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A B S T R A C T

Simulation of many loading cycles with traditional time-domain material models, requiring discretization of each 

cycle with several time steps, can result in high computational cost. One effective approach to speed up cyclic sim­

ulations is employing cycle-domain material models. Finite element simulations of rails subjected to many wheel 

passages are a relevant application of such models. Proposing a per-cycle evolution equation for plastic strains 

in cycle-domain models is, however, a challenge. To address this, we investigate the feasibility and accuracy of 

using machine learning models as tools for formulating such an equation. Specifically, we enforce our knowl­

edge from constitutive modeling for elasticity and formulate the evolution law by employing feed-forward neural 

networks with different inputs, as well as symbolic regression to discover an interpretable expression. Training, 

validation, and test data have been generated using a cyclic time-domain plasticity model considering pulsating 

uniaxial stress loadings with constant and variable strain ranges. The obtained results demonstrate the potential 

of cycle-domain plasticity modeling using both uninterpretable and interpretable data-driven machine learning 

as an alternative to time-domain material modeling. Furthermore, both approaches have revealed reasonably 

good extrapolation performance beyond the training regime.

1 . Introduction

For structures subjected to cyclic loading where no stabilized behav­

ior is obtained, it is time-consuming to apply a non-linear constitutive 

model and perform time steps in Finite Element (FE) simulations [1]. 

One approach to speed up the simulation of many loading cycles is to 

extrapolate the response by using load sequence extrapolation with er­

ror control, as developed by Johansson and Ekh [2]. In this approach, 

state variables and global responses obtained from FE simulations at cy­

cle 𝑁  are extrapolated using a Taylor series expansion. Alternatively, 

Brommesson et al. [3] proposed scaling the number of cycles in ex­

periments and recalibrating the material model parameters accordingly. 

Although this reduces computational time linearly, calibrating multiple 

sets of material parameters remains time-consuming.

An alternative approach is to use cycle-domain modeling as proposed 

by Suiker and de Borst [4]. The model framework is based on standard 

plasticity theory and is formulated as a viscoplastic model to simulate 

the evolution of plastic deformations in ballasted tracks subjected to 

many loading cycles. Based on that framework, Li et al. [5] developed 

a three-dimensional FE simulation tool to predict long-term differen­

tial settlement in ballasted tracks to enable fast simulations of many 

wheel passages. Cycle-domain material models have the advantage that 

the FE algorithm is not modified, as only the applied material model is 

changed, making the method suitable for industrial implementations. 

In addition to geomechanical applications, for modeling the stiffness 

degradation of short-fiber reinforced plastics, Köbler et al. [6] formu­

lated their fatigue damage model in the cycle domain. In the same 

context, Magino et al. [7] proposed a hybrid log-cycle fatigue dam­

age model that combines time-domain accuracy in initial cycles with 

the computational efficiency of cycle-domain models in high-cycle fa­

tigue regimes. The key challenge with formulating cycle-domain models 

is to find suitable per-cycle evolution laws for the internal variables. 

In this paper, we propose to do this by using Machine Learning (ML)

techniques.

The use of ML to enhance time-domain material modeling has been 

a rapidly growing area of research in recent years. As reviewed by 

Fung et al. [8], ML-based constitutive models can be categorized as 

either uninterpretable or interpretable. Focusing on the former, Ali 

et al. [9] trained a Feed-Forward Neural Network (FFNN) to pre­

dict the stress-strain response and texture evolution of single crystal 

and polycrystalline materials under uniaxial tension and simple shear. 
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For modeling anisotropic plane-stress plasticity under multiaxial load­

ing, Gorji et al. [10] demonstrated the potential of Recurrent Neural 

Networks (RNNs) with the use of a large amount of training data. Linka 

et al. [11] introduced a new approach by incorporating constitutive 

modeling knowledge directly into the architecture of FFNNs, allowing 

for efficient training with a moderate amount of data and resulting in 

improved extrapolation performance.

The inclusion of physical principles into neural networks has been 

shown to noticeably improve the ability to generalize outside the train­

ing regime in material modeling [12]. Raissi et al. [13] introduced 

Physics-Informed Neural Networks (PINNs) to solve forward and in­

verse problems, while imposing physical constraints on the loss function. 

Following this, Abueidda et al. [14] employed PINNs to solve partial 

differential equations for displacement fields, and Haghighat et al. [15] 

developed a PINN-based framework for constitutive modeling by em­

bedding elastoplastic inequality constraints into the loss function. Some 

ML-based material modeling techniques aim to satisfy physical con­

straints by construction. For instance, Meyer and Ekre [16] proposed 

embedding FFNNs directly into the evolution laws of internal vari­

ables. The framework inherently fulfills thermodynamics and material 

objectivity. Fuhg et al. [17] suggested a thermodynamically consistent 

framework, which is instead based on isotropic and nonlinear kinematic 

hardening potentials. Following this approach, Jadoon et al. [18] de­

veloped an NN-based framework for finite strain elastoplastic material 

modeling.

Despite the satisfactory results of the NN-based constitutive models, 

their black-box nature remains a limitation [8]. In the context of inter­

pretable ML, Flaschel et al. [19] introduced a method based on sparse 

regression to discover constitutive laws for isotropic hyperelastic mate­

rials using displacements and global force data, and later extended the 

work to automatically discover constitutive laws for isotropic materials 

with unknown categories of material behavior [20]. Combining sparse 

regression and binomial searching, Meyer and Ekre [16] discovered an­

alytical expressions from NN-generated data for evolution equations of 

internal variables. Alternatively, Symbolic Regression (SR), referring 

to methods based on genetic algorithms [8], was applied by Versino 

et al. [21] to discover flow stress equations for copper. Working with a 

limited amount of experimental data, they addressed this constraint by 

incorporating their expert knowledge to enhance the predictive accuracy 

of the models. Based on micromechanical finite element simulations, 

Bomarito et al. [22] demonstrated the potential of SR in discovering the 

von Mises yield function and the plastic strain evolution equation. Using 

the same methodology, Abdusalamov et al. [23] proposed an SR-based 

approach to identify the strain energy density function for hyperelastic 

materials. Bahmani et al. [24] suggested a hybrid framework to formu­

late the yield functions of perfectly plastic materials by expressing them 

as polynomials composed of symbolic equations that replace trained 

univariate neural networks.

