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A B S T R A C T

Motion capture (MoCap) systems are indispensable tools across fields such as biomechanics, computer animation, 

human-robot interaction, and clinical gait analysis, owing to their ability to accurately record and analyze human 

movement in 3D space. Marker-based systems use reflective markers attached to subjects and video recordings to 

track human movement. The tracking requires markers to be detected in the video, which is not always possible 

due to occlusions, sensor failures, and limited camera coverage. These issues create gaps in recorded trajectories, 

compromising data integrity and making the motion difficult to utilize in practical applications. Therefore, a wide 

range of MoCap data completion techniques has been proposed to reconstruct missing trajectories while preserv­

ing the realism and dynamics of human movement. Human motion data exhibits a low-rank property due to the 

inherent repetitive nature of human movement as well as the correlations between joints and markers, enforced 

by the skeletal structure and biomechanical constraints. Low-rank completion techniques exploit this property to 

reconstruct missing marker positions. This paper reviews state-of-the-art low-rank completion methods for MoCap 

data completion, focusing specifically on optimization-based low-rank methods. These optimization approaches 

directly address the missing data completion problem through optimization formulations. We examine two main 

aspects: kinematic priors, which embed anatomical constraints, joint dependencies, and motion smoothness, and 

low-rank priors, which exploit inter-marker correlations through matrix and tensor formulations. We further eval­

uate optimization algorithms for solving these completion problems, such as alternating minimization, proximal 

algorithms, ADMM, and hybrid schemes, as well as the datasets and tools commonly used in the literature.

1 . Introduction

The automatic capture and analysis of human motion is a rapidly 

evolving field, driven by its broad applications and the complexity of 

human movement [1–10]. Motion capture (MoCap) technology enables 

detailed recording of complex movement patterns by tracking the po­

sition and orientation of the human body in 3D space. The precise 

recording of human motion provides significant information for clini­

cal rehabilitation, athletic performance optimization, realistic character 

animation, and virtual reality experiences.

The marker-based system employs specialized cameras, sensors, and 

wearable devices to track the movement of markers attached to key 

joints, such as the wrists, elbows, knees, and ankles. These systems cap­

ture the position and orientation of the markers in three-dimensional 

space, enabling software to reconstruct the subject’s skeleton and pos­

ture. Although marker-based motion capture is widely used for its high 

precision, it still faces limitations such as occlusions, mismatched mark­

ers, or poor lighting conditions that lead to incomplete data. When a 

marker is blocked from all camera views during a recording, its trajec­

tory is lost, creating gaps in the data. These gaps disrupt the continuity of 

the captured motion and pose a significant challenge to creating accurate 

and seamless representations of human movement (Fig. 1).

The problem of filling these gaps is a specific example of the broader 

missing data completion problem that appears in many data-driven 

fields. Although advanced MoCap systems and software offer increas­

ingly high-quality data capture, gaps and noise remain challenging 

issues that require sophisticated computational solutions. The problem 

of recovering missing marker data is central to improving the usabil­

ity and quality of MoCap recordings. Inaccurate or incomplete motion 

data can propagate errors in practical analyses, such as motion track­

ing, gait analysis, or rehabilitation assessments, which may ultimately 

compromise the performance of applications relying on MoCap data.
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Fig. 1. Illustration of the motion capture (MoCap) process. Multiple cameras record reflective markers placed on the body to obtain the skeletal data. Occlusions or 

tracking errors can cause missing markers, leading to MoCap sequences with spatial and temporal gaps.

A promising solution to the missing data problem lies in exploit­

ing the low-rank structure inherent in human motion. Although human 

movements are complex, they often exhibit repetitive patterns and co­

ordinated joint movements throughout time and between individuals, 

allowing the data to be effectively approximated by low-rank matrices 

or tensors. Low-rank recovery methods exploit this underlying structure 

to fill in missing values via an optimization problem, which can be fur­

ther enhanced by incorporating biomechanical characteristics of human 

movement as constraints.

Missing data represents one of the most common challenges in mod­

ern data science, affecting every domain from medical imaging and 

sensor networks to recommendation systems and social network anal­

ysis. The problem of incomplete observations stems from diverse factors 

including sensor failures, storage limitations, network interruptions, 

and measurement costs, creating scenarios where traditional statistical 

methods that assume complete data become inadequate or entirely inap­

plicable. Recent advances in low-rank recovery theory have introduced 

approaches to missing data problems across multiple domains by ex­

ploiting the observation that many high-dimensional datasets naturally 

exhibit low-dimensional structure.

Matrix completion methods, grounded in compressed sensing and 

nuclear norm relaxation, have demonstrated remarkable success in 

applications ranging from collaborative filtering in recommendation 

systems to image recovery and human motion reconstruction. In hy­

perspectral imaging, structured low-rank matrix factorization has been 

shown to effectively exploit spatial–spectral correlations for high-quality 

image restoration under severe data loss [11]. In wireless commu­

nications, matrix completion and sensing approaches have played a 

critical role in channel estimation: from handling array-inherent impair­

ments in mmWave systems [12] to recent advances in hybrid MIMO 

channel estimation using low-rank matrix sensing [13]. Beyond imag­

ing and communications, matrix completion has also been employed 

in computational biology, where weighted-constraint formulations im­

prove haplotype estimation accuracy from incomplete sequencing data 

[14]. In recommendation systems and social networks, collabora­

tive filtering enhanced with graph information [15] and inductive 

matrix completion leveraging graph neural networks [16] have ex­

tended low-rank recovery to relational and dynamic data. Despite these 

successes, fundamental challenges remain, as highlighted by recent 

complexity-theoretic results on the hardness of matrix completion [17], 

which underscore the importance of developing scalable, domain-aware

algorithms.

While matrix completion has proven effective for two-dimensional 

data, many real-world applications involve inherently multi-

dimensional structures that are more naturally modeled as tensors. 

Tensor completion methods extend low-rank recovery ideas to higher-

order data by exploiting correlations across spatial, temporal, and 

spectral dimensions, using both tensor decomposition and tensor 

rank minimization approaches. In medical imaging, low-rank tensor 

models have enabled accelerated dynamic and quantitative MRI recon­

struction, including multiparametric mapping with MR multitasking 

and non-Cartesian MRF reconstruction [18–21]. Tensor approaches 

leveraging smoothness and sparsity have improved multidimensional 

data recovery and robust color image reconstruction [22–27]. In 

hyperspectral imaging and remote sensing, low-rank tensor opti­

mization with plug-and-play priors, fibered rank constraints, and 

sparsity-regularized methods has achieved superior image restoration 

and anomaly detection [28–35]. Recent advanced formulations, in­

cluding Fourier low-rank and sparse tensor completion [36], low-rank 

reduced biquaternion tensor ring decomposition [37], preconditioned 

Riemannian optimization in tensor-train format [38], multilayer 

sparsity-based tensor decomposition [39], and t-Schatten-𝑝 norm 

minimization [40,41], have significantly improved scalability and re­

construction accuracy. Collectively, these works illustrate the growing 

importance of tensor-based low-rank recovery as a natural extension 

of matrix completion, enabling accurate reconstruction in complex 

high-dimensional, multi-modal data across medical imaging, remote 

sensing, and computational imaging applications.

The broad success of low-rank methods across imaging, commu­

nications, and remote sensing demonstrates the versatility of low-

dimensional priors in recovering structured high-dimensional data. 

These domains share fundamental similarities with MoCap data comple­

tion in that missing entries can be inferred by exploiting redundancy and 

correlation across multiple modes. However, motion capture introduces 

unique challenges that distinguish it from image or signal recovery tasks. 

First, MoCap trajectories are constrained by biomechanical structure: 

fixed bone lengths, joint angle limits, and articulated skeleton kinemat­

ics must be preserved, whereas pixel arrays in images or voxels in MRI 

lack such rigid physical constraints. Second, missing data patterns in 

MoCap are often structured, arising from marker occlusions or track­

ing errors that span entire trajectories over long temporal ranges, rather 

than the pixel-wise or patch-wise missing patterns common in image re­

covery (see Fig. 5). Third, human motion exhibits strong nonlinearities 

and abrupt dynamics (e.g., impacts, rapid direction changes) that can 

weaken the low-rank assumption, whereas image and video sequences 

typically display smoother correlations.

Martini et al. [42] presented a survey of denoising and com­

pletion filters for motion-capture and human-pose-estimation sys­

tems. The survey paper spans general-purpose filters, dimensionality-

reduction techniques, and deep learning architectures. Within this 

framework, low-rank and matrix-completion methods are identified as 

key dimensionality-reduction approaches for reconstructing incomplete 

MoCap sequences. However, their discussion remains at a general level, 

primarily outlining the role of low-rank priors among other refinement 

strategies. This paper aims to provide a comprehensive review of low-

rank methods for MoCap data completion. It covers the evolution of 

low-rank matrix recovery techniques, starting with early approaches 

based on nuclear norm minimization, followed by more advanced 
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methods that incorporate various priors such as kinematic constraints, 

temporal continuity, and other domain-specific knowledge. We discuss 

approaches that rely on motion properties and skeleton information, as 

well as those centered on introducing low-rank priors. The integration of 

kinematic constraints directly into the completion process, referred to as 

MoCap data priors, aims to refine the low-rank matrix completion prob­

lem. Moreover, the analysis of various low-rank priors provides valuable 

insights into the diverse strategies employed in MoCap data recovery.

The remainder of this paper is structured as follows. Section 2 

reviews existing approaches for handling missing markers in motion 

capture data. Section 3 presents the background and theoretical founda­

tion, including notation, definitions, and problem statement. Section 4 

explores the kinematic priors in the completion of MoCap. Section 5 

examines various low-rank priors used to model the low-rank property 

of the MoCap data problem. Section 6 discusses matrix-based low-rank 

completion techniques, while Section 7 focuses on tensor decomposition 

methods for MoCap data completion. Section 8 reviews the key mini­

mization algorithms used to solve these completion problems. Section 9 

provides information about datasets and tools commonly used in motion 

capture research. Section 10 discusses the algorithmic complexity, ro­

bustness, and practical considerations of the proposed methods. Finally, 

Section 11 concludes by identifying current challenges and discussing 

relevant future research directions in this field.

2 . Related works

The landscape of motion capture completion encompasses three 

primary methodological paradigms that differ fundamentally in their ap­

proach to missing data reconstruction. Understanding these distinctions 

is essential for contextualizing the focus on optimization-based low-rank 

methods within the broader field. Interpolation methods operate under 

temporal continuity assumptions, estimating missing values through re­

lationships with neighboring time points. These approaches assume that 

motion exhibits smooth temporal transitions and reconstruct missing 

data by fitting curves or applying filters to available neighboring mark­

ers. While computationally efficient and suitable for real-time applica­

tions, interpolation methods are fundamentally limited to short gaps and 

fail when motion exhibits rapid changes or discontinuities (Fig. 6).

Data-driven methods learn reconstruction patterns from external 

training datasets, applying learned models to predict missing values 

based on similarity matching or statistical modeling. These approaches 

can handle complex motion patterns by leveraging prior knowledge en­

coded in training corpora, but introduce dependency on the quality 

and representativeness of training data. They suffer from the well-

documented out-of-sample problem when test sequences diverge from 

training distributions, limiting their applicability to novel or unusual 

motions.

Low-rank methods exploit the intrinsic low-dimensional structure of 

human motion, operating on the fundamental principle that motion data 

naturally resides in low-dimensional subspaces due to biomechanical 

constraints and kinematic relationships. This category encompasses var­

ious approaches that leverage the mathematical property that human 

motion matrices have significantly fewer degrees of freedom than their 

ambient dimensions would suggest. Within this paradigm, two primary 

methodological streams have emerged: classical PCA-based approaches 

that decompose motion data into principal components for reconstruc­

tion, and modern optimization-based frameworks that directly formulate 

completion as constrained optimization problems. Optimization-based 

low-rank methods exploit the intrinsic low-dimensional structure of 

human motion through constrained optimization frameworks that di­

rectly minimize rank-based objectives while satisfying data fidelity 

constraints. This paradigm operates on the principle that human motion 

naturally resides in low-dimensional subspaces due to biomechanical 

constraints and kinematic relationships. Unlike interpolation methods, 

they can handle arbitrary gap patterns and durations. Unlike data-

driven approaches, they require no external training data and provide 

theoretical recovery guarantees, making them particularly suitable for 

robust motion completion across diverse scenarios and novel activities.

2.1 . Interpolation methods

Interpolation is one of the simplest techniques to estimate missing 

marker positions in MoCap data. These methods assume that the motion 

is continuous and that the missing data can be predicted based on the 

available neighboring markers. Various interpolation techniques have 

been explored in the literature, including linear interpolation [43,44], 

spline interpolation [45,46], Kalman filtering [44,47,48], and local lin­

ear models [49]. These methods are often effective for short-duration 

gaps and are computationally inexpensive. They typically rely on the 

assumption that motion continuity holds across neighboring markers, 

making them suitable for small gaps (lasting no more than a few 

seconds) or a limited number of frames. However, interpolation methods 

have limitations. They often require manual intervention to ensure the 

proper selection of neighboring markers, and their accuracy decreases 

for longer gaps or complex movements. Interpolation techniques also 

struggle to handle large, unpredictable gaps that arise due to occlu­

sions or sensor failures. As a result, while these methods can be used in 

real time for minor data recovery tasks, they are not scalable for more 

complex or long-term MoCap data recovery [50].

2.2 . Data-driven methods

A. database matching approaches. These approaches address the miss­

ing marker problem by using a database of similar motion sequences to 

reconstruct missing entries. These methods have demonstrated success 

in reconstructing high-quality human motion from sparse marker data. 

However, data-driven techniques require a pre-collected set of mark­

ers and pre-trained classifiers to predict missing values, which makes 

them dependent on having a well-established training dataset. A key 

limitation of these methods is their vulnerability to the “out-of-sample” 

problem, where the motion data diverges from the pre-trained models 

[51,52]. This restricts their flexibility and makes them less applicable in 

real-world scenarios where motion data can vary widely.

