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Perturbative yEFT calculations of the deuteron and triton up to N’LO

Oliver Thim®,” Andreas Ekstrdm ®, and Christian Forssén
Department of Physics, Chalmers University of Technology, SE-412 96 Goteborg, Sweden

® (Received 15 October 2025; accepted 1 December 2025; published 22 December 2025)

We extend previous studies of the deuteron and triton ground-state energies to next-to-next-to-leading order
(N2LO) in chiral effective field theory, employing a power counting in which subleading interactions are treated
perturbatively. Triton calculations are performed using the no-core shell model, and we demonstrate converged
perturbative results for regulator cutoffs up to A &~ 1200 MeV. We analyze exceptional cutoffs in the *Py and
38,-D, nucleon-nucleon channels and find a resulting cutoff dependence in the triton ground-state energy at
N2LO. The effect associated with the exceptional cutoff in the 3P, channel can be mitigated by redefining the
leading-order wave function within the freedom allowed by the effective field theory. The same approach applied
in the 35,-D) channel remedies the effect of this exceptional cutoff on the ground state energy of the deuteron,

but not for the triton.

DOI: 10.1103/tjld-x141

I. INTRODUCTION

Chiral effective field theory (x EFT) promises a systemati-
cally improvable framework for deriving nuclear interaction
potentials consistent with quantum chromodynamics [1-3],
and in particular the spontaneously broken chiral symmetry
[4-6]. A power counting (PC) scheme facilitates the orga-
nization of nucleon-interaction Feynman diagrams in order
of decreasing importance. Each diagram carries a scaling
(Q/Ayp)’, where v is the chiral order, Q represents a typical
low-energy scale, e.g., the external nucleon momenta, and
A, is the xEFT breakdown scale, typically estimated to be
Ajp =~ 500-600 MeV [7,8] or possibly even lower [9].

In Weinberg PC (WPC) [2,3], the potential is constructed
from the sum of all relevant irreducible nucleon-contact
and finite-range interactions up to a given chiral order.
This potential is then iterated nonperturbatively using the
Lippmann-Schwinger or Schrodinger equation, where a cutoff
on the order of the breakdown scale is applied to regulate
the appearing divergences. This is the predominant approach
used in ab initio [10,11] computations of nuclear observables.
Quantitative potentials have been developed up to the fifth
chiral order within this scheme [12,13].

Amplitudes and observables computed in WPC are sensi-
tive to the value of the employed cutoff [14], which indicates
an unphysical regulator dependence of the results. Remov-
ing this, such that only a residual higher-order dependence
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remains, is referred to as attaining renormalization group
(RG) invariance [15]. In the nucleon-nucleon (NN) sector, this
can be achieved by promoting nucleon-contact interactions to
lower chiral orders together with treating subleading interac-
tions perturbatively [16].

There are several ongoing efforts to construct PCs that
render observables cutoff independent [17-29]. In particu-
lar, it has been shown that the PC proposed by Long and
Yang [16,24,26,30] performs well in the NN sector up to v =
3 [next-to-next-to-next-to-leading order (N3LO)] [9,31,32].
Furthermore, Song et al. [33] studied the triton up to next-
to-leading order (NLO) and Yang et al. [34] presented the first
studies of “He, SLi, and '°0, also up to NLO. In the latter
study, issues of a-cluster instability were encountered, pos-
sibly remedied by promoting few-nucleon forces to leading
order (LO) [35].

The cutoff dependence in the Long and Yang PC was ex-
amined in detail by Gasparyan and Epelbaum [36], who found
that the low-energy constants (LECs) for the next-to-next-to-
leading order (N’LO) contact interaction in the Py channel
diverge at certain exceptional values of the cutoff. This effect
is related to the perturbative calculation of amplitudes, and
appears to break cutoff independence beyond NLO since the
divergences in the LECs propagate to predicted observables.
Exceptional cutoffs were further studied in Refs. [37,38],
where it was demonstrated that cutoff independence can be
restored for NN scattering amplitudes by utilizing the EFT
freedom to adjust the LO wave function from which the
subleading amplitudes are perturbatively computed. However,
the effect of exceptional cutoffs beyond the NN system is un-
known, as they first appear at N>LO, for which no calculations
have been performed.

In this work, we extend perturbative x EFT calculations for
the triton, using the no-core shell model (NCSM) [39], up to
N2LO in the Long and Yang PC. We investigate the approach
of modifying the LO wave function to mitigate the impact of

Published by the American Physical Society
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TABLE I. Potential contributions in NN channels where OPE is
treated nonperturbatively and perturbatively, respectively. Detailed
expressions, numerical values for constants, and more discussion

TABLE II. LECs present in NN channels up to N2LO (see
Ref. [9] for details).

about the potential structure can be found in Ref. [9]. Channel LO NLO N2LO
Nonperturbative (at LO)  Purely perturbative 'So Cl( g; Cl(;; D (1(;)0 Cl(g()) D glsi, £ ‘(2;
Order Potential channels channels 3p, Dg?{) Dg;{), E;gi
LO Vo v 4y 0 P, Dy
NLO v v v 3Py DS}
VLo vy 0 sop .0 03
PP D5 D5, Ef, . Epy

exceptional cutoffs in the triton ground-state energy. To this
end, we also extend the analysis of exceptional cutoffs to the
coupled *S;—3D; channel (see also Ref. [40]).

The article is organized as follows. In Sec. II we briefly
discuss the Long and Yang PC up to N?LO as well as our
calibration of the LECs. The theory of exceptional cutoffs,
as presented in Refs. [36-38], is summarized in Sec. III and
extended to the coupled 3S;—3D; channel, with application
to the deuteron ground-state energy. In Sec. IV we present
perturbative computations of the triton ground-state energy
up to N2LO. Finally, Sec. V contains the conclusions and
outlook.

II. THE NUCLEAR INTERACTION UP TO N’LO
IN THE LONG AND YANG PC

Here, we briefly summarize the construction of the po-
tentials in the Long and Yang PC [16,24,26,30] and our
calibration of the LEC values. We will follow the procedure
of Ref. [9], which we refer to for further details.