In contrast to available studies on ML-based time-domain con­

stitutive modeling (e.g.,  [11,15–17]), this study proposes ML-based 

cycle-domain plasticity modeling. Incorporating established knowledge 

from material modeling for elasticity, we obtain the per-cycle evolution 

law for plastic strains using either FFNNs (uninterpretable ML models) 

or SR (an interpretable alternative). To focus on the differences be­

tween these approaches, we study one-dimensional problems. It should 

be noted that, although cycle-domain models can be employed in dif­

ferent applications involving cyclic loadings, some assumptions in this 

work are motivated from a railway mechanics point of view. The paper is 

organized as follows: In Section 2, we explain the standard formulation 

of a time-domain plasticity model, while the cycle-domain model formu­

lation for uniaxial stress loading is presented in Section 3. In Section 4, 

the time-domain plasticity model adopted to generate artificial training, 

validation, and test data, together with the corresponding data gener­

ation procedure, is described. In Section 5, we explain the considered 

FFNNs and SR models, and finally, in Sections 6 and 7, we discuss and 

summarize our findings.

2 . Standard formulation of time-domain plasticity models

In this section, we present the standard formulation of a time-domain 

plasticity model in a small strain setting. Note that, second-order tensors 

are written in boldface, e.g. 𝒕, while fourth-order tensors are written in 

capitalized, boldface, and upright form, e.g. T. 

The total strain, 𝝐, is additively decomposed into an elastic strain, 

𝝐e, and a plastic strain, 𝝐p, 

𝝐 = 𝝐e + 𝝐p → 𝝐e(𝝐, 𝝐p) = 𝝐 − 𝝐p (1)

The stress, 𝝈, can then be calculated using Hooke’s law 

𝝈 = Ee ∶
(

𝝐 − 𝝐p
)

(2)

where Ee is the elasticity tensor. The yield function 𝛷 (𝝈,A) defines the 

elastic domain (𝛷 < 0) and the plastic domain (𝛷 = 0), where A =
{𝒂1, 𝒂2, ⋯ , 𝒂𝑛} is a set of hardening stresses. The evolution of plastic 

strains, 𝝐p, is typically assumed to follow an associative flow rule 

𝝐̇p = 𝜆̇ 𝜕𝛷
𝜕𝝈

(3)

whereas for the hardening stresses, 𝒂𝑖, non-associative evolution laws 

provide better agreements with experimentally observed material be­

havior [25] 

𝒂̇𝑖 = 𝜆̇ 𝑔𝑖 (𝝈,A) (4)

𝜆̇ is the plastic multiplier (rate of accumulated equivalent plastic strain) 

and can be determined from the Karush-Kuhn-Tucker (KKT) loading/un­

loading conditions 

𝛷 ≤ 0, 𝜆̇ ≥ 0, 𝛷 𝜆̇ = 0 (5)

To determine whether the material response is elastic or plastic, the 

Karush-Kuhn-Tucker conditions given in Eq. (5) are used. Considering 

the implicit backward Euler time integration scheme, we assume that, 

at the time step 𝑛𝑡, the material response is elastic, i.e., 𝑛𝜆̇ = 0, thereby 

Δ𝜆 = 𝑛𝜆− 𝑛−1𝜆 = 0. Accordingly, 𝑛𝝈 is equal to the calculated trial stress 
𝑛𝝈tr as: 𝑛𝝈 = 𝑛𝝈tr = Ee ∶

(𝑛𝝐 − 𝑛−1𝝐p
)

, and the hardening stresses do not 

change: 𝑛𝒂𝑖 = 𝑛−1𝒂𝑖. This assumption holds if 𝛷 ≤ 0; otherwise, a system 

of nonlinear equations must be solved. For further details, the reader is 

referred, e.g., to [26].

The formulation of the cycle-domain material model introduced in 

Section 3 is independent of the choice of a time-domain material model. 

In this study, to train, validate, and test the ML-based cycle-domain 

model, we have chosen a reference time-domain plasticity model with 

a von Mises yield function, an associative evolution law for the plas­

tic strain, and a nonlinear evolution law for the hardening stress; see 

Section 4.1 for further details.

3 . Cycle-domain material model

To enhance the computational efficiency of cyclic simulations in­

volving many cycles, we propose replacing a standard time-domain 

model with a cycle-domain model for pulsating uniaxial loading, in­

spired by Suiker and de Borst [4]. In the cycle-domain model, we predict 

the peak stress and the corresponding plastic strain in each loading cy­

cle 𝑁 , as shown in Fig. 1. This choice is motivated by the application of 

railway mechanics, where rails are subjected to purely pulsating load­

ing [5,27]. The notation 𝑁 (⋅) refers to cycle 𝑁 , and 𝑁−1(⋅) refers to cycle 

𝑁 − 1. Assuming small strains and Hooke’s law (Eq. (2)) for uniaxial 

loading, we replace the time derivatives of quantities with their change 

per unit cycle, 𝑁 , as 

d𝜎11
d𝑁

= 𝐸
d𝜖e

11
d𝑁

= 𝐸

(

d𝜖11
d𝑁

−
d𝜖p

11
d𝑁

)

(6)

where 𝐸 is Young’s modulus. The challenge with cycle-domain models 

is to propose a suitable per-cycle evolution equation for plastic strains. 
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Fig. 1. Schematic illustration of the cycle-domain material model in cyclic simulations. The solid blue lines represent the input strain history to the time-domain 

model and its simulated first half-cycle. The red circles show the peak strain 𝑁 𝜖11, as well as the peak normal stress 𝑁𝜎11 and the corresponding plastic strain 𝑁 𝜖p

11
predicted by the cycle-domain model for the loading cycle 𝑁 . The dashed light blue lines denote the strain histories and responses from the time-domain model.