B. skeleton-driven methods. Skeleton-driven approaches use kinematic 

or bone-length constraints to guide the recovery of missing markers 

[53–55]. These methods rely on the accurate placement of markers on 

the human body. However, minor variations in marker placement be­

tween different subjects can significantly affect the performance and 

generalization of these approaches. Although these methods can be ef­

fective when marker placement is precise, their applicability in more 

dynamic and uncontrolled environments remains limited.

C. neural network–based methods. In recent years, deep learning has 

been increasingly applied to the motion capture data completion prob­

lem. Neural architectures address completion by learning motion priors 

directly from data rather than relying on handcrafted rank or smooth­

ness constraints. Early work by Kucherenko et al. [56] demonstrated that 

recurrent and feed-forward networks can reconstruct missing markers by 

capturing temporal continuity, achieving superior performance over in­

terpolation in long-gap scenarios but requiring large amounts of training 

data. Bidirectional recurrent autoencoders further improved robustness 

by propagating information from both past and future frames, while 

U-net–inspired Bi-LSTM architectures have been introduced to address 

long-term occlusions using adaptive loss functions [57].

More advanced approaches have incorporated attention mechanisms 

and generative modeling. In [58], authors proposed a bi-directional 

attention network that selectively emphasizes informative temporal con­

texts. Generative adversarial networks (GANs), where a convolutional 

recurrent generator reconstructs occluded skeletons and an LSTM-based 

discriminator enforces temporal consistency, are introduced in [59]. 

Graph neural networks (GNNs) explicitly represent the skeleton as 

a spatio-temporal graph, with joints as nodes and bones as edges. 
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A temporal-structural awareness GNN has been introduced in [60]; it 

captures both connectivity and motion dynamics to achieve state-of-

the-art completion accuracy. In [61], the authors proposed a denoising 

graph autoencoder that treats missing joints as structured noise and re­

constructs them using Laplacian smoothing and sharpening, improving 

robustness under occlusion and noisy capture conditions.

Despite these advances, neural network approaches face several 

limitations. They typically require large, diverse, and clean training 

datasets to generalize effectively, while low-rank optimization methods 

can be applied directly to corrupted input without pretraining. Their 

performance is also sensitive to dataset bias, often degrading when 

test motions deviate from training distributions. Furthermore, com­

plex recurrent, attention-based, or graph models introduce substantial 

computational overhead, which may hinder real-time deployment.

2.3 . Sparse representation methods

Sparse representation techniques assume that incomplete MoCap 

data can be sparsely represented as a linear combination of a few poses 

in an appropriate basis or dictionary [62–64]. These methods focus 

on finding the sparsest representation of motion data within a learned 

dictionary, where the reconstruction process is driven by mathemati­

cal optimization of sparsity constraints rather than similarity retrieval. 

However, they require extensive training data and dictionary learning, 

which can limit their flexibility in different scenarios. This requirement 

for training data restricts the applicability of these methods, especially 

in dynamic environments where data may not conform to predefined 

models.

2.4 . Low-rank methods

2.4.1 . PCA-based approaches

Principal component analysis (PCA)-based methods are widely used 

to address the missing marker problem by capturing the dominant 

components of human motion [49,65–67]. These methods decompose 

motion data into orthogonal basis vectors, also known as principal com­

ponents, and reconstruct missing markers by projecting available data 

onto the lower-dimensional subspace defined by the most significant 

components. These methods exploit linear or nonlinear correlations 

in the motion matrix to estimate missing values based on the PCA-

based methods can be classified into three primary reconstruction 

methodologies based on their core algorithmic strategies.

Basic PCA. A dual-PCA coordinate transformation approach was intro­

duced in [68] that exploits correlation patterns between body segments 

in human motion data. The method constructs two principal component 

spaces: one from complete frames and another from the same frames 

with missing marker coordinates set to zero. Coordinate transformations 

between these spaces enable reconstruction of missing markers, with 

spatial weighting applied to neighboring markers for improved accu­

racy. While computationally efficient and requiring no external datasets, 

this approach is limited to single missing markers and exhibits de­

graded performance with multiple simultaneous gaps or non-repetitive 

movement patterns. The work in [66] extended eigen-space methods 

by incorporating training-based learning through precomputed motion-

specific principal components from representative datasets. Rather than 

relying solely on current test sequences, their PCA-based algorithms 

leverage precomputed eigen-spaces from training samples to enable ro­

bust recovery through three distinct approaches: filling gaps in marker 

trajectories, recovering entire missing time frames within motion se­

quences, and handling complex motion patterns with unpredictable or 

non-repetitive movement characteristics.

Multi-scale PCA. Authors in [49] developed a hierarchical approach 

that combines global and local PCA modeling. The method first seg­

ments training motion sequences using probabilistic PCA, constructs a 

hierarchy of local linear models through divisive clustering, and utilizes 

random forest classifiers to identify the most appropriate local model 

for each frame during estimation. This piecewise linear framework en­

ables robust recovery of missing markers even during extended occlusion 

periods, handling scenarios where traditional interpolation methods be­

come ineffective, particularly when markers are missing at sequence 

boundaries or when significant portions of markers are absent simul­

taneously. This approach effectively handles diverse motion types and 

arbitrary missing marker sets but requires extensive training data and 

careful parameter tuning.

Weighted PCA. The study in [65] introduced a PCA-based method 

that exploits marker correlations through adaptive weighting strategies 

based on spatial proximity between markers. The method employs a 

dual PCA approach, performing principal component analysis on both 

complete data and gap-filled matrices to create transformation bases 

that reflect the kinematic chain structure of human bodies. Higher 

weights are assigned to biomechanically related markers using Gaussian 

functions. The authors implemented two reconstruction strategies for 

handling multiple gaps: simultaneous reconstruction which processes 

all corrupted trajectories together using only complete time frames, 

and consecutive reconstruction which selectively includes or excludes 

corrupted trajectories based on proximity criteria.

2.4.2 . Optimization-based low-rank methods

This paper provides a comprehensive review of motion capture data 

recovery methods that explicitly exploit the low-rank structure through 

optimization-based formulations. These approaches differ fundamen­

tally from other paradigms. Interpolation methods, such as linear or 

spline interpolation, operate on the principle of local estimation, using 

neighboring known values to predict missing entries under the as­

sumption of smooth transitions. Interpolation approaches are inherently 

limited to short gaps and perform poorly when motion characteristics 

vary over longer temporal windows. Data-driven methods, while more 

sophisticated, rely on pre-collected motion databases or learned priors, 

which makes them powerful for known motion types but vulnerable 

to the out-of-sample problem when novel movements are encountered. 

PCA-based methods similarly depend on pre-learned subspaces from 

complete training data, which constrains their applicability to motions 

well represented in the training set (Table 1).

In contrast, optimization-based low-rank methods formulate motion 

completion directly as a constrained optimization problem by explic­

itly leveraging the inherent low-dimensional structure of human motion 

[69–77]. Rather than relying on local predictions or external databases, 

these methods recover missing data by minimizing an objective function 

subject to low-rank constraints. This framework naturally accommo­

dates biomechanical and kinematic priors, provides theoretical recovery 

guarantees under certain conditions, and avoids the dependency on 

large, clean training datasets. Since direct rank minimization is non-

convex and computationally intractable, convex relaxations and reg­

ularization techniques such as nuclear norm minimization, Schatten-𝑝
norms, and matrix factorization are employed. These optimization-based 

approaches represent the state-of-the-art in motion capture data comple­

tion and provide a principled foundation for integrating domain-specific 

knowledge about human motion.

3 . Background and theoretical foundations

Low-rank property is a fundamental concept in various fields, in­

cluding computer vision, dimensionality reduction, data analysis, and 

machine learning [78,78–87]. It plays a crucial role in reducing the com­

plexity and noise in the data while preserving relevant information. The 

rank of a matrix refers to the maximum number of linearly independent 

columns/rows of that matrix. Mathematically, a data matrix is said to 

have a low-rank property when its rank is significantly smaller than its 

dimensions. This means that the data can be approximated by a matrix 

of a lower rank than the original data. The low-rank structure is adept 
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Table 1 

Classification of low-rank approaches for motion capture data completion.

Reference Low-Rank prior Kinematic constraints Optimization Additional priors

Nuclear norm methods

([69], 2011) Nuclear norm None SVT None

([90], 2013) Nuclear norm Motion trajectory SVT None

([73], 2014) Nuclear norm Smoothness ALM None

([75], 2015) Nuclear norm Bone length SVT None

([72], 2017) Truncated nuclear norm Smoothness ALM None

([109], 2019) Nuclear norm Isometry & smoothness ALM Sparsity

([71], 2020) Nuclear norm Frequency smoothness ALM Sparsity

([107], 2022) Nuclear norm Smoothness FPPA Sparsity

([91], 2024) Approximate nuclear norm Bone length & Smoothness ADMM Mixed corruption handling

([108], 2025) Nuclear norm Smoothness ADMM Hierarchical fusion

Schatten 𝑝-norm methods

([70], 2018) Truncated Schatten 𝑝-norm Bone length & smoothness ADMM None

([74], 2019) Weighted Schatten 𝑝 Bone length & smoothness ADMM Nonlocal similarity

([111], 2022) Powered Schatten 𝑝-norm Temporal smoothness ADMM Discrete subspace clustering

([108], 2025) Schatten 𝑝-norm Smoothness ADMM Hierarchical fusion

Other low-rank methods

([76], 2015) Matrix factorization None Inexact ALM Hierarchical & Nonnegativity

([110], 2018) Nonlinear low-rank Bone length & smoothness ALM Kernel learning

Tensor decomposition methods

([77], 2024) CP decomposition Smoothness BCD Sparsity

([112], 2025) Tucker decomposition Temporal continuity Proximal BCD None

Abbreviations: SVT = singular value thresholding; ALM = augmented Lagrange multiplier; ADMM = alternating 

direction method of multipliers; BCD = block coordinate descent; FPPA = fixed point proximal algorithm.

Fig. 2. Walking skeleton frames of walking sequence 07_01.c3d from CMU 

database.

at capturing the patterns present in the data. Thus, it has become a key 

to addressing the problem of reconstructing missing data [88,89].

One significant application of low-rank matrix completion is the gap-

filling problem caused by missing markers in human motion capture. 

The low-rank property for human motion recovery can be justified by 

the observed similarity between adjacent frames in motion capture data, 

e.g., Fig. 2. A key trait of human motion is that the entire motion is 

characterized by the movements of joints interconnected by rigid and 

inflexible bones. Thus, the motion of one joint is inherently correlated 

with that of others. To check whether a given motion matrix 𝐗 has a 

low-rank structure, we analyze the spectrum (singular values) of 𝐗 or 

𝐗𝑇𝐗. We demonstrate in Fig. 3 the logarithmic scale of singular values 

for four1 distinct C3D files from the CMU MoCap database.2 We can 

observe that the motion matrices exhibit a decay in the singular values, 

indicating that the motion matrices possess a low-rank characteristic.

3.1 . Basic notations and definitions

Tensors are denoted using Euler script (e.g., X), matrices are rep­

resented by bold uppercase letters (e.g., 𝐗), vectors by bold lowercase 

1 07_01.c3d, 85_02.c3d, 85_12.c3d, and 135_02.c3d.
2 http://mocap.cs.cmu.edu/

letters (e.g., 𝐱), and scalars by standard lowercase letters (e.g., 𝑥). 𝐱𝑖
refers to the 𝑖-th column of the matrix 𝐗. The order of a tensor cor­

responds to the number of its dimensions. More generally, an 𝑁-order 

tensor X  with dimensions 𝐼1 × 𝐼2 × ⋯ × 𝐼𝑁  is an 𝑁-dimensional array 

in R𝐼1×𝐼2×⋯×𝐼𝑁. The indexing conventions are as follows: the element 

at position (𝑖1, 𝑖2,… , 𝑖𝑁 ) in a tensor X  is written as X𝑖1 ,𝑖2 ,…,𝑖𝑁 , and the 

matrix entry at (𝑖1, 𝑖2) is represented as 𝐗𝑖1 ,𝑖2. For a positive integer 𝑁 , 

we use the notation [𝑁] ∶= {1, 2,… , 𝑁}. The symbol “◦” represents the 

vector’s outer product. The 𝑛-mode tensor-matrix product of a tensor 

X ∈ R𝐼1×𝐼2×⋯×𝐼𝑁  with a matrix 𝐀 ∈ R𝐽×𝐼𝑛  is denoted by X ×𝑛 𝐀 and is 

of the size 𝐼1 ×⋯ × 𝐼𝑛−1 × 𝐽 × 𝐼𝑛+1 ×⋯ × 𝐼𝑁 . The mode-𝑛 unfolding of 

X  is defined as the matrix 𝐗(𝑛) ∈ R𝐼𝑛×𝑀 , with 𝑀 =
∏𝑁

𝑗≠𝑛 𝐼𝑗 , obtained by 

converting a tensor to a matrix according to the mode-𝑛 where X𝑖1…𝑖𝑁
corresponds to 𝐗𝑖𝑛 ,𝑠, with

𝑠 = 1 +
𝑁
∑

𝑗≠𝑛

(

𝑖𝑗 − 1
)

𝑆𝑗 and 𝑆𝑗 =
𝑗−1
∏

𝑘≠𝑛
𝐼𝑘.

3.2 . Matrix representation of mocap data

Motion capture data is recorded as a series of motion frames that 

represent highly articulated movements. A captured motion is composed 

of a sequence of frames (poses), and each frame is characterized by the 

positions of markers placed on specific body parts or joints. Each joint 

has 3D coordinates [𝑥, 𝑦, 𝑧].

