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ARTICLE INFO ABSTRACT

Keywords: Motion capture (MoCap) systems are indispensable tools across fields such as biomechanics, computer animation,
Human motion recovery human-robot interaction, and clinical gait analysis, owing to their ability to accurately record and analyze human
Motion capture data movement in 3D space. Marker-based systems use reflective markers attached to subjects and video recordings to
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track human movement. The tracking requires markers to be detected in the video, which is not always possible
due to occlusions, sensor failures, and limited camera coverage. These issues create gaps in recorded trajectories,
compromising data integrity and making the motion difficult to utilize in practical applications. Therefore, a wide
range of MoCap data completion techniques has been proposed to reconstruct missing trajectories while preserv-
ing the realism and dynamics of human movement. Human motion data exhibits a low-rank property due to the
inherent repetitive nature of human movement as well as the correlations between joints and markers, enforced
by the skeletal structure and biomechanical constraints. Low-rank completion techniques exploit this property to
reconstruct missing marker positions. This paper reviews state-of-the-art low-rank completion methods for MoCap
data completion, focusing specifically on optimization-based low-rank methods. These optimization approaches
directly address the missing data completion problem through optimization formulations. We examine two main
aspects: kinematic priors, which embed anatomical constraints, joint dependencies, and motion smoothness, and
low-rank priors, which exploit inter-marker correlations through matrix and tensor formulations. We further eval-
uate optimization algorithms for solving these completion problems, such as alternating minimization, proximal
algorithms, ADMM, and hybrid schemes, as well as the datasets and tools commonly used in the literature.

1. Introduction precision, it still faces limitations such as occlusions, mismatched mark-
ers, or poor lighting conditions that lead to incomplete data. When a
marker is blocked from all camera views during a recording, its trajec-
tory is lost, creating gaps in the data. These gaps disrupt the continuity of
the captured motion and pose a significant challenge to creating accurate
and seamless representations of human movement (Fig. 1).

The problem of filling these gaps is a specific example of the broader
missing data completion problem that appears in many data-driven
fields. Although advanced MoCap systems and software offer increas-
ingly high-quality data capture, gaps and noise remain challenging
issues that require sophisticated computational solutions. The problem
of recovering missing marker data is central to improving the usabil-
ity and quality of MoCap recordings. Inaccurate or incomplete motion
data can propagate errors in practical analyses, such as motion track-
ing, gait analysis, or rehabilitation assessments, which may ultimately
compromise the performance of applications relying on MoCap data.

The automatic capture and analysis of human motion is a rapidly
evolving field, driven by its broad applications and the complexity of
human movement [1-10]. Motion capture (MoCap) technology enables
detailed recording of complex movement patterns by tracking the po-
sition and orientation of the human body in 3D space. The precise
recording of human motion provides significant information for clini-
cal rehabilitation, athletic performance optimization, realistic character
animation, and virtual reality experiences.

The marker-based system employs specialized cameras, sensors, and
wearable devices to track the movement of markers attached to key
joints, such as the wrists, elbows, knees, and ankles. These systems cap-
ture the position and orientation of the markers in three-dimensional
space, enabling software to reconstruct the subject’s skeleton and pos-
ture. Although marker-based motion capture is widely used for its high
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Fig. 1. Illustration of the motion capture (MoCap) process. Multiple cameras record reflective markers placed on the body to obtain the skeletal data. Occlusions or
tracking errors can cause missing markers, leading to MoCap sequences with spatial and temporal gaps.

A promising solution to the missing data problem lies in exploit-
ing the low-rank structure inherent in human motion. Although human
movements are complex, they often exhibit repetitive patterns and co-
ordinated joint movements throughout time and between individuals,
allowing the data to be effectively approximated by low-rank matrices
or tensors. Low-rank recovery methods exploit this underlying structure
to fill in missing values via an optimization problem, which can be fur-
ther enhanced by incorporating biomechanical characteristics of human
movement as constraints.

Missing data represents one of the most common challenges in mod-
ern data science, affecting every domain from medical imaging and
sensor networks to recommendation systems and social network anal-
ysis. The problem of incomplete observations stems from diverse factors
including sensor failures, storage limitations, network interruptions,
and measurement costs, creating scenarios where traditional statistical
methods that assume complete data become inadequate or entirely inap-
plicable. Recent advances in low-rank recovery theory have introduced
approaches to missing data problems across multiple domains by ex-
ploiting the observation that many high-dimensional datasets naturally
exhibit low-dimensional structure.

Matrix completion methods, grounded in compressed sensing and
nuclear norm relaxation, have demonstrated remarkable success in
applications ranging from collaborative filtering in recommendation
systems to image recovery and human motion reconstruction. In hy-
perspectral imaging, structured low-rank matrix factorization has been
shown to effectively exploit spatial-spectral correlations for high-quality
image restoration under severe data loss [11]. In wireless commu-
nications, matrix completion and sensing approaches have played a
critical role in channel estimation: from handling array-inherent impair-
ments in mmWave systems [12] to recent advances in hybrid MIMO
channel estimation using low-rank matrix sensing [13]. Beyond imag-
ing and communications, matrix completion has also been employed
in computational biology, where weighted-constraint formulations im-
prove haplotype estimation accuracy from incomplete sequencing data
[14]. In recommendation systems and social networks, collabora-
tive filtering enhanced with graph information [15] and inductive
matrix completion leveraging graph neural networks [16] have ex-
tended low-rank recovery to relational and dynamic data. Despite these
successes, fundamental challenges remain, as highlighted by recent
complexity-theoretic results on the hardness of matrix completion [17],
which underscore the importance of developing scalable, domain-aware
algorithms.

While matrix completion has proven effective for two-dimensional
data, many real-world applications involve inherently multi-
dimensional structures that are more naturally modeled as tensors.
Tensor completion methods extend low-rank recovery ideas to higher-
order data by exploiting correlations across spatial, temporal, and
spectral dimensions, using both tensor decomposition and tensor
rank minimization approaches. In medical imaging, low-rank tensor

models have enabled accelerated dynamic and quantitative MRI recon-
struction, including multiparametric mapping with MR multitasking
and non-Cartesian MRF reconstruction [18-21]. Tensor approaches
leveraging smoothness and sparsity have improved multidimensional
data recovery and robust color image reconstruction [22-27]. In
hyperspectral imaging and remote sensing, low-rank tensor opti-
mization with plug-and-play priors, fibered rank constraints, and
sparsity-regularized methods has achieved superior image restoration
and anomaly detection [28-35]. Recent advanced formulations, in-
cluding Fourier low-rank and sparse tensor completion [36], low-rank
reduced biquaternion tensor ring decomposition [37], preconditioned
Riemannian optimization in tensor-train format [38], multilayer
sparsity-based tensor decomposition [39], and t-Schatten-p norm
minimization [40,41], have significantly improved scalability and re-
construction accuracy. Collectively, these works illustrate the growing
importance of tensor-based low-rank recovery as a natural extension
of matrix completion, enabling accurate reconstruction in complex
high-dimensional, multi-modal data across medical imaging, remote
sensing, and computational imaging applications.

The broad success of low-rank methods across imaging, commu-
nications, and remote sensing demonstrates the versatility of low-
dimensional priors in recovering structured high-dimensional data.
These domains share fundamental similarities with MoCap data comple-
tion in that missing entries can be inferred by exploiting redundancy and
correlation across multiple modes. However, motion capture introduces
unique challenges that distinguish it from image or signal recovery tasks.
First, MoCap trajectories are constrained by biomechanical structure:
fixed bone lengths, joint angle limits, and articulated skeleton kinemat-
ics must be preserved, whereas pixel arrays in images or voxels in MRI
lack such rigid physical constraints. Second, missing data patterns in
MoCap are often structured, arising from marker occlusions or track-
ing errors that span entire trajectories over long temporal ranges, rather
than the pixel-wise or patch-wise missing patterns common in image re-
covery (see Fig. 5). Third, human motion exhibits strong nonlinearities
and abrupt dynamics (e.g., impacts, rapid direction changes) that can
weaken the low-rank assumption, whereas image and video sequences
typically display smoother correlations.

Martini et al. [42] presented a survey of denoising and com-
pletion filters for motion-capture and human-pose-estimation sys-
tems. The survey paper spans general-purpose filters, dimensionality-
reduction techniques, and deep learning architectures. Within this
framework, low-rank and matrix-completion methods are identified as
key dimensionality-reduction approaches for reconstructing incomplete
MoCap sequences. However, their discussion remains at a general level,
primarily outlining the role of low-rank priors among other refinement
strategies. This paper aims to provide a comprehensive review of low-
rank methods for MoCap data completion. It covers the evolution of
low-rank matrix recovery techniques, starting with early approaches
based on nuclear norm minimization, followed by more advanced
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methods that incorporate various priors such as kinematic constraints,
temporal continuity, and other domain-specific knowledge. We discuss
approaches that rely on motion properties and skeleton information, as
well as those centered on introducing low-rank priors. The integration of
kinematic constraints directly into the completion process, referred to as
MoCap data priors, aims to refine the low-rank matrix completion prob-
lem. Moreover, the analysis of various low-rank priors provides valuable
insights into the diverse strategies employed in MoCap data recovery.

The remainder of this paper is structured as follows. Section 2
reviews existing approaches for handling missing markers in motion
capture data. Section 3 presents the background and theoretical founda-
tion, including notation, definitions, and problem statement. Section 4
explores the kinematic priors in the completion of MoCap. Section 5
examines various low-rank priors used to model the low-rank property
of the MoCap data problem. Section 6 discusses matrix-based low-rank
completion techniques, while Section 7 focuses on tensor decomposition
methods for MoCap data completion. Section 8 reviews the key mini-
mization algorithms used to solve these completion problems. Section 9
provides information about datasets and tools commonly used in motion
capture research. Section 10 discusses the algorithmic complexity, ro-
bustness, and practical considerations of the proposed methods. Finally,
Section 11 concludes by identifying current challenges and discussing
relevant future research directions in this field.

2. Related works

The landscape of motion capture completion encompasses three
primary methodological paradigms that differ fundamentally in their ap-
proach to missing data reconstruction. Understanding these distinctions
is essential for contextualizing the focus on optimization-based low-rank
methods within the broader field. Interpolation methods operate under
temporal continuity assumptions, estimating missing values through re-
lationships with neighboring time points. These approaches assume that
motion exhibits smooth temporal transitions and reconstruct missing
data by fitting curves or applying filters to available neighboring mark-
ers. While computationally efficient and suitable for real-time applica-
tions, interpolation methods are fundamentally limited to short gaps and
fail when motion exhibits rapid changes or discontinuities (Fig. 6).

Data-driven methods learn reconstruction patterns from external
training datasets, applying learned models to predict missing values
based on similarity matching or statistical modeling. These approaches
can handle complex motion patterns by leveraging prior knowledge en-
coded in training corpora, but introduce dependency on the quality
and representativeness of training data. They suffer from the well-
documented out-of-sample problem when test sequences diverge from
training distributions, limiting their applicability to novel or unusual
motions.