The relevant pion- and contact-potential contributions up
to N2LO are summarized in Table 1. The potential at LO is
treated nonyerturbatively and consists of one-pion exchange
(OPE), Vl(f:, together with contacts, Vc(to), parametrized by
the LECs: Cl(gj, C3(21), D_g([)%, D_E(I),z. In channels where OPE
is singular and attractive, nonperturbative iteration requires
counterterms with associated LECs to ensure cutoff indepen-
dence [14]. This is why some P-wave counterterms have been
promoted to LO, where WPC only prescribes counterterms
in § waves. The short-distance singularity of OPE becomes
increasingly suppressed for higher orbital angular momen-
tum, which eventually enables a purely perturbative treatment
[23,41,42]. As a result, only a limited set of channels must be
iterated nonperturbatively at LO. These channels are listed in
the leftmost column of Table II.

Table I further shows the NLO potential, VO which con-
sists of two contact interactions in 'Sy (V") together with
OPE as the first contribution in the purely perturbative NN
channels. At N’LO, the leading two-pion exchange (Vz(j)) en-

ters with associated contacts (V,*) but there is no contribution
in the purely perturbative channels. Table II lists all the LECs
that parametrize the contact interactions from LO to N2LO.

All potentials are expressed in momentum space, and we
employ a nonlocal regulator

V(U)(p”p) — e*p’é/A6 V(V)(p’,p)e’I’G/A(” W

where A is the momentum cutoff. Here, p (p’) denotes the
ingoing (outgoing) relative NN momentum in the center-of-
mass (c.m.) frame and p = |p|.

We calibrate the values of the LECs using NN phase shifts
computed in distorted-wave perturbation theory and data from
the Nijmegen partial-wave analysis [43] (see Ref. [9]).

III. EXCEPTIONAL CUTOFFS
IN THE TWO-NUCLEON SYSTEM

In this section, we examine the emergence of exceptional
cutoff values, denoted A, at which subleading LECs diverge
in a manner that also leads to divergences in predictions for
NN observables. The appearance of exceptional cutoffs was
first studied by Gasparyan and Epelbaum [36], who traced
this effect to the oscillatory nature of the LO wave function
at r — 0, where we note that r < Ab’1 is outside the domain
of applicability of the EFT expansion. Exceptional cutoffs
were further investigated in Refs. [37,38], where two similar
approaches were proposed to remedy these divergences within
an EFT framework. Below, we summarize the origin of ex-
ceptional cutoffs, using 3P, as a first example, and extend the
analysis to the 38,-3D; channel (see also Ref. [40]).

A. The 3P, channel

The LO scattering amplitude in the 3Py channel, T©,
is computed nonperturbatively by solving the Lippmann-
Schwinger (LS) equation

TO —y© V(O)G(J)FT(O), )

with the free resolvent Gf = (E — Hy + ie)™", Hy = p*/my,
and the nucleon mass my = 2m,m,/(m, + m,) is defined in
terms of the proton and neutron masses. The explicit expres-
sion of the LS equation in the 3Py channel reads

TOW, p;k) =V, p) +/ dgq*v®(p, q)
0

my

L — 1) Do k), 3
e Y0 3)

where k is the on-shell momentum and the LO potential V ©
is projected to the * Py channel.

064008-2
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The NLO correction in the 3Py channel vanishes while the
N2LO contribution to the scattering amplitude reads

T? = v, +Q v, =1 + 1. @

—'ct

The parts containing the two-pion exchange and the contact
terms can be separated by linearity, and the Mgller wave
operators are defined as Q4 = 1+ GJT© and QF =1+
TGy . Following Ref. [36], the contact part of the on-shell
N2LO amplitude in the *Py channel can be decomposed as

TP (k, ks k) = Di) (M) YA (k) + ES)(A) 29a (¥ (K),
)]
where 1, (k) and ), (k) are closely related to the LO radial
wave function, R (kr), at the origin. For sharp cutoffs, as
employed in Ref. [37], the relations read
dRO (kr) Ialh) d*RO (kr)
— d s —
dr r=0 A dl’3 r=0

o Yrp (k). (6)

The N?LO contribution to the 3P, phase shift is computed
as [9]
pU)T® (k, k; k)

§Pk) = -
© 2iexp (2i80)(k))’

@)

where 8§© is the LO 3P, phase shift and p(k) = immyk. Since
8@ is linear in T® we can define the contribution 52 (8$”)

ot
from T2 (T, such that 82 = 6% + 5.
The renormalization conditions to fix the N>LO LECs, DSJZ
and E3(03, read [9]

8 (ki) =0, (8)

8V ky) + 8@ (kp) = Sexpi(ka). ©)

The on-shell momenta k; and k, correspond to laboratory
kinetic energies Tip =25 MeV and Tj,, = 50 MeV, re-

spectively, and Jepy is the Nijmegen phase shift [43]. The
conditions can be formulated as a linear system in the LECs

P3k)  29atk)iy (k) (DS
(&i(kz) 2@1\(/@)1/7}\(/(2)) (E3(23)
_ ( 82 (kn)/ p(ky) ) 10
(8P (k) + 82 (k) — Sexpi(k2))/ p(k2)

where we define two real-valued quantities v, (k) =
Ya(k)e™"® and 7} (k) = vy (k)e " ® [36].

The determinant of the matrix in Eq. (10) can approach
zero as the cutoff is varied, which leads to a singular system.
There are two scenarios in which this can happen:

(1) The function ¥ (k) — 0, for all k. This occurs when
the LO LEC, D§2,1, exhibits a limit-cycle-like di-
vergence. For the LO potential in this work a first
limit-cycle-like divergence appears at A = 679 MeV,
as shown in the top panel of Fig. 1. This type of zero is
not problematic since the product of the diverging LEC
and the vanishing short-distance piece of the wave
function remain finite, rendering observables cutoff

100 -
<t -1 -
i ] (0) »
> 50| PR 3
[} 4 -
@) ] L
< 0 7 -
[aw] - ﬁ—_
= ] C
—50 T T LI T T T T LI
. 100 T =
<t - -
| 1 (1) I E
© 3] [ -
@) . [ r
. 0 7 { =
[en} - -
e ] | L
—50 T T T T T T T T T T T T T
100 T -
© - -
| 1(e@ . :
S I ;
I : :
© 0 7 I _-
[en} - F
Z 7] 1 E
—50 T T T T T T T T T T T T T
640 660 680 700

A (MeV)

FIG. 1. Values of the LECs at LO (top panel) and N?LO (remain-
ing panels) in the 3P, channel as a function of the momentum cutoff,
A. The solid vertical line marks the location of the limit-cycle-like
cutoff, while the dashed vertical line marks the exceptional cutoff in
the given cutoff interval.

independent. Spurious deeply bound NN states are ap-
pearing at limit-cycle-like divergences [14]. However,
these can be projected out before carrying out calcula-
tions in the triton (see Sec. IV).

