𝑁−1𝜎̂11 represent the min-max normalized 𝑁𝜎11, 𝑁−1𝜖p

11
, and 𝑁−1𝜎11, respectively.

Computers and Structures 321 (2026) 108086

10

N. Talebi, K.A. Meyer and M. Ekh

Fig. 14. Stress versus cycle number from symbolic expressions with different complexities according to Table 2, considering a training dataset. Circles and red plus

signs correspond to the results from the time-domain model and the cycle-domain model, respectively.

ML models is provided in Table 5. The average mean absolute errors

over 100 loading cycles, considering all the training, validation, and

test datasets under variable strain range loadings, are noticeably re­

duced, from the two-input to the three-input NN model. Additionally,

the three-input symbolic expression shows similar errors to those from

the two-input NN, but with higher minimum values of the mean absolute

errors.

In general, the results show the potential of the evaluated ML models,

i.e., FFNNs and SR, as tools for formulating the per-cycle evolution law

of plastic strains in the cycle-domain plasticity model. However, each

approach has its limitations. In particular, as mentioned in Section 1,

FFNNs lead to uninterpretable models, where the influence of input fea­

tures or model parameters on the outputs can become highly difficult to

explain in networks with multivariate inputs [24] and complex archi­

tectures. Conversely, SR achieves explicit analytical equations, which

can allow for analyzing the model behavior. However, there is a trade-

off between interpretability and accuracy, but the resulting symbolic

expressions are more computationally efficient compared to FFNNs by

requiring fewer floating-point operations. Obtaining a well-performing

symbolic expression, however, requires providing suitable unary and/or

binary operators (and/or constraints on them) based on users’ prior

knowledge or based on the distribution of training data, despite the

advantage of not requiring a predefined functional form. Further, the

discovered expressions should be rigorously analyzed to ensure that

they lead to reliable results when employed in material point or FE

simulations.

Computers and Structures 321 (2026) 108086

11

N. Talebi, K.A. Meyer and M. Ekh

Fig. 15. Stress versus cycle number and plastic strain versus cycle number for a test dataset under loading with variable strain ranges over 100 loading cycles, when

using the three-input symbolic expression with complexity level of 30 in the cycle-domain model formulation. Circles and red plus signs correspond to the results

from the time-domain model and the cycle-domain model, respectively.

Table 3

Mean absolute error (MAE) in 𝜎11 over 100 loading cycles and relative

error (RE) in 𝜖p

11 in the last loading cycle for the considered test dataset.

Model MAE in 𝜎11 [MPa] RE in 𝜖p

11[%] (×10
−2)

𝑓nn (2 inputs) 15.7 0.7

𝑓nn (3 inputs) 10.2 0.2

𝑓sr (3 inputs, complexity 30) 16.6 1.8

Table 4

Normalized training, validation, and test losses (𝐿̂train, 𝐿̂valid, and 𝐿̂test,

respectively) for different ML models.

Model 𝐿̂train (×10−5) 𝐿̂valid (×10−5) 𝐿̂test (×10−5)

𝑓nn (2 inputs) 5.4 4.4 5.7

𝑓nn (3 inputs) 1.8 1.7 2.1

𝑓sr (3 inputs, complexity 30) 5.8 5.7 6.1

Table 5

Error in 𝜎11 for different ML models used in the cycle-domain material

model, considering all training, validation, and test datasets with vari­

able strain range loadings over 100 loading cycles. The values denote the

mean (minimum, maximum) of the mean absolute errors computed for each

dataset.