Frame-based representation. The captured motion sequence can be rep­

resented as an 𝑚 × 𝑛 matrix 𝑀  where 𝑚 corresponds to the total 

number of frames in the motion capture sequence, 𝑛 = 3𝑝 repre­

sents the number of position coordinates for all markers or joints, 

and thus each row of the matrix 𝑀  corresponds to a frame in the

sequence: 

𝐌 = [𝐟1, 𝐟2,… , 𝐟𝑛], (1)

where each frame 𝐟𝑖 for 𝑖 = 1,… , 𝑛 is defined either as: 

𝐟𝑖 =
[

𝑥𝑖,1𝑦𝑖,1𝑧𝑖,1𝑥𝑖,2𝑦𝑖,2𝑧𝑖,2 … 𝑥𝑖,𝑝𝑦𝑖,𝑝𝑧𝑖,𝑝
]𝑇 , (2)
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Fig. 3. Singular values (log scale) of motion capture sequences from mul­

tiple subjects and activity categories from CMU dataset. The analyzed mo­

tions include: Subject #7: walk; Subject #85: jumps, flips, and breakdance 

(02: JumpTwist, 04: FancyFootWork, 05:HandStandKicks, 12: LongSequenceGood);

Subject #107: walking with obstacles; Subject #126: swimming (02: 

BackStroke); Subject #127: action–adventure motions, running, jumping, 

ducking, rolling (17: RunStopRun); Subject #133: baby–styled walk (24: 

WalkZigZag); Subject #134: skateboard motion (04: Motorcycle); Subject #135:

martial arts walk (02: Empi); Subject #136: stylized or “weird” walks (18: 

Flamingo); Subject #140: getting up from the ground (01–02: Run). These 

sequences cover diverse motion styles, illustrating the low-rank structure of 

motion capture data across both periodic and complex non-periodic movements.

Fig. 4. 3D marker trajectories of the walking motion sequence 07_01.c3d (316 

frames) from the CMU dataset.

or as: 

𝐟𝑖 = [𝑥𝑖,1𝑥𝑖,2 … 𝑥𝑖,𝑝𝑦𝑖,1𝑦𝑖,2 … 𝑦𝑖,𝑝𝑧𝑖,1𝑧𝑖,2 … 𝑧𝑖,𝑝]𝑇 . (3)

As shown in Fig. 4, the trajectories of all the joints are inherently corre­

lated. Due to the high data acquisition speeds of the Mocap system, the 

frames exhibit mutual consistency in the motion data. Thus, the frame-

based representation of Mocap data reveals the redundancies in marker 

positions across frames, which intuitively implies the low-rank property. 

Trajectory-based representation. To further enhance the reliability of 

the low-rank prior, a trajectory-based representation has been intro­

duced in [90]. The trajectories of different joints are correlated over 

a short time window (see Fig. 6). Thus, the motion data is structured 

into a trajectory-based representation that takes advantage of the repet­

itive patterns inherent in human motion in small periods. Therefore, the 

motion data is arranged as a sequence of trajectory segments:

𝐌𝐭 = [𝐭1, 𝐭2,… , 𝐭𝑘], where 𝑘 = 𝑑 × 𝑛∕𝑙

where 𝑙 is the length of a trajectory segment and each 𝐭 is the trajectory 

segment of a joint from frame 𝑗 to frame 𝑗 + 𝑙 − 1 given as

𝐭𝑖 =
[

𝑥𝑖,𝑗𝑥𝑖,𝑗+1 … 𝑥𝑖,𝑗+𝑙−1𝑦𝑖,𝑗𝑦𝑖,𝑗+1 … 𝑦𝑖,𝑗+𝑙−1𝑧𝑖,𝑗𝑧𝑖,𝑗+1 … 𝑧𝑖,𝑗+𝑙−1
]𝑇 .

3.3 . Tensor representation

MoCap data can naturally be modeled as a third-order tensor 

M ∈ R𝑚×𝑝×3 where the dimensions correspond to time (frames), joints 

(markers), and spatial coordinates (3D coordinates), respectively, as 

demonstrated by the 3D trajectories in Fig. 4.

M = [𝐌𝑥,𝐌𝑦,𝐌𝑧],

where 𝐌𝑥, 𝐌𝑦, and 𝐌𝑧 ∈ R𝑚×𝑝 represent the components of the MoCap 

data along the 𝑥, 𝑦, and 𝑧 axes, respectively.

3.4 . Problem statement

In motion capture systems, markers are placed on an object to track 

its movement. However, these markers can become temporarily invisible 

to cameras during recording sessions due to occlusions, self-occlusions, 

poor lighting conditions, or technical failures. When a marker disappears 

from the camera’s field of view, its 3D position data becomes unavail­

able, creating gaps in the trajectories. These gaps significantly degrade 

the quality of motion data and pose challenges for practical applications 

that require continuous and complete motion information.

When a marker is occluded, the three coordinates (𝑥, 𝑦, 𝑧) are typ­

ically missing simultaneously, creating gaps in temporal blocks (con­

secutive frames) rather than as isolated values. Thus, the challenge 

of gap-filling differs significantly from the conventional missing data 

problem studied in other applications such as image processing as illus­

trated in Fig. 5. Recovering these missing markers presents significant 

challenges due to the complexity of human movement and the intri­

cate interdependencies between joints. These challenges increase as 

gaps become longer or when multiple markers disappear concurrently. 

Several key factors critically influence the performance of gap-filling

methods:

• Gap length and duration: The number of consecutive missing frames 

per marker. This can also be measured as the time duration based 

on the Mocap sampling frequency (missing frames = duration 

× frequency). Longer gaps are typically more challenging to fill 

accurately.

• Number of missing markers: The total number of missing mark­

ers within a sequence directly impacts completion accuracy. As 

this number increases, the available spatial-temporal information 

decreases, creating a more challenging reconstruction problem.

• Gap distribution and multiplicity: The pattern and frequency of 

gaps significantly influence completion effectiveness. Randomly dis­

tributed gaps are more challenging to predict than those follow­

ing systematic patterns. Additionally, when multiple gaps co-occur 

within a single marker trajectory, the complexity increases substan­

tially, limiting how effectively spatial-temporal correlations can be 

exploited for accurate trajectory reconstruction.

• Motion complexity: The complexity of motion significantly affects 

completion performance. Highly dynamic or complex movements 

(e.g., dancing, boxing) present greater challenges than simpler, 

repetitive motions (e.g., walking). Complex motions typically in­

volve unpredictable trajectories, variable speeds, and intricate co­

ordination patterns that are more difficult to predict accurately.
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Fig. 5. Illustration of different missing data patterns. (a) Structured gaps typi­

cal in MoCap data (e.g., continuous marker occlusions). (b) Randomly missing 

entries, as commonly modeled in image or pixel-based data.

The MoCap data completion problem can be formulated using either 

matrix or tensor representations. In the matrix setting, the motion data 

𝐌 ∈ R𝑚×𝑛 typically represents 𝑚 time frames and 𝑛 marker coordinates, 

with missing entries. Let Ω be the index set of observed entries, where 

the values of elements 𝐌𝑖𝑗 , (𝑖, 𝑗) ∈ Ω are known. The low-rank matrix 

completion problem can then be formally expressed as:

min
𝐗∈R𝑚×𝑛

rank(𝐗),

s.t PΩ(𝐗) = PΩ(𝐌),
(4)

where PΩ ∶ R𝑚×𝑛 ⟶ R𝑚×𝑛 is the orthogonal projection onto the sub­

space of matrices that vanish outside of Ω, (𝑖, 𝑗) ∈ Ω if and only if 𝐌𝑖𝑗  is 

observed. PΩ(𝐗) is defined by 

PΩ(𝐗) =
{

𝐗𝑖,𝑗 if (𝑖, 𝑗) ∈ Ω,
0 otherwise.

(5)

Alternatively, this projection can be expressed as PΩ(𝐗) = H◦𝐗. Where 

H ∈ {0, 1}𝑚×𝑛 is a binary matrix that refers to the mask matrix defined 

as 

H =

{

1 if 𝐌𝑖,𝑗 is observed,
0 otherwise.

(6)

While the matrix formulation has been widely studied, MoCap data 

inherently possesses a multi-dimensional structure that can be better 

Fig. 6. Trajectories of selected markers across consecutive frames of a motion 

sequence.

preserved using tensor representations. In this case, the motion data can 

be represented as a 3-way tensor T ∈ R𝑚×𝑛×𝑝, where the dimensions 

might represent time, markers, and 3D coordinates. The core objective 

remains similar to matrix completion: recovering missing entries while 

maintaining the underlying low-dimensional structure of the data as 

follows 

min
X∈R𝑚×𝑛×𝑝

rank(X),

s.t PΩ(X) = PΩ(T ),
(7)

where PΩ ∶ R𝑚×𝑛×𝑝 ⟶ R𝑚×𝑛×𝑝 is the orthogonal projection operator 

defined as: 

PΩ(X) =

{

X𝑖1 ,𝑖2 ,𝑖3 if (𝑖1, 𝑖2, 𝑖3) ∈ Ω,
0 otherwise.

(8)

Both matrix and tensor completion problems aim to find the lowest-rank 

structure that matches the observed entries. However, these problems 

are generally NP-hard, leading to various computational approaches and 

relaxations.

4 . Kinematic priors in MoCap completion

Human motion follows inherent biomechanical rules and patterns 

that can be used to improve the accuracy of the completion problem. 

These kinematic constraints serve as side information that can be in­

tegrated into the low-rank completion framework. The integration of 

motion priors acts as a regularization mechanism, guiding the low-rank 

optimization towards solutions that align with the expected charac­

teristics of human motion. These priors restrict the solution space to 

physically valid motions that preserve natural motion characteristics, 

leading to more realistic and biomechanically plausible results.

4.1 . Skeleton constraints

The skeleton constraints ensure that the completion process follows 

the skeleton’s structure as shown in Fig. 7. This helps prevent unrealistic 

features such as incorrect bone lengths in the recovered results. Here, 

we discuss the three skeleton constraints used in the MoCap completion 

problem. 

A. bone length constraint. This constraint ensures that the distances 

between adjacent joints are preserved during the recovery process. 

Typically, an articulated skeleton is represented as a tree structure, 

where each node corresponds to a skeletal joint, and the edges connect­

ing nodes represent bones. For each missing joint, the set E  contains 

its adjacent edges. Each edge 𝑒𝑖 ∈ E , 𝑖 = 1,… , 𝑝 has a length 𝑑𝑖 and a 
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Fig. 7. Skeletal representation of the human body with 31 labeled joints.

connected joint pair (𝛼, 𝛽)𝑖. Therefore, for each 𝑒𝑖, a matrix 𝐂𝑖 ∈ R3×𝑛 is 

defined to extract the inter-joint distance of (𝛼, 𝛽)𝑖 from 𝐱 i.e.,

𝐂𝑖𝐱 = [𝑥 𝑦 𝑧]𝑇𝛼 − [𝑥 𝑦 𝑧]𝑇𝛽 ,

where 𝐱 = 𝑉 𝑒𝑐(𝐗) and 𝑉 𝑒𝑐 maps a matrix 𝐗 ∈ R𝑚×𝑛 to a vector 𝐱 ∈ R𝑛, 
with 𝑛 = 𝑚 × 𝑛. For example, the matrix 𝐂𝑖 can be given as:

𝐂𝑖 = [0,… , 𝐈𝛼𝑖 , 0, 0,−𝐈𝛽𝑖 , 0,… , 0],

where 𝐈𝛼𝑖 , and 𝐈𝛽𝑖  are the 3 × 3 identity matrices. Thus, to preserve 

the skeleton constraints in the completion algorithm, the bone length 

constraint 

‖𝐂𝑖𝐱‖2 ≤ 𝑑𝑖, for 𝑖 = 1,… , 𝑝, (9)

could be integrated into the minimization function of the completion 

problem. The distance 𝑑𝑖 is computed by averaging the inter-joint dis­

tances of bone 𝑒𝑖 across all frames where both connected joints are 

observable.

B. total bone length constraint. The fundamental principle underlying 

skeletal motion capture is that bone lengths remain constant throughout 

movement, as the human skeleton maintains its rigid structure. Let 𝐟𝑖 be 

the 𝑖th frame:

𝐟𝑖 = [𝑥𝑖,1𝑦𝑖,1𝑧𝑖,1𝑥𝑖,2𝑦𝑖,2𝑧𝑖,2 … 𝑥𝑖,𝑑𝑦𝑖,𝑑𝑧𝑖,𝑑 ]𝑇,

=
[

𝐜𝑇𝑖,1, 𝐜
𝑇
𝑖,2,… , 𝐜𝑇𝑖,𝑗 ,… , 𝐜𝑇𝑖𝑑

]𝑇
,

where 𝐜𝑖,𝑗 = [𝑥𝑖,𝑗 , 𝑦𝑖,𝑗 , 𝑧𝑖,𝑗 ] is the 3D coordinates of the 𝑗th joint in the 𝑖th 

frame. The relative coordinates 𝐜𝑟𝑖,𝑗  of the 𝑗-th joint in the 𝑖-th frame are 

defined as:

𝐜𝑟𝑖,𝑗 =
𝐜𝑖,𝑗 − 𝐜𝑖,𝑝(𝑗)

𝑙𝑗
,

where 𝐜𝑖,𝑝(𝑗) is the coordinates of the parent joint of joint 𝑗 in frame 

𝑖, and 𝑙𝑗  is the bone length connecting joint 𝑗 to its parent joint. The 

bone-length error function 𝐾
(

𝐟𝑖
)

 of the 𝑖-th frame in 𝐗 is defined as:

𝐾
(

𝐟𝑖
)

=
𝑚
∑

𝑗=1

(

(

𝐜𝑟𝑖,𝑗
)𝑇

𝐜𝑟𝑖,𝑗 − 1
)2
.

Since the bone-length error of each frame in 𝐗 is independent, the total 

bone-length error can be formulated as: 

𝑔(𝐗) =
𝑛
∑

𝑖=1
𝐾

(

𝐟𝑖
)

, (10)

where 𝑔(𝐗) = 0 if and only if no bone length is wrong in the recovered 

results. An equivalent formulation using absolute bone lengths is called 

the isometry constraint: 

Θiso(𝐗) =
𝑛
∑

𝑖=1

𝑚
∑

𝑗=1

(

‖

‖

‖

𝐜𝑖,𝑗 − 𝐜𝑖,𝑝(𝑗)
‖

‖

‖

2

2
− 𝑙2𝑗

)2
. (11)

Both the relative and absolute formulations enforce the same under­

lying constraint: preserving the rigid skeletal structure by maintaining 

constant bone lengths throughout the motion sequence.