(2) The determinant can have a nontrivial zero when

Ua k)W) (ko) — Yra(ka)yry (ky) _
¥ (ki)

This condition is met for exceptional cutoff values, A,
for which the short-range part of the LO wave func-
tion conspires to make the rows of the matrix in Eq.
(10) linearly dependent [36]. As a consequence, the
LECs 05}% and E;gz diverge, and the renormalization
conditions can no longer be satisfied. In contrast to the
former case, these divergences propagate to observ-
ables that acquire an unphysical cutoff dependence in
the vicinity of A.

0. (11

The two lower panels of Fig. 1 display the 3P, LECs at
N2LO as a function of the cutoff in the range relevant for the
triton calculations in the following section. The solid vertical
line shows the location of the limit-cycle-like cutoff at A =
679 MeV, while the dashed vertical line shows the location of
an exceptional cutoff, A = 670 MeV. The short-distance part
of the LO wave function oscillates increasingly for greater
cutoff values, leading to a repeating pattern of limit-cycle-like
and exceptional cutoffs [36]. Note that the exact locations
at which the limit-cycle-like and exceptional cutoffs appear
depend on the choices of regulator function and constants in
the potentials.

064008-3



THIM, EKSTROM, AND FORSSEN

PHYSICAL REVIEW C 112, 064008 (2025)

Exceptional cutoffs and their relation to the LO wave func-
tion are further studied in Appendix A, where a toy example
(not including singular potentials) is presented.

B. The 3S;-*D, channel and the deuteron

Let us continue to investigate exceptional cutoffs in the
38,-3D; channel at N>LO and their impact on the coupled-
channel phase shifts and the deuteron ground-state energy.
See Appendix B for complete derivations as well as additional
figures. Using notation analogous to the previously discussed
3P, case, the renormalization conditions used to determine the
38,-D; LECs at N’LO are given by [9]

8 (ki) =0,
8V (k2) + 85 (ka) = 80 expr(k2),
€V (ky) + € (kp) = €expr(ka). (12)

Here, k| (k) corresponds to Tj,, = 30 MeV (71, = 50 MeV),
and 8" denotes a phase shift in the £ =0 channel while
€™ is the mixing angle at chiral order v. Equations (12) can
be transformed into a matrix equation for the N>LO LECs
= — (D 0 O
(a(Z))T = (C3Sl ) D}sl ) DSD)9
A =3, (13)

which is completely analogous to Eq. (10) [see also Eq. (B16)
for details].

Figure 2 shows the LECs in the 3§;-3D; channel as a
function of the cutoff. It can be seen that the LO LEC exhibits
a limit-cycle-like divergence, while the N?’LO LECs show
additional divergences at the exceptional cutoffs. We have
verified that the location of the limit-cycle-like and excep-
tional cutoffs agrees with the zeros of the determinant of A in
Eq. (13).

Having analyzed the location of the exceptional cutoffs
in 38,-3D;, we now study predictions for the ground-state
energy of the deuteron, E,, as a function of the cutoff. In
Fig. 3 we show E; at LO and N2LO, since the NLO contri-
bution is zero in the 3S;—3D channel (see Table I). The N*LO
prediction diverges at the exceptional cutoffs, first appearing
near A = 930 MeV and more prominently at A = 1340 MeV.
This pattern of exceptional cutoffs in the *S;—>D; channel is
consistent with the findings in Ref. [44].

It was demonstrated in Ref. [36] that exceptional cutoffs
in the 3P, channel typically occur at values slightly below a
corresponding limit-cycle-like cutoff. In the coupled S;—*D;
channel, we observe a slightly different pattern, and the ex-
ceptional cutoff does not always appear directly below an
associated limit-cycle-like cutoff. One such example is the ex-
ceptional cutoff at A = 1340 MeV. The findings in Ref. [40]
suggest that applying the shift A is not sufficient when treat-
ing this next exceptional cutoff at A = 1340 MeV; for that
case they instead propose a strategy based on adjusting the
renormalization momenta k; and k.

We will now study the exceptional cutoff at A = 930 MeV
in more detail. This is also the one most relevant for the up-
coming triton calculations. Following Ref. [37], we exploit the
freedom within the EFT to slightly modify the LO potential to

— 5] T [
T ] | 1 f
> ] I r
S 0] ! —r
¥ 1[~© -
2 Gs) L f
_5 |IIIIIIIIIIIIIIIIIIIIII||||||
o 03 1 1 F
] I 1 f
= . I 1 F
O —2500 7 1 1 F
<+ [~ ) ! I F
2 5000 4“5 A Ik
||||||I||||||||||||||||||||!||
— 3 I Ik
- 100 ; :
> ] I I f
[« 1 -

0 - 1 | -
© 1! i
o :.D 1 I
= —100 L3251 B

_|||||||||||||||||||||||||||||_
—~ ] T L
o 200 ] P
> ] i B
()

0 - 1 | L
© ; I "
o 1lp@]1 I L
2 00 4Psn) 1k

TT T T[T I T T[T T T T[T T T T[T T TT T TTT

800 900 1000 1100 1200 1300 1400
A (MeV)

FIG. 2. Values of the LECs at LO (top panel) and N?LO (remain-
ing panels) in the 3S,—*D; channel as a function of the cutoff, A. The
vertical solid line indicates the location of a limit-cycle-like cutoff,
while the vertical dashed lines indicate the location of exceptional
cutoffs.

temper the divergence in E; at this exceptional cutoff. Such
modifications are consistent with EFT principles, provided
they can be perturbatively corrected at subleading orders. In
practice, we modify the potential by shifting the calibration
datum for the 38, phase shift at T, = 30 MeV. Thus, we

*1.6—_ [ ; ; L
b I | | r

—1.8 - | -
E ] \-’l/‘l : N
] '] | i r

~ —2.0 — -
- I 1 2 | -

s 1 1 | N
22 e e LEL-|
] | I I r

] I 1 | =

_2-4 |IIII|IIII|IIII|IIII|IIII

500 1000 1500 2000 2500 3000
A (MeV)