Model Train [MPa] Validation [MPa] Test [MPa]

𝑓nn (2 inputs) 15.1 (5.6, 36.9) 15.6 (7.4, 24.9) 14.9 (7.7, 27.0)

𝑓nn (3 inputs) 10.2 (5.1, 19.5) 10.5 (6.1, 20.6) 10.5 (6.7, 18.0)

𝑓sr (3 inputs,

complexity 30)

15.0 (9.0, 23.0) 15.1 (11.3, 21.1) 16.2 (11.2, 25.5)

7 . Concluding remarks

In this contribution, we have investigated the potential of using ML

to formulate the per-cycle evolution equation for plastic strains in cycle-

domain material models. Compared to traditional time-domain models,

these models aim to reduce the computational time of cyclic simula­

tions when involving many loading cycles, such as FE simulations of

many wheel over-rollings in railway mechanics. In the proposed frame­

work, we have enforced our knowledge from constitutive modeling for

elasticity and have employed FFNNs with different inputs to formulate

the evolution equation, in addition to SR as an ML tool for equation

discovery. To generate training, validation, and test data, cyclic pul­

sating uniaxial stress loadings with constant and variable strain ranges

over a load sequence of 100 cycles using a standard time-domain mate­

rial model have been considered. The proposed ML-based cycle-domain

model predicts the peak stress and the corresponding plastic strain in

each loading cycle.

The NN model with more input features resulted in lower training,

validation, and test losses, although all the ML tools demonstrated good

capability. Moreover, when embedded in the cycle-domain model for­

mulation as the evolution equation, the extended-input NN provided

better agreement with the reference time-domain model. Although the

discovered symbolic expressions are human-readable compared to the

NN models, their interpretability decreases with increasing accuracy.

Despite this, both ML tools performed effectively when extrapolated to

5000 loading cycles, which is more than 50 times the number of cycles

in the training data.

CRediT authorship contribution statement

Nasrin Talebi: Writing – original draft, Visualization, Validation,

Software, Methodology, Investigation, Formal analysis, Data curation,

Conceptualization. Knut Andreas Meyer: Writing – review & editing,

Supervision, Methodology, Data curation, Conceptualization. Magnus

Ekh: Writing – review & editing, Supervision, Project administration,

Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influence

the work reported in this paper.

Acknowledgements

This work is part of the ongoing activities within the National

Center of Excellence CHARMEC (www.chalmers.se/charmec). Parts of

the study have been funded by Europe’s Rail project IAM4RAIL under

grant agreement No. 101101966. The majority of the numerical simula­

tions in this study were enabled by resources provided by the National

Academic Infrastructure for Supercomputing in Sweden (NAISS) at

Chalmers Center for Computational Science and Engineering (C3SE)

partially funded by the Swedish Research Council through a grant

agreement No. 2022-06725.

Computers and Structures 321 (2026) 108086

12

www.chalmers.se/charmec
https://doi.org/10.13039/501100004359
https://doi.org/10.13039/501100004359

N. Talebi, K.A. Meyer and M. Ekh

Appendix A . Cycle-domain performance evaluation considering training and validation datasets

This section presents the predicted 𝜎11 and 𝜖p

11 from the evaluated ML-based cycle-domain models for cases selected among the training datasets

(Fig. A.16) and validation datasets (Fig. A.17).

Fig. A.16. Stress versus cycle number and plastic strain versus cycle number for a training dataset under loading with variable strain ranges over 100 loading cycles,

when using different ML models in the cycle-domain model formulation. Circles and red plus signs correspond to the results from the time-domain model and the

cycle-domain model, respectively.

Computers and Structures 321 (2026) 108086

13

N. Talebi, K.A. Meyer and M. Ekh

Fig. A.17. Stress versus cycle number and plastic strain versus cycle number for a validation dataset under loading with variable strain ranges over 100 loading

cycles, when using different ML models in the cycle-domain model formulation. Circles and red plus signs correspond to the results from the time-domain model and

the cycle-domain model, respectively.

Computers and Structures 321 (2026) 108086

14

N. Talebi, K.A. Meyer and M. Ekh

Data availability

Data will be made available on request.