An alternative formulation of bone length preservation has been pro­

posed in [91], where the constraint considers all connected joint pairs 

in the skeletal structure: 

𝐂𝑝ℎ(𝐗) =
𝑛
∑

𝑖=1

∑

𝑒𝑗,𝑘∈E

(

‖

‖

‖

𝐜𝑖,𝑗 − 𝐜𝑖,𝑘
‖

‖

‖

2

2
− 𝑙2𝑗,𝑘

)2
, (12)

where E  represents the set of all bones connecting joint pairs (𝑗, 𝑘) in the 

skeletal structure. Unlike the isometry constraint in Eq. (11) which en­

forces bone lengths only between joints and their hierarchical parents, 

this formulation encompasses all anatomically connected joint pairs, po­

tentially including sibling joints, grandparent–grandchild relationships, 

or other structural connections beyond the strict parent-child hierarchy.

4.2 . Smoothness prior

In human movement, transitions between different positions or poses 

are typically continuous. Moreover, the trajectory of a moving body 

part rarely involves sudden or jerky movements (see Fig. 4). Thus, hu­

man motion data often has a smooth structure. This smoothness refers 

to the continuous and gradual transitions in the position, velocity, and 

acceleration of body parts during movement. Therefore, methods that 

capture and model the smoothness property provide a more natural 

reconstruction of human motion.

A. difference operators. The smoothness of the MoCap matrix 𝐗 in 

the temporal direction can be expressed using difference operators of 

various orders. These operators enforce trajectory smoothness by min­

imizing the differences between adjacent data points, where smaller 

differences imply smoother transitions.

First-order difference operator. The first-order difference operator, also 

known as the Total Variation (TV) regularizer, enforces smoothness by 

penalizing large gradients between consecutive time points while pre­

serving important discontinuities. For a given vector 𝐱 ∈ R𝑚, the TV 

operator is defined as

‖𝐱‖TV =

(𝑚−1
∑

𝑖=1
|𝑥𝑖 − 𝑥𝑖+1|2

)

1
2

= ‖𝐃𝑡𝑣𝐱‖2,

where 𝐃𝑡𝑣 is the first-order difference matrix:

𝐃𝑡𝑣 =
⎡

⎢

⎢

⎣

1 −1
⋱ ⋱

1 −1

⎤

⎥

⎥

⎦

.
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Second-order difference operator. The second-order difference operator 

provides enhanced smoothness regularization by penalizing the curva­

ture (second derivative) of trajectories, which corresponds to constrain­

ing acceleration rather than velocity. This approach enforces smoother 

transitions that are more consistent with natural human motion patterns. 

The operator is defined as 

Θ(𝐗) = ‖𝐗𝐃𝑇ℎ ‖
2
𝐹 , (13)

where the matrix 𝐃ℎ is a tridiagonal square matrix defined by

(𝐃ℎ)𝑖,𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2
ℎ𝑖−1(ℎ𝑖−1+ℎ𝑖)

if 𝑗 = 𝑖 − 1,
−2

ℎ𝑖−1ℎ𝑖
if 𝑗 = 𝑖,

2
ℎ𝑖(ℎ𝑖−1+ℎ𝑖)

if 𝑗 = 𝑖 + 1,

0 otherwise.

for ∀𝑖, 2 ⩽ 𝑖 ⩽ 𝑛 − 1, where 𝑛 is the number of elements in 𝐗𝑟,∶ and 

ℎ𝑖 represents the step between consecutive data points 𝐗𝑟,𝑖 and 𝐗𝑟,𝑖+1. 
Assuming repeating border elements 

(

𝐗𝑟,0 = 𝐗𝑟,𝐴  and 𝐗𝑟,𝑛 = 𝐗𝑟,𝑛+1
)

gives

−(𝐃ℎ)1,1 = (𝐃ℎ)1,2 =
1
ℎ21
, and (𝐃ℎ)𝑛,𝑛−1 = −(𝐃ℎ)𝑛,𝑛 =

1
ℎ2𝑛−1

.

When assuming that the data is equally spaced with a constant interval 

of ℎ𝑖 = 1,∀𝑖, the divided difference matrix 𝐃ℎ becomes

𝐃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1 1
1 −2 1

⋱ ⋱ ⋱
1 −2 1

1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

The matrix 𝐃 focuses on the immediate neighborhood of each data point, 

thus providing a local analysis of temporal smoothness. By considering 

boundary conditions (repeating border elements), the matrix 𝐃 accounts 

for the stability at the edges of the data sequence. This ensures that 

the analysis of smoothness is consistent and accurate even near the 

boundaries of the data.

Smoothness priors can be enforced through first- or second-order dif­

ference operators. Both operators focus on the immediate neighborhood 

of each data point, providing local analysis of temporal smoothness. The 

boundary conditions ensure consistent and accurate smoothness analysis 

even at the edges of the data sequence. First-order operators constrain 

velocity changes and are effective for motions with relatively constant 

speeds or gradual transitions. Second-order operators constrain acceler­

ations and are particularly suitable for repetitive or cyclical activities, 

where biomechanical principles support smooth acceleration patterns. 

In contrast, abrupt or impact-heavy movements (e.g., sudden direction 

changes, collisions, or contact interactions) often violate these assump­

tions. In such cases, overly strict smoothness enforcement may distort 

the motion by artificially damping rapid variations or suppressing natu­

ral discontinuities. Therefore, the choice between first- and second-order 

smoothness should be guided by the motion characteristics, with adap­

tive formulations offering a potential solution for handling mixed or 

unpredictable dynamics.

B. wavelets transform. Wavelets in the context of MoCap data anal­

ysis serve to analyze and characterize temporal and spatial features of 

human motion. The Discrete Wavelet Transform (DWT) [92–94] decom­

poses the motion data into different scales, offering a multiresolution 

view. By decomposing the motion data matrix 𝐗 using a wavelet basis 

matrix 𝐖, the transform enables a comprehensive analysis of motion 

smoothness through the smoothness assumption defined by the wavelet 

transformation: 

Θ(𝐗) = ‖𝐖𝐗‖𝑞 . (14)

Here, ‖ ⋅ ‖𝑞  represents the 𝑙𝑞-norm (typically 𝑙1 or 𝑙2), which allows for 

flexible feature extraction and noise reduction. The wavelet basis matrix 

𝐖 is defined as:

𝐖 =

⎡

⎢

⎢

⎢

⎢

⎣

𝜓𝑠(1),𝑘(1)(1) 𝜓𝑠(1),𝑘(1)(2) ⋯ 𝜓𝑠(1),𝑘(1)(𝑛)
𝜓𝑠(2),𝑘(2)(1) 𝜓𝑠(2),𝑘(2)(2) ⋯ 𝜓𝑠(2),𝑘(2)(𝑛)

⋮ ⋮ ⋮ ⋮
𝜓𝑠(𝑛),𝑘(𝑛)(1) 𝜓𝑠(𝑛),𝑘(𝑛)(2) ⋯ 𝜓𝑠(𝑛),𝑘(𝑛)(𝑛)

⎤

⎥

⎥

⎥

⎥

⎦

.

The elements of matrix 𝐖 are derived from wavelet basis function 𝜓𝑠,𝑘(𝑗)
is defined as:

𝜓𝑠,𝑘(𝑗) =
1

√

2𝑠
𝜓
(

𝑗 − 𝑘 ⋅ 2𝑠

2𝑠

)

,

where 𝜓(𝑡) is the mother wavelet function, 𝑠 ∈ Z represents the scale 

parameter controlling dilation, and 𝑘 ∈ Z represents the translation 

parameter controlling position.

The wavelet coefficients resulting from the transform 𝐖𝐗 provide a 

time–frequency representation where the larger coefficients correspond 

to significant motion features at specific scales and temporal locations. 

This multiresolution property makes wavelets particularly effective for 

analyzing hierarchical motion structures.

C.Fast Fourier transform (FFT). The FFT is a popular tool for analyzing 

the frequency of signals and understanding how a subject evolves. FFT 

decomposes signals into their frequency components [94]. In cases of 

periodic signals, the FFT decomposes the signal into its constituent low-

frequency components. By decomposing signals into their fundamental 

frequency components, the FFT provides insights into the periodic na­

ture of movement. The mathematical representation of the FFT-based 

smoothness assumption is expressed as: 

Θ(𝐗) = ‖𝐅𝐗‖𝑞 , (15)

where 𝐅 is the FFT applied on 𝐗, with 𝐅 as a transformation matrix. Let 

𝐅𝑘,𝑛 be the element in the 𝑘-th row and 𝑛-th column of the 𝑁 ×𝑁  matrix 

𝐅, with 𝑘, 𝑛 ∈ {0, 1, 2,… , 𝑁 − 1}.

𝐅𝑘,𝑛 = 𝑒−𝑗2𝜋𝑘𝑛∕𝑁 .

The matrix form is given in the form:

𝐅 =

⎡

⎢

⎢

⎢

⎢

⎣

1 1 ⋯ 1
1 𝑒−𝑗2𝜋⋅1∕𝑁 ⋯ 𝑒−𝑗2𝜋⋅(𝑁−1)∕𝑁

⋮ ⋮ ⋮ ⋮

1 𝑒−𝑗2𝜋⋅(𝑁−1)∕𝑁 ⋯ 𝑒−𝑗2𝜋⋅(𝑁−1)2∕𝑁

⎤

⎥

⎥

⎥

⎥

⎦

.

The FFT decomposes complex motion signals into low-frequency com­

ponents, revealing the fundamental periodic patterns inherent in human 

movement while filtering out high-frequency noise.

5 . Low rank priors

The problem of minimizing the rank of a matrix or tensor, as in Eqs. 

(4) and (7), is ill-posed and generally considered NP-hard. Convex relax­

ations of the rank function make the problem computationally feasible 

and provide theoretical guarantees for data recovery under certain con­

ditions. Tensors, as higher-order generalizations of matrices, introduce 

additional complexity in rank definition and optimization strategies. 

Unlike in the matrix case, the definition of the tensor rank is not well es­

tablished. Thus, various definitions of the tensor rank and their convex 

relaxations have been studied to characterize the low-rankness of ten­

sors. The tensor rank definitions have been proposed based on different 

decomposition methods. These decompositions include the Canonical 

Polyadic (CP) decomposition [95], which breaks tensors into a sum 

of rank-one tensors; Tucker decomposition [96], which provides a hi­

erarchical factorization; and the tensor train decomposition [97,98], 

which offers an efficient representation for high-dimensional tensors. 

These approaches decompose high-dimensional tensors into a sequence 

of lower-dimensional tensors, effectively simplifying the completion pro­

cess by revealing underlying low-dimensional structures and patterns. 

This strategy addresses the computational challenges and provides a 

more interpretable approach to understanding multidimensional data.
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5.1 . Nuclear norm-based regularization

The use of low-rank matrix completion theory for human motion data 

processing was first introduced in [69]. The problem (4) was addressed 

by replacing the matrix rank with its nuclear norm, which is a convex 

relaxation as demonstrated in Theorem 1 from [99].

Theorem 1. The convex envelope of the function 𝜙(𝐗) = Rank(𝐗), on C =
{

𝐗 ∈ R𝑚×𝑛 ∣ ‖𝐗‖ ≤ 1
}

, is 𝜙env (𝐗) = ‖𝐗‖∗, where ‖𝐗‖∗ =
∑

𝑖 𝜎𝑖(𝐗) is the 

nuclear norm and ‖𝐗‖ = 𝜎1(𝐗) denotes the spectral norm, which is the largest 

singular value of matrix 𝐗.

The theorem shows that a lower bound for the optimal solution of 

the rank minimization problem can be derived by solving the nuclear 

norm relaxation. The nuclear norm is the convex hull of the set of rank-

one matrices with a spectral norm bounded by one. Furthermore, when 

the number of observed entries satisfies

𝑚 ≥ 𝐶𝑛6∕5𝑟log𝑛,

where 𝐶 is a constant, 𝑟 refers to the matrix rank, and 𝑛 is the matrix 

dimension, exact matrix recovery can be achieved with high proba­

bility for matrices satisfying appropriate incoherence conditions; see 

Theorem 1.1 in [88]. However, this is not always achievable in practical 

scenarios. Moreover, the nuclear norm treats all singular values equally, 

ignoring the practical significance of singular values for obtaining the 

matrix information. Additionally, the nuclear norm commonly involves 

the overshrinking problem, which is likely to result in diminished 

performance when there is noise in the measurements.

5.1.1 . Truncated nuclear norm

To overcome the limitations of the nuclear norm, the truncated 

nuclear norm (TNN) approach provides a solution to the problem of 

overshrinking by minimizing only the sum of smaller singular values 

while truncating the larger ones [100]. For a matrix 𝐗 ∈ R𝑚×𝑛, the trun­

cated nuclear norm is defined as the sum of the min(𝑚, 𝑛) − 𝑟 smallest 

singular values, i.e. 

‖𝐗‖𝑟 =
min(𝑚,𝑛)
∑

𝑖=𝑟+1
𝜎𝑖(𝐗). (16)

Since the values of the largest 𝑟 nonzero singular values will not affect 

the rank of the matrix, the truncated nuclear norm leaves them free 

and focuses on minimizing the sum of the smallest min(𝑚, 𝑛) − 𝑟 singular 

values.

5.2 . Schatten 𝑝-norm based regularization

To better bridge the gap between nuclear norm and real rank, the 

Schatten 𝑝-norm involves computing the sum of the 𝑝-th (0 ≤ 𝑝 ≤ 1)
power of all singular values. The Schatten 𝑝-norm is defined as

‖𝐗‖𝑝𝑆𝑝 =
min(𝑚,𝑛)
∑

𝑖=1

(

𝜎𝑖(𝐗)
)𝑝.

However, similar to the nuclear norm, the Schatten 𝑝-norm still deals 

with all singular values equally, while different singular values have dif­

ferent importance. Therefore, truncated Schatten 𝑝-norm and weighted 

Schatten 𝑝-norm have been introduced [101,102].

5.2.1 . Truncated schatten-𝑝 norm

For a given matrix 𝐗 ∈ R𝑚×𝑛, the truncated Schatten 𝑝-norm, which is 

defined as the sum of the 𝑝th (0 ≤ 𝑝 ≤ 1) power of min(𝑚, 𝑛)− 𝑟 minimum 

singular values, can be given as:

‖𝐗‖𝑝𝑟,𝑆𝑝 =
min(𝑚,𝑛)
∑

𝑖=𝑟+1

(

𝜎𝑖(𝐗)
)𝑝.