Low-rank methods exploit the intrinsic low-dimensional structure of
human motion, operating on the fundamental principle that motion data
naturally resides in low-dimensional subspaces due to biomechanical
constraints and kinematic relationships. This category encompasses var-
ious approaches that leverage the mathematical property that human
motion matrices have significantly fewer degrees of freedom than their
ambient dimensions would suggest. Within this paradigm, two primary
methodological streams have emerged: classical PCA-based approaches
that decompose motion data into principal components for reconstruc-
tion, and modern optimization-based frameworks that directly formulate
completion as constrained optimization problems. Optimization-based
low-rank methods exploit the intrinsic low-dimensional structure of
human motion through constrained optimization frameworks that di-
rectly minimize rank-based objectives while satisfying data fidelity
constraints. This paradigm operates on the principle that human motion
naturally resides in low-dimensional subspaces due to biomechanical
constraints and kinematic relationships. Unlike interpolation methods,
they can handle arbitrary gap patterns and durations. Unlike data-
driven approaches, they require no external training data and provide
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theoretical recovery guarantees, making them particularly suitable for
robust motion completion across diverse scenarios and novel activities.

2.1. Interpolation methods

Interpolation is one of the simplest techniques to estimate missing
marker positions in MoCap data. These methods assume that the motion
is continuous and that the missing data can be predicted based on the
available neighboring markers. Various interpolation techniques have
been explored in the literature, including linear interpolation [43,44],
spline interpolation [45,46], Kalman filtering [44,47,48], and local lin-
ear models [49]. These methods are often effective for short-duration
gaps and are computationally inexpensive. They typically rely on the
assumption that motion continuity holds across neighboring markers,
making them suitable for small gaps (lasting no more than a few
seconds) or a limited number of frames. However, interpolation methods
have limitations. They often require manual intervention to ensure the
proper selection of neighboring markers, and their accuracy decreases
for longer gaps or complex movements. Interpolation techniques also
struggle to handle large, unpredictable gaps that arise due to occlu-
sions or sensor failures. As a result, while these methods can be used in
real time for minor data recovery tasks, they are not scalable for more
complex or long-term MoCap data recovery [50].

2.2. Data-driven methods

A. database matching approaches.  These approaches address the miss-
ing marker problem by using a database of similar motion sequences to
reconstruct missing entries. These methods have demonstrated success
in reconstructing high-quality human motion from sparse marker data.
However, data-driven techniques require a pre-collected set of mark-
ers and pre-trained classifiers to predict missing values, which makes
them dependent on having a well-established training dataset. A key
limitation of these methods is their vulnerability to the “out-of-sample”
problem, where the motion data diverges from the pre-trained models
[51,52]. This restricts their flexibility and makes them less applicable in
real-world scenarios where motion data can vary widely.

B. skeleton-driven methods.  Skeleton-driven approaches use kinematic
or bone-length constraints to guide the recovery of missing markers
[53-55]. These methods rely on the accurate placement of markers on
the human body. However, minor variations in marker placement be-
tween different subjects can significantly affect the performance and
generalization of these approaches. Although these methods can be ef-
fective when marker placement is precise, their applicability in more
dynamic and uncontrolled environments remains limited.

C. neural network-based methods. In recent years, deep learning has
been increasingly applied to the motion capture data completion prob-
lem. Neural architectures address completion by learning motion priors
directly from data rather than relying on handcrafted rank or smooth-
ness constraints. Early work by Kucherenko et al. [56] demonstrated that
recurrent and feed-forward networks can reconstruct missing markers by
capturing temporal continuity, achieving superior performance over in-
terpolation in long-gap scenarios but requiring large amounts of training
data. Bidirectional recurrent autoencoders further improved robustness
by propagating information from both past and future frames, while
U-net-inspired Bi-LSTM architectures have been introduced to address
long-term occlusions using adaptive loss functions [57].

More advanced approaches have incorporated attention mechanisms
and generative modeling. In [58], authors proposed a bi-directional
attention network that selectively emphasizes informative temporal con-
texts. Generative adversarial networks (GANs), where a convolutional
recurrent generator reconstructs occluded skeletons and an LSTM-based
discriminator enforces temporal consistency, are introduced in [59].
Graph neural networks (GNNs) explicitly represent the skeleton as
a spatio-temporal graph, with joints as nodes and bones as edges.
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A temporal-structural awareness GNN has been introduced in [60]; it
captures both connectivity and motion dynamics to achieve state-of-
the-art completion accuracy. In [61], the authors proposed a denoising
graph autoencoder that treats missing joints as structured noise and re-
constructs them using Laplacian smoothing and sharpening, improving
robustness under occlusion and noisy capture conditions.

Despite these advances, neural network approaches face several
limitations. They typically require large, diverse, and clean training
datasets to generalize effectively, while low-rank optimization methods
can be applied directly to corrupted input without pretraining. Their
performance is also sensitive to dataset bias, often degrading when
test motions deviate from training distributions. Furthermore, com-
plex recurrent, attention-based, or graph models introduce substantial
computational overhead, which may hinder real-time deployment.

2.3. Sparse representation methods

Sparse representation techniques assume that incomplete MoCap
data can be sparsely represented as a linear combination of a few poses
in an appropriate basis or dictionary [62-64]. These methods focus
on finding the sparsest representation of motion data within a learned
dictionary, where the reconstruction process is driven by mathemati-
cal optimization of sparsity constraints rather than similarity retrieval.
However, they require extensive training data and dictionary learning,
which can limit their flexibility in different scenarios. This requirement
for training data restricts the applicability of these methods, especially
in dynamic environments where data may not conform to predefined
models.

2.4. Low-rank methods

2.4.1. PCA-based approaches

Principal component analysis (PCA)-based methods are widely used
to address the missing marker problem by capturing the dominant
components of human motion [49,65-67]. These methods decompose
motion data into orthogonal basis vectors, also known as principal com-
ponents, and reconstruct missing markers by projecting available data
onto the lower-dimensional subspace defined by the most significant
components. These methods exploit linear or nonlinear correlations
in the motion matrix to estimate missing values based on the PCA-
based methods can be classified into three primary reconstruction
methodologies based on their core algorithmic strategies.

Basic PCA. A dual-PCA coordinate transformation approach was intro-
duced in [68] that exploits correlation patterns between body segments
in human motion data. The method constructs two principal component
spaces: one from complete frames and another from the same frames
with missing marker coordinates set to zero. Coordinate transformations
between these spaces enable reconstruction of missing markers, with
spatial weighting applied to neighboring markers for improved accu-
racy. While computationally efficient and requiring no external datasets,
this approach is limited to single missing markers and exhibits de-
graded performance with multiple simultaneous gaps or non-repetitive
movement patterns. The work in [66] extended eigen-space methods
by incorporating training-based learning through precomputed motion-
specific principal components from representative datasets. Rather than
relying solely on current test sequences, their PCA-based algorithms
leverage precomputed eigen-spaces from training samples to enable ro-
bust recovery through three distinct approaches: filling gaps in marker
trajectories, recovering entire missing time frames within motion se-
quences, and handling complex motion patterns with unpredictable or
non-repetitive movement characteristics.

Multi-scale PCA.  Authors in [49] developed a hierarchical approach
that combines global and local PCA modeling. The method first seg-
ments training motion sequences using probabilistic PCA, constructs a
hierarchy of local linear models through divisive clustering, and utilizes

Computer Science Review 60 (2026) 100878

random forest classifiers to identify the most appropriate local model
for each frame during estimation. This piecewise linear framework en-
ables robust recovery of missing markers even during extended occlusion
periods, handling scenarios where traditional interpolation methods be-
come ineffective, particularly when markers are missing at sequence
boundaries or when significant portions of markers are absent simul-
taneously. This approach effectively handles diverse motion types and
arbitrary missing marker sets but requires extensive training data and
careful parameter tuning.

Weighted PCA. The study in [65] introduced a PCA-based method
that exploits marker correlations through adaptive weighting strategies
based on spatial proximity between markers. The method employs a
dual PCA approach, performing principal component analysis on both
complete data and gap-filled matrices to create transformation bases
that reflect the kinematic chain structure of human bodies. Higher
weights are assigned to biomechanically related markers using Gaussian
functions. The authors implemented two reconstruction strategies for
handling multiple gaps: simultaneous reconstruction which processes
all corrupted trajectories together using only complete time frames,
and consecutive reconstruction which selectively includes or excludes
corrupted trajectories based on proximity criteria.

2.4.2. Optimization-based low-rank methods

This paper provides a comprehensive review of motion capture data
recovery methods that explicitly exploit the low-rank structure through
optimization-based formulations. These approaches differ fundamen-
tally from other paradigms. Interpolation methods, such as linear or
spline interpolation, operate on the principle of local estimation, using
neighboring known values to predict missing entries under the as-
sumption of smooth transitions. Interpolation approaches are inherently
limited to short gaps and perform poorly when motion characteristics
vary over longer temporal windows. Data-driven methods, while more
sophisticated, rely on pre-collected motion databases or learned priors,
which makes them powerful for known motion types but vulnerable
to the out-of-sample problem when novel movements are encountered.
PCA-based methods similarly depend on pre-learned subspaces from
complete training data, which constrains their applicability to motions
well represented in the training set (Table 1).

In contrast, optimization-based low-rank methods formulate motion
completion directly as a constrained optimization problem by explic-
itly leveraging the inherent low-dimensional structure of human motion
[69-77]. Rather than relying on local predictions or external databases,
these methods recover missing data by minimizing an objective function
subject to low-rank constraints. This framework naturally accommo-
dates biomechanical and kinematic priors, provides theoretical recovery
guarantees under certain conditions, and avoids the dependency on
large, clean training datasets. Since direct rank minimization is non-
convex and computationally intractable, convex relaxations and reg-
ularization techniques such as nuclear norm minimization, Schatten-p
norms, and matrix factorization are employed. These optimization-based
approaches represent the state-of-the-art in motion capture data comple-
tion and provide a principled foundation for integrating domain-specific
knowledge about human motion.