FIG. 3. The ground-state energy of the deuteron, E;, at LO and
NZ2LO as a function of the cutoff A. The vertical solid lines indicate
the locations of the limit-cycle-like cutoffs, while the vertical dashed
lines indicate the locations of the exceptional cutoffs. The horizontal
dashed line shows the experimental value for E,;.
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FIG. 4. Phase shifts in the >S; channel as a function of the labo-
ratory scattering energy, T, for LO (green) and N?LO (orange). The
bands indicate the envelope of cutoff variation from A = 750 MeV
(dashed lines) to A = 1000 MeV (solid lines). Note that the NLO
contribution in *S,-*D; is zero. The red star shows the phase shift
used to calibrate the LO LEC, which is shifted —3°, 0°, and +3°
compared to the Nijmegen [43] phase shift in the top, middle, and
bottom panels, respectively. The black dashed line shows the phase
shift from the Nijmegen partial-wave analysis [43].

define a new LO calibration phase shift as
83S1,expt(k1) g 83S1,expt(k1) + A. (14)

In Fig. 4 we show the *S; phase shifts resulting from different
choices of A. While the LO phase shift is affected by A, this
dependence is perturbatively corrected at N2LO (see also Fig.
19 in Appendix B for the remaining coupled-channel phase
shifts).

In Fig. 5 we show the predicted deuteron ground-state
energy at N2LO with suitably chosen shifts, A = —3°, 4-3°,
and 0° in different cutoff regions. By altering the calibration
phase shift, we modify the LO potential and the resulting LO
wave function. This results in the exceptional cutoff being
shifted toward lower (higher) values for a negative (positive)
shift A. By imposing a A-dependent shift A, the exceptional
divergence in E; can be avoided altogether at N?LO. The
shift is applied only when computing predictions beyond LO.
Moreover, since a N’LO prediction is obtained as the sum
of the LO, NLO, and N2LO contributions, the effects of A
at LO and NLO are not meaningful separately. Note that the
unshifted LO prediction is the one shown in Fig. 3.

—1.0 g u

—1.5 -
TV g
ﬁ —2.0 C
= ———"—"~"~ " -
KR -2.5 =

ad _ (Aa=+3°]) 1 [Aa=-3) (a=0°) 5_

900 920 940 960 980 1000
A (MeV)

FIG. 5. Predicted deuteron ground-state energy at N?LO as a
function of A for different values of the shift A. The solid lines
in each cutoff region correspond to shifts A = +3°, —3°, and 0°,
respectively, as defined in Eq. (14). The dash-dotted line shows the
result for A = 0°, and the dashed line shows the experimental value
for E,.

IV. THE THREE-NUCLEON SYSTEM UP TO N*LO

In this section, we predict and analyze the ground-state
energy of the triton up to N’LO within the Long and Yang
PC scheme. To solve the time-independent Schrodinger equa-
tion for the three-nucleon system, we employ the NCSM,
formulated in relative (Jacobi) coordinates [45], as illustrated
in Fig. 6. The NCSM python code that we developed for this
purpose is publicly available [46].

A. The NCSM in Jacobi coordinates for the triton

The three-nucleon system can be described using basis
states:

Intmy) @ INLmg) ® |(s3)Sms) @ |(¢3)Tmr),  (15)

where eigenfunctions of the three-dimensional spherical har-
monic oscillator (HO) |némy) and |N Lm,) form a basis for
the Jacobi-coordinate states |&;) and |&,), respectively. The
oscillator length, b, entering these eigenfunctions is related
to the HO frequency, w, as b = (myw)~/%. Moreover, s and ¢

X 61

FIG. 6. A system of three nucleons described by Jacobi coordi-
nates &, and &,.
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denote the coupled spin and isospin of nucleons 1 and 2 while
S and T, with associated projections mg and my, denote the
total spin and isospin for the two-nucleon subsystem coupled
with the third nucleon.

With coupled angular momenta, more convenient three-
nucleon basis states are formed as

= [nN(€)j(L5) T3 (GT)Imy) @ | (13) Tmr).
(16)

The quantum numbers m; and my are dropped by rotational
symmetry and assumed isospin symmetry, respectively, and
we use o = (nNesjtLT). Here, j denotes the total angular
momentum of the relative system of nucleons 1 and 2, while
J is the total angular momentum of nucleon 3 relative to
the c.m. of nucleons 1 and 2. Furthermore, J denotes the
total angular momentum of the three-nucleon system. The
two-nucleon subsystem is antisymmetric by the condition
(—=1)¥*" = —1. Hence, the basis states in Eq. (16) are only
partially antisymmetric.

Fully antisymmetric basis states are constructed by diag-
onalizing the three-particle antisymmetrizer in the partially
antisymmetric basis, following Ref. [45]. This antisym-
metrizer is diagonal in the quantum numbers (N, J, T'), where
N =2n+ £ + 2N + L. Fully antisymmetric states can be ex-
pressed as

INIT.y) = ),

o 2nt+et
2N +L=N

120; JTINJT, y)|o; JT )15,  (17)

where y enumerates states of fixed (N, J, T'). The complete
set of fully antisymmetric states, {|I")}, for a specific spin,
parity, and isospin (J™, T') can now be obtained from Eq. (17).
The model-space basis is truncated by total HO energy, i.e.,
only allowing states with N < Npax.

B. The triton at leading order

The LO three-nucleon Hamiltonian in the c.m. frame reads
3 2 3
1 P —pj)
) _ ! J (0)
H . = 3 E —N + E Vij . (18)

2m

i<j=1 i<j=1
Here, my denotes the nucleon mass, p; the ith nucleon mo-
mentum in the c.m. frame, and Viﬁ.o) the LO two-nucleon
potential for nucleons i and j. We neglect the mass difference
between the proton and the neutron [47].