References

[1] Leidermark D, Simonsson K. Procedures for handling computationally heavy

cyclic load cases with application to a disc alloy material. Mater High Temp

2019;36(5):447–58. https://doi.org/10.1080/09603409.2019.1631587

[2] Johansson G, Ekh M. On the modeling of large ratcheting strains with large

time increments. Eng Comput 2007;24(3):221–36. https://doi.org/10.1108/

02644400710734945

[3] Brommesson R, Ekh M, Hörnqvist M. Correlation between crack length and load

drop for low-cycle fatigue crack growth in Ti-6242. Int J Fatigue 2015;81:1–9.

https://doi.org/10.1016/j.ijfatigue.2015.07.006

[4] Suiker ASJ, de Borst R. A numerical model for the cyclic deterioration of railway

tracks. Int J Numer Methods Eng 2003;57(4):441–70. https://doi.org/10.1002/

nme.683

[5] Li X, Ekh M, Nielsen JCO. Three-dimensional modelling of differential railway track

settlement using a cycle domain constitutive model. Int J Numer Anal Methods

Geomech 2016;40(12):1758–70. https://doi.org/10.1002/nag.2515

[6] Köbler J, Magino N, Andrä H, Welschinger F, Müller R, Schneider M. A com­

putational multi-scale model for the stiffness degradation of short-fiber rein­

forced plastics subjected to fatigue loading. Comput Methods Appl Mech Eng

2021;373:113522. https://doi.org/10.1016/j.cma.2020.113522

[7] Magino N, Köbler J, Andrä H, Welschinger F, Müller R, Schneider M. A space-

time upscaling technique for modeling high-cycle fatigue-damage of short-fiber

reinforced composites. Compos Sci Technol 2022;222:109340. https://doi.org/10.

1016/j.compscitech.2022.109340

[8] Fuhg JN, Anantha Padmanabha G, Bouklas N, Bahmani B, Sun W, Vlassis NN,

Flaschel M, Carrara P, De Lorenzis L. A review on data-driven constitutive laws for

solids. Arch Comput Methods Eng 2024:1–43. https://doi.org/10.1007/s11831-

024-10196-2

[9] Ali U, Muhammad W, Brahme A, Skiba O, Inal K. Application of artificial neural net­

works in micromechanics for polycrystalline metals. Int J Plast 2019;120:205–19.

https://doi.org/10.1016/j.ijplas.2019.05.001

[10] Gorji MB, Mozaffar M, Heidenreich JN, Cao J, Mohr D. On the potential of recur­

rent neural networks for modeling path dependent plasticity. J Mech Phys Solids

2020;143:103972. https://doi.org/10.1016/j.jmps.2020.103972

[11] Linka K, Hillgärtner M, Abdolazizi KP, Aydin RC, Itskov M, Cyron CJ. Constitutive

artificial neural networks: a fast and general approach to predictive data-driven

constitutive modeling by deep learning. J Comput Phys 2021;429:110010. https:

//doi.org/10.1016/j.jcp.2020.110010

[12] Rosenkranz M, Kalina KA, Brummund J, Kästner M. A comparative study on differ­

ent neural network architectures to model inelasticity. Int J Numer Methods Eng

2023;124(21):4802–40. https://doi.org/10.1002/nme.7319

[13] Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: a deep

learning framework for solving forward and inverse problems involving nonlinear

partial differential equations. J Comput Phys 2019;378:686–707. https://doi.org/

10.1016/j.jcp.2018.10.045

[14] Abueidda DW, Lu Q, Koric S. Meshless physics-informed deep learning

method for three-dimensional solid mechanics. Int J Numer Methods Eng

2021;122(23):7182–201. https://doi.org/10.1002/nme.6828

[15] Haghighat E, Abouali S, Vaziri R. Constitutive model characterization and discov­

ery using physics-informed deep learning. Eng Appl Artif Intell 2023;120:105828.

https://doi.org/10.1016/j.engappai.2023.105828

[16] Meyer KA, Ekre F. Thermodynamically consistent neural network plasticity mod­

eling and discovery of evolution laws. J Mech Phys Solids 2023;180:105416.

https://doi.org/10.1016/j.jmps.2023.105416

[17] Fuhg JN, Hamel CM, Johnson K, Jones R, Bouklas N. Modular machine learning-

based elastoplasticity: generalization in the context of limited data. Comput

Methods Appl Mech Eng 2023;407:115930. https://doi.org/10.1016/j.cma.2023.