We aim to discover this equation with machine learning. Specifically, 

we will train a model, 𝑓ml, with inputs 𝒙

d𝑁 𝜖p

11
d𝑁

= 𝛷
(𝑁−1𝜖p

11,
𝑁𝜎tr

11
)

𝑓ml (𝒙) where (7)

𝛷
(𝑁−1𝜖p

11,
𝑁𝜎tr

11
)

=

⎧

⎪

⎨

⎪

⎩

0, if 𝑁−1𝜖p

11 = 0 and |

𝑁𝜎tr
11| < 𝑌0

1, otherwise
and

𝑁𝜎tr
11 = 𝐸

(𝑁 𝜖11 − 𝑁−1𝜖p

11
)

𝛷(⋅) is introduced to ensure that no plastic strain increment occurs 

when the material response is elastic (i.e., |𝑁𝜎tr
11| is smaller than the ini­

tial yield stress 𝑌0 ) with no previous plasticity (𝑁−1𝜖p

11 = 0). Accordingly, 

the cycle-domain model will behave equivalently to the time-domain 

model for elastic-only loading (corresponding to high cycle fatigue load­

ing). This has been found to facilitate the training of 𝑓ml later in the ML 

procedure described in Section 5. Note that we use a semi-implicit dis­

cretization scheme between the loading cycles. When using the model, 

the first half-cycle is simulated with the time-domain model, before 

applying the cycle-domain model to predict the subsequent cycles, as 

illustrated in Fig. 1.

4 . Data generation

This section presents the reference time-domain plasticity model 

adopted to generate artificial data and the corresponding data genera­

tion procedure. The data will be used for training, validation, and testing 

of the cycle-domain model with different ML-based evolution equations 

for plastic strains.

4.1 . Reference time-domain cyclic plasticity model

Based on the general small strain plasticity model formulation de­

scribed in Section 2, a specific reference model is described in the 

following. The elastic behavior is linear isotropic, i.e.,

Ee = 2𝐺 Idev +𝐾b 𝑰 ⊗ 𝑰 →𝝈 = 2𝐺 𝝐e
dev

+𝐾b tr(𝝐e) 𝑰 , 𝐾b = 𝐸 𝐺
3 (3𝐺 − 𝐸)

(8)

where 𝐺, 𝐾b, and 𝐸 are the shear, bulk, and Young’s moduli, respec­

tively. 𝑰  is the second-order identity tensor, and 𝝐e
dev

 is the deviatoric 

elastic strain. The fourth-order deviatoric identity tensor is defined as 

Idev = 𝑰⊗𝑰 − 𝑰 ⊗ 𝑰∕3, where the non-standard open product ⊗ between 

two second-order tensors is given by 𝒂⊗ 𝒃 = 𝑎𝑖𝑘 𝑏𝑗𝑙 𝒆𝑖 ⊗ 𝒆𝑗 ⊗ 𝒆𝑘 ⊗ 𝒆𝑙. 
The model considers kinematic hardening and has the hardening stress 

A = {𝜷}, where 𝜷 is the back-stress. Using the von Mises effective stress, 

the yield function is then defined as 

𝛷 =
√

3
2
𝝈red

dev
∶ 𝝈red

dev
− 𝑌0 ≤ 0 with 𝝈red

dev
= 𝝈dev − 𝜷 (9)

where 𝝈dev is the deviatoric stress. The evolution of the plastic strain, 

𝝐p, follows the associative flow rule 

𝝐̇p = 𝜆̇ 𝜕𝛷
𝜕𝝈

= 𝜆̇𝝂 with 𝝂 =
√

3
2

𝝈red
dev

|𝝈red
dev

|

(10)

where the plastic multiplier, 𝜆̇, can be determined from the KKT load­

ing/unloading conditions, as described in Section 2. The evolution of the 

back-stress, 𝜷, is assumed to be of the Armstrong-Frederick type [28] 

𝜷̇ = −2
3
𝐻kin 𝜆̇

[

−𝝂 + 3
2

𝜷
𝛽∞

]

(11)
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Table 1 

Material model parameter values for the reference time-

domain cyclic plasticity model.

Material parameters 𝐸 𝐺 𝑌0 𝐻kin 𝛽∞

200 75 400 150 500

Unit GPa GPa MPa GPa MPa

𝐻kin is the kinematic hardening modulus, and 𝛽∞ is the saturation value 

of the back-stress. The values of the material model parameters, in­

spired by those calibrated based on experimental data for isotropic R260 

pearlitic rail steel [29], are listed in Table 1.

4.2 . Training, validation, and test data generation

In this study, data required for training, validation, and testing of the 

considered ML models are generated artificially using the time-domain 

cyclic plasticity model described in Section 4.1. The data are employed 

to train an NN and to discover a symbolic equation representing the per-

cycle evolution equation for plastic strains in the cycle-domain material 

model. They are also used for model validation and testing. Data gen­

eration is performed through material point simulations. Each dataset 

consists of 100 loading cycles, with each loading cycle discretized into 

400 time steps. Cyclic pulsating strain-controlled uniaxial stress loadings 

with both constant and variable strain ranges are applied. For constant 

strain range loadings, 400 logarithmically spaced strain range values, 

Δ𝜖11, spanning from 0.2 % (corresponding to the elastic limit) to 3.0 %
are considered. The lower limit of the strain range is chosen to avoid 

elastic material responses without previous plasticity. Logarithmic spac­

ing is chosen to generate a higher density of datasets in the transition 

region from elastic shakedown to plastic shakedown behavior, where 

small changes in strain ranges significantly affect the material response. 

Variable strain range values are randomly generated between 0.0 % and 

3.0 % 400 times, following a uniform distribution. These procedures pro­

duce a total of 800 artificial datasets, covering a wide range of material 

behavior.