Compared with the nuclear norm, the truncated Schatten 𝑝-norm con­

siders the physical interpretations of singular values and truncates the 

large singular values from shrinking so that the main component of a 

matrix is preserved [102]. Moreover, compared with the truncated nu­

clear norm, the adjustable parameter 𝑝, the truncated Schatten 𝑝-norm 

more flexible in dealing with different applications.

5.2.2 . Weighted Schatten 𝑝-norm

The weighted Schatten 𝑝-norm tackles the overshrinking problem 

by assigning varying weights to singular values. Larger singular values 

receive smaller weights, whereas smaller singular values are assigned 

larger weights. The weighted Schatten 𝑝-norm of matrix 𝐗 ∈ R𝑚×𝑛 is 
defined as

‖𝐗‖𝑝𝑤,𝑆𝑝 =
min{𝑛,𝑚}
∑

𝑖=1
𝑤𝑖

(

𝜎𝑖(𝐗)
)𝑝,

where 𝐰 =
[

𝑤1,… , 𝑤min{𝑛,𝑚}
]

 is a non-negative vector, and 𝜎𝑖 is the 𝑖-th 

singular value of 𝐗.

5.2.3 . Powered Schatten p-norm

To further improve the approximation of the rank function, the 𝑡-th 

power of Schatten 𝑝-norm has been introduced in [40]: 

(

‖𝐗‖𝑝𝑆𝑝
)𝑡

=

(min(𝑚,𝑛)
∑

𝑖=1
𝜎𝑖(𝐗)𝑝

)𝑡

, (17)

where 0 < 𝑝 < 1 and 𝑡 ≥ 1. The parameter 𝑡 provides additional flexibility 

in controlling the rank approximation, with empirical studies suggesting 

optimal performance at 𝑡 = 2 and 𝑝 = 0.5 for motion capture applications 

[40].

5.3 . Nonlinear low-rank prior

In situations where the data is subject to complex nonlinear changes, 

such as significant pose variations, diverse expressions, or varying illu­

mination conditions, low-rank matrix completion may fail to recover 

the details of data with complex and diverse structures. To effectively 

cope with the nonlinear data, kernel-based methods have been intro­

duced [103–105]. These models learn a combined low-rank kernel via 

multiple-kernel learning. The geodesic exponential kernel is used for the 

multiple kernel learning process. The geodesic exponential kernel is built 

upon the geodesic distance, which is particularly suitable for measuring 

distances between points on a Riemannian manifold. In this context, we 

denote the coordinates of two points on a 2-dimensional sphere as 𝐱 ∈ R3

and 𝐲 ∈ R3. The geodesic exponential kernel is formulated as:

𝑘𝛾 (𝐱, 𝐲) = 𝑒
−𝑑𝑔 (𝐱,𝐲)

2𝛾2 ,

where 𝛾 is a width parameter, and 𝑑𝑔  represents the geodesic distance 

between the points 𝐱 and 𝐲 and is defined as

𝑑𝑔(𝐱, 𝐲) = arccos
(

𝐱𝑇 𝐲
)

,

where arccos: [−1, 1] → [0, 𝜋] is the usual inverse cosine function. The 

function Φ ∶ 𝐟 → Φ(𝐟 ) represents an implicit mapping defined on the 

kernel function 𝑘𝐀
(

𝐟𝑎, 𝐟𝑏
)

 and the inner product of two frames 𝐟𝑎 and 𝐟𝑏
is defined as

⟨

Φ
(

𝐟𝑎
)

,Φ
(

𝐟𝑏
)⟩

= 𝑘𝐀
(

𝐟𝑎, 𝐟𝑏
)

=
𝑑
∑

𝑗=1

𝑛𝑤
∑

𝑖=1
𝛼2𝑗,𝑖𝑘𝛾𝑖

(

𝐜𝑛𝑎,𝑗 , 𝐜
𝑛
𝑏,𝑗

)

,

𝐜𝑛𝑎,𝑗  and 𝐜𝑛𝑏,𝑗  are respectively normalized positions of 𝐜𝑎,𝑗  and 𝐜𝑏,𝑗  defined 

as:

𝐜𝑛𝑎,𝑗 =
𝐜𝑎,𝑗 − 𝐜𝑝𝑎,𝑗

‖𝐜𝑎,𝑗 − 𝐜𝑝𝑖,𝑗‖2
, 𝐜𝑛𝑏,𝑗 =

𝐜𝑏,𝑗 − 𝐜𝑝𝑖,𝑗
‖𝐜𝑏,𝑗 − 𝐜𝑝𝑏,𝑗‖2

,

and 𝐜𝑎,𝑗 , 𝐜𝑏,𝑗  are respectively the 𝑗-th joint in 𝐟𝑎 and 𝐟𝑏, 𝑛𝑤 is the num­

ber of the width parameters 𝛾𝑖 which correspond to different geodesic 
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exponential kernels 𝑘𝛾𝑖 , 𝛼𝑗,𝑖 is the weight of 𝑘𝛾𝑖 . The weights 𝛼𝑗,𝑖 can be 

arranged in the following weight matrix 𝐀 ∈ R𝑑×𝑛𝑎

𝐀 =
⎛

⎜

⎜

⎝

𝛼11 … 𝛼1𝑛𝑎
⋮ ⋱ ⋮
𝛼𝑑1 ⋯ 𝛼𝑑𝑛𝑎

⎞

⎟

⎟

⎠

. (18)

Let 𝐐 =
[

𝐟1, 𝐟2,… , 𝐟𝑛𝑑
]

 be a training set composed of a large number of 

frames of multiple types of motion sequences, where 𝑛𝑞  is the number of 

frames in 𝐐,𝐐𝑗 ∈ R3×𝑛𝑞  corresponds to all the 𝑗-th joints in 𝐐. Multiple 

kernel learning aims to minimize the rank of Φ(𝐐). Thus, using Schatten 

𝑝-norm instead of the rank of a matrix, the rank(Φ(𝐐)) can be formulated 

as 

rank(Φ(𝐐)) ≈
(

Tr
(

(

(Φ(𝐐))𝑇Φ(𝐐)
)

𝑝
2

))
1
𝑝
,

=
(

Tr
(

(𝐾𝑟(𝐐))
𝑝
2
))

1
𝑝 ,

(19)

where 𝐾𝑟(𝐐) is the kernel matrix of 𝐐 defined on 𝑘𝐀
(

𝐟𝑎, 𝐟𝑏
)

.

5.4 . Non-negative matrix factorization

Algorithms based on singular value decomposition, such as the nu­

clear norm, are computationally costly, especially when the underlying 

matrices are high-dimensional. The low-rank matrix factorization de­

rives optimization algorithms of lower computational complexity as 

compared to relevant convex approaches, specifically algorithms de­

rived from nuclear norm-based methods [106]. It is based on the fact 

that data exhibit latent structures; by uncovering them, we can obtain a 

compressed representation of the current data. For any matrix 𝐌 ∈ R𝑛×𝑚
of a rank up to 𝑟, NNMF finds an approximate factorization 𝐌 ≈ 𝐗𝐘
into non-negative factors 𝐗 ∈ R𝑛×𝑟 and 𝐘 ∈ R𝑟×𝑚, which can be attained 

through the minimization of the following equation: 

min
𝐗,𝐘

1
2
‖𝐗𝐘 −𝐌‖

2
𝐹 ,

s.t 𝐗 ≥ 0, 𝐘 ≥ 0.
(20)

NNMF has been effectively used to exploit the low-rank property of the 

data. It’s particularly well-suited for data with non-negative values and 

a low-rank structure.

5.5 . Tensor decompositions

Tensor decompositions break down a high-dimensional tensor into 

a series of lower-dimensional tensors, facilitating the extraction of 

meaningful patterns and simplifying tensor completion.

CP decomposition. The CP decomposition factorizes multidimensional 

data, or tensors, into a sum of rank-one tensors. For an 𝑁-order tensor 

X ∈ R𝐼1×𝐼2×⋯×𝐼𝑁, we have

X ≈
𝑅
∑

𝑟=1
𝜆𝑟𝐚(1)𝑟 ◦𝐚(2)𝑟 ◦⋯◦𝐚(𝑁)

𝑟 = [[𝚲;𝐀(1),𝐀(2),… ,𝐀(𝑁)]],

The symbol “◦” represents the vector’s outer product. This means that 

each element of the tensor is the product of the corresponding vector 

elements

X𝑖1 ,𝑖2 ,…,𝑖𝑁 = 𝑎(1)𝑖1 𝑎
(2)
𝑖2

⋯ 𝑎(𝑁)
𝑖𝑁
, for all 1 ≤ 𝑖𝑛 ≤ 𝐼𝑛.

For any 𝑛 ∈ {1,… , 𝑁}, 𝐚(𝑛)𝑟 ∈ R𝐼𝑛  stands for the factor (or loading) vector 

and 𝜆𝑟 represents weight parameters. The matrix 𝐀(𝑛) ∈ R𝐼𝑛×𝑅 is called 

the 𝑛-th factor (or loading) matrix and refers to the combination of the 

vectors from the rank-one components, i.e., 𝐀(𝑛) =
[

𝐚(𝑛)1 , 𝐚(𝑛)2 ,… , 𝐚(𝑛)𝑅
]

, 

𝚲 = diag
[

𝜆1,… , 𝜆𝑅
]

∈ R𝑅×⋯×𝑅 is a super-diagonal tensor, and 𝑅 is the 

tensor rank also known as CP rank.

Tucker decomposition. Tucker decomposition factorizes multidimen­

sional tensors into a core tensor multiplied by matrices along each mode. 

For a given tensor X ∈ R𝐼1×𝐼2×⋯×𝐼𝑁  of order 𝑁 , Tucker decomposition 

is given as

X =
𝑅1
∑

𝑠1=1

𝑅2
∑

𝑠2=1
⋯

𝑅𝑁
∑

𝑠𝑁=1
G𝑠1 ,…,𝑠𝑁 𝐚

(1)
𝑠1
◦𝐚(2)𝑠2 ◦… ◦𝐚(𝑁)

𝑠𝑁
,

=G ×1 𝐀(1) ×2 𝐀(2)⋯ ×𝑁 𝐀(𝑁) =∶ [[G; {𝐀}]],

where G ∈ R𝑅1×𝑅2×⋯×𝑅𝑁  (𝑅𝑛 ≤ 𝐼𝑛) is the core tensor, {𝐀} stands for 

the set of 𝑁  matrices, and 𝐀(𝑛) ∈ R𝐼𝑛×𝑅𝑛  for 𝑛 ∈ [𝑁] is factor ma­

trix. The Tucker rank; also called the multilnear rank; is the vector 

𝑅 = [𝑅1, 𝑅2,… , 𝑅𝑁 ], thus we say X  is rank-(𝑅1, 𝑅2,… , 𝑅𝑁 ) tensor. The 

matricized version of Tucker decomposition is given as:

𝐗(𝑛) = 𝐀(𝑛)𝐆(𝑛)(𝐀(𝑁) ⊗…𝐀(𝑛+1) ⊗ 𝐀(𝑛−1) … . ⊗ 𝐀(1))𝑇,

where 𝐆(𝑛) denotes mode-n matricization of G and 𝐗𝑇  denotes the trans­

pose of matrix 𝐗. Tucker decomposition is generally non-unique, so 

practical applications often impose constraints on the core tensor and 

factor matrices to ensure a meaningful factorization. These constraints, 

such as orthogonality, non-negativity, or sparsity, are selected based on 

the specific requirements of the problem. When the factor matrices are 

orthogonal, they capture the most significant patterns or components in 

the data along each tensor dimension (or mode). Meanwhile, the ele­

ments of the core tensor G represent the level of interaction between the 

different modes.

6 . Matrix-based motion completion approaches

6.1 . Nuclear norm based kinematic constraints

The use of low-rank matrix completion theory for human motion 

data processing was first presented in [69]. In this work, the authors ad­

dressed both the completion and the denoising of the walking sequence 

data. Their proposed method relies on a low-rank prior without any kine­

matic information. The recovered MoCap matrix is obtained using the 

singular value thresholding algorithm (SVT) [89]. The SVT Algorithm 2 

approximates the nuclear norm by minimizing the following problem: 

min
𝐗

𝜏‖𝐗‖∗ +
1
2
‖𝐗‖2𝐹 ,

s.t PΩ(𝐗) = PΩ(𝐌).
(21)

Nuclear norm with bone length constraint. The main limitation of the 

SVT-based MoCap completion method is that in different scenarios, the 

distance between any two adjacent joints of a motion sequence recov­

ered by the SVT algorithm is not preserved. To address this problem, 

the bone length constraint (22) has been used within the SVT approach 

[75]. The objective of this approach is to maintain the relative dis­

tances between joints throughout the data recovery process. Therefore, 

the skeleton-constrained SVT model is given as:

min
𝐗

𝜏‖𝐗‖∗ +
1
2
‖𝐗‖2𝐹 ,

s.t 𝐱 = 𝑉 𝑒𝑐(𝐗),

𝐀𝐱 = 𝐛,

‖𝐂𝑖𝐱‖2 ≤ 𝑑𝑖, for 𝑖 = 1,… , 𝑝,

(22)

where 𝐀 ∈ R𝑚×𝑛 extracts the observed entries of 𝐱, and 𝐛 is the vector 

containing the 𝑚 observed entries of the matrix 𝐌 to be recovered, i.e., 

𝐛 = PΩ(𝐌).

Nuclear norm with smoothness priors. The MoCap data recovery prob­

lem (21) has been converted into a robust matrix completion problem 
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[72,73,107] and using the low-rank structure, the smoothness prior (13) 

of the MoCap data, and the noise effect are considered. Hence, given the 

typical presence of noise in motion capture data, a realistic representa­

tion of the imperfect motion data matrix 𝐌 involves decomposing it into 

two components expressed as follows:

𝐌 = 𝐗 + 𝐄,

with 𝐗 represents the complete and clean motion data, and 𝐄, accounts 

for noise or outliers. Skeleton corruption often happens in challenging 

scenarios such as occlusion, so the error matrix 𝐄 is sparse but unknown. 