115930

[18] Jadoon AA, Meyer KA, Fuhg JN. Automated model discovery of finite strain

elastoplasticity from uniaxial experiments. Comput Methods Appl Mech Eng

2025;435:117653. https://doi.org/10.1016/j.cma.2024.117653

[19] Flaschel M, Kumar S, De Lorenzis L. Unsupervised discovery of interpretable hy­

perelastic constitutive laws. Comput Methods Appl Mech Eng 2021;381:113852.

https://doi.org/10.1016/j.cma.2021.113852

[20] Flaschel M, Kumar S, De Lorenzis L. Automated discovery of generalized standard

material models with Euclid. Comput Methods Appl Mech Eng 2023;405:115867.

https://doi.org/10.1016/j.cma.2022.115867

[21] Versino D, Tonda A, Bronkhorst CA. Data driven modeling of plastic deformation.

Comput Methods Appl Mech Eng 2017;318:981–1004. https://doi.org/10.1016/j.

cma.2017.02.016

[22] Bomarito GF, Townsend TS, Stewart KM, Esham KV, Emery JM, Hochhalter JD.

Development of interpretable, data-driven plasticity models with symbolic re­

gression. Comput Struct 2021;252:106557. https://doi.org/10.1016/j.compstruc.

2021.106557

[23] Abdusalamov R, Hillgärtner M, Itskov M. Automatic generation of interpretable

hyperelastic material models by symbolic regression. Int J Numer Methods Eng

2023;124(9):2093–104. https://doi.org/10.1002/nme.7203

[24] Bahmani B, Suh HS, Sun W. Discovering interpretable elastoplasticity models via

the neural polynomial method enabled symbolic regressions. Comput Methods

Appl Mech Eng 2024;422:116827. https://doi.org/10.1016/j.cma.2024.116827

[25] Bari S, Hassan T. An advancement in cyclic plasticity modeling for multiaxial ratch­

eting simulation. Int J Plast 2002;18(7):873–94. https://doi.org/10.1016/S0749-

6419(01)00012-2

[26] Simo JC, Hughes TJR. Computational inelasticity. Springer; 1998. https://doi.org/

10.1007/b98904

[27] Bernasconi A, Filippini M, Foletti S, Vaudo D. Multiaxial fatigue of a railway wheel

steel under non-proportional loading. Int J Fatigue 2006;28(5–6):663–72. https:

//doi.org/10.1016/j.ijfatigue.2005.07.045

[28] Armstrong PJ, Frederick CO, et al. A mathematical representation of the multiaxial

Bauschinger effect, vol. 731. Berkeley Nuclear Laboratories Berkeley, CA; 1966.

https://doi.org/10.3184/096034007x207589

[29] Talebi N, Andersson B, Ekh M, Meyer KA. Influence of a highly deformed surface

layer on RCF predictions for rails in service. Wear 2025:206173. https://doi.org/

10.1016/j.wear.2025.206173

[30] Mozaffar M, Bostanabad R, Chen W, Ehmann K, Cao J, Bessa MA. Deep learning

predicts path-dependent plasticity. Proc Natl Acad Sci 2019;116(52):26414–20.

https://doi.org/10.1073/pnas.1911815116

[31] Brunton SL, Kutz JN. Neural networks and deep learning. Cambridge University

Press; 2019. pp. 195–226. https://doi.org/10.1017/9781108380690.007

[32] Liu L, Jiang H, He P, Chen W, Liu X, Gao J, Han J. On the variance of the adaptive

learning rate and beyond [arXiv preprint] arXiv:1908.03265. 2019.

[33] Paszke A. PyTorch: an imperative style, high-performance deep learning library

arXiv:1912.01703.[arXiv preprint] 2019.