Some results from the time-domain material model under loadings 

with constant Δ𝜖11 are presented in Fig. 2(a)–(c). For the lower Δ𝜖11 of 

0.39 % (Fig. 2(a)), the material response shows elastic shakedown be­

havior following the first loading cycle. However, a higher strain range 

value of 0.77 % (Fig. 2(b)) causes a reduction in the peak stresses before 

stabilizing into a plastic shakedown state. Under more severe loading 

conditions, with Δ𝜖11 of 3.0 %, the material reaches a plastic shakedown 

state from the second loading cycle, see Fig. 2(c). In contrast to the load­

ings with constant strain ranges, from Fig. 2(d), no stabilized behavior 

after 100 cycles can be observed.

Training, validation, and test data are prepared in the form of 

{𝑁𝜎11,𝑁−1𝜖p

11
, d𝑁 𝜖p

11∕d𝑁} for the two-input NN and SR models. For 

the three-input models, the data are structured as {𝑁𝜎11,𝑁−1𝜖p

11
,𝑁−1𝜎11,

d𝑁 𝜖p

11∕d𝑁}; see Section 5 for more details regarding the models and 

their inputs. For completeness, the relevant variables are reintroduced 

in this section, even though some of them are defined in Section 3. 𝑁𝜎11
denotes the peak stress in loading cycle 𝑁 , 𝑁−1𝜎11, as well as 𝑁−1𝜖p

11
, 

are the peak stress and plastic strain values in loading cycle 𝑁 − 1, and 

d𝑁 𝜖p

11∕d𝑁  is the plastic strain increment from cycle 𝑁 − 1 to 𝑁 . As an 

example, Fig. 3 illustrates 𝑁𝜎11, 𝑁−1𝜖p

11
, and d𝑁 𝜖p

11∕d𝑁  corresponding 

to a dataset obtained from loading with variable strain ranges. One ob­

servation is the occurrence of negative d𝑁 𝜖p

11∕d𝑁 , resulting from a cycle 

with a high Δ𝜖11 followed by a cycle with a much lower Δ𝜖11.

5 . Machine Learning (ML) models

In this work, we investigate two approaches to formulate the per-

cycle evolution equation for plastic strains, d𝜖p

11∕d𝑁 , in the cycle-domain 

material model: training an NN and SR. The artificially generated 

datasets are split into 80 % for training, 10 % for validation, and 10 % for 

testing. Considering the datasets with variable strain range loading, a 

few data points corresponding to elastic material behavior with no pre­

vious plasticity are filtered out according to the 𝛷 function (see Eq. (7)) 

in the cycle-domain model formulation.

In both alternative approaches, the loss function, minimizing the dif­

ference between the predictions of the models and the target values, is 

chosen to be of the mean-squared error type and is formulated as 

𝐿̂ (𝒙) = 1
𝑘

𝑘
∑

𝑖=1

⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

̂d𝑁 𝜖p11
d𝑁

⎞

⎟

⎟

⎠𝑖

− 𝑓ml

(

𝒙𝑖
)

⎞

⎟

⎟

⎠

2

where 𝑓ml (𝒙) = 𝑓nn (𝒙) or 𝑓sr (𝒙)

(12)

where 𝑘 denotes the total number of data points included in the train­

ing, validation, or test sets, and 
̂d𝑁 𝜖p11

d𝑁  is the min-max normalized 
d𝑁 𝜖p11

d𝑁 . 

Since there is a significant difference in the orders of magnitude of the 

input variables, all the input and output variables of the studied mod­

els are scaled to the interval [0, 1] (min-max normalized). 𝑓nn (𝒙) and 

𝑓sr (𝒙) represent an NN and SR model, respectively, with input vari­

ables 𝒙. We first evaluate the performance of the models with two 

input variables: 𝑁𝜎11 and 𝑁−1𝜖p

11. The corresponding training data is il­

lustrated in Fig. 4(a), showing a surface-like distribution of data with 

slight dispersion. The data spans a range of 
d𝑁 𝜖p11

d𝑁 , transitioning from 

large positive values, through zero, to negative values. Further, the dis­

tribution is inhomogeneous, with a noticeably higher sparsity in the 

region approximately defined by 0.0 % ≤ 𝑁−1𝜖p

11 ≤ 0.3 %. In this re­

gion, some data points also deviate from the general surface trend, 

as shown by the red circle. Further analysis of the training data dis­

tribution for different intervals of 𝑁−1𝜖p

11 shows that nearly the same 

inputs correspond to multiple outputs. This behavior is exemplified in 

Fig. 4(b) for 0.500 % ≤ 𝑁−1𝜖p

11 ≤ 0.541 %. Due to the non-unique 

input-output mapping, the NN or SR model can only learn an ap­

proximate solution based on the provided input information. Thus, we 

introduce 𝑁−1𝜎11 as an additional input, forming three-input models, 

to assess the extent of performance improvement over the two-input

models.

5.1 . Feed-Forward Neural Network (FFNN)

One investigated approach to obtain the per-cycle evolution equation 

for plastic strains is using a fully connected FFNN. Although RNNs 

have been used to model history-dependent behavior, see e.g. [10,30], 

we have chosen to base our ML-based cycle-domain model on a time-

domain plasticity model and have employed an FFNN, as one component 

of the model, to formulate the per-cycle evolution law. It should be 

noted that the material model formulation can be considered a recurrent 

architecture, as each step depends on the previous state.