3. Background and theoretical foundations

Low-rank property is a fundamental concept in various fields, in-
cluding computer vision, dimensionality reduction, data analysis, and
machine learning [78,78-87]. It plays a crucial role in reducing the com-
plexity and noise in the data while preserving relevant information. The
rank of a matrix refers to the maximum number of linearly independent
columns/rows of that matrix. Mathematically, a data matrix is said to
have a low-rank property when its rank is significantly smaller than its
dimensions. This means that the data can be approximated by a matrix
of a lower rank than the original data. The low-rank structure is adept
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Table 1

Classification of low-rank approaches for motion capture data completion.
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Reference Low-Rank prior Kinematic constraints Optimization Additional priors

Nuclear norm methods

([691, 2011) Nuclear norm None SVT None

([90], 2013) Nuclear norm Motion trajectory SVT None

([731, 2014) Nuclear norm Smoothness ALM None

([75], 2015) Nuclear norm Bone length SVT None

([721, 2017) Truncated nuclear norm Smoothness ALM None

([1091, 2019) Nuclear norm Isometry & smoothness ALM Sparsity

([71], 2020) Nuclear norm Frequency smoothness ALM Sparsity

([1071, 2022) Nuclear norm Smoothness FPPA Sparsity

([911, 2024) Approximate nuclear norm Bone length & Smoothness ADMM Mixed corruption handling
([108], 2025) Nuclear norm Smoothness ADMM Hierarchical fusion
Schatten p-norm methods

([701, 2018) Truncated Schatten p-norm Bone length & smoothness ADMM None

([741, 2019) Weighted Schatten p Bone length & smoothness ADMM Nonlocal similarity

([111], 2022) Powered Schatten p-norm Temporal smoothness ADMM Discrete subspace clustering
([108], 2025) Schatten p-norm Smoothness ADMM Hierarchical fusion

Other low-rank methods

([76], 2015) Matrix factorization None Inexact ALM Hierarchical & Nonnegativity
([110], 2018) Nonlinear low-rank Bone length & smoothness ALM Kernel learning

Tensor decomposition methods

([77], 2024) CP decomposition Smoothness BCD Sparsity

([112], 2025) Tucker decomposition Temporal continuity Proximal BCD None

Abbreviations: SVT = singular value thresholding; ALM = augmented Lagrange multiplier; ADMM = alternating

direction method of multipliers; BCD = block coordinate descent; FPPA = fixed point proximal algorithm.

Fig. 2. Walking skeleton frames of walking sequence 07_01.c3d from CMU
database.

at capturing the patterns present in the data. Thus, it has become a key
to addressing the problem of reconstructing missing data [88,89].

One significant application of low-rank matrix completion is the gap-
filling problem caused by missing markers in human motion capture.
The low-rank property for human motion recovery can be justified by
the observed similarity between adjacent frames in motion capture data,
e.g., Fig. 2. A key trait of human motion is that the entire motion is
characterized by the movements of joints interconnected by rigid and
inflexible bones. Thus, the motion of one joint is inherently correlated
with that of others. To check whether a given motion matrix X has a
low-rank structure, we analyze the spectrum (singular values) of X or
X”X. We demonstrate in Fig. 3 the logarithmic scale of singular values
for four! distinct C3D files from the CMU MoCap database.> We can
observe that the motion matrices exhibit a decay in the singular values,
indicating that the motion matrices possess a low-rank characteristic.

3.1. Basic notations and definitions

Tensors are denoted using Euler script (e.g., X), matrices are rep-
resented by bold uppercase letters (e.g., X), vectors by bold lowercase

1 07 01.¢3d, 85.02.¢3d, 85_12.c3d, and 135_02.c3d.
2 http://mocap.cs.cmu.edu/

letters (e.g., x), and scalars by standard lowercase letters (e.g., x). x;
refers to the i-th column of the matrix X. The order of a tensor cor-
responds to the number of its dimensions. More generally, an N-order
tensor X with dimensions I; X I, X --- X Iy is an N-dimensional array
in RIxI2xxIn The indexing conventions are as follows: the element
at position (i, iy, ...,iy) in a tensor X is written as &; ; ; , and the
matrix entry at (i}, i) is represented as X; ;. For a positive integer N,
we use the notation [N] := {1,2,..., N}. The symbol “o” represents the
vector’s outer product. The n-mode tensor-matrix product of a tensor
& € RIxIx-XIy with a matrix A € R’*!» is denoted by X x, A and is
of the size I} X - X I,_; X J X I,,,; X -+ X Iy. The mode-n unfolding of
X is defined as the matrix X, € R/»M, with M = Hf;n I;, obtained by
converting a tensor to a matrix according to the mode-n where X;
corresponds to X; ., with

iy

Jj-1

N
s=1+Y (i;-1); and 5, =[] I

J#n k#n

3.2. Matrix representation of mocap data

Motion capture data is recorded as a series of motion frames that
represent highly articulated movements. A captured motion is composed
of a sequence of frames (poses), and each frame is characterized by the
positions of markers placed on specific body parts or joints. Each joint
has 3D coordinates [x, y, z].

Frame-based representation.  The captured motion sequence can be rep-
resented as an m X n matrix M where m corresponds to the total
number of frames in the motion capture sequence, n = 3p repre-
sents the number of position coordinates for all markers or joints,
and thus each row of the matrix M corresponds to a frame in the
sequence:

M= [fl,fz,...,fn], (1)
where each frame f; for i = 1, ..., n is defined either as:

T
f, = [xi,lyi,lZi,lxi,2yi,2zi,2 "'xi,pyi,pzh,p] > (2)
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Fig. 3. Singular values (log scale) of motion capture sequences from mul-
tiple subjects and activity categories from CMU dataset. The analyzed mo-
tions include: Subject #7: walk; Subject #85: jumps, flips, and breakdance
(02: JumpTwist, 04: FancyFootWork, 05:HandStandKicks, 12: LongSequenceGood);
Subject #107: walking with obstacles; Subject #126: swimming (02:
BackStroke); Subject #127: action-adventure motions, running, jumping,
ducking, rolling (17: RunStopRun); Subject #133: baby-styled walk (24:
WalkZigZag); Subject #134: skateboard motion (04: Motorcycle); Subject #135:
martial arts walk (02: Empi); Subject #136: stylized or “weird” walks (18:
Flamingo); Subject #140: getting up from the ground (01-02: Run). These
sequences cover diverse motion styles, illustrating the low-rank structure of
motion capture data across both periodic and complex non-periodic movements.
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Fig. 4. 3D marker trajectories of the walking motion sequence 07_01.c3d (316
frames) from the CMU dataset.

or as:
_ T
£ =[x %0 o X, Vit Yin o VipZinZin - Zipl - 3)

As shown in Fig. 4, the trajectories of all the joints are inherently corre-
lated. Due to the high data acquisition speeds of the Mocap system, the
frames exhibit mutual consistency in the motion data. Thus, the frame-
based representation of Mocap data reveals the redundancies in marker
positions across frames, which intuitively implies the low-rank property.

Trajectory-based representation. To further enhance the reliability of
the low-rank prior, a trajectory-based representation has been intro-
duced in [90]. The trajectories of different joints are correlated over
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a short time window (see Fig. 6). Thus, the motion data is structured
into a trajectory-based representation that takes advantage of the repet-
itive patterns inherent in human motion in small periods. Therefore, the
motion data is arranged as a sequence of trajectory segments:

M; = [t,ty, ..., t,], where k=d xn/l

where / is the length of a trajectory segment and each t is the trajectory

segment of a joint from frame j to frame j +/ — 1 given as
_ T

t = [xi,jx[,j+1 s Xyl =1YijYij+1 - Vij+i—12ijZij41 o+ Zi,j+l—1]

3.3. Tensor representation

MoCap data can naturally be modeled as a third-order tensor
M € R"™P<3 where the dimensions correspond to time (frames), joints
(markers), and spatial coordinates (3D coordinates), respectively, as
demonstrated by the 3D trajectories in Fig. 4.

M =M, M,.M,],

where M, M, and M, € R"*” represent the components of the MoCap
data along the x, y, and z axes, respectively.

3.4. Problem statement

In motion capture systems, markers are placed on an object to track
its movement. However, these markers can become temporarily invisible
to cameras during recording sessions due to occlusions, self-occlusions,
poor lighting conditions, or technical failures. When a marker disappears
from the camera’s field of view, its 3D position data becomes unavail-
able, creating gaps in the trajectories. These gaps significantly degrade
the quality of motion data and pose challenges for practical applications
that require continuous and complete motion information.

When a marker is occluded, the three coordinates (x, y, z) are typ-
ically missing simultaneously, creating gaps in temporal blocks (con-
secutive frames) rather than as isolated values. Thus, the challenge
of gap-filling differs significantly from the conventional missing data
problem studied in other applications such as image processing as illus-
trated in Fig. 5. Recovering these missing markers presents significant
challenges due to the complexity of human movement and the intri-
cate interdependencies between joints. These challenges increase as
gaps become longer or when multiple markers disappear concurrently.
Several key factors critically influence the performance of gap-filling
methods:

« Gap length and duration: The number of consecutive missing frames
per marker. This can also be measured as the time duration based

on the Mocap sampling frequency (missing frames = duration
x frequency). Longer gaps are typically more challenging to fill
accurately.

« Number of missing markers: The total number of missing mark-
ers within a sequence directly impacts completion accuracy. As
this number increases, the available spatial-temporal information
decreases, creating a more challenging reconstruction problem.
Gap distribution and multiplicity: The pattern and frequency of
gaps significantly influence completion effectiveness. Randomly dis-
tributed gaps are more challenging to predict than those follow-
ing systematic patterns. Additionally, when multiple gaps co-occur
within a single marker trajectory, the complexity increases substan-
tially, limiting how effectively spatial-temporal correlations can be
exploited for accurate trajectory reconstruction.

« Motion complexity: The complexity of motion significantly affects
completion performance. Highly dynamic or complex movements
(e.g., dancing, boxing) present greater challenges than simpler,
repetitive motions (e.g., walking). Complex motions typically in-
volve unpredictable trajectories, variable speeds, and intricate co-
ordination patterns that are more difficult to predict accurately.
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Fig. 5. Illustration of different missing data patterns. (a) Structured gaps typi-
cal in MoCap data (e.g., continuous marker occlusions). (b) Randomly missing
entries, as commonly modeled in image or pixel-based data.

The MoCap data completion problem can be formulated using either
matrix or tensor representations. In the matrix setting, the motion data
M € R™" typically represents m time frames and n marker coordinates,
with missing entries. Let Q be the index set of observed entries, where
the values of elements M; (0, J) € Q are known. The low-rank matrix
completion problem can then be formally expressed as:

min  rank(X),
XeRmxn 4
s.t Po(X) = Po(M),

where Py : R™" — R™" is the orthogonal projection onto the sub-
space of matrices that vanish outside of Q, (i, j) € Q if and only if M;; is
observed. P,(X) is defined by

X, if(i,j)eq,
Po(X) = " )
e { 0 otherwise.
Alternatively, this projection can be expressed as Py (X) = HoX. Where

H € {0,1}™" is a binary matrix that refers to the mask matrix defined
as

e {1 if M; j is observed, )

0 otherwise.

While the matrix formulation has been widely studied, MoCap data
inherently possesses a multi-dimensional structure that can be better
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Fig. 6. Trajectories of selected markers across consecutive frames of a motion
sequence.

preserved using tensor representations. In this case, the motion data can
be represented as a 3-way tensor 7 € R™ P, where the dimensions
might represent time, markers, and 3D coordinates. The core objective
remains similar to matrix completion: recovering missing entries while
maintaining the underlying low-dimensional structure of the data as
follows

min rank(X),
X eRMXnXp (7)

5.t Po(X) = Po(T),

where P, : R™"XP —, R™"Xp jg the orthogonal projection operator
defined as:

Poc) = {(\’,.l,,.%,._3 if (i).iy.i3) € Q.