The robust matrix completion model is given as: 

min
𝐗,𝐄

‖𝐗‖∗ + 𝛼‖H◦𝐄‖1 +
𝛽
2
‖

‖

‖

𝐗𝐃𝑇 ‖‖
‖

2

𝐹
,

s.t. 𝐌 = 𝐗 + 𝐄,
(23)

here, ‖ ⋅ ‖1 is the 𝑙1-norm, 𝛼 and 𝛽 are two regularization parameters, 

and H ∈ {0, 1}𝑑×𝑛 is the mask matrix (6). A similar optimization model 

has been used in [72], but with the truncated nuclear norm instead of 

the standard nuclear norm to better capture the low-rank structure of 

human MoCap data.

A multi-level fine-grained fusion method [108] introduces a fine-

grained partitioning operator 𝐋𝑑𝑐  that automatically segments motion 

data into anatomically-based body parts, where 𝑑 ∈ {2, 3, 5} represents 

different partitioning levels. 

𝐗 = 1
3
∑

𝑑∈𝐵

𝑑
∑

𝑐=1
𝐗𝐋𝑑𝑐 , 𝐵 = {2, 3, 5}. (24)

The final reconstruction combines results across multiple partitioning 

levels: 

min
𝐗

1
3
∑

𝑑∈𝐵

𝑑
∑

𝑐=1
‖𝐗𝐋𝑑𝑐 ‖∗ +

𝛽
2
‖

‖

‖

𝐗𝐋𝑇 ‖‖
‖

2

𝐹
,

s.t. 𝐌 = 𝐗◦H, 𝐵 = {2, 3, 5},

(25)

where 𝐗𝐋𝑑𝑐  denotes the 𝑐-th module resulting from the fine-grained par­

titioning at level 𝑑. The method provides alternative formulations using 

nuclear norm and Schatten 𝑝-norm approaches, allowing comparative 

evaluation of different low-rank priors on the same segmented data.

Nuclear norm with skeleton and smoothness prior. A hybrid prior within 

the low-rank completion problem is introduced [109]. This model 

leverages skeleton constraints and motion smoothness by combining 

spatial correlation from the skeleton structure and temporal information. 

Specifically, the spatiotemporal prior involves the isometry constraint, 

encouraging consistent bone lengths and exploring spatial correlations 

among skeleton sequences to overcome large joint errors in challeng­

ing cases. Therefore, let 𝐌 be the corrupted matrix, 𝐗 be the clean 

skeleton matrix, and 𝐄 be the sparse noise matrix (sparse error). The 

spatiotemporal motion recovery problem is given as: 

min
𝐗,𝐄

‖𝐗‖∗ + 𝜆‖𝐄‖1 + 𝛾Θiso(𝐗) + 𝜇‖𝐖𝐗‖1,

s.t. 𝐌 = 𝐗 + 𝐄,
(26)

where Θiso (𝐗) is the isometry term (11), the last term is the wavelet 

transform (14), and 𝜆, 𝛾, 𝜇 are regularization parameters to balance these 

terms. The isometry term exploits the spatial correlation of a skeleton 

sequence by suppressing positional errors of skeletal joints, while the 

smoothness term with sparse prior exploits the temporal correlation of 

a skeleton sequence by ensuring the piece-wise smoothness of the re­

covered motion. In this way, the proposed model can fully exploit the 

characteristics of skeleton motions.

QR decomposition-based approximate SVD. While nuclear norm mini­

mization provides theoretical guarantees for low-rank matrix comple­

tion, the computational overhead associated with repeated singular 

value decomposition operations limits its practical applicability, par­

ticularly for real-time motion capture applications. To address this 

limitation, an approximate SVD approach based on QR decomposition 

has been introduced [91]. This method exploits the relationship between 

the nuclear norm and the 𝓁2,1 norm to achieve significant computational 

savings while preserving recovery accuracy.

The approach decomposes the motion matrix 𝐗 into three matrices 

𝐌 ∈ R𝑚×𝑟, 𝐐 ∈ R𝑟×𝑟, and 𝐍 ∈ R𝑟×𝑛 such that, 

𝐗 = 𝐌𝐐𝐍, (27)

where 𝐌𝑇𝐌 = 𝐈 and 𝐍𝐍𝑇 = 𝐈, and 𝑟 ≪ min(𝑚, 𝑛) represents the effec­

tive rank. The key insight is that ‖𝐗‖∗ = ‖𝐐‖∗, allowing nuclear norm 

minimization of the much smaller matrix 𝐐 instead of the full matrix 𝐗. 

Furthermore, by establishing the relationship ‖𝐐‖∗ ≤ ‖𝐐‖2,1, the nuclear 

norm is replaced with the 𝓁2,1 norm, removing the need for iterative sin­

gular value decompositions and substantially reducing computational 

cost. 

6.2 . Schatten 𝑝-norm with kinematic constraints

The truncated Schatten 𝑝-norm has been proposed in [70] for MoCap 

completion. Moreover, the smoothness and the bone-length constraints 

are used to preserve the spatial-temporal smoothness and structural 

characteristics of human motion 

min
𝐗

‖𝐗‖𝑟,𝑆𝑝 +
𝛽
2
‖𝐗𝐃‖2𝐹 ,

s.t. H◦𝐗 = 𝐌, and 𝑔(𝐗) = 0,
(28)

where 𝑔(𝐗) is the function to compute the bone length error in Eq. (10).

In human motion, it is noticeable that similar actions are frequently 

replicated in multiple instances, see Fig. 6. Such an assumption implies 

that human motion has strong nonlocal self-similarity (NSS). Motivated 

by this, the nonlocal low-rank regularization technique has been adopted 

for human MoCap recovery in [74]. To model the NSS technique of hu­

man motion, patch grouping for human motion sequences is defined 

to find the most similar poses among all the frames in the motion se­

quences. First, let 𝐏𝑖 ∈ R3𝑑×𝑐  be a motion patch in 𝐌, and we search for 

its similar patches along the entire motion sequence by the weighted 

𝑙2 distance. After patch grouping, we obtain a formed dataset 𝐆𝑖 =
[

𝐏𝑖1 ,𝐏𝑖2 ,… ,𝐏𝑖,… ,𝐏𝑖𝑠
]

∈ R𝑚×ℎ for each exemplar patch 𝐏𝑖. The comple­

tion problem is based on the weighted Schatten 𝑝-norm and formulated 

as 

min
𝐆𝑖

‖

‖

𝐆𝑖
‖

‖

𝑝
𝑤,𝑆𝑝

,

s.t. H𝑖◦𝐆𝑖 = 𝐌𝑖,

𝑔
(

𝐆𝑖
)

= 0.

(29)

6.3 . Nonlinear low-rank approach

In [110], the kernel-based low-rank matrix handles the completion 

problem after obtaining the learned kernel 𝑘𝐴 by minimizing (19) with 

𝑝 = 1. Therefore, the nonlinear low-rank completion problem is given 

as:

min
𝐗

Tr
(

(𝐊(𝐐))
1
2
)

+
𝛽
2
‖𝐗𝐃‖2𝐹 ,

s.t. H◦𝐗 = 𝐌,

𝑔(𝐗) = 0.

(30)

The LRMC seeks the minimal rank of 𝐗. However, considering the 

nonlinear structure of some motion sequences, 𝐗 may not be of low 
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rank for MoCap data. Thus, the nonlinear low-rank minimizes the rank 

in the feature space, which is more suitable in theory. Although the 

non-linearization of LRMC improves accuracy, it comes at the cost of 

increased computational time.

6.4 . Multi-subspace low-rank approaches

The low-rank matrix completion methods assume that motion data 

lies within a single low-dimensional subspace. However, this assump­

tion breaks down for complex motion sequences containing multiple 

distinct activities, where the concatenated motion exhibits significantly 

higher rank than individual activity segments [111]. To address this 

limitation, multi-subspace approaches model complex motions as com­

binations of multiple low-dimensional subspaces. The discrete subspace 

structure constraint addresses this challenge by jointly optimizing sub­

space clustering and matrix completion within a unified framework. 

Given a motion sequence 𝐗 ∈ R3𝑑×𝑛 containing 𝑐 different activities, 

the DSS formulation is: 

min
𝐗,𝐄,𝐮𝑖 ,𝐅𝑖

𝑐
∑

𝑖=1

(

‖

‖

‖

(𝐗 − 𝐮𝑖𝟏𝑇 )𝐅𝑖
‖

‖

‖

𝑝

𝑆𝑝

)𝑡
+ 𝜆1‖PΩ(𝐄)‖1 +

𝜆2
2
Θ(𝐗),

s.t. 𝐗 + 𝐄 = PΩ(𝐌), 𝐅𝑖 ⊆ {0, 1}𝑛×𝑛,
𝑐
∑

𝑖=1
𝐅𝑖 = 𝐈𝑛,

(31)

where 𝐅𝑖 are diagonal indicator matrices specifying which frames belong 

to the 𝑖-th subspace, 𝐮𝑖 are translation vectors to center each subspace, 

and the 𝑡-th power of Schatten 𝑝-norm provides better rank approxi­

mation than the nuclear norm. Unlike previous two-stage approaches 

that perform subspace clustering and matrix completion sequentially, 

this formulation allows the two processes to mutually benefit each other 

through joint optimization. The algorithm alternates between solving for 

the recovered data 𝐗 given the segmentation matrices 𝐅𝑖 and solving for 

the segmentation given 𝐗, enabling improved accuracy for both tasks.

6.5 . Hierarchical block-based NNMF

The completion process proposed in [76] has taken advantage of 

adaptive NNMF combined with hierarchical block-based human motion 

data recovery. The motion sequence is processed in terms of block-based 

subchain motion clips. The proposed method consists of two main layers:

• Interior layer: In this layer, the motion is segmented into block-based 

subchain motion clips by decomposing the skeleton data into five 

correlated blocks. Second, the adaptive NNMF is then used to re­

cover the moving trajectories of each sub-chain motion individually 

by solving the following problem: 

min
𝐗,𝐘

‖

‖

PΩ(𝐗𝐘 −𝐌)‖
‖

2
𝐹 s.t. 𝐗 ≥ 0,𝐘 ≥ 0. (32)

• Exterior layer: It exploits the recovered sub-chain motion clips from 

the interior layer and the known entries in the MoCap data to re­

fine the corresponding restored data of the same position. Therefore, 

natural-looking human motions can be obtained from the two layers.

7 . Tensor decomposition for MoCap data completion

Tensor decomposition approaches address the completion problem 

by factorizing the multi-dimensional data structure into core compo­

nents. These methods capitalize on the inherent temporal and spatial 

correlations in motion data, providing advantages over matrix-based 

techniques. The decomposition into lower-dimensional factors enables 

the preservation of underlying motion patterns while accurately recon­

structing missing values.

7.1 . CP decomposition algorithms

The goal of the CP decomposition is to find a set of 𝑅 normalized 

rank-one tensors {𝐚(1)𝑟 ◦𝐚(2)𝑟 ◦⋯◦𝐚(𝑁)
𝑟 }

𝑅
𝑟=1 that best approximates X . Thus, 

in [77], MoCap tensor completion using CP decomposition is formulated 

as: 

min
X ,{A𝑟}𝑅𝑟=1

𝐻(X ,A1,… ,A𝑅) = min
X ,{A𝑟}𝑅𝑟=1

1
2
‖X −

𝑅
∑

𝑟=1
𝜆𝑟𝐚(1)𝑟 ◦𝐚(2)𝑟 ◦⋯◦𝐚(𝑁)

𝑟 ‖

2
𝐹 ,

s.t PΩ(X) = PΩ(M), ‖𝐚(𝑛)𝑟 ‖2 = 1, 𝑛 ∈ [𝑁], 𝑟 ∈ [𝑅],

(33)

where A𝑟 = 𝜆𝑟𝐚
(1)
𝑟 ◦𝐚(2)𝑟 ◦⋯◦𝐚(𝑁)

𝑟 . Normalizing the loading factors in CP 

decomposition offers certain advantages, such as improving the robust­

ness to noise and preventing the minimization process from assigning 

excessively large values to some components.

Given the inherent complexity of MoCap data, two modified vari­

ations of CP decomposition are introduced: SmoothCP and SparseCP. 

These modified decompositions incorporate constraints on the factor 

vectors to enhance the extraction of meaningful patterns by leverag­

ing smoothness and sparsity properties, respectively. Smoothness is an 

essential characteristic of MoCap data, which can be effectively uti­

lized to predict missing elements more accurately. In the SmoothCP 

decomposition, 1D total variation constraint on the factor vectors is

incorporated. 

min
X ,{A𝑟}𝑅𝑟=1

𝐻(X ,A1,… ,A𝑅) +
𝑅
∑

𝑟=1

𝑁
∑

𝑛=1
𝛼𝑛‖𝐃𝑡𝑣𝐚(𝑛)𝑟 ‖

2,

s.t PΩ(X) = PΩ(M), ‖𝐚(𝑛)𝑟 ‖2 = 1, 𝑛 ∈ [𝑁], 𝑟 ∈ [𝑅],

(34)

where {𝛼𝑛}
𝑁
𝑛=1 are parameters controlling the level of the constraint on 

each factor vector. This approach ensures that the decomposition re­

spects the smooth transitions inherent in human motion. Conversely, 

sparsity focuses on identifying and utilizing the most informative parts 

of the data, which is crucial in scenarios where only a few significant 

elements contribute to the overall structure. In the SparseCP decompo­

sition, the sparsity constraint is introduced by applying the 𝑙1-norm to 

the factor vectors. 

min
X ,{A𝑟}𝑅𝑟=1

𝐻(X ,A1,… ,A𝑅) +
𝑅
∑

𝑟=1

𝑁
∑

𝑛=1
𝛼𝑛‖𝐚(𝑛)𝑟 ‖1,

s.t PΩ(X) = PΩ(M), ‖𝐚(𝑛)𝑟 ‖2 = 1, 𝑛 ∈ [𝑁], 𝑟 ∈ [𝑅].

(35)

The SparseCP approach guides the decomposition to produce sparse fac­

tor vectors, highlighting the most informative components and reducing 

redundancy.