In a fully connected FFNN, each neuron in a given layer is connected 

to all neurons in the subsequent layer [31]. The network establishes 

a mapping from the input vector 𝒙0 to the output vector 𝒚, denoted as 

𝒚 = 𝑓nn

(

𝒙0
)

. The information propagates sequentially through 𝑚 hidden 

layers before reaching the output layer. Each hidden layer 𝑙 computes its 

output using a nonlinear function, referred to as the activation function 

𝑎𝑙 (⋅)

𝒙𝑙 = 𝑎𝑙
(

𝑾 𝑙 𝒙𝑙−1 + 𝒃𝑙
)

where 𝑎𝑙 (𝑥) =

⎧

⎪

⎨

⎪

⎩

1
1 + 𝑒−𝑥

𝑙 = 1,… , 𝑚 − 1

max (0, 𝑥) 𝑙 = 𝑚

(13)

𝑾 𝑙 and 𝒃𝑙 are trainable weight matrices and bias vectors associated with 

layer 𝑙, respectively. The output vector 𝒚 is computed as 

𝒚 = 𝑎𝑚+1
(

𝑾 𝑚+1 𝒙𝑚 + 𝒃𝑚+1
)

where 𝑎𝑚+1 (𝑥) = tanh (𝑥) (14)

tanh(𝑥) is chosen for the output layer to allow for both positive and 

negative plastic strain increments, as stated in Section 4.2.
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Fig. 2. The stress-strain responses from the time-domain material model for loadings under constant strain range of (a) 0.39 % (elastic shakedown), (b) 0.77 % (mean 

stress relaxation), (c) 3.0 % (plastic shakedown) and under variable strain ranges over 100 cycles with maximum value of (d) 2.94 %.

Fig. 3. Training data from a dataset with variable strain ranges over 100 loading cycles.

In this paper, an NN comprising 𝑚 = 5 hidden layers with 6 neurons 

per layer is considered. Expanding the network architecture (𝑚 = 10
with 50 neurons per layer) did not significantly improve the training 

loss compared to the smaller network (from 1.81 × 10−5 to 1.22 × 10−5). 
Therefore, we chose the former network architecture for its comparable 

accuracy and higher computational efficiency. Starting from five distinct 

random seeds, the NN is trained over four runs, with each consisting 

of 50,000 epochs. For a given seed, the first training run begins with 

randomly initialized network parameters, i.e., weights and biases. The 

identified parameters with the lowest training loss are then selected as 
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Fig. 4. (a) Training data for the two-input models and (b) training data for an 

interval of 0.500 % ≤ 𝑁−1𝜖p

11 ≤ 0.541 %.

initial guesses for the subsequent training run. The goal of this approach 

is to improve the chance that the optimization algorithm finds the global 

optimum. The neural network model corresponding to the seed that 

gives the lowest training loss is selected as the best model. In each 

training run, the network parameters are identified using the gradient-

based Rectified Adam optimization algorithm [32] (RAdam) in the 

open-source PyTorch library [33] with a learning rate of 0.002, and the 

gradients are computed using the backpropagation algorithm. Although 

these hyperparameters, obtained using trial-and-error, gave satisfactory 

training performance, more efficient training may be achievable via 

automatic hyperparameter tuning; see [34].

5.2 . Symbolic Regression (SR)

To circumvent the black-box nature of NN-based constitutive models, 

we investigate whether the neural network can be replaced by a human-

interpretable mathematical expression that best fits the given data using 

SR. This method does not require a prior assumption of functional forms, 

in contrast to conventional regression methods adopted in constitutive 

modeling. Instead, only building blocks such as basic mathematical op­

erators, functions, and numerical constants need to be defined [35]. In 

addition, constraints to regulate the complexity of the resulting expres­

sions can be specified. In this contribution, we employ the open-source 

PySR library [36], which implements a multi-population evolutionary 

Fig. 5. Expression tree of the symbolic equation (−0.4 𝑥+exp(15.5 𝑦−16.5))+0.5.

Fig. 6. Mutation and cross-over operations applied to the candidate solutions.

algorithm based on the stochastic optimization method of genetic 

programming.

The genetic-programming-based SR [36] starts with populations of 

randomly generated candidate solutions, constructed using predefined 

building blocks. The candidate solutions are represented as expression 

trees with internal nodes (mathematical operations or functions) and ter­

minal nodes (variables or constants) [24,35]. Fig. 5 shows an example 

of the expression tree of the candidate solution (−0.4 𝑥 + exp(15.5 𝑦 −
16.5)) + 0.5. The expression tree consists of binary operators (+,−,×), 

a unary operator (exp), variables (𝑥, 𝑦), and numerical constants. The 

performance of each candidate solution in a population is evaluated ac­

cording to how well it fits the target values. These populations evolve 

in parallel through a series of operations: mutation (Fig. 6), which ran­

domly changes a candidate solution by, e.g., adding a node or mutating 

an operator, crossover (Fig. 6), which combines some information from 

two candidate solutions, simplification of mathematical expressions, and 

optimization of constants. These operations generate new sets of candi­

date solutions with improved fitness, and the process continues until a 

defined stopping criterion is satisfied. 

In the present study, the considered binary operators are addition, 

subtraction, and multiplication, and the unary operators are chosen to 

be similar to the activation functions in the NN models, namely exponen­

tial (exp), hyperbolic tangent (tanh), and the Macaulay bracket (⟨∙⟩). For 

parameter identification within a given expression, the gradient-based 

BFGS optimization algorithm is employed. A total of 24 populations 

are considered, each with 5000 iterations. The SR process terminates 

when the total number of iterations across all populations is reached. 

The result of the SR is a Pareto front of analytical expressions with 
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different complexities and resulting training losses. We assume the 

default expression complexity measure in PySR, the number of nodes 

in a symbolic expression tree, with a maximum complexity of 30.

6 . Results and discussions

In this section, we present the results of the two-input and three-input 

NN, as well as SR models. In particular, we compare the corresponding 

training and validation losses and evaluate the performance of the cycle-

domain material model when embedding the NN and SR models as the 

per-cycle evolution equations for plastic strains in the material model 

formulation.