We are interested in the triton ground state and construct
basis states with (JU,T) = (%Jr, %) according to Eq. (17).
The Schrodinger equation is solved by diagonalizing the LO
Hamiltonian in this fully antisymmetric basis,

Y (CIHG DY) = EOC[e”),  (19)
=

and the full spectrum {|\¥,§0)),E,£O)}k can be obtained. We
employ HO frequencies w € [10 MeV, 125 MeV]—where
the large values are needed for computations with high-
momentum cutoffs—and consider basis truncations up to
Nmax = 46. The sizes of the partially and fully antisymmetric

_ —5.8990 - —2.0 7 -
= 1 A=500 MeV| 1 A=1560 MeVE
< ] - 2.5 =
S 58995 |*0—e—o o ] F
= N [ —3.0 =
[ﬂ _59000 IIIIIIIIIIIIIIII' _35 IIIIIIII'IIIIIIII

38 40 42 44 46
NH]&X

38 40 42 44 46
Nmax

FIG. 7. The triton ground-state energy at LO for A = 500 MeV
(left), and A = 1560 MeV (right). The HO frequency of the varia-
tional minimum is chosen for each Np,y.

bases for Np,x = 46 are 19000 and 6336, respectively. This
means that exact diagonalization of the full Hamiltonian is
possible and that the complete spectrum of states can be
obtained. Knowledge of the full LO spectrum will be impor-
tant when we compute the N>LO corrections in perturbation
theory.

The convergence of the triton ground-state energy is shown
in Fig. 7 as a function of Ny, for different cutoffs. In this
work we consider cutoffs up to A = 1560 MeV. As the cutoff
increases, it becomes increasingly challenging to obtain con-
verged results.

Our strategy to extend the reach of NCSM calculations to
large cutoff values combines the use of bases with large HO
frequencies (to handle ultraviolet physics) with an infrared ex-
trapolation technique [48]. This implies that computations are
mainly performed for HO frequencies higher than those corre-
sponding to the location of the variational minimum, and that
the NCSM basis parameters are translated to relevant infrared
and ultraviolet scales [49]. Infrared-extrapolated LO ground-
state energies, nggmm, are shown in Fig. 8 together with the
variational minimum for Ny, = 46, E . = min,, E©(w).
The extrapolated energy appears to reach a plateau when A
is increased, consistent with the findings of a similar study in
Ref. [33] using the Faddeev equations.

The obtained ground-state energy shown in Fig. 8 was
found to be sensitive to the calibration procedure used to
fix the LECs. We observed a variation of the triton ground-
state energy of ~1 MeV if we, instead of low-energy phase

-3
] e |
] -e- 5O Bl

varmin -

- 0) e~ -
1 o pO I
/>\ —4 extmin |
) - -
% - -
oo h -
g —5 1 -
—6 LN S s S S s S e S S S e s e e e ey ol

600 800 1000 1200 1400 1600
A (MeV)

FIG. 8. Triton ground-state energy at LO as a function of the
momentum cutoff, A. The dashed (solid) lines show the variational
(infrared extrapolated) energies.
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shifts, calibrated the two S-wave LECs to the singlet scattering
length and the deuteron ground-state energy. This is consistent
with the findings reported in Ref. [33] and suggests that a
more robust calibration procedure is required to draw quan-
titative conclusions about the quality of the predictions—a
task we leave for future work. Spurious deeply bound NN
states appear in the *Py and 3S;—*D channels as the LO LECs
exhibit a limit-cycle-like divergence, i.e., for cutoffs A > 679
MeV. These spurious states need to be projected out from the
NN spectrum before performing triton calculations. We do
this using the technique of orthogonalizing pseudopotentials
[14,33,50]. This is implemented by transforming the LO po-
tential as

VO S vO LN 100l (20)
¢

where |¢) denotes the spurious NN states and A4 a large pos-
itive constant of order 108 MeV. This procedure removes the
effect of the spurious states in the triton wave functions at LO.
It turns out that this projection is sufficient to also remove the
effect of the spurious states in subleading corrections, which
is verified in the following section.

C. The triton at subleading orders

Subleading corrections to the triton ground-state energy are
computed in perturbation theory, where the NLO contribution
reads

ED — \IJ(O)| Z V(1)|\I—’(O) 1)
i<j=1

In this work we are only interested in the ground-state energy.
Therefore, only the LO ground-state wave function, |lIJ(()0)), is
needed to compute the NLO perturbation.

The N2LO contribution to the ground-state energy is

E(Z) \I—’(O) | V(z) | \IJ(O)
l<j21
+ Z | \IJ(O)| Zl<] 1 V(l) Is’?))‘z

m7#0

where two insertions of the NLO potential and one inser-
tion of the N2LO potential contribute. Note also that the
N2LO correction to the ground state requires the full LO
spectrum {|W®) E©}  Although the energy denominator
(E{” — E©) suppresses highly excited states in Eq. (22), we
find that all states must be considered to obtain a converged
result.

Perturbative corrections from NN channels with LO spu-
rious states (P, and 3S,-°D)) first enter in the expectation
value of the N’LO potential in Eq. (22). We confirm that this
expectation value is free from the interference of spurious

states by numerically verifying the relation

3
WO DT A= Py VP = Py | W)

i<j=1

— 1y (U] Z v w), (23)
i<j=lI

for sufficiently high values of A4. The projectors for the ij
subsystems are defined as (1 — Py);; = (1 — Z¢ [d)(DD)ij-

We compute NLO and N?LO contributions to the triton
ground-state energy for different values of w and Ny.x and
for cutoff values in the range 500 < A < 1560 MeV. Results
for a few representative cutoff values are shown in Fig. 9.
We immediately notice that the variational principle does not
hold beyond LO, as expected for a perturbative calculation.
In particular, E?® in the lower-left panel shows a concave
parabolic behavior as a function of w for all studied values
of Npmax. This complicates the selection of @ for assessing
the convergence. We observe that the convergence in Npax
becomes slower as the chiral order and cutoff increase. Never-
theless, within the range of Ny, considered, the perturbative
corrections show a decreasing dependence on w, indicating
the expected convergence with increasing basis size. As a
result, we obtain reasonably converged results at N°LO for
A <1200 MeV.

Figure 10 shows the order-by-order predictions for the
ground-state energy of the triton, i.e.,

v

=> EP. (24)
=0

Enxvio

At each cutoff, we use the HO frequency of the LO variational
minimum for all orders and do not include any IR extrap-
olations at LO. Our results at LO and NLO are similar to
previous studies [33,34]. For the new N2LO result, however,
we observe a strong cutoff dependence in the vicinities of
A = 650 MeV and A =~ 900 MeV. This cutoff dependence
will now be investigated in more detail.