7.2 . Tucker decomposition algorithms

Tucker decomposition factorizes the MoCap tensor into a core tensor 

multiplied by matrices along each mode [112]. The orthogonality con­

straint ensures that components in each mode are independent, which 

improves numerical stability by representing each mode through a set 

of independent features. The tensor completion problem via Tucker de­

composition thus exploits this structured, low-rank representation to 

reconstruct missing tensor entries: 

min
𝐀,G,X

1
2
‖X − G ×1 𝐀(1) ×2 𝐀(2) …×𝑁 𝐀(𝑁)

‖

2
𝐹 ,

s.t PΩ(X) = PΩ(M), 𝐀(𝑛)𝐀(𝑛),𝑇 = 𝐈𝑛, 𝑛 ∈ [𝑁].
(36)

MoCap data exhibits inherent temporal continuity, with motion evolv­

ing smoothly across successive frames. Given the high-dimensional 

nature of such data, explicit gradient-based smoothness regularization 

becomes computationally prohibitive. The nuclear norm preserves tem­

poral smoothness by promoting low-rank structure, which inherently 

favors gradual patterns over abrupt changes. By applying the nuclear 

norm to the temporal mode of the MoCap tensor, abrupt variations are 
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Algorithm 1: Augmented Lagrange multiplier (ALM) algo­

rithm.

Initialization;

𝐱0, 𝐲0, 𝑘 = 1
while not convergent and 𝑘 ≤ Kmax do

( )

𝐱𝑘+1 = argmin𝐱 𝐿 𝐱, 𝐲𝑘, 𝜇 ,𝑘
( )

𝐲𝑘+1 = 𝐲𝑘 + 𝜇𝑘𝐴 𝐱𝑘+1 ,

Update 𝜇  to 𝑘 𝜇𝑘+1.
end 

return 𝐱𝑘

mitigated, ensuring reconstructed motion maintains coherent temporal 

patterns. The Tucker-based temporal nuclear norm approach is given

as: 

min
𝐀,G,X

1
2
‖X − G ×1 𝐀(1) ×2 𝐀(2) …×𝑁 𝐀(𝑁)

‖

2
𝐹 + 𝜆‖𝐗(1)‖∗,

s.t PΩ(X) = PΩ(M), 𝐀(𝑛)𝐀(𝑛),𝑇 = 𝐈𝑛, 𝑛 ∈ [𝑁].
(37)

where 𝐗(1) is the mode-1 unfolding (matricization) of X . The pro­

posed approach leverages this global smoothness constraint within the 

Tucker decomposition framework, providing a computationally efficient 

method to preserve motion continuity.

8 . Minimization algorithms

The completion problem for motion capture data is presented as a 

minimization problem, where the goal is to recover missing or corrupted 

motion sequences by minimizing an objective function. The follow­

ing sections review the key minimization methods used to address the 

MoCap completion approaches.

8.1 . Augmented lagrange multipliers (ALM) method

The ALM is an optimization technique for solving constrained opti­

mization problems [113–115]. As an extension of the Lagrange multi­

pliers, ALM addresses the challenges of handling equality and inequality 

constraints [116]. The standard constrained optimization problem is 

formulated as: 

min
𝐱

𝑓 (𝐱),

s.t 𝐴(𝐱) = 0,
(38)

where 𝑓 ∶ R𝑛 → R is real-valued function and 𝐴 ∶ R𝑛 → R𝑚 is a linear 

operator. ALM defines the augmented Lagrangian function by introduc­

ing Lagrange multipliers for the constraints. The augmented Lagrangian 

combines the original objective function with penalty terms related to 

the constraints:

𝐿(𝐱, 𝐲, 𝜇) = 𝑓 (𝐱) + ⟨𝐲, 𝐴(𝐱)⟩ + 𝜇
2
‖𝐴(𝐱)‖2𝐹 ,

where 𝜇 is a regularization parameter. In each iteration, ALM per­

forms alternating minimization of the augmented Lagrangian over 𝐗. 

At iteration 𝑘, ALM carries out the following steps

𝐱𝑘+1 = argmin
𝐱
𝑓 (𝐱) +

𝜇𝑘
2
‖𝐴(𝐱) + 𝐲𝑘‖2𝐹 ,

𝐲𝑘+1 = 𝐲𝑘 + 𝜇𝑘𝐴(𝐱𝑘+1).

The complete algorithmic procedure is detailed in Algorithm 1. 

8.2 . Singular value thresholding (SVT) algorithm

The SVT algorithm is an iterative optimization technique primarily 

employed for solving matrix recovery and completion problems [89]. It 

can be viewed as a special case of the Augmented Lagrangian Method 

Algorithm 2: Singular value thresholding (SVT) algorithm.

Initialization;

𝐗0, 𝐘0, 𝑘 = 1
while not convergent and 𝑘 ≤ Kmax do

𝐗𝑘+1 = D , (soft-thresholding: 𝜏 (𝐘𝑘) Eq. (40)) 

𝐘𝑘+1 = 𝐘𝑘 + 𝛿 P𝑘 Ω(𝐌 − 𝐗𝑘+1),
Update 𝛿  to 𝑘 𝛿𝑘+1.

return 𝐗𝑘

(ALM). The SVT algorithm is designed to recover a low-rank matrix 

from a given set of noisy or incomplete observations. Practically, the 

SVT algorithm solves the minimization problem (21) iteratively. The 

key building block of the SVT algorithm is the singular value shrinkage 

operator. Consider the SVD of a matrix 𝐗 ∈ R𝑚×𝑛 of rank 𝑟 ≤ min(𝑚, 𝑛)

𝐗 = 𝐔𝚺𝐕∗ where 𝚺 = diag(𝜎1,… , 𝜎𝑟), (39)

where 𝐔 and 𝐕 are respectively 𝑚×𝑟 and 𝑛×𝑟 matrices with orthonormal 

columns, and the singular values 𝜎𝑖 are positive. For each 𝜏 ≥ 0, the 

soft-thresholding operator D𝜏  is defined as follows: 

D𝜏 (𝐗) = 𝐔D𝜏 (𝚺)𝐕∗, D𝜏 (𝚺) = diag((𝜎𝑖 − 𝜏)+), (40)

where (𝜎𝑖 − 𝜏)+ = max(0, 𝜎𝑖 − 𝜏). Fixing 𝜏 > 0 and a sequence 𝛿𝑘 of 

scalar step sizes, the SVT aims to find a low-rank solution by iteratively 

updating matrix pairs (𝐗𝑘,𝐘𝑘)𝑘∈N as follows:

{

𝐗𝑘 = D𝜏 (𝐘𝑘−1),
𝐘𝑘 = 𝐘𝑘−1 + 𝛿𝑘PΩ(𝐌 − 𝐗𝑘).

The complete algorithmic procedure is detailed in Algorithm 2. 

8.3 . Alternating direction method of multipliers (ADMM) algorithm

The ADMM is an optimization algorithm used to solve problems 

that can be formulated as convex optimization problems with linear 

constraints [117,118]. The ADMM algorithm solves problems of the

form: 

min
𝐱,𝐳

𝑓 (𝐱) + 𝑔(𝐳),

s.t 𝐀𝐱 + 𝐁𝐳 = 𝐜,
(41)

where 𝑓  and 𝑔 are convex functions, not necessarily differentiable, 𝐀,𝐁
are given matrices and 𝐜 a given vector. The optimal value of problem

(41) will be obtained by minimizing the augmented Lagrangian function

L(𝐱, 𝐳, 𝐲) = 𝑓 (𝐱) + 𝑔(𝐳) + ⟨𝐲,𝐀𝐱 + 𝐁𝐳 − 𝐜⟩ + 𝛾
2
‖𝐴𝐱 + 𝐁𝐳 − 𝐜‖2.

In each iteration, ADMM performs alternating minimization of the aug­

mented Lagrangian over 𝐱 and 𝐳. At iteration 𝑘, ADMM carries out the 

following steps:

𝐱𝑘+1 = argmin
𝐱
𝑓 (𝐱) + 𝛾

2
‖𝐀𝐱 + 𝐁𝐳𝑘 − 𝐜 + 𝐲𝑘‖2𝐹 ,

𝐳𝑘+1 = argmin
𝐳
𝑔(𝐳) + 𝛾

2
‖𝐀𝐱𝑘+1 + 𝐁𝐳 − 𝐜 + 𝐲𝑘‖2𝐹 ,

𝐲𝑘+1 = 𝐲𝑘 + 𝛾
(

𝐀𝐱𝑘+1 + 𝐁𝐳𝑘+1 − 𝐜
)

,

where 𝛾 is a positive parameter. The complete algorithmic procedure is 

detailed in Algorithm 3. 

8.4 . Fixed-point proximity algorithms

Fixed-point proximity algorithms provide an alternative to ADMM 

for solving multi-term convex optimization problems with guaranteed 
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Algorithm 3: Alternating direction method of multipliers 

(ADMM) algorithm.

Initialization;

𝐱0, 𝐲0, 𝐳0, 𝑘 = 1
while not convergent and 𝑘 ≤ Kmax do

𝐱 𝛾
𝑘+1 = argmin𝐱 𝑓 (𝐱) + ‖𝐀𝐱 + 𝐁𝐳𝑘 − 𝐜 + 𝐲 ‖

2 , 2 𝑘 𝐹
𝐳 𝛾

+1 = argmin𝐳 𝑔(𝐳) + ‖𝐀𝐱 𝐲 ‖

2
+1 + 𝐁𝐳 − 𝐜 +  , 𝑘 2 𝑘 𝑘 𝐹

( )

𝐲𝑘+1 = 𝐲𝑘 + 𝛾 𝐀𝐱𝑘+1 + 𝐁𝐳𝑘+1 − 𝐜 .

end 

return 𝐱  and 𝑘 𝐲𝑘+1

Algorithm 4: Fixed-point proximity algorithm (FPPA).

Initialization;

𝐔(0) = 𝟎, 𝐗(0) = 𝐗0
while not convergent and 𝑘 ≤ Kmax do

𝐔(𝑘+1) = (prox 𝑘) −1 (𝑘) −1
𝑔∗ ,𝐏(𝐔 − 𝐏 𝐗 + 𝐏 𝐗0), 

(
𝐔
𝑘+1) ( +1)

= 2𝐔(𝑘+1) − 𝐔(𝑘) 𝐗
𝑘

, = 𝐗(𝑘) − 1𝐐−1𝐋𝑇∇ℎ(𝐋𝐗(𝑘)), 𝜆
( +1) ( +1)

𝐗( +1) 𝑘𝑘 = ox𝑓,𝐐(𝐗 +𝐐−1𝐔
𝑘

pr ).
end 

return 𝐗(𝑘+1)

convergence properties. The Fixed-Point Proximity Algorithm (FPPA) 

addresses the general form [107]:

min
𝐗
𝑓 (𝐗) + 𝑔(𝐗) + ℎ(𝐋𝐗), (42)

where 𝑓  and 𝑔 are proper convex functions with computable proximity 

operators, ℎ is differentiable and convex, and 𝐋 is a linear operator. 

The algorithm characterizes solutions through fixed-point equations. For 

positive parameters 𝜆, 𝐏, 𝐐 ∈ S𝑚+, the solution satisfies:

𝐔 = prox𝑔∗ ,𝐏(𝐔 − 𝐏−1𝐗 + 𝐏−1𝐗0), (43)

𝐗 = prox𝑓,𝐐(𝐗 +𝐐−1𝐔 − 1
𝜆
𝐐−1𝐋𝑇∇ℎ(𝐋𝐗)). (44)

FPPA avoids matrix inversions required in ADMM through eigen­

decomposition techniques and provides guaranteed convergence for 

three-term problems where ADMM convergence may fail.

8.5 . The block coordinate descent (BCD) algorithm

The BCD algorithm is a popular method for solving large-scale opti­

mization problems. It iteratively optimizes a function by updating one 

block of variables at a time while keeping the others fixed. This approach 

is particularly effective when the objective function can be decomposed 

into components that can be easily optimized over individual blocks. 

The BCD minimizes problems of the form: 

min
𝐱
𝑓 (𝐱) = min

𝐱1 ,𝐱2 ,…,𝐱𝑠
𝑓 (𝐱1, 𝐱2,… , 𝐱𝑠), (45)

where variable 𝐱 is decomposed into s blocks 𝐱1, 𝐱2,… , 𝐱𝑠, 𝑓  is a real-

valued function, each 𝐱𝑖 belongs to R𝑛𝑖 . For each iteration 𝑘, BCD updates 

each variable block 𝐱𝑘+1𝑖  by minimizing the objective function over the 

current block:

𝐱𝑘+1𝑖 = argmin
𝐱𝑖
𝑔(𝐱𝑖) = argmin

𝐱𝑖
𝑓 (𝐱𝑘+11 ,… , 𝐱𝑘+1𝑖−1 , 𝐱𝑖, 𝐱

𝑘
𝑖+1,… , 𝐱𝑘𝑠 ).

This process is repeated cyclically for all blocks. BCD is widely used 

because it is easy to implement and efficient for large-scale problems, 

especially when each block update can be computed independently. 

However, standard BCD can face slow convergence and instability when 

dealing with nonsmooth or constrained objectives. To address this, the 

Algorithm 5: Block coordinate descent (BCD) algorithms.

0Initialization: 𝐱 = (𝐱01 , 𝐱
0
2 ,… , 𝐱0), 𝑘 = 1𝑠

while not convergent and 𝑘 ≤ Kmax do

for 𝑖 = 1, 2,… , 𝑠 do

If BCD, update: 𝐱𝑘+1 = argmin𝐱 (𝑖 𝑖
𝑔 𝐱𝑖),

If Prox-BCD, update:

𝐱𝑘+1 = argmin𝐱 𝑔(𝐱 )𝑖 𝑖 𝑖 + 𝜌𝑖
‖𝐱2 𝑖 − 𝐱𝑘‖2 .𝑖 𝐹

end 

end 
+1return 𝐱𝑘

Proximal Regularized BCD (Prox-BCD) method incorporates a proximal 

term into the objective function, which helps stabilize the updates and 

improve convergence [119–121]. The Proximal-BCD algorithm first uses 

a proximal point modification of (45) as follows

min
𝐱1 ,𝐱2 ,…𝐱𝑠

𝑓 (𝐱1, 𝐱2,… , 𝐱𝑠) +
𝑠
∑

𝑖=1

𝜌𝑖
2
‖𝐱𝑖 − 𝐱𝑘𝑖 ‖

2
𝐹 ,

where 
𝜌𝑖
2 ‖𝐱𝑖 − 𝐱𝑘𝑖 ‖

2
𝐹  is the proximal term added to the objective to 

regularize the update, preventing large deviations from the current es­

timate 𝐱𝑘𝑖  and 𝜌𝑖 is a regularization parameter. Given 𝐱0 = (𝐱01 , 𝐱
0
2 ,… , 𝐱0𝑠 )

as an initial estimate, the algorithm updates the estimates of 𝐱𝑘+1 =
(𝐱𝑘+11 , 𝐱𝑘+12 ,… , 𝐱𝑘+1𝑠 ) alternately in the (𝑘 + 1)th iteration as follows:

𝐱𝑘+1𝑖 = argmin
𝐱𝑖
𝑓 (𝐱𝑘+11 , 𝐱𝑘+12 ,… , 𝐱𝑘+1𝑖−1 , 𝐱𝑖, 𝐱

𝑘
𝑖+1,… , 𝐱𝑘𝑠 ) +

𝜌𝑖
2
‖𝐱 − 𝐱𝑘𝑖 ‖

2
𝐹 ,

The complete algorithmic procedure for the two BCD algorithms is 

detailed in Algorithm 5. 