6.1 . Neural Networks (NN)

6.1.1 . Two-input NN

The training procedure described in Section 5.1 resulted in the train­

ing and validation loss evolutions for the two-input NN presented in 

Fig. 7 (left). The minimum normalized training loss, 𝐿̂train, decreased 

from 9.6 × 10−5 in the first training run to 5.4 × 10−5 in the last run; 

however, after the second run, no noticeable improvement can be ob­

served, with the loss slightly decreasing from 5.9 × 10−5 in the third run 

to 5.4 × 10−5 in the last run, see Fig. 7 (right). In contrast, the minimum 

𝐿̂train for the three-input NN continued decreasing until the last run, see 

Section 6.1.2. The corresponding normalized validation losses, 𝐿̂valid, 

are 7.3×10−5 in the first run and 4.4×10−5 in the last run. This indicates 

no sign of overfitting, as can be observed in Fig. 7 (left). Additionally, 

the normalized test loss, 𝐿̂test, of 5.7×10−5 in the last training run, shows 

a good performance of the model on unseen data. Fig. 8 illustrates the 

values of d𝜖p11∕d𝑁  along the 𝑧−axis obtained by the trained NN, and the 

colors represent relative errors with respect to the maximum value of all 

output features considering training, validation, and test data. Overall, 

there is good agreement between the surface-like distribution shown in 

Fig. 4(a) and the one predicted by the NN. However, in regions with 

lower data density and higher deviation from the surface-like trend, the 

relative errors in d𝜖p11∕d𝑁  are higher. As discussed in Section 5 and 

exemplified in Fig. 4(b), the NN model with two inputs results in an 

approximate solution due to the presence of one-to-many mappings. 

Therefore, we investigate, in the next section, whether informing the 

network with the third input 𝑁−1𝜎11 can lead to an enhancement of the 

NN performance.

6.1.2 . Three-input NN

Fig. 9 (left) presents the evolution of the training and validation 

losses for the three-input NN. Retraining the NN reduced the minimum 

𝐿̂train from 3.6×10−5 in the first training run, to 3.0×10−5 in the second, 

2.4×10−5 in the third, and 1.8×10−5 in the last run, see Fig. 9 (right). The 

Fig. 8. Relative error in d𝜖p11∕d𝑁  from the two-input NN model considering 

training data.

corresponding 𝐿̂valid and 𝐿̂test in the last run are 1.7×10−5 and 2.1×10−5, 
respectively. A comparison between the three-input and two-input NNs 

in the last training run shows that inclusion of the additional input fea­

ture, 𝑁−1𝜎11, has reduced the training loss by approximately 66 %, the 

validation loss by 61 %, and the test loss by 63 %. Moreover, a compari­

son of the validation losses indicates that expanding the input features of 

the network has not resulted in overfitting, and the test loss comparison 

implies improved generalizability.

To assess the performance of the cycle-domain material model, we 

embed the trained NN, 𝑓nn, as the per-cycle evolution equation in the 

formulation of the cycle-domain model; see Eqs. (6) and (7) in Section 3. 

As mentioned in Section 3, we simulate the first half loading cycle 

with the time-domain material model, after which the cycle-domain 

model predicts 𝜎11 and 𝜖p

11 for the following loading cycles. Fig. 10(a) 

and (b) present predicted stress and plastic strain values for a case se­

lected among test datasets with variable strain ranges over 100 cycles, 

using the two- and three-input NNs. Overall, the predictions from the 

cycle-domain model show good agreement with the original data gen­

erated by the accurate time-domain material model, considering both 

neural network models. The mean absolute error in 𝜎11 is 15.7 MPa and 

10.2 MPa for the two- and three-input NN models, respectively. The 

corresponding relative errors in 𝜖p

11 (with respect to the reference value 

from the time-domain model) after 100 cycles are 0.007 % and 0.002 %. 

Fig. 7. Training and validation loss evolutions for the two-input NN model (left). A zoomed-in view of the former between epochs 4 × 104 and 2 × 105 is shown in the 

right figure. The vertical dashed lines correspond to the epoch number after each training run.
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Fig. 9. Training and validation loss evolutions for the three-input NN model (left). A zoomed-in view of the former between epochs 4 × 104 and 2 × 105 is shown in 

the right figure. The vertical dashed lines correspond to the epoch number after each training run.

Fig. 10. Stress versus cycle number and plastic strain versus cycle number for a test dataset under loading with variable strain ranges over 100 loading cycles, when 

using (a) the two-input NN model and (b) the three-input NN model in the cycle-domain model formulation. Circles and red plus signs correspond to the results from 

the time-domain model and the cycle-domain model, respectively.
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Fig. 11. Plastic strain evolutions for (a) 25 training datasets under constant strain range loadings and (b) a subset of 10 datasets from (a) that exhibit elastic shakedown 

from the second loading cycle. Circles and solid lines correspond to the results from the time-domain model and the cycle-domain model employing the three-input 

NN, respectively. Only the first 40 loading cycles are shown.

Although there is overestimation or underestimation in 𝜎11 in some load­

ing cycles, these errors have not led to accumulated error in 𝜖p

11 over 

100 cycles. Additional results for selected cases among the training and 

validation datasets are provided in Appendix A. It is worth mentioning 

that the number of cycle increments in the cycle-domain model over 99 

loading cycles is 98, in contrast to 39,600 time increments required by 

the time-domain model. A comparative assessment of the different ML 

models adopted in this study is presented in Section 6.3.

Considering the datasets under constant strain ranges, Fig. 11(a) 

presents the evolution of plastic strains for 25 training datasets with 

strain ranges from 0.2 % to 2.7 %. Since plastic strain saturates after a 

few cycles, for illustration purposes, only the first 40 cycles are shown. 

The cycle-domain model performs very well in predicting plastic strain 

evolutions for cases with higher strain ranges (that lead to higher plastic 

strains). However, when focusing on those datasets where elastic shake­

down occurs after the first loading cycle, as shown in Fig. 11(b), the 

model’s accuracy in predicting the corresponding plastic strain evolu­

tions decreases. Nevertheless, in all cases, the plastic strains stabilize 

after a few cycles. These findings highlight the importance of consider­

ing a broad range of material responses in training datasets when using 

ML-based approaches in constitutive modeling to better understand and 

address the limitations of such models. Despite the limitation of the 

model under certain loading scenarios with constant strain ranges, it has 

shown satisfactory performance for variable strain range loadings. These 

are important in applications such as railway rails, as they are subjected 

to a wide range of vehicles with different axle loads, nominal/worn 

wheel profiles, and speeds [37].