(€))

0 otherwise.

Both matrix and tensor completion problems aim to find the lowest-rank
structure that matches the observed entries. However, these problems
are generally NP-hard, leading to various computational approaches and
relaxations.

4. Kinematic priors in MoCap completion

Human motion follows inherent biomechanical rules and patterns
that can be used to improve the accuracy of the completion problem.
These kinematic constraints serve as side information that can be in-
tegrated into the low-rank completion framework. The integration of
motion priors acts as a regularization mechanism, guiding the low-rank
optimization towards solutions that align with the expected charac-
teristics of human motion. These priors restrict the solution space to
physically valid motions that preserve natural motion characteristics,
leading to more realistic and biomechanically plausible results.

4.1. Skeleton constraints

The skeleton constraints ensure that the completion process follows
the skeleton’s structure as shown in Fig. 7. This helps prevent unrealistic
features such as incorrect bone lengths in the recovered results. Here,
we discuss the three skeleton constraints used in the MoCap completion
problem.

A. bone length constraint. This constraint ensures that the distances
between adjacent joints are preserved during the recovery process.
Typically, an articulated skeleton is represented as a tree structure,
where each node corresponds to a skeletal joint, and the edges connect-
ing nodes represent bones. For each missing joint, the set £ contains
its adjacent edges. Each edge ¢; € £,i = 1,...,p has a length d; and a
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Fig. 7. Skeletal representation of the human body with 31 labeled joints.

connected joint pair (, §),. Therefore, for each e;, a matrix C; € R>" is
defined to extract the inter-joint distance of (a, #); from x i.e.,

Cix =[x yzll - [xyzl],

where x = Vec(X) and Vec maps a matrix X € R™" to a vector x € R”,
with n = m X n. For example, the matrix C; can be given as:

C; =10.....1,.0,0,-1,.0,....0],
where I,, and I, are the 3 X 3 identity matrices. Thus, to preserve

the skeleton constraints in the completion algorithm, the bone length
constraint

[ICxll, <d;, fori=1,...,p, 9

could be integrated into the minimization function of the completion
problem. The distance d; is computed by averaging the inter-joint dis-
tances of bone e; across all frames where both connected joints are
observable.

B. total bone length constraint. ~The fundamental principle underlying
skeletal motion capture is that bone lengths remain constant throughout
movement, as the human skeleton maintains its rigid structure. Let f; be
the ith frame:

— T
£ =[x vi12i1%i2Yi2%i2 - XiaViaZial -

T
_ . o1 T T
= Ci,l’ci,Z’""ci,j""’cid] ,
where ¢; ; = [x; ;,; ;» Z; ;1 is the 3D coordinates of the jth joint in the ith
frame. The relative coordinates c; ; of the j-th joint in the i-th frame are
defined as:

where ¢; ;) is the coordinates of the parent joint of joint j in frame
i, and /; is the bone length connecting joint ; to its parent joint. The
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bone-length error function X (f;) of the i-th frame in X is defined as:

K (f)= i <(c£j)Tc£j - 1>2.

j=1

Since the bone-length error of each frame in X is independent, the total
bone-length error can be formulated as:

eX) = Z K(t), (10)

i=1

where g(X) = 0 if and only if no bone length is wrong in the recovered
results. An equivalent formulation using absolute bone lengths is called
the isometry constraint:

0350(X) = Zn: Eml <“°r‘,j - cf,p(,)Hz - ’?)2' an

i=1 j=1

Both the relative and absolute formulations enforce the same under-
lying constraint: preserving the rigid skeletal structure by maintaining
constant bone lengths throughout the motion sequence.

An alternative formulation of bone length preservation has been pro-
posed in [91], where the constraint considers all connected joint pairs
in the skeletal structure:

Cph<X)=i > <)

i=1e; €€

€~ ci,k”; - l,z-.k>2, (12)

where £ represents the set of all bones connecting joint pairs (j, k) in the
skeletal structure. Unlike the isometry constraint in Eq. (11) which en-
forces bone lengths only between joints and their hierarchical parents,
this formulation encompasses all anatomically connected joint pairs, po-
tentially including sibling joints, grandparent-grandchild relationships,
or other structural connections beyond the strict parent-child hierarchy.

4.2. Smoothness prior

In human movement, transitions between different positions or poses
are typically continuous. Moreover, the trajectory of a moving body
part rarely involves sudden or jerky movements (see Fig. 4). Thus, hu-
man motion data often has a smooth structure. This smoothness refers
to the continuous and gradual transitions in the position, velocity, and
acceleration of body parts during movement. Therefore, methods that
capture and model the smoothness property provide a more natural
reconstruction of human motion.

A. difference operators. The smoothness of the MoCap matrix X in
the temporal direction can be expressed using difference operators of
various orders. These operators enforce trajectory smoothness by min-
imizing the differences between adjacent data points, where smaller
differences imply smoother transitions.

First-order difference operator.  The first-order difference operator, also
known as the Total Variation (TV) regularizer, enforces smoothness by
penalizing large gradients between consecutive time points while pre-
serving important discontinuities. For a given vector x € R™, the TV
operator is defined as

m—1 2
Ixllrv = <Z |x; _xi+1|2> = Dy xll;,

i=1
where D,, is the first-order difference matrix:
I -1

D, =

v
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Second-order difference operator. The second-order difference operator
provides enhanced smoothness regularization by penalizing the curva-
ture (second derivative) of trajectories, which corresponds to constrain-
ing acceleration rather than velocity. This approach enforces smoother
transitions that are more consistent with natural human motion patterns.
The operator is defined as

O(X) = [IXD] 1%, (13)

where the matrix D, is a tridiagonal square matrix defined by

2

o =i
— ifj=i,
D), ; =3 hi-th /
Yol =it
ey :
0 otherwise.

for ¥i,2 < i < n— 1, where n is the number of elements in X, . and
h; represents the step between consecutive data points X, ; and X, ;..
Assuming repeating border elements (X,,=X,, and X,,=X,,.)
gives

1 1
O =Opp =25, and D),y = =Dn)y, = 25—
1 n—1
When assuming that the data is equally spaced with a constant interval
of h; = 1,Vi, the divided difference matrix D, becomes

The matrix D focuses on the immediate neighborhood of each data point,
thus providing a local analysis of temporal smoothness. By considering
boundary conditions (repeating border elements), the matrix D accounts
for the stability at the edges of the data sequence. This ensures that
the analysis of smoothness is consistent and accurate even near the
boundaries of the data.

Smoothness priors can be enforced through first- or second-order dif-
ference operators. Both operators focus on the immediate neighborhood
of each data point, providing local analysis of temporal smoothness. The
boundary conditions ensure consistent and accurate smoothness analysis
even at the edges of the data sequence. First-order operators constrain
velocity changes and are effective for motions with relatively constant
speeds or gradual transitions. Second-order operators constrain acceler-
ations and are particularly suitable for repetitive or cyclical activities,
where biomechanical principles support smooth acceleration patterns.
In contrast, abrupt or impact-heavy movements (e.g., sudden direction
changes, collisions, or contact interactions) often violate these assump-
tions. In such cases, overly strict smoothness enforcement may distort
the motion by artificially damping rapid variations or suppressing natu-
ral discontinuities. Therefore, the choice between first- and second-order
smoothness should be guided by the motion characteristics, with adap-
tive formulations offering a potential solution for handling mixed or
unpredictable dynamics.

B. wavelets transform. Wavelets in the context of MoCap data anal-
ysis serve to analyze and characterize temporal and spatial features of
human motion. The Discrete Wavelet Transform (DWT) [92-94] decom-
poses the motion data into different scales, offering a multiresolution
view. By decomposing the motion data matrix X using a wavelet basis
matrix W, the transform enables a comprehensive analysis of motion
smoothness through the smoothness assumption defined by the wavelet
transformation:

O(X) = [IWXI]l,. 14

Here, || - ||, represents the /,-norm (typically /; or /,), which allows for
flexible feature extraction and noise reduction. The wavelet basis matrix
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W is defined as:

vk W) k) () Wy ky ()
W= Vo) W) 22 V) k2) (M) .
s k(D Wim ey (2 W) k() (D)

The elements of matrix W are derived from wavelet basis function v ; ()
is defined as:

1 < j—k-2° >
\/gll/ N s
where y () is the mother wavelet function, s € Z represents the scale
parameter controlling dilation, and k € Z represents the translation
parameter controlling position.

The wavelet coefficients resulting from the transform WX provide a
time-frequency representation where the larger coefficients correspond
to significant motion features at specific scales and temporal locations.
This multiresolution property makes wavelets particularly effective for
analyzing hierarchical motion structures.

V/:,k(j) =

C.Fast Fourier transform (FFT). The FFT is a popular tool for analyzing
the frequency of signals and understanding how a subject evolves. FFT
decomposes signals into their frequency components [94]. In cases of
periodic signals, the FFT decomposes the signal into its constituent low-
frequency components. By decomposing signals into their fundamental
frequency components, the FFT provides insights into the periodic na-
ture of movement. The mathematical representation of the FFT-based
smoothness assumption is expressed as:

O(X) = [[FXIl,. as5)

where F is the FFT applied on X, with F as a transformation matrix. Let
F, , be the element in the k-th row and n-th column of the N x N matrix
F, with k,n € {0,1,2, ..., N — 1}.

_ —Jj2xkn/N
F,o=e /N,
The matrix form is given in the form:

1 1 1
1 o2 /N o—2m(N=1)/N
F=

1 e j2m(N-D/N e—j27r»(N—1)2/N

The FFT decomposes complex motion signals into low-frequency com-
ponents, revealing the fundamental periodic patterns inherent in human
movement while filtering out high-frequency noise.

5. Low rank priors

The problem of minimizing the rank of a matrix or tensor, as in Egs.
(4) and (7), is ill-posed and generally considered NP-hard. Convex relax-
ations of the rank function make the problem computationally feasible
and provide theoretical guarantees for data recovery under certain con-
ditions. Tensors, as higher-order generalizations of matrices, introduce
additional complexity in rank definition and optimization strategies.
Unlike in the matrix case, the definition of the tensor rank is not well es-
tablished. Thus, various definitions of the tensor rank and their convex
relaxations have been studied to characterize the low-rankness of ten-
sors. The tensor rank definitions have been proposed based on different
decomposition methods. These decompositions include the Canonical
Polyadic (CP) decomposition [95], which breaks tensors into a sum
of rank-one tensors; Tucker decomposition [96], which provides a hi-
erarchical factorization; and the tensor train decomposition [97,98],
which offers an efficient representation for high-dimensional tensors.
These approaches decompose high-dimensional tensors into a sequence
of lower-dimensional tensors, effectively simplifying the completion pro-
cess by revealing underlying low-dimensional structures and patterns.
This strategy addresses the computational challenges and provides a
more interpretable approach to understanding multidimensional data.
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5.1. Nuclear norm-based regularization

The use of low-rank matrix completion theory for human motion data
processing was first introduced in [69]. The problem (4) was addressed
by replacing the matrix rank with its nuclear norm, which is a convex
relaxation as demonstrated in Theorem 1 from [99].