9 . Data and tools

9.1 . Motion capture datasets

9.1.1 . CMU motion capture database

The CMU3 contains motion capture sequences recorded using an op­

tical motion capture system available in both C3D and ASF/AMC data 

formats. Data were captured using a Vicon motion capture system with 

12 MX-40 infrared cameras, recording at 120 Hz with a 4-megapixel 

resolution in a working volume of 3m × 8m. Subjects were equipped 

with 41 markers and dressed in stylish black garments. The dataset en­

compasses recordings from several subjects performing various actions 

across 6 categories: Human Interaction, Interaction with Environment, 

Locomotion, Physical Activities and Sports, Situations and Scenarios, 

and Test Motions. This collection includes a range of movements, in­

cluding simple walking motions and complex actions such as martial 

arts, dances, and sports.

9.1.2 . HDM05 dataset

The HDM054 contains more than three hours of systematically 

recorded and well-documented motion capture data, available in both 

C3D and ASF/AMC data formats. The dataset encompasses over 70 mo­

tion classes, each with 10 to 50 realizations performed by different 

actors. Five actors performed several repetitions of each motion se­

quence, with additional freestyle sequences containing miscellaneous 

motions recorded for some performers. Data were captured using a Vicon 

MX system comprising twelve high-resolution cameras, with six operat­

ing in the visible red spectral range and six in the infrared spectral range. 

All recordings were conducted at a sampling rate of 120 Hz. The cameras 

were arranged to provide a viewing volume diameter of approximately 

five meters.

3 http://Mocap.cs.cmu.edu/.
4 https://resources.mpi-inf.mpg.de/HDM05/.

Computer Science Review 60 (2026) 100878 

15 

http://Mocap.cs.cmu.edu/
https://resources.mpi-inf.mpg.de/HDM05/


S. Mohaoui and A. Dmytryshyn

9.2 . MATLAB motion capture toolbox

The MoCap Toolbox5 provides comprehensive functionality for an­

alyzing and visualizing motion capture data within the MATLAB envi­

ronment. Primarily designed for music-related movement analysis, this 

versatile toolbox offers applications across various research domains. It 

supports multiple industry-standard file formats, including.c3d, Qualisys 

system’s.tsv and.mat formats,.bvh, and.wii format from WiiDataCapture 

software. Researchers can leverage this toolbox’s specialized functions 

to process, analyze, and generate visual representations of motion cap­

ture data, making it an essential resource for movement analysis studies 

[122].

10 . Discussion

10.1 . Algorithmic complexity, robustness, and practical considerations

Different low-rank formulations offer distinct advantages and limita­

tions for motion capture data completion. Nuclear norm-based meth­

ods provide a convex relaxation of the rank minimization problem 

and offer theoretical guarantees under certain incoherence conditions. 

However, they require repeated singular value decompositions, with a 

per-iteration complexity of 𝑂(𝑚𝑛min(𝑚, 𝑛)) for an 𝑚×𝑛 matrix. This lim­

its their scalability to long motion sequences. Moreover, nuclear norm 

minimization tends to over-shrink singular values, which may distort 

important motion dynamics. While they are relatively insensitive to ini­

tialization, their performance depends on the choice of regularization 

parameters, and they can be sensitive to noise, often requiring robust 

variants with explicit sparse error modeling.

Schatten-𝑝 norm methods generalize the nuclear norm and provide 

more flexible rank approximations. Their computational complexity re­

mains comparable to nuclear norm methods (𝑂(𝑚𝑛𝑟) per iteration), 

but the inclusion of the parameter 𝑝 introduces additional sensitivity: 

smaller 𝑝 promotes sparsity but may slow convergence, while larger 𝑝
behaves more like the nuclear norm. These methods can better preserve 

dominant motion modes and reduce overshrinkage, but they demand 

careful parameter tuning to balance accuracy and stability. In terms of 

robustness, they handle moderate noise better than the nuclear norm, 

yet may still fail under severe occlusion or highly corrupted sequences.

Matrix factorization approaches avoid repeated full SVD computa­

tions and reduce the per-iteration complexity to 𝑂(𝑚𝑛𝑟). However, they 

are inherently non-convex, and performance is sensitive to the choice 

of rank 𝑟 and initialization. Poor parameter selection may lead to con­

vergence to local minima. While factorization approaches are more 

scalable, they are less robust to high levels of noise and outliers, since 

the learned factors may overfit corrupted entries without additional 

regularization.

Nonlinear kernel-based approaches project motion data into a 

higher-dimensional feature space where low-rank assumptions become 

more effective for capturing nonlinear dependencies among markers. 

While they improve accuracy for complex or highly articulated move­

ments, this comes at substantial computational cost: kernel matrix 

construction and decomposition typically scale as 𝑂(𝑛2)–𝑂(𝑛3) with se­

quence length 𝑛, making them less suitable for long sequences. These 

methods are highly sensitive to kernel choice (e.g., Gaussian, polyno­

mial, geodesic) and associated hyperparameters, such as kernel width, 

which strongly influence recovery quality. Although they can be robust 

to mild nonlinear distortions, their performance degrades with noisy or 

mismatched kernel parameters, and their scalability remains a major 

drawback in practice.

Tensor decomposition methods extend low-rank recovery to mul­

tidimensional data, preserving correlations across time, markers, and 

spatial coordinates. CP decomposition incurs 𝑂(𝑅(𝐼𝐽 + 𝐼𝐾 + 𝐽𝐾)) per 

iteration for an 𝐼 × 𝐽 × 𝐾 tensor, while Tucker decomposition scales 

5 www.jyu.fi/music/coe/materials/mocaptoolbox.

with 𝑂(𝐼𝐽𝑅3 + 𝐼𝐾𝑅2 + 𝐽𝐾𝑅1). Although they capture complex multi-

modal dependencies and achieve high reconstruction accuracy, they 

suffer from high computational demands and memory costs, limiting 

their use for large-scale motion capture data. Parameter sensitivity is 

also pronounced: choosing multilinear ranks (𝑅1, 𝑅2, 𝑅3) requires empir­

ical tuning, and overestimation can increase computation without clear 

accuracy gains. They are relatively robust to structured noise due to 

multi-mode modeling, but remain sensitive to long-duration gaps and to 

errors in marker placement.

10.2 . Motion prior integration and trade-offs

Incorporating biomechanical and smoothness constraints into low-

rank formulations enhances the accuracy and realism of motion comple­

tion methods, but also introduces nontrivial trade-offs. Smoothness con­

straints are particularly common, as they are computationally tractable. 

However, they implicitly assume continuity in motion trajectories that 

may not hold across all movement types. The choice between different 

orders of smoothness reflects prior assumptions about the underlying 

motion dynamics. For instance, first-order constraints emphasize con­

stant velocity patterns and work well for cyclical activities such as 

walking or running, whereas second-order constraints impose acceler­

ation smoothness, making them better suited for gestural or reaching 

motions. The application of these constraints becomes problematic for 

movements involving rapid changes or contact interactions. Jerky ac­

tions, collisions, or object contacts introduce discontinuities that directly 

contradict smoothness priors. In such cases, constraints may lead to 

reconstructions that are overly damped, lacking natural dynamics, or 

stripped of distinctive features. To address this, a promising direction is 

to develop adaptive or context-aware constraints that automatically ad­

just their strength according to the local motion dynamics. This would 

ensure biomechanical plausibility in smooth segments while avoiding 

the oversmoothing or distortion of highly dynamic movements.

Kinematic constraints such as bone-length preservation embed 

anatomical knowledge into the recovery process. These constraints en­

force fixed skeletal proportions and joint connectivity, ensuring that 

reconstructed poses remain biomechanically feasible. They also en­

hance robustness to missing markers by ruling out implausible limb 

configurations. However, their effectiveness is highly dependent on ac­

curate skeletal calibration and reliable marker placement. In noisy or 

uncontrolled capture environments, rigid enforcement of bone-length 

constraints may conflict with corrupted data, introducing artifacts such 

as unnatural joint angles or body distortions.

Biomechanical and smoothness priors provide strong guidance that 

improves plausibility and recovery quality, particularly when data is 

heavily corrupted or incomplete. At the same time, they narrow the solu­

tion space in ways that can exclude valid but unexpected motions. These 

trade-offs highlight the need for future work on scalable, noise-robust 

formulations that balance accuracy, efficiency, and physical realism 

to enable reliable deployment of motion capture recovery in practical 

applications.

10.3 . Applicability across motion types

The effectiveness of low-rank methods fundamentally depends on 

the underlying assumption that human motion exhibits low-dimensional 

structure. This assumption proves robust for many common activities 

but faces significant challenges across the full spectrum of human move­

ment. Periodic and semi-periodic motions such as walking, running, and 

basic gestures hold strong low-rank characteristics due to their repetitive 

nature and biomechanical constraints. The singular value decomposition 

of such motions typically shows rapid decay, confirming that relatively 

few principal components capture the majority of motion variance.

However, this fundamental assumption weakens considerably for 

aperiodic or highly variable movements. Complex dance sequences 

and freestyle sports activities exhibit substantially higher intrinsic 
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dimensionality due to their unpredictable trajectories and creative vari­

ations. The effective rank of such motions can increase significantly 

compared to repetitive activities, leading to proportional degradation 

in completion accuracy. However, the inherent correlations between 

joints and markers, enforced by the skeletal structure and biomechani­

cal constraints (e.g., bone length preservation, joint coupling), partially 

mitigate this effect. Since bones impose fixed-length relationships, the 

motion data still exhibit redundancies that reduce the effective rank rel­

ative to treating marker trajectories as fully independent. This structural 

coupling explains why even complex, aperiodic motions remain partially 

amenable to low-rank recovery, though with lower accuracy than highly 

regular activities.

11 . Conclusion and future directions

This paper provides a comprehensive review of motion capture data 

recovery methods based on the low-rank structure. We have discussed 

approaches that rely on motion properties and skeleton structure, as well 

as methods centered on introducing low-rank priors. The integration of 

kinematic constraints directly into the completion process, referred to as 

MoCap data priors, has been used to refine the low-rank matrix comple­

tion problem. Moreover, the analysis of various low-rank priors provides 

valuable insights into the diverse strategies employed in MoCap data 

recovery. Matrix-based approaches such as nuclear norm minimization 

and its Schatten-𝑝 norm extensions provide strong theoretical guaran­

tees but remain computationally demanding and prone to overshrinkage 

of singular values. Matrix factorization reduces computational cost and 

improves scalability but introduces non-convexity and sensitivity to ini­

tialization and rank selection. Kernel-based methods capture nonlinear 

dependencies effectively but are computationally expensive and highly 

sensitive to kernel choice and hyperparameters. Tensor decompositions 

extend recovery to multidimensional data yet they remain limited by 

high computational requirements. Finally, biomechanical and temporal 

priors improve physical plausibility and robustness but may oversimplify 

dynamics or introduce artifacts under noisy capture conditions. From 

this comparative review, several future research directions emerge:

• Scalable algorithms: Current low-rank optimization methods often in­

volve repeated singular value decompositions or high-dimensional 

tensor factorizations, which become computationally expensive for 

long sequences or large-scale motion capture datasets. Future re­

search could explore randomized, or streaming (online) algorithms 

that incrementally update low-rank factors, enabling real-time or 

large-scale applications without sacrificing accuracy.

• Integration of physical priors: Current constraint formulations (e.g., 

bone-length preservation, smoothness) are typically applied in a 

fixed manner across all motions. However, their strict enforcement 

may conflict with noisy or high-variability data. A promising future 

direction is the design of context-aware or adaptive priors that adjust 

constraint strength dynamically based on motion type, capture qual­

ity, or confidence in skeletal calibration. For example, bone-length 

constraints could be relaxed when marker errors are detected, while 

smoothness priors could adaptively scale depending on whether the 

motion is cyclical or abrupt. Such adaptive integration could balance 

physical plausibility with flexibility in diverse motion scenarios.

• Advanced tensor decompositions: Current tensor-based methods are re­

stricted to CP and Tucker decompositions, which face challenges 

such as high computational cost and sensitivity to rank selection. 

Future research could explore higher-order or alternative tensor for­

mats, including Tensor Train, Tensor Ring, and Hierarchical Tucker 

decompositions. These models address some of the core limitations of 

current approaches by providing more compact representations, im­

proving scalability to long sequences, and enabling multi-scale analy­

sis. Furthermore, higher-order decompositions allow the integration 

of additional modes beyond the time–marker–coordinate structure, 

such as multi-subject interactions or multimodal signals, thereby cap­

turing richer spatiotemporal dependencies and improving robustness 

in complex scenarios.

• Multi-subject motion capture: Most existing algorithms assume single-

subject data, yet real-world applications often involve interactions 

among multiple individuals (e.g., couples dancing, group sports, col­

laborative tasks). Extending low-rank formulations to multi-subject 

scenarios requires capturing inter-subject correlations, handling 

overlapping trajectories, and ensuring consistent skeletal calibration 

across individuals. This represents an important but underexplored 

direction that could expand the applicability of motion capture 

recovery to richer social and collaborative contexts.
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