To evaluate the extrapolation capability of the NN-based cycle-

domain material model, we have simulated 5000 loading cycles with 

randomly generated variable strain ranges. Fig. 12, which presents only 

the last 100 cycles, demonstrates good agreement between the results 

from the reference time-domain and cycle-domain material model. The 

mean absolute error in 𝜎11 after 5000 cycles is 10.1 MPa, showing 

satisfactory extrapolation behavior of the cycle-domain model employ­

ing the three-input NN as the per-cycle evolution law.

6.2 . Symbolic Regression (SR)

In this section, we present and discuss the results of using SR to find 

the evolution equation for plastic strains in the cycle-domain material 

model. As shown in Section 6.1, the performance of the three-input NN 

was better than that of the two-input NN. Thus, we will only present 

results for SR using three inputs: 𝑁𝜎11, 𝑁−1𝜖p

11
, and 𝑁−1𝜎11. For this re­

gression task, the unary operators have been introduced sequentially: 

Fig. 12. Stress versus cycle number over 5000 loading cycles when employing the three-input NN in the cycle-domain model formulation. Only the last 100 loading 

cycles are shown. Circles and red plus signs correspond to the results from the time-domain model and the cycle-domain model, respectively.
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Fig. 13. Pareto front from PySR. The dashed gray and green lines show the 

minimum normalized training losses in the last training runs from the two- and 

three-input NN models, respectively.

first the exponential function, followed by the hyperbolic tangent, and 

finally the Macaulay bracket. Although the first and the third cases 

resulted in symbolic expressions with relatively low normalized train­

ing losses of 6.68 × 10−5 and 6.01 × 10−5, respectively (considering the 

most complex equations), the second case with a slightly lower loss of 

5.76 × 10−5 has been selected for further analysis and discussion in this 

section.

Following the procedure described in Section 5.2, Fig. 13 presents 

normalized training and validation losses (𝐿̂train and 𝐿̂valid, respectively) 

against the complexity of the symbolic expressions discovered by PySR. 

As expected, increasing equation complexity leads to improvements in 

both losses. However, beyond the complexity level of 28, a plateau ap­

pears to be emerging. Furthermore, there is no indication of overfitting, 

even at higher levels of complexity. It can be observed that the perfor­

mance of the three-input SR model approaches that of the two-input NN, 

but not the three-input NN.

Among the discovered analytical expressions, five equations with dif­

ferent complexities are selected for further analysis and presented in 

Table 2. The first three equations with complexity levels of 6, 12, and 

20 do not include the third input variable 𝑁−1𝜎̂11, in contrast to the 

more complex equations that achieve lower values of 𝐿̂train and 𝐿̂valid. 

A comparison between the results of the NN models and symbolic ex­

pressions shows that the training and validation losses of the equations 

are higher than those of the three-input NN model (1.8 × 10−5 and 

1.7 × 10−5, respectively), while they approximately converge to those 

of the two-input NN model (5.4 × 10−5 and 4.4 × 10−5).
We have embedded the equations presented in Table 2 into the for­

mulation of the cycle-domain material model following the procedure 

described in Section 6.1. Fig. 14 presents a comparison of the predicted 

𝜎11 by the four symbolic expressions, considering a training dataset. 

The mean absolute errors in 𝜎11 for the equations with complexity lev­

els of 12, 20, 26, and 30 are 44.4 MPa, 26.8 MPa, 19.1 MPa, and 

10.9 MPa, respectively, showing more accurate predictions with increas­

ing complexity at the expense of reduced interpretability. Note that the 

corresponding result from the simplest equation is excluded from Fig. 14, 

due to its high error of 193.1 MPa in 𝜎11.
We have selected the most accurate symbolic expression (with a com­

plexity level of 30) as the per-cycle evolution equation for plastic strains 

in the cycle-domain material model and presented its predictions for 𝜎11
and 𝜖p

11 for the test dataset in Fig. 15. A reasonably good fit to the results 

from the time-domain model can be observed. The mean absolute error 

in 𝜎11 is 16.6 MPa, and the relative error in 𝜖p

11 after 100 cycles is 0.018 %. 

A similar conclusion to that in Section 6.1.2 can be drawn that the er­

rors in 𝜎11 did not noticeably influence the predicted 𝜖p

11 values after 100 

cycles. Table 3 summarizes the errors in 𝜎11 and 𝜖p

11 from the different 

ML models for the considered test dataset, showing a reasonably good 

performance from the NN-based and the SR-based cycle-domain mod­

els. Further discussion regarding the performance of the ML models is 

presented in Section 6.3. Supplementary results for the selected training 

and validation datasets are provided in Appendix A.

Regarding the extrapolation performance of the SR-based cycle-

domain model, the simulation of 5000 cycles has resulted in a mean 

absolute error of 14.8 MPa in 𝜎11. This error is comparable to that of the 

NN model and shows that the SR-based cycle-domain model extrapolates 

similarly well beyond the training regime.

6.3 . Comparison of different ML models

According to Table 4, presenting the normalized errors for the 

ML models evaluated in this paper, the three-input NN model, with 

199 parameters, has the lowest training, validation, and test losses. 

Moreover, the SR model with complexity 30 performs similarly to the 

two-input NN. A comparison of the errors in the predicted 𝜎11 for the 

Table 2 

Discovered symbolic expressions, along with their corresponding complexity levels, normalized training losses (𝐿̂train), and normalized validation losses (𝐿̂valid). 
𝑁 𝜎̂11, 𝑁−1𝜖p

11
, and 𝑁−1𝜎̂11 represent the min-max normalized 𝑁𝜎11, 𝑁−1𝜖p

11
, and 𝑁−1𝜎11, respectively.
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Fig. 14. Stress versus cycle number from symbolic expressions with different complexities according to Table 2, considering a training dataset. Circles and red plus 

signs correspond to the results from the time-domain model and the cycle-domain model, respectively.