D. The effect of exceptional cutoffs in the triton

To understand the divergent behavior of the triton ground-
state energy at N2LO, it is instructive to study contributions
from specific NN channels. We define the contribution at NLO
and N2LO from different NN channels, X, as

3
B = (00| Y Bev e ), e
i<j=1

(2) (0)| Z Py (Z)PX|\IJ(()O))
i<j=lI

(3" | 30 o PeV Py v )
+ Z E(gO) _ Er(no)

(26)
m#0

Here, Py denotes a projector onto an NN channel X € Cyy =
{'So, Py, 'P1, Py, 38Dy, .. )
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FIG. 9. Contributions to the triton ground-state energy at LO (top row), NLO (middle row), and N’LO (bottom row) as a function of the
HO frequency, w, for different model-space truncations Np.x. The columns show results for three different cutoffs, A. The vertical dashed lines
indicate the LO variational minimum. Note that the w interval varies with the cutoff.

The NLO expectation value is linear in the projector and
the decomposition becomes additive:

EV = 3" E.

XECNN

27

As such, the contribution from a given NN channel is well
defined. However, the second term in Eq. (26) is not linear
in the projections, so defining a contribution from a given
channel depends on how cross terms are treated, and as such

0 . |

] i

z ] e e
S SR |
Ak :

800
A (MeV)

1000 1200

FIG. 10. The ground-state energy of the triton up to N2LO as
a function of the momentum cutoff, A, computed in the NCSM.
The HO frequency of the LO variational minimum for Ny, = 46
is used at all orders (see Fig. 9). The black dashed line shows the
experimental value [51].

the decomposition is ambiguous. However, if one removes
VST)) from the NLO potential (see Table I), only the 'Sy channel
would have a nonzero contribution in the second term, and
unambiguous channel projections are possible. Our computa-
tions show that V]g?) only yields a percent-level contribution to
the second term of Eq. (26) such that approximate additivity
also holds at N*LO:

@) o 2
E®~ Y EP.
XECNN

(28)

Channels of particular interest for this study are 3P, and
38,-3D,, for which we have observed exceptional cutoff val-
ues. In Fig. 11 we show the N2LO contributions, E)((z), for
these channels. These results confirm that the first divergence,
at A =~ 650 MeV, originates from the 3Py channel, while the
second, at A ~ 900 MeV, originates from the 38,-*D; chan-
nel. In the latter case, we also observe a broad domain of
cutoffs with A < A over which the triton ground-state energy
is impacted. We will now investigate whether these diver-
gences can be avoided by shifting the LO wave function using
the same approach as in the NN sector explored in Sec. III.

E. Shifting the LO triton wave function

Nominally, we calibrate the LO 3Py LEC to the Nijmegen
phase shift at T, = 25 MeV [9]. In an attempt to resolve the
exceptional cutoff divergence at A &~ 650 MeV, we make use
of the EFT freedom to modify the LO potential, following
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FIG. 11. Channel contributions, E)((Z), for X = 3P, (solid line) and
X =35,-D, (dashed line) computed using Eq. (26).

the approach outlined in Sec. III B [37]. We define the LO
calibration data point by slightly moving the value for the
Nijmegen phase shift:

83P0,expt g 83P0,expt + A, (29)

where we introduce a shift A € [—3°, 3°]. Figure 12 shows
the 3Py phase shifts for three different values of A. Clearly, the
LO phase shift varies considerably for the different A’s while

20

10

d3 Py (deg)

20

10

ds Py (deg)

20

10

63 Py (deg)

0 50 100 150 200
Tiap (MeV)

FIG. 12. Phase shifts in the P, channel as a function of the
laboratory scattering energy, Ti, for LO (green) and N?LO (orange).
Note that the NLO contribution in 3P, is zero. The bands indicate
the envelope of cutoff variation from A = 500 MeV (dashed lines)
to A = 790 MeV (solid lines). The red star indicates the LO phase
shift used to calibrate the LO LEC that is shifted —3°, 0°, and +3°
compared to the Nijmegen [43] phase shift in the top, middle, and
bottom panels, respectively. The black dashed line shows the phase
shift from the Nijmegen partial-wave analysis [43].
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FIG. 13. The triton ground-state energy at N>LO as a function of
the momentum cutoff. The colored solid lines in each cutoff region
correspond to shifts A = —3°, +1°, and 0°, respectively, as defined
in Eq. (29) for the 3P, channel. The gray dash-dotted line shows the
A = 0° result across all cutoffs. The black dashed line shows the
experimental triton ground-state energy [52]. All calculations use
Niax = 46, and the HO frequency, w, is chosen as the LO variational
minimum at all orders.

the N%LO phase shift does not. This observation indicates that
the effect of the arbitrary shift can be perturbatively corrected
at higher orders.

Figure 13 shows predicted triton energies up to N’LO us-
ing LO potentials with shifts A = —3°, 41°, and 0°. The gray
dash-dotted line shows the computation for A = 0° across all
cutoffs, where the exceptional divergence is visible. The loca-
tion of the exceptional cutoff is shifted toward lower (higher)
cutoffs for a negative (positive) shift A. Consequently, by
choosing different values for A in distinct cutoff regions,
a finite prediction for the triton ground-state energy can be
achieved at N2LO. As discussed in connection with Fig. 5, the
shift in the LO potential is only introduced when computing
the N2LO prediction. The LO and NLO predictions are still
obtained with A = 0° for all cutoffs.

For A 2 800 MeV, the effect of the exceptional cutoff in
the 3S;—2D; channel needs to be addressed. In Sec. IIIB we
demonstrated how to modify the LO wave function in this
channel to resolve the divergence caused by the exceptional
cutoff for the deuteron ground-state energy. When applied to
the triton, the results are less encouraging. In Fig. 14 we show
the triton ground-state energy at N?LO for different shifts,

0.0 7= -
; s |

72.5 ] o I

< 1 A=0 -
% ] —_— A = 30 r
= —5.0 =+ -
\m/ . —— A=+46° [
& 75 -
~10.0 3 -

800 900 1000 1100 1200
A (MeV)

FIG. 14. Triton ground-state energy at N>LO as a function of the
cutoff. The lines with different markers show the predicted energy
for different shifts, A, in the 3S,—*D; channel [see Eq. (14)].
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A € [-3°,6°], as defined in Eq. (14). The effect of applying
the shift is smaller compared to the 3Py channel. Although the
location of the exceptional cutoff moves slightly, the change
is not sufficient when compared to the range of cutoff values
over which the divergence impacts the triton ground-state
energy. Therefore, the strategy of applying different shifts in
separate cutoff domains to remedy the effects of the excep-
tional cutoff does not appear to be effective in this case.