Theorem 1. The convex envelope of the function ¢(X) = Rank(X), on C =
{XeRrR™" | |IX|| < 1}, is ¢, X) = [IX]],, where |X|l, = ¥, 0,(X) is the
nuclear norm and || X|| = o,(X) denotes the spectral norm, which is the largest
singular value of matrix X.

The theorem shows that a lower bound for the optimal solution of
the rank minimization problem can be derived by solving the nuclear
norm relaxation. The nuclear norm is the convex hull of the set of rank-
one matrices with a spectral norm bounded by one. Furthermore, when
the number of observed entries satisfies

m> Cnﬁ/srlogn,

where C is a constant, r refers to the matrix rank, and » is the matrix
dimension, exact matrix recovery can be achieved with high proba-
bility for matrices satisfying appropriate incoherence conditions; see
Theorem 1.1 in [88]. However, this is not always achievable in practical
scenarios. Moreover, the nuclear norm treats all singular values equally,
ignoring the practical significance of singular values for obtaining the
matrix information. Additionally, the nuclear norm commonly involves
the overshrinking problem, which is likely to result in diminished
performance when there is noise in the measurements.

5.1.1. Truncated nuclear norm

To overcome the limitations of the nuclear norm, the truncated
nuclear norm (TNN) approach provides a solution to the problem of
overshrinking by minimizing only the sum of smaller singular values
while truncating the larger ones [100]. For a matrix X € R"™*", the trun-
cated nuclear norm is defined as the sum of the min(m, n) — r smallest
singular values, i.e.

min(m,n)

IXI, = 3, o,(X).

i=r+l1

aae)

Since the values of the largest r nonzero singular values will not affect
the rank of the matrix, the truncated nuclear norm leaves them free
and focuses on minimizing the sum of the smallest min(m, n) — r singular
values.

5.2. Schatten p-norm based regularization

To better bridge the gap between nuclear norm and real rank, the
Schatten p-norm involves computing the sum of the p-th (0 < p < 1)
power of all singular values. The Schatten p-norm is defined as

min(m,n)

Y (X))

P =
XI5 =
i=1

However, similar to the nuclear norm, the Schatten p-norm still deals
with all singular values equally, while different singular values have dif-
ferent importance. Therefore, truncated Schatten p-norm and weighted
Schatten p-norm have been introduced [101,102].

5.2.1. Truncated schatten-p norm

For a given matrix X € R"™", the truncated Schatten p-norm, which is
defined as the sum of the pth (0 < p < 1) power of min(m, n) — r minimum
singular values, can be given as:

min(m,n)

XI7s = 2 (2,00)".

i=r+1

Compared with the nuclear norm, the truncated Schatten p-norm con-
siders the physical interpretations of singular values and truncates the

10
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large singular values from shrinking so that the main component of a
matrix is preserved [102]. Moreover, compared with the truncated nu-
clear norm, the adjustable parameter p, the truncated Schatten p-norm
more flexible in dealing with different applications.

5.2.2. Weighted Schatten p-norm

The weighted Schatten p-norm tackles the overshrinking problem
by assigning varying weights to singular values. Larger singular values
receive smaller weights, whereas smaller singular values are assigned
larger weights. The weighted Schatten p-norm of matrix X € R™" is
defined as

min{n,m}

XI5 = 2 wi(eiX)",

i=1

where w = [w), ..., Wpinm | iS @ NON-negative vector, and o, is the i-th
singular value of X.

5.2.3. Powered Schatten p-norm
To further improve the approximation of the rank function, the 7-th
power of Schatten p-norm has been introduced in [40]:

(i ) = (mm(zmm o,-(X)P>T,

i=1
where 0 < p < 1and ¢ > 1. The parameter ¢ provides additional flexibility
in controlling the rank approximation, with empirical studies suggesting
optimal performance at t = 2 and p = 0.5 for motion capture applications
[40].

a7

5.3. Nonlinear low-rank prior

In situations where the data is subject to complex nonlinear changes,
such as significant pose variations, diverse expressions, or varying illu-
mination conditions, low-rank matrix completion may fail to recover
the details of data with complex and diverse structures. To effectively
cope with the nonlinear data, kernel-based methods have been intro-
duced [103-105]. These models learn a combined low-rank kernel via
multiple-kernel learning. The geodesic exponential kernel is used for the
multiple kernel learning process. The geodesic exponential kernel is built
upon the geodesic distance, which is particularly suitable for measuring
distances between points on a Riemannian manifold. In this context, we
denote the coordinates of two points on a 2-dimensional sphere as x € R?
and y € R3. The geodesic exponential kernel is formulated as:

—dg(xy)

k,(x,y)=e 2*

where y is a width parameter, and d, represents the geodesic distance
between the points x and y and is defined as

dg(x,y) = arccos (xTy) s

where arccos: [—1,1] — [0, x] is the usual inverse cosine function. The
function ® : f — ®(f) represents an implicit mapping defined on the
kernel function k, (f,.f,) and the inner product of two frames f, and f,
is defined as

=

v
2
a; iky,
1

™=

(@ (f,). @ (f,)) =k (£.1,) =

n n
(ca,j’ b, ) ’

¢” and ¢’ ; are respectively normalized positions of ¢, ; and ¢, ; defined
aj b.j a,j J
as:

1i

J

o= €a,j = Cpaj &= Cb.j ~ Cpij
s T, b = T
G ey — il T lew; =il
C,isChi iv j-th joint i , My, i -
and ¢, ;. c,; are respectively the j-th joint in f, and f,, n,, is the num

ber of the width parameters y; which correspond to different geodesic
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exponential kernels k, , ;; is the weight of k,,. The weights a;; can be
arranged in the following weight matrix A € R%"

apy X1p,
A= . . (18)
a1 Xin,

LetQ = [fl,fz, ,f,,d] be a training set composed of a large number of
frames of multiple types of motion sequences, where n, is the number of
frames in Q,Q; € R>"q corresponds to all the j-th joints in Q. Multiple
kernel learning aims to minimize the rank of ®(Q). Thus, using Schatten
p-norm instead of the rank of a matrix, the rank(®(Q)) can be formulated
as

rank(®(Q)) ~ <Tr <((<I>(Q))T‘I>(Q)) : )) "
19)

1
pand
= (1 (&@?))",
where K,(Q) is the kernel matrix of Q defined on ky (f,.f;).

5.4. Non-negative matrix factorization

Algorithms based on singular value decomposition, such as the nu-
clear norm, are computationally costly, especially when the underlying
matrices are high-dimensional. The low-rank matrix factorization de-
rives optimization algorithms of lower computational complexity as
compared to relevant convex approaches, specifically algorithms de-
rived from nuclear norm-based methods [106]. It is based on the fact
that data exhibit latent structures; by uncovering them, we can obtain a
compressed representation of the current data. For any matrix M € R"™"
of a rank up to r, NNMF finds an approximate factorization M ~ XY
into non-negative factors X € R™" and Y € R, which can be attained
through the minimization of the following equation:

min L XY = M2,
XY 2 (20)
Y > 0.

st X>0,

NNMF has been effectively used to exploit the low-rank property of the
data. It’s particularly well-suited for data with non-negative values and
a low-rank structure.

5.5. Tensor decompositions

Tensor decompositions break down a high-dimensional tensor into
a series of lower-dimensional tensors, facilitating the extraction of
meaningful patterns and simplifying tensor completion.

CP decomposition. The CP decomposition factorizes multidimensional
data, or tensors, into a sum of rank-one tensors. For an N-order tensor
X € RIxhxXIn we have

R
XY 280000 0a™ = [[A; A AP, AN,

r=1

The symbol “o” represents the vector’s outer product. This means that
each element of the tensor is the product of the corresponding vector
elements

X iy = a5 al M, forall 1 <i, <1,
Foranyne {1,...,N}, aﬁ") € R!» stands for the factor (or loading) vector

and A, represents weight parameters. The matrix A® € R»*R is called
the n-th factor (or loading) matrix and refers to the combination of the

vectors from the rank-one components, i.e., A® = [a(l"),a(z”), ’3(1:) ,
A = diag Ay, ..., Ag| € RR*XR js a super-diagonal tensor, and R is the

tensor rank also known as CP rank.
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Tucker decomposition. Tucker decomposition factorizes multidimen-
sional tensors into a core tensor multiplied by matrices along each mode.
For a given tensor X € RI1*2XXIn of order N, Tucker decomposition
is given as

Ry Ry Ry
= D oq@ (N)
s;=lsp=1  sy=1

=Gx; AW x, A® ..y AN =1 [[G: {A}]],

where G € RRiXRoxxRy (R < [,) is the core tensor, {A} stands for
the set of N matrices, and A® e R*R: for n € [N] is factor ma-
trix. The Tucker rank; also called the multilnear rank; is the vector
R=[R|,R,, ..., Ry], thus we say X is rank-(R;, R,, ..., Ry) tensor. The
matricized version of Tucker decomposition is given as:

X = A(H)G(n)(A(N) Q.. AMD AD o A(l))T,

where G, denotes mode-n matricization of ¢ and X” denotes the trans-
pose of matrix X. Tucker decomposition is generally non-unique, so
practical applications often impose constraints on the core tensor and
factor matrices to ensure a meaningful factorization. These constraints,
such as orthogonality, non-negativity, or sparsity, are selected based on
the specific requirements of the problem. When the factor matrices are
orthogonal, they capture the most significant patterns or components in
the data along each tensor dimension (or mode). Meanwhile, the ele-
ments of the core tensor G represent the level of interaction between the
different modes.

6. Matrix-based motion completion approaches
6.1. Nuclear norm based kinematic constraints

The use of low-rank matrix completion theory for human motion
data processing was first presented in [69]. In this work, the authors ad-
dressed both the completion and the denoising of the walking sequence
data. Their proposed method relies on a low-rank prior without any kine-
matic information. The recovered MoCap matrix is obtained using the
singular value thresholding algorithm (SVT) [89]. The SVT Algorithm 2
approximates the nuclear norm by minimizing the following problem:

. R
min TIIXI|*+2||XII , o1

st Po(X) = Po(M).