ML models is provided in Table 5. The average mean absolute errors 

over 100 loading cycles, considering all the training, validation, and 

test datasets under variable strain range loadings, are noticeably re­

duced, from the two-input to the three-input NN model. Additionally, 

the three-input symbolic expression shows similar errors to those from 

the two-input NN, but with higher minimum values of the mean absolute

errors.

In general, the results show the potential of the evaluated ML models, 

i.e., FFNNs and SR, as tools for formulating the per-cycle evolution law 

of plastic strains in the cycle-domain plasticity model. However, each 

approach has its limitations. In particular, as mentioned in Section 1, 

FFNNs lead to uninterpretable models, where the influence of input fea­

tures or model parameters on the outputs can become highly difficult to 

explain in networks with multivariate inputs [24] and complex archi­

tectures. Conversely, SR achieves explicit analytical equations, which 

can allow for analyzing the model behavior. However, there is a trade-

off between interpretability and accuracy, but the resulting symbolic 

expressions are more computationally efficient compared to FFNNs by 

requiring fewer floating-point operations. Obtaining a well-performing 

symbolic expression, however, requires providing suitable unary and/or 

binary operators (and/or constraints on them) based on users’ prior 

knowledge or based on the distribution of training data, despite the 

advantage of not requiring a predefined functional form. Further, the 

discovered expressions should be rigorously analyzed to ensure that 

they lead to reliable results when employed in material point or FE 

simulations.
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Fig. 15. Stress versus cycle number and plastic strain versus cycle number for a test dataset under loading with variable strain ranges over 100 loading cycles, when 

using the three-input symbolic expression with complexity level of 30 in the cycle-domain model formulation. Circles and red plus signs correspond to the results 

from the time-domain model and the cycle-domain model, respectively.

Table 3 

Mean absolute error (MAE) in 𝜎11 over 100 loading cycles and relative 

error (RE) in 𝜖p

11 in the last loading cycle for the considered test dataset.

Model MAE in 𝜎11 [MPa] RE in 𝜖p

11[%] (×10
−2)

𝑓nn (2 inputs) 15.7 0.7

𝑓nn (3 inputs) 10.2 0.2

𝑓sr (3 inputs, complexity 30) 16.6 1.8

Table 4 

Normalized training, validation, and test losses (𝐿̂train, 𝐿̂valid, and 𝐿̂test, 

respectively) for different ML models.

Model 𝐿̂train (×10−5) 𝐿̂valid (×10−5) 𝐿̂test (×10−5)

𝑓nn (2 inputs) 5.4 4.4 5.7

𝑓nn (3 inputs) 1.8 1.7 2.1

𝑓sr (3 inputs, complexity 30) 5.8 5.7 6.1

Table 5 

Error in 𝜎11 for different ML models used in the cycle-domain material 

model, considering all training, validation, and test datasets with vari­

able strain range loadings over 100 loading cycles. The values denote the 

mean (minimum, maximum) of the mean absolute errors computed for each 

dataset.

Model Train [MPa] Validation [MPa] Test [MPa]

𝑓nn (2 inputs) 15.1 (5.6, 36.9) 15.6 (7.4, 24.9) 14.9 (7.7, 27.0)

𝑓nn (3 inputs) 10.2 (5.1, 19.5) 10.5 (6.1, 20.6) 10.5 (6.7, 18.0)

𝑓sr (3 inputs, 

complexity 30)

15.0 (9.0, 23.0) 15.1 (11.3, 21.1) 16.2 (11.2, 25.5)

7 . Concluding remarks

In this contribution, we have investigated the potential of using ML 

to formulate the per-cycle evolution equation for plastic strains in cycle-

domain material models. Compared to traditional time-domain models, 

these models aim to reduce the computational time of cyclic simula­

tions when involving many loading cycles, such as FE simulations of 

many wheel over-rollings in railway mechanics. In the proposed frame­

work, we have enforced our knowledge from constitutive modeling for 

elasticity and have employed FFNNs with different inputs to formulate 

the evolution equation, in addition to SR as an ML tool for equation 

discovery. To generate training, validation, and test data, cyclic pul­

sating uniaxial stress loadings with constant and variable strain ranges 

over a load sequence of 100 cycles using a standard time-domain mate­

rial model have been considered. The proposed ML-based cycle-domain 

model predicts the peak stress and the corresponding plastic strain in 

each loading cycle.

The NN model with more input features resulted in lower training, 

validation, and test losses, although all the ML tools demonstrated good 

capability. Moreover, when embedded in the cycle-domain model for­

mulation as the evolution equation, the extended-input NN provided 

better agreement with the reference time-domain model. Although the 

discovered symbolic expressions are human-readable compared to the 

NN models, their interpretability decreases with increasing accuracy. 

Despite this, both ML tools performed effectively when extrapolated to 

5000 loading cycles, which is more than 50 times the number of cycles 

in the training data.
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Appendix A . Cycle-domain performance evaluation considering training and validation datasets

This section presents the predicted 𝜎11 and 𝜖p

11 from the evaluated ML-based cycle-domain models for cases selected among the training datasets 

(Fig. A.16) and validation datasets (Fig. A.17).

Fig. A.16. Stress versus cycle number and plastic strain versus cycle number for a training dataset under loading with variable strain ranges over 100 loading cycles, 

when using different ML models in the cycle-domain model formulation. Circles and red plus signs correspond to the results from the time-domain model and the 

cycle-domain model, respectively.
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Fig. A.17. Stress versus cycle number and plastic strain versus cycle number for a validation dataset under loading with variable strain ranges over 100 loading 

cycles, when using different ML models in the cycle-domain model formulation. Circles and red plus signs correspond to the results from the time-domain model and 

the cycle-domain model, respectively.
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Data availability

Data will be made available on request.
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