[34] Feurer M, Hutter F. Hyperparameter optimization. In: Automated machine learn­

ing: methods, systems, challenges. Springer International Publishing Cham; 2019.

pp. 3–33. https://doi.org/10.1007/978-3-030-05318-5

[35] Wang Y, Wagner N, Rondinelli JM. Symbolic regression in materials science. MRS

Commun 2019;9(3):793–805. https://doi.org/10.1557/mrc.2019.85

[36] Cranmer M. Interpretable machine learning for science with PySR and

SymbolicRegression.jl arXiv:2305.01582.[arXiv preprint] 2023.

[37] Magel EE. Rolling contact fatigue: a comprehensive review, Tech. rep., US

Department of Transportation, Federal Railroad Administration, 132 p. (2011).

Computers and Structures 321 (2026) 108086

15

https://doi.org/10.1080/09603409.2019.1631587
https://doi.org/10.1108/02644400710734945
https://doi.org/10.1108/02644400710734945
https://doi.org/10.1016/j.ijfatigue.2015.07.006
https://doi.org/10.1002/nme.683
https://doi.org/10.1002/nme.683
https://doi.org/10.1002/nag.2515
https://doi.org/10.1016/j.cma.2020.113522
https://doi.org/10.1016/j.compscitech.2022.109340
https://doi.org/10.1016/j.compscitech.2022.109340
https://doi.org/10.1007/s11831-024-10196-2
https://doi.org/10.1007/s11831-024-10196-2
https://doi.org/10.1016/j.ijplas.2019.05.001
https://doi.org/10.1016/j.jmps.2020.103972
https://doi.org/10.1016/j.jcp.2020.110010
https://doi.org/10.1016/j.jcp.2020.110010
https://doi.org/10.1002/nme.7319
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1002/nme.6828
https://doi.org/10.1016/j.engappai.2023.105828
https://doi.org/10.1016/j.jmps.2023.105416
https://doi.org/10.1016/j.cma.2023.115930
https://doi.org/10.1016/j.cma.2023.115930
https://doi.org/10.1016/j.cma.2024.117653
https://doi.org/10.1016/j.cma.2021.113852
https://doi.org/10.1016/j.cma.2022.115867
https://doi.org/10.1016/j.cma.2017.02.016
https://doi.org/10.1016/j.cma.2017.02.016
https://doi.org/10.1016/j.compstruc.2021.106557
https://doi.org/10.1016/j.compstruc.2021.106557
https://doi.org/10.1002/nme.7203
https://doi.org/10.1016/j.cma.2024.116827
https://doi.org/10.1016/S0749-6419(01)00012-2
https://doi.org/10.1016/S0749-6419(01)00012-2
https://doi.org/10.1007/b98904
https://doi.org/10.1007/b98904
https://doi.org/10.1016/j.ijfatigue.2005.07.045
https://doi.org/10.1016/j.ijfatigue.2005.07.045
https://doi.org/10.3184/096034007x207589
https://doi.org/10.1016/j.wear.2025.206173
https://doi.org/10.1016/j.wear.2025.206173
https://doi.org/10.1073/pnas.1911815116
https://doi.org/10.1017/9781108380690.007
http://arxiv.org/abs/1908.03265
http://arxiv.org/abs/1912.01703
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1557/mrc.2019.85
http://arxiv.org/abs/2305.01582
http://refhub.elsevier.com/S0045-7949(25)00444-4/sbr0185
http://refhub.elsevier.com/S0045-7949(25)00444-4/sbr0185

	Cycle-domain plasticity modeling using neural networks and symbolic regression
	1 Introduction
	2 Standard formulation of time-domain plasticity models
	3 Cycle-domain material model
	4 Data generation
	4.1 Reference time-domain cyclic plasticity model
	4.2 Training, validation, and test data generation

	5 Machine Learning (ML) models
	5.1 Feed-Forward Neural Network (FFNN)
	5.2 Symbolic Regression (SR)

	6 Results and discussions
	6.1 Neural Networks (NN)
	6.1.1 Two-input NN
	6.1.2 Three-input NN

	6.2 Symbolic Regression (SR)
	6.3 Comparison of different ML models

	7 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Cycle-domain performance evaluation considering training and validation datasets
	Data availability
	References