Nuclear norm with bone length constraint. ~The main limitation of the
SVT-based MoCap completion method is that in different scenarios, the
distance between any two adjacent joints of a motion sequence recov-
ered by the SVT algorithm is not preserved. To address this problem,
the bone length constraint (22) has been used within the SVT approach
[75]. The objective of this approach is to maintain the relative dis-
tances between joints throughout the data recovery process. Therefore,
the skeleton-constrained SVT model is given as:

L2
~ X%,
SIXI
s.t x = Vec(X),
Ax =b,

ICxll, < d;,

mXin 7|1 X, +

(22)

for i=1,...,p,

where A € R™" extracts the observed entries of x, and b is the vector
containing the m observed entries of the matrix M to be recovered, i.e.,
b = Po(M).

Nuclear norm with smoothness priors. The MoCap data recovery prob-
lem (21) has been converted into a robust matrix completion problem
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[72,73,107] and using the low-rank structure, the smoothness prior (13)
of the MoCap data, and the noise effect are considered. Hence, given the
typical presence of noise in motion capture data, a realistic representa-
tion of the imperfect motion data matrix M involves decomposing it into
two components expressed as follows:

M=X+E,

with X represents the complete and clean motion data, and E, accounts
for noise or outliers. Skeleton corruption often happens in challenging
scenarios such as occlusion, so the error matrix E is sparse but unknown.
The robust matrix completion model is given as:

. p T||?
min [|IX|, + al/HE[|, + = ”XD ” ,
X.E 2 F (23)
st. M=X+E,

here, || - ||; is the /,-norm, « and # are two regularization parameters,
and H € {0, l}dx" is the mask matrix (6). A similar optimization model
has been used in [72], but with the truncated nuclear norm instead of
the standard nuclear norm to better capture the low-rank structure of
human MoCap data.

A multi-level fine-grained fusion method [108] introduces a fine-
grained partitioning operator Lf that automatically segments motion
data into anatomically-based body parts, where d € {2,3,5} represents
different partitioning levels.

d
1 d
X=z Z ZXLC, B=1{2,3,5).
deB c=1

2

The final reconstruction combines results across multiple partitioning
levels:

| o - p 2
w3 S L
deB c=1

M =XoH, B={23,5).

(25)

s.t.

where XLZ denotes the c-th module resulting from the fine-grained par-
titioning at level d. The method provides alternative formulations using
nuclear norm and Schatten p-norm approaches, allowing comparative
evaluation of different low-rank priors on the same segmented data.

Nuclear norm with skeleton and smoothness prior. A hybrid prior within
the low-rank completion problem is introduced [109]. This model
leverages skeleton constraints and motion smoothness by combining
spatial correlation from the skeleton structure and temporal information.
Specifically, the spatiotemporal prior involves the isometry constraint,
encouraging consistent bone lengths and exploring spatial correlations
among skeleton sequences to overcome large joint errors in challeng-
ing cases. Therefore, let M be the corrupted matrix, X be the clean
skeleton matrix, and E be the sparse noise matrix (sparse error). The
spatiotemporal motion recovery problem is given as:

min [IXIl. + AEll; +78is0(X) + ulWX]|;.
’ (26)
st. M=X+E,
where 0;, (X) is the isometry term (11), the last term is the wavelet
transform (14), and 4, y, u are regularization parameters to balance these
terms. The isometry term exploits the spatial correlation of a skeleton
sequence by suppressing positional errors of skeletal joints, while the
smoothness term with sparse prior exploits the temporal correlation of
a skeleton sequence by ensuring the piece-wise smoothness of the re-
covered motion. In this way, the proposed model can fully exploit the
characteristics of skeleton motions.

12
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QR decomposition-based approximate SVD.  While nuclear norm mini-
mization provides theoretical guarantees for low-rank matrix comple-
tion, the computational overhead associated with repeated singular
value decomposition operations limits its practical applicability, par-
ticularly for real-time motion capture applications. To address this
limitation, an approximate SVD approach based on QR decomposition
has been introduced [91]. This method exploits the relationship between
the nuclear norm and the #, ; norm to achieve significant computational
savings while preserving recovery accuracy.

The approach decomposes the motion matrix X into three matrices
M e R™" Q € R™, and N € R™" such that,
X = MQN, 27
where M'M = I and NN” = I, and » < min(m, n) represents the effec-
tive rank. The key insight is that ||X]|, = ||Q||,, allowing nuclear norm
minimization of the much smaller matrix Q instead of the full matrix X.
Furthermore, by establishing the relationship [|Q].. < [|QIl, ;, the nuclear
norm is replaced with the 7, ; norm, removing the need for iterative sin-
gular value decompositions and substantially reducing computational
cost.

6.2. Schatten p-norm with kinematic constraints

The truncated Schatten p-norm has been proposed in [70] for MoCap
completion. Moreover, the smoothness and the bone-length constraints
are used to preserve the spatial-temporal smoothness and structural
characteristics of human motion

. B 2
min [IX[l,.s, + ZIXD|I%. 28)
st. HoX =M, and g(X) =0,
where g(X) is the function to compute the bone length error in Eq. (10).

In human motion, it is noticeable that similar actions are frequently
replicated in multiple instances, see Fig. 6. Such an assumption implies
that human motion has strong nonlocal self-similarity (NSS). Motivated
by this, the nonlocal low-rank regularization technique has been adopted
for human MoCap recovery in [74]. To model the NSS technique of hu-
man motion, patch grouping for human motion sequences is defined
to find the most similar poses among all the frames in the motion se-
quences. First, let P; € R3¥*¢ be a motion patch in M, and we search for
its similar patches along the entire motion sequence by the weighted
I, distance. After patch grouping, we obtain a formed dataset G, =

[P,-],P- P

in?
tion problem is based on the weighted Schatten p-norm and formulated
as

,P,-A] € R™" for each exemplar patch P;. The comple-

P

nin G5,

st. H,0G;, =M, (29)

g(Gi) =0.

6.3. Nonlinear low-rank approach

In [110], the kernel-based low-rank matrix handles the completion
problem after obtaining the learned kernel k, by minimizing (19) with
p = 1. Therefore, the nonlinear low-rank completion problem is given
as:

1
min T (K@)? ) + ZIXDIZ,
st. HoX =M, (30)
gX)=0.

The LRMC seeks the minimal rank of X. However, considering the
nonlinear structure of some motion sequences, X may not be of low
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rank for MoCap data. Thus, the nonlinear low-rank minimizes the rank
in the feature space, which is more suitable in theory. Although the
non-linearization of LRMC improves accuracy, it comes at the cost of
increased computational time.

6.4. Multi-subspace low-rank approaches

The low-rank matrix completion methods assume that motion data
lies within a single low-dimensional subspace. However, this assump-
tion breaks down for complex motion sequences containing multiple
distinct activities, where the concatenated motion exhibits significantly
higher rank than individual activity segments [111]. To address this
limitation, multi-subspace approaches model complex motions as com-
binations of multiple low-dimensional subspaces. The discrete subspace
structure constraint addresses this challenge by jointly optimizing sub-
space clustering and matrix completion within a unified framework.
Given a motion sequence X € R3?*" containing ¢ different activities,
the DSS formulation is:

c 1
min_ > <H(X - u,,1T)F,.”;> + 4 IPo®E), + %@(X),
e bt

. @31
st. X+E=PyM), F,c{0.1)™, Y F =1,
i=1

where F; are diagonal indicator matrices specifying which frames belong
to the i-th subspace, u; are translation vectors to center each subspace,
and the t-th power of Schatten p-norm provides better rank approxi-
mation than the nuclear norm. Unlike previous two-stage approaches
that perform subspace clustering and matrix completion sequentially,
this formulation allows the two processes to mutually benefit each other
through joint optimization. The algorithm alternates between solving for
the recovered data X given the segmentation matrices F; and solving for
the segmentation given X, enabling improved accuracy for both tasks.

6.5. Hierarchical block-based NNMF

The completion process proposed in [76] has taken advantage of
adaptive NNMF combined with hierarchical block-based human motion
data recovery. The motion sequence is processed in terms of block-based
subchain motion clips. The proposed method consists of two main layers:

« Interior layer: In this layer, the motion is segmented into block-based
subchain motion clips by decomposing the skeleton data into five
correlated blocks. Second, the adaptive NNMF is then used to re-
cover the moving trajectories of each sub-chain motion individually
by solving the following problem:

min [Po(XY = M)z sX>0Y>0. (32)

Exterior layer: It exploits the recovered sub-chain motion clips from
the interior layer and the known entries in the MoCap data to re-
fine the corresponding restored data of the same position. Therefore,
natural-looking human motions can be obtained from the two layers.

7. Tensor decomposition for MoCap data completion

Tensor decomposition approaches address the completion problem
by factorizing the multi-dimensional data structure into core compo-
nents. These methods capitalize on the inherent temporal and spatial
correlations in motion data, providing advantages over matrix-based
techniques. The decomposition into lower-dimensional factors enables
the preservation of underlying motion patterns while accurately recon-
structing missing values.

7.1. CP decomposition algorithms

The goal of the CP decomposition is to find a set of R normalized

R
rank-one tensors {ag)caﬁz)o anN ) },—, that best approximates X. Thus,
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in [77], MoCap tensor completion using CP decomposition is formulated
as:

min
x{A4,)R

r=1

R
. 1
— 1 _z Moa@o ... 0a™)|2
H(X, Ay, ..., AR) X{IEIHR 2||X 2 A.a, oa o oa; ||F,

=1 r=1
st Po(X) =PoM), lla™|, =1, ne€ [N],r €[R],
(33)

where A, = A,aﬁ“oaﬁz)o oa(,N ), Normalizing the loading factors in CP
decomposition offers certain advantages, such as improving the robust-
ness to noise and preventing the minimization process from assigning
excessively large values to some components.

Given the inherent complexity of MoCap data, two modified vari-
ations of CP decomposition are introduced: SmoothCP and SparseCP.
These modified decompositions incorporate constraints on the factor
vectors to enhance the extraction of meaningful patterns by leverag-
ing smoothness and sparsity properties, respectively. Smoothness is an
essential characteristic of MoCap data, which can be effectively uti-
lized to predict missing elements more accurately. In the SmoothCP
decomposition, 1D total variation constraint on the factor vectors is
incorporated.

R N
X{r;lir)lR HX, Ay AR + ) ) a,[ID,a |2,

AR (34)

r=1 n=1

st Po(X) =Po(M), lla”|l, =1, n€[N],r €[R],

where {a,} ,]y: | are parameters controlling the level of the constraint on
each factor vector. This approach ensures that the decomposition re-
spects the smooth transitions inherent in human motion. Conversely,
sparsity focuses on identifying and utilizing the most informative parts
of the data, which is crucial in scenarios where only a few significant
elements contribute to the overall structure. In the SparseCP decompo-
sition, the sparsity constraint is introduced by applying the /,-norm to
the factor vectors.

R N
i (n)
o min, HQEA AR + > Y allal;,

r=1

st Po(X) = Po(M), la]l, =1, n € [N],r € [R].

(35)

r=1 n=1

The SparseCP approach guides the decomposition to produce sparse fac-
tor vectors, highlighting the most informative components and reducing
redundancy.