There is the possibility of exploring larger shifts in the
35,=3D; channel since the relative size of the LO shift is
much smaller in 3S;—3D; compared to 3P, (see Figs. 4 and
12). However, for shifts A = 6° or A < —3°, the obtained LO
deuteron ground-state energy cannot be perturbatively cor-
rected at N2LO. Thus, we do not see this as a viable approach
to avoid the divergence observed in Fig. 14.

V. CONCLUSIONS AND OUTLOOK

In this work, we have taken the first steps of using the PC
by Long and Yang in the few-nucleon sector up to N’LO in
perturbation theory. We employed the NCSM to perform per-
turbative computations for the triton ground-state energy, and
obtained converged results for cutoffs A < 1200 MeV. We
have reviewed how so-called exceptional cutoffs arise in the
NN system in this PC [36,37] and extended previous work by
considering also the coupled *S;—*D; channel. We predicted
the triton ground-state energy up to N>LO and interpreted the
results using our understanding of exceptional cutoff values.

The conclusions can be summarized as follows.

(1) We show that exceptional cutoffs also arise in the
381—2D; channel, where the pattern of appearance is
slightly different compared to the 3Py channel. In par-
ticular, exceptional cutoffs appear at more irregular
locations and not just below an associated limit-cycle-
like cutoff (see Fig. 2). For example, one exceptional
cutoff appears at A ~ 1340 MeV, whose effect is ob-
served in the triton calculations (see Fig. 10).

(2) The predicted deuteron ground-state energy at N’LO
diverges at the exceptional cutoffs (see Fig. 3). We
apply the method proposed in Ref. [37] to shift the LO
wave function and successfully remove the effect of
the divergences (see Fig. 5).

(3) We can obtain converged perturbative computations
of the triton ground-state energy using the NCSM

up to the cutoff A &~ 1200 MeV. However, effects of
exceptional cutoffs in the *Py and 3S;—*D; channels
propagate to the triton N’LO result producing diver-
gences (see Figs. 10 and 11).

(4) We demonstrate that the method proposed in Ref. [37]
effectively removes the exceptional cutoff divergence
originating from the 3Py channel in the triton at N>LO,
as shown in Fig. 13. However, we find that the same
method is not well suited for taming the effect of the
exceptional cutoff stemming from the 3S;—3D; channel
(see Fig. 14).

The appearance of exceptional cutoffs seems to be inti-
mately related to applying perturbation theory using a LO
wave function with uncontrolled short-distance behavior. A
recent study systematically investigated the connection be-
tween exceptional cutoffs and regulators [53]. The findings
suggest that exceptional cutoffs can be avoided by using a suit-
able type of regulation—which remains to be studied further.

Furthermore, the order-by-order convergence of few-
nucleon observables should be investigated in more detail.
This requires an improved method of inferring the LECs
such that the EFT error can be properly assessed to facilitate
more robust predictions. The effect of including three-nucleon
forces [54,55] should also be investigated.

Exceptional cutoffs currently present a challenge for re-
liably computing nuclear observables beyond NLO for A 2
650 MeV. Howeyver, as seen in our deuteron results, there are
wide regions at A 2 1500 MeV without exceptional cutoffs,
implying that the divergences can be avoided in principle. This
region remains challenging to access in many-body compu-
tations. There are fortunately no exceptional cutoffs in the
vicinity of A &~ 500 MeV where many-body computations
can be converged. Studying heavier-mass nuclei at relatively
low cutoffs therefore provides an opportunity to analyze the
predictive differences between perturbative schemes (guided
by RG invariance) and the nonperturbative WPC commonly
employed in xEFT.
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APPENDIX A: TOY PROBLEM OF EXCEPTIONAL
BEHAVIOR IN THE NONSINGULAR 'S, CHANNEL

The appearance of exceptional points is connected to the
properties of the LO wave function, i.e., the distorted wave
when computing subleading corrections. It is not a feature
intrinsic to singular potentials, but can also appear as a non-
singular potential is made more attractive. We will illustrate
this appearance, and the role of the LO wave function, with a
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toy scenario that involves variation of the axial coupling, g4,
in the LO potential.

We consider the 'Sy partial wave and the LO potential
according to Table I, with A = 500 MeV. We vary g4, which
controls the strength of OPE, and adjust the LO LEC to
reproduce the empirical ' Sy phase shlft [43] at Tja, = 40 MeV.
The resulting value of the LEC, c® S0 is shown in the left-hand
panel of Fig. 15 and a divergence is observed, analogous to
the limit-cycle-like divergence at LO in Figs. 1 and 2.

Furthermore, we add the NLO correction in 'S, perturba-
tively (see Table I) and the two LECs C(l) and D(O) are fixed
by reproducing the empirical phase shlfts at T, = 50 MeV
and Tj;» = 80 MeV. The NLO LECs as a function of g4 are
shown in the middle and right-hand panels of Fig. 15. Here
we observe two divergences, one where the LO LEC diverges
and one for a slightly lower value of g4. We can now see that
Fig. 15 is completely analogous to Fig. 1, but now g, is varied
instead of A.

The predicted 1S, phase shift at Tj,, = 60 MeV is shown
in Fig. 16. It can be observed that this prediction diverges
at g4 ~ 4.023, which is the same value indicated by the red
vertical line in Fig. 15. This means that for g4 ~ 4.023 we
cannot find NLO LECs with the renormalization conditions
used. The situation is completely analogous to what happens
at an exceptional cutoff.

This toy computation illustrates that the LO wave function
seems to behave similarly when the potential (i) is singular
and the cutoff is increased and (ii) is nonsingular and its
strength is increased. This can explain the qualitative similar-
ity of Figs. 1 and 15, even though the independent variable
is different. Therefore, it might be beneficial to study the
problem of exceptional cutoffs in the Long and Yang PC
(and modified Weinberg power countings (MWPCs) in gen-
eral) from the perspective of an “exceptional strength” of the
LO potential, or simply an “exceptional” LO wave function.
Interestingly, a recent work [53] couples the appearance of
exceptional points to the way the potentials are regulated.
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FIG. 17. Same as Fig. 2, but for a larger cutoff interval.
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A. The vertical solid line indicates the location of a limit-cycle-like
cutoff, while the vertical dashed lines indicate the location of the
exceptional cutoffs—in this cutoff interval.