7.2. Tucker decomposition algorithms

Tucker decomposition factorizes the MoCap tensor into a core tensor
multiplied by matrices along each mode [112]. The orthogonality con-
straint ensures that components in each mode are independent, which
improves numerical stability by representing each mode through a set
of independent features. The tensor completion problem via Tucker de-
composition thus exploits this structured, low-rank representation to
reconstruct missing tensor entries:

. 1 2 N2
min = ||X — G X AD %, A@ | xy AN R
min = | 1AV %, AN 6
s.t Po(X) = Po(M), AMAMT = I,, n€[N].

MoCap data exhibits inherent temporal continuity, with motion evolv-
ing smoothly across successive frames. Given the high-dimensional
nature of such data, explicit gradient-based smoothness regularization
becomes computationally prohibitive. The nuclear norm preserves tem-
poral smoothness by promoting low-rank structure, which inherently
favors gradual patterns over abrupt changes. By applying the nuclear

norm to the temporal mode of the MoCap tensor, abrupt variations are
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Algorithm 1: Augmented Lagrange multiplier (ALM) algo-
rithm.

Initialization;
X0> Yo» k=1
while not convergent and k < Kmax do
X, =argming L (x,yk,yk),
Vel = Vi + A (Xeq )
Update p;, to gy .
end
return x;

mitigated, ensuring reconstructed motion maintains coherent temporal
patterns. The Tucker-based temporal nuclear norm approach is given
as:

.1
—1X =G x; AD x, AD sy AMIZ £ 41X s
glglg( 2|| gx 2 N Iz + A Xl 37)
st Po(X) = Po(M), AWANT = ne[N].
where X is the mode-1 unfolding (matricization) of X. The pro-
posed approach leverages this global smoothness constraint within the
Tucker decomposition framework, providing a computationally efficient

method to preserve motion continuity.

8. Minimization algorithms

The completion problem for motion capture data is presented as a
minimization problem, where the goal is to recover missing or corrupted
motion sequences by minimizing an objective function. The follow-
ing sections review the key minimization methods used to address the
MoCap completion approaches.

8.1. Augmented lagrange multipliers (ALM) method

The ALM is an optimization technique for solving constrained opti-
mization problems [113-115]. As an extension of the Lagrange multi-
pliers, ALM addresses the challenges of handling equality and inequality
constraints [116]. The standard constrained optimization problem is
formulated as:

min  f(x),
X (38)
st A®X) =0,

where f : R" - R is real-valued function and A : R"” — R" is a linear
operator. ALM defines the augmented Lagrangian function by introduc-
ing Lagrange multipliers for the constraints. The augmented Lagrangian
combines the original objective function with penalty terms related to
the constraints:

LY. 1) = [09 + (3. AG) + SIAI.

where u is a regularization parameter. In each iteration, ALM per-
forms alternating minimization of the augmented Lagrangian over X.
At iteration k, ALM carries out the following steps

. U
X1 = argmin (%) + A + ¥yl

Yir1 = Y + Hp Ay ).

The complete algorithmic procedure is detailed in Algorithm 1.

8.2. Singular value thresholding (SVT) algorithm

The SVT algorithm is an iterative optimization technique primarily
employed for solving matrix recovery and completion problems [89]. It
can be viewed as a special case of the Augmented Lagrangian Method

Algorithm 2: Singular value thresholding (SVT) algorithm.

Initialization;
Xy, Yo, k=1
while not convergent and k < Kmax do
X411 = D.(Y)), (soft-thresholding: Eq. (40))
Yir = Y + 6 PoM =Xy ),
Update 6; to 6.
return X

(ALM). The SVT algorithm is designed to recover a low-rank matrix
from a given set of noisy or incomplete observations. Practically, the
SVT algorithm solves the minimization problem (21) iteratively. The
key building block of the SVT algorithm is the singular value shrinkage
operator. Consider the SVD of a matrix X € R™" of rank r < min(m, n)
X =UZV* where X =diag(o,,...,0,), (39)
where U and V are respectively mxr and nxr matrices with orthonormal
columns, and the singular values o; are positive. For each = > 0, the
soft-thresholding operator D, is defined as follows:

D.(X)=UD,(X)V*, D, (T)=diag((c; — 7),), (40)

where (6; — 7), = max(0,0; — 7). Fixing 7 > 0 and a sequence §, of
scalar step sizes, the SVT aims to find a low-rank solution by iteratively
updating matrix pairs (X, Y; ),y as follows:

Xk = Dr(Yk—l)7
Y, =Y +8,PoM-X)).

The complete algorithmic procedure is detailed in Algorithm 2.

8.3. Alternating direction method of multipliers (ADMM) algorithm

The ADMM is an optimization algorithm used to solve problems
that can be formulated as convex optimization problems with linear
constraints [117,118]. The ADMM algorithm solves problems of the
form:

min f(x) + g(2),
X,z (41)
st Ax+Bz=c,

where f and g are convex functions, not necessarily differentiable, A, B
are given matrices and ¢ a given vector. The optimal value of problem
(41) will be obtained by minimizing the augmented Lagrangian function

LX,2,y) = f(X)+ g(z) + (y,Ax + Bz — ¢) + gqu +Bz—¢|2.

In each iteration, ADMM performs alternating minimization of the aug-
mented Lagrangian over x and z. At iteration k, ADMM carries out the
following steps:

X4 = argmin f(X) + %”AX + Bz, — c+yk||2F,
X
. 14
Zyyy = Argmin g(z) + 3 [[AX;  + Bz —c+ yklli,
Yie1 = Yk +7 (AXpyy + Bz —¢),

where y is a positive parameter. The complete algorithmic procedure is
detailed in Algorithm 3.

8.4. Fixed-point proximity algorithms

Fixed-point proximity algorithms provide an alternative to ADMM
for solving multi-term convex optimization problems with guaranteed
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Algorithm 3: Alternating direction method of multipliers
(ADMM) algorithm.
Initialization;
X0, Y0, 2, kK =1
while not convergent and k < Kmax do
X,y = argmin, f(x) + glle +Bz, —c+ ykllg,,

Z,1 = argmin, g(z)+ %”Axkﬂ +Bz—c+y,ll3,
Yir1 = Yi +7 (AXpy +Bzyy —c).

end

return x, and y,,

Algorithm 4: Fixed-point proximity algorithm (FPPA).

Initialization;

U0 =9, X0 =X,

while not convergent and k < Kmax do
UkHD = prox,, p(U® — P7IXP 4+ P7IX),

T = oty — e, XY = x® — LQUILTvALX®),

—(k+1) —(k+1)
X*+D = prox s o(X +Q'U ).
end

return X%+

convergence properties. The Fixed-Point Proximity Algorithm (FPPA)
addresses the general form [107]:
m)}n S X) + g(X) + h(LX), (42)
where f and g are proper convex functions with computable proximity
operators, h is differentiable and convex, and L is a linear operator.

The algorithm characterizes solutions through fixed-point equations. For

positive parameters 4, P, Q € S7, the solution satisfies:

U = prox p(U — P! X + P7'Xy)), (43)

X = prox; o(X+Q'U - %Q‘ILTVh(LX)). (44)

FPPA avoids matrix inversions required in ADMM through eigen-
decomposition techniques and provides guaranteed convergence for
three-term problems where ADMM convergence may fail.

8.5. The block coordinate descent (BCD) algorithm

The BCD algorithm is a popular method for solving large-scale opti-
mization problems. It iteratively optimizes a function by updating one
block of variables at a time while keeping the others fixed. This approach
is particularly effective when the objective function can be decomposed
into components that can be easily optimized over individual blocks.
The BCD minimizes problems of the form:
min (45)

min f(x) =
X X1,X2,. 005

X F Xy, Xg, 00 Xg),
where variable x is decomposed into s blocks x,,x,, ..., X, f is a real-
valued function, each x; belongs to R":. For each iteration k, BCD updates
each variable block xf‘*’l by minimizing the objective function over the
current block:

k+1
1o

k+1

xf“ Cxix

k k
1ot X Xy oo X

= arg n}‘in g(x;) = arg n}‘in f(x
This process is repeated cyclically for all blocks. BCD is widely used
because it is easy to implement and efficient for large-scale problems,
especially when each block update can be computed independently.
However, standard BCD can face slow convergence and instability when
dealing with nonsmooth or constrained objectives. To address this, the
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Algorithm 5: Block coordinate descent (BCD) algorithms.
Initialization: x° = (x?,xg, x0), k=1
while not convergent and k < Kmax do
fori=1,2,...,sdo
If BCD, update: x¥*! = arg miny g(x,),
If Prox-BCD, update:
xﬁ“’l = argmin,, g(x;) + %IIX; - Xfllzp-

end
end
return x¢*!

Proximal Regularized BCD (Prox-BCD) method incorporates a proximal
term into the objective function, which helps stabilize the updates and
improve convergence [119-121]. The Proximal-BCD algorithm first uses
a proximal point modification of (45) as follows

s
. Pi
min (X, %, ., X) + Y S = xE )13,
1:X0,.. Xy = 2

X

where %llxi — x¥||% is the proximal term added to the objective to
regularize the update, preventing large deviations from the current es-
timate x* and p; is a regularization parameter. Given x’ = (x‘l), x‘z’ XY
as an initial estimate, the algorithm updates the estimates of x*! =

(X’f“,xgﬂ, ...,x¥*1y alternately in the (k + D™ iteration as follows:
k+1 _ ; k1 L k+1 k+1 k Ky, Pi k2
X; —argrr;{}vnf(x1 2 Xy ""’X[_l’Xi’Xi+|""’Xs)+E”X_Xi 1%,

The complete algorithmic procedure for the two BCD algorithms is
detailed in Algorithm 5.

9. Data and tools
9.1. Motion capture datasets

9.1.1. CMU motion capture database

The CMU® contains motion capture sequences recorded using an op-
tical motion capture system available in both C3D and ASF/AMC data
formats. Data were captured using a Vicon motion capture system with
12 MX-40 infrared cameras, recording at 120 Hz with a 4-megapixel
resolution in a working volume of 3m x 8m. Subjects were equipped
with 41 markers and dressed in stylish black garments. The dataset en-
compasses recordings from several subjects performing various actions
across 6 categories: Human Interaction, Interaction with Environment,
Locomotion, Physical Activities and Sports, Situations and Scenarios,
and Test Motions. This collection includes a range of movements, in-
cluding simple walking motions and complex actions such as martial
arts, dances, and sports.

9.1.2. HDMO5 dataset

The HDMO5* contains more than three hours of systematically
recorded and well-documented motion capture data, available in both
C3D and ASF/AMC data formats. The dataset encompasses over 70 mo-
tion classes, each with 10 to 50 realizations performed by different
actors. Five actors performed several repetitions of each motion se-
quence, with additional freestyle sequences containing miscellaneous
motions recorded for some performers. Data were captured using a Vicon
MX system comprising twelve high-resolution cameras, with six operat-
ing in the visible red spectral range and six in the infrared spectral range.
All recordings were conducted at a sampling rate of 120 Hz. The cameras
were arranged to provide a viewing volume diameter of approximately
five meters.

3 http://Mocap.cs.cmu.edu/.
4 https://resources.mpi-inf.mpg.de/HDMO05/.
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9.2. MATLAB motion capture toolbox

The MoCap Toolbox® provides comprehensive functionality for an-
alyzing and visualizing motion capture data within the MATLAB envi-
ronment. Primarily designed for music-related movement analysis, this
versatile toolbox offers applications across various research domains. It
supports multiple industry-standard file formats, including.c3d, Qualisys
system’s.tsv and.mat formats,.bvh, and.wii format from WiiDataCapture
software. Researchers can leverage this toolbox’s specialized functions
to process, analyze, and generate visual representations of motion cap-
ture data, making it an essential resource for movement analysis studies
[122].

10. Discussion
10.1. Algorithmic complexity, robustness, and practical considerations

Different low-rank formulations offer distinct advantages and limita-
tions for motion capture data completion. Nuclear norm-based meth-
ods provide a convex relaxation of the rank minimization problem
and offer theoretical guarantees under certain incoherence conditions.
However, they require repeated singular value decompositions, with a
per-iteration complexity of O(mn min(m, n)) for an m x n matrix. This lim-
its their scalability to long motion sequences. Moreover, nuclear norm
minimization tends to over-shrink singular values, which may distort
important motion dynamics. While they are relatively insensitive to ini-
tialization, their performance depends on the choice of regularization
parameters, and they can be sensitive to noise, often requiring robust
variants with explicit sparse error modeling.

Schatten-p norm methods generalize the nuclear norm and provide
more flexible rank approximations. Their computational complexity re-
mains comparable to nuclear norm methods (O(mnr) per iteration),
but the inclusion of the parameter p introduces additional sensitivity:
smaller p promotes sparsity but may slow convergence, while larger p
behaves more like the nuclear norm. These methods can better preserve
dominant motion modes and reduce overshrinkage, but they demand
careful parameter tuning to balance accuracy and stability. In terms of
robustness, they handle moderate noise better than the nuclear norm,
yet may still fail under severe occlusion or highly corrupted sequences.

Matrix factorization approaches avoid repeated full SVD computa-
tions and reduce the per-iteration complexity to O(mnr). However, they
are inherently non-convex, and performance is sensitive to the choice
of rank r and initialization. Poor parameter selection may lead to con-
vergence to local minima. While factorization approaches are more
scalable, they are less robust to high levels of noise and outliers, since
the learned factors may overfit corrupted entries without additional
regularization.

Nonlinear kernel-based approaches project motion data into a
higher-dimensional feature space where low-rank assumptions become
more effective for capturing nonlinear dependencies among markers.
While they improve accuracy for complex or highly articulated move-
ments, this comes at substantial computational cost: kernel matrix
construction and decomposition typically scale as O(n?)-O(n*) with se-
quence length n, making them less suitable for long sequences. These
methods are highly sensitive to kernel choice (e.g., Gaussian, polyno-
mial, geodesic) and associated hyperparameters, such as kernel width,
which strongly influence recovery quality. Although they can be robust
to mild nonlinear distortions, their performance degrades with noisy or
mismatched kernel parameters, and their scalability remains a major
drawback in practice.

Tensor decomposition methods extend low-rank recovery to mul-
tidimensional data, preserving correlations across time, markers, and
spatial coordinates. CP decomposition incurs O(R(IJ + I K + JK)) per
iteration for an I x J x K tensor, while Tucker decomposition scales

5 www.jyu.fi/music/coe/materials/mocaptoolbox.
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with OIJR; + IKR, + JKR,). Although they capture complex multi-
modal dependencies and achieve high reconstruction accuracy, they
suffer from high computational demands and memory costs, limiting
their use for large-scale motion capture data. Parameter sensitivity is
also pronounced: choosing multilinear ranks (R,, R,, R3) requires empir-
ical tuning, and overestimation can increase computation without clear
accuracy gains. They are relatively robust to structured noise due to
multi-mode modeling, but remain sensitive to long-duration gaps and to
errors in marker placement.

10.2. Motion prior integration and trade-offs

Incorporating biomechanical and smoothness constraints into low-
rank formulations enhances the accuracy and realism of motion comple-
tion methods, but also introduces nontrivial trade-offs. Smoothness con-
straints are particularly common, as they are computationally tractable.
However, they implicitly assume continuity in motion trajectories that
may not hold across all movement types. The choice between different
orders of smoothness reflects prior assumptions about the underlying
motion dynamics. For instance, first-order constraints emphasize con-
stant velocity patterns and work well for cyclical activities such as
walking or running, whereas second-order constraints impose acceler-
ation smoothness, making them better suited for gestural or reaching
motions. The application of these constraints becomes problematic for
movements involving rapid changes or contact interactions. Jerky ac-
tions, collisions, or object contacts introduce discontinuities that directly
contradict smoothness priors. In such cases, constraints may lead to
reconstructions that are overly damped, lacking natural dynamics, or
stripped of distinctive features. To address this, a promising direction is
to develop adaptive or context-aware constraints that automatically ad-
just their strength according to the local motion dynamics. This would
ensure biomechanical plausibility in smooth segments while avoiding
the oversmoothing or distortion of highly dynamic movements.

Kinematic constraints such as bone-length preservation embed
anatomical knowledge into the recovery process. These constraints en-
force fixed skeletal proportions and joint connectivity, ensuring that
reconstructed poses remain biomechanically feasible. They also en-
hance robustness to missing markers by ruling out implausible limb
configurations. However, their effectiveness is highly dependent on ac-
curate skeletal calibration and reliable marker placement. In noisy or
uncontrolled capture environments, rigid enforcement of bone-length
constraints may conflict with corrupted data, introducing artifacts such
as unnatural joint angles or body distortions.

Biomechanical and smoothness priors provide strong guidance that
improves plausibility and recovery quality, particularly when data is
heavily corrupted or incomplete. At the same time, they narrow the solu-
tion space in ways that can exclude valid but unexpected motions. These
trade-offs highlight the need for future work on scalable, noise-robust
formulations that balance accuracy, efficiency, and physical realism
to enable reliable deployment of motion capture recovery in practical
applications.

10.3. Applicability across motion types

The effectiveness of low-rank methods fundamentally depends on
the underlying assumption that human motion exhibits low-dimensional
structure. This assumption proves robust for many common activities
but faces significant challenges across the full spectrum of human move-
ment. Periodic and semi-periodic motions such as walking, running, and
basic gestures hold strong low-rank characteristics due to their repetitive
nature and biomechanical constraints. The singular value decomposition
of such motions typically shows rapid decay, confirming that relatively
few principal components capture the majority of motion variance.

However, this fundamental assumption weakens considerably for
aperiodic or highly variable movements. Complex dance sequences
and freestyle sports activities exhibit substantially higher intrinsic
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dimensionality due to their unpredictable trajectories and creative vari-
ations. The effective rank of such motions can increase significantly
compared to repetitive activities, leading to proportional degradation
in completion accuracy. However, the inherent correlations between
joints and markers, enforced by the skeletal structure and biomechani-
cal constraints (e.g., bone length preservation, joint coupling), partially
mitigate this effect. Since bones impose fixed-length relationships, the
motion data still exhibit redundancies that reduce the effective rank rel-
ative to treating marker trajectories as fully independent. This structural
coupling explains why even complex, aperiodic motions remain partially
amenable to low-rank recovery, though with lower accuracy than highly
regular activities.

11. Conclusion and future directions

This paper provides a comprehensive review of motion capture data
recovery methods based on the low-rank structure. We have discussed
approaches that rely on motion properties and skeleton structure, as well
as methods centered on introducing low-rank priors. The integration of
kinematic constraints directly into the completion process, referred to as
MoCap data priors, has been used to refine the low-rank matrix comple-
tion problem. Moreover, the analysis of various low-rank priors provides
valuable insights into the diverse strategies employed in MoCap data
recovery. Matrix-based approaches such as nuclear norm minimization
and its Schatten-p norm extensions provide strong theoretical guaran-
tees but remain computationally demanding and prone to overshrinkage
of singular values. Matrix factorization reduces computational cost and
improves scalability but introduces non-convexity and sensitivity to ini-
tialization and rank selection. Kernel-based methods capture nonlinear
dependencies effectively but are computationally expensive and highly
sensitive to kernel choice and hyperparameters. Tensor decompositions
extend recovery to multidimensional data yet they remain limited by
high computational requirements. Finally, biomechanical and temporal
priors improve physical plausibility and robustness but may oversimplify
dynamics or introduce artifacts under noisy capture conditions. From
this comparative review, several future research directions emerge:

« Scalable algorithms: Current low-rank optimization methods often in-
volve repeated singular value decompositions or high-dimensional
tensor factorizations, which become computationally expensive for
long sequences or large-scale motion capture datasets. Future re-
search could explore randomized, or streaming (online) algorithms
that incrementally update low-rank factors, enabling real-time or
large-scale applications without sacrificing accuracy.
Integration of physical priors: Current constraint formulations (e.g.,
bone-length preservation, smoothness) are typically applied in a
fixed manner across all motions. However, their strict enforcement
may conflict with noisy or high-variability data. A promising future
direction is the design of context-aware or adaptive priors that adjust
constraint strength dynamically based on motion type, capture qual-
ity, or confidence in skeletal calibration. For example, bone-length
constraints could be relaxed when marker errors are detected, while
smoothness priors could adaptively scale depending on whether the
motion is cyclical or abrupt. Such adaptive integration could balance
physical plausibility with flexibility in diverse motion scenarios.

« Advanced tensor decompositions: Current tensor-based methods are re-
stricted to CP and Tucker decompositions, which face challenges
such as high computational cost and sensitivity to rank selection.
Future research could explore higher-order or alternative tensor for-
mats, including Tensor Train, Tensor Ring, and Hierarchical Tucker
decompositions. These models address some of the core limitations of
current approaches by providing more compact representations, im-
proving scalability to long sequences, and enabling multi-scale analy-
sis. Furthermore, higher-order decompositions allow the integration
of additional modes beyond the time-marker—coordinate structure,
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such as multi-subject interactions or multimodal signals, thereby cap-
turing richer spatiotemporal dependencies and improving robustness
in complex scenarios.

Multi-subject motion capture: Most existing algorithms assume single-
subject data, yet real-world applications often involve interactions
among multiple individuals (e.g., couples dancing, group sports, col-
laborative tasks). Extending low-rank formulations to multi-subject
scenarios requires capturing inter-subject correlations, handling
overlapping trajectories, and ensuring consistent skeletal calibration
across individuals. This represents an important but underexplored
direction that could expand the applicability of motion capture
recovery to richer social and collaborative contexts.
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