APPENDIX B: EXCEPTIONAL CUTOFFS
IN THE *S,-*D; CHANNEL

To study exceptional cutoffs in the 3S;—>D; channel, we
can proceed in the same way as for the 3P, channel [36]. The
goal is to arrive at an equation similar to Eq. (10), but for the
N2LO LECs in the 3S;->D; channel.

We consider neutron-proton scattering, where a neutron
with laboratory kinetic energy Tj,, impinges on a proton.
The LO amplitude in the 3S;—3D; channel, 7@, is obtained
(nonperturbatively) by solving the LS equation

TO =vO 4+ vOGT?, (B1)

where the free resolvent is given by

we solve the partial-wave projected LS equation

T k) =V )+ Y / dp"p"Vyp ' ')
Z//
my (0)

X it T, (", k)

(B3)
to obtain the scattering amplitude Te(,g)(p’, p; k). Here, p (p')
denotes the modulus of the ingoing (outgoing) relative mo-
mentum in the np scattering process, and £ (¢') denotes the
ongoing (outgoing) angular momentum quantum number. The
modulus of the on-shell momentum, k, is related to the labo-
ratory kinetic energy, Tiup, as
mlz,ﬂab(zmn + Tiab)

k= > ) (B4)
(mn + mp) + 2’fnpjiab

The NLO contribution in the 3S;—*D; channel vanishes
while the N?LO potential is nonzero and gives the N*LO
amplitude as

T® =@ 1 T®

ct
2
7O = tv@q,,
2 2
T( ) of V( Q.

LVy (BS)
where we separate the parts coming from the two-pion ex-
change and the contact terms. The Mgller wave operators are
definedas Q4 =1+ GfT® and @' =1 +T7OG;.
We can write the N’LO contact potential as a matrix
in € [9],
&) ©) . 2 0) 2
2) _ 1 C3S1 +D3S](P/ +P ) DSDP (B6)
T @2r)3 DO 2 ’
spP

and the contact part of the on-shell 7 matrix can be decom-

= (E —Hy+ie)™!, (B2)  posed as
T(2) QF V(Z)Q T(Z)C(l) T(2)D§0) T(Z)D(O). B7
and Hy = p?/my. Here, p denotes the NN relative momentum 0" Cs, T T Dsg, + 1" Dsp- (BY)
in the c.m. frame and my denotes the nucleon mass. Explicitly, An explicit calculation gives
|
Ve Voo.0¥20, 2%00,0% 00, Y00,0¥20,2+ V00,2920,
TO® ki k) = 0.0 00 02 20,0 C3(;)+ 00,0%00,2 00,0%20,2+%00,2¥20,0 D§§)
Y00,0¥20,0 V30,0 Yo00,0¥20.2+V002%200  2¥20,0(k)¥20.2 !
2Y02,2%00,0 Y22,2%00,0+V02,2¥20,0
+ D, (B8)
V22, 2%00,0+V02,2¥20,0 2¥2,2Y20,0
[
where channel as
2 =
Q)2 k) = K" expl—(k/ M) Yee + / dgq™" SOk k) €D (k)
(2) _ (2)
x expl—(q/M)*}G§ (g: T, (k. g5 K). 2 (ks Jo) | =D 397 () | ®10)
(B9) S(2)(k k) 3;2)(]()

Note that the A and k dependence of ¥, is not explicitly
shown. We use Eq. (C27) in Ref. [9] to relate the T matrix
with the phase shifts 8"’ and mixing angle ¢ in the 3§D,

where the matrix D(k) depends on the LO amplitude, and
we use the notation Sw (k, k)= p(k) v (k k; k). Using
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FIG. 19. Same as Fig. 4, but including an additional shift (A) as well as the 3D, phase shifts and the mixing angle €;. The Stapp convention

is used [56].

Egs. (BS) and (B8) we obtain the decomposition

Sk, k)

SOk, k) | = Btk)| DI

SO (k, k)

where B(k) is constructed using Eq. (BS).
The phase shifts can now be expressed as

E(2)(16)
3Pk = | 857 k)
857 (k)

=D '(k)Bk)| DV

1
cly
38,
(©)
DSD

(1)
G s,
Sy

(0)
DSD
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where we define the short-hand notation

5 (k) = Ck)a® + 52 (k),

with C = D~'B, and LECs (@?)7 = (¢!, D

0)
35‘17 3S]’DSD)'

The renormalization conditions used to fix the LECs at N2LO read [9]

8V Uer) + 85 (ki)
8 (k2) + 85 (k)
€O (ky) + €@ (ky)

(B13)
50,expt(k1 )

= 80,expt (kZ ) ’ (B 14)
€expt (k2)

where k; (k) corresponds to 7j,, = 30 MeV (Tj,, = 50 MeV), and 6(()”) are the phase shifts in the £ = 0 channel while € is the

mixing angle. This gives a matrix equation for the LECs,

- Cutk) - 8o (k) So.cxpt(k1) — 8 (k1)
— Cilk) = |a® + [ 68 (k) | = | So.expke) — 83 (k2) |- (B15)
- Goilk) - € (ky) €expt(k2) — €V (k2)
which can be written as
So.expt (k1) — 83 (k1) — 82 (k)
AGD = | 80 exprlka) — 83 (ka) — 852 (ko) | =3 (B16)

Eexpt(kZ) - 6(())(kZ) - 6;(12)(k2)

This equation is the equivalent of Eq. (10), but now for the 3S;—>D; channel.

Figure 17 shows the LECs at LO and N*LO as a function
of the cutoff for a larger cutoff interval than Fig. 2. The
vertical lines indicate locations of exceptional and limit-cycle-
like cutoffs, whose locations coincide with the zeros of the
determinant of A in Eq. (B16). We note a more irregular ap-
pearance of exceptional cutoffs compared to the *Py channel.

(

Furthermore, Fig. 18 shows predicted phase shifts at Tj,, =
100 MeV and divergences at the exceptional cutoffs can be
observed. This is consistent with the observed divergences in
the deuteron ground-state energy in Fig. 3. Finally, in Fig.
19 we show the 3S;_3D phase shifts for different shifts, A,
complementing Fig. 4 in Sec. III B.
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