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Background and Objective: Commercially available motorized prosthetic legs use exclusively nonbiological signals to control
movements, such as those provided by load cells, pressure sensors, and inertial measurement units (IMUs). Although the use of
biological signals of neuromuscular origin can provide more natural control of leg prostheses, these signals cannot yet be captured
and decoded reliably enough to be used in daily life. Indeed, decoding motor intention from bioelectric signals obtained from the
residual limb holds great potential, and therefore, the study of decoding algorithms has increased in the past years, with standard-
ized methods lacking.

Methods: In the absence of shared tools to record and process lower limb bioelectric signals, such as electromyography (EMG), we
developed an open-source software platform to unify the recording and processing (preprocessing, feature extraction, and classifi-
cation) of EMG and nonbiological signals amongst researchers with the goal of investigating and benchmarking control algorithms.
We validated our locomotion decoding (LocoD) software by comparing the accuracy in the classification of locomotion mode using
three different combinations of sensors (1 =IMU + pressure sensor + EMG, 2=EMG, 3 =IMU + pressure sensor). EMG and
nonbiological signals (from the IMU and pressure sensor) were recorded while able-bodied participants (n =21) walked on different
surfaces, such as stairs and ramps, and this data set is also released publicly along with this publication. LocoD was used for all
recording, preprocessing, feature extraction, and classification of the recorded signals. We tested the statistical hypothesis that there
was a difference in predicted locomotion mode accuracy between sensor combinations using the Wilcoxon signed-rank test.
Results: We found that the sensor combination 1 (IMU + pressure sensor + EMG) led to significantly more accurate and improved
locomotion mode prediction (Accuracy =93.4 £ 3.9) than using EMG (Accuracy =74.56 & 5.8) or IMU + pressure sensor alone
(Accuracy =90.77 4 4.6) with p-value <0.001.

Conclusions: In this study, we introduced and validated the functionality of LocoD as an open-source and modular platform to
research control algorithms for prosthetic legs that incorporate bioelectric signals.
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1. Introduction

After amputation, most people seek independence and reinte-
gration into previous activities and often acquire a prosthetic
limb as part of this effort. Users report wanting their prosthetic
limb to be versatile and stable to support them in activities like
sitting to standing up, and that they can feel safe and confident
using it [1]. The field of lower limb prostheses has witnessed a
trend toward developing more motorized prosthetic legs. Users
who previously felt unable to live as independently as they
wished are now able to rely on their motorized prostheses to
aid them in everyday living [2, 3]. Recent advancements in
battery technology and lightweight materials have further
enhanced the usability and comfort of these devices, making
them even more practical and appealing for daily use. Addi-
tionally, the introduction of open-source prosthetic legs (OSL)
represents a significant breakthrough, offering customizable
and accessible solutions that can be tailored to individual needs
and advancing research in the field [2]. Nonetheless, the state-
of-the-art motorized lower limb prosthesis available to the
public utilize nonbiological sensors such as load cells, pressure
sensors, and inertial measurement units (IMUs) to detect the
current locomotion mode and its transitions [4]. These devices
base their control algorithms on mechanical interactions of the
user with the environment, rather than the user’s ambulatory
intents. This forces the user to use the prosthesis in an unnatu-
ral way, dissimilar to how they would use their intact limb.
Overall, lower limb prostheses are still far from providing users
with a natural gait, and there is a palpable need to develop
better and more natural control systems for prosthetic
legs [4-6].

Several comprehensive reviews have surveyed advances in
control algorithms for lower limb prostheses, focusing on neu-
romechanical modeling, sensor fusion, and machine learning
strategies. For example, Fluit et al. [7] compared control strate-
gies in commercial and research knee prostheses, highlighting
limitations in adaptability and responsiveness. Tucker et al. [8]
provided a comprehensive overview of control strategies for
active prosthetics and orthotics, emphasizing the role of user
intent recognition. Voloshina and Collins [9] discussed the
trade-offs in design and control approaches for achieving
both biomechanical realism and real-time control in lower-
limb devices. These works, among others, underscore the ongo-
ing efforts to refine control systems for improved user perfor-
mance [4, 10-12].

One major avenue of development has been the integration
of electromyography (EMG) signals. Prior work has shown that
fusing EMG with nonbiological sensors can enhance classifica-
tion accuracy in predicting locomotion modes. For instance,
Huang et al. demonstrated improved transition detection using
neuromuscular-mechanical fusion [13], while Spanias et al.
[14] reported gains in pattern recognition performance
through the addition of mechanical sensors to EMG-based
systems. Similarly, Simon et al. and Krausz et al. developed
hybrid systems that leveraged both physiological and environ-
mental inputs [15, 16]. These studies support the hypothesis
that EMG, when combined with inertial or pressure data,
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improves the robustness and responsiveness of control algo-
rithms in prosthetic applications.

Despite this obvious control gain, there are still no com-
mercial devices that use EMG signals in the prosthetic leg
market. Furthermore, the variability in study designs and data-
sets, as well as proprietary software platforms for recording and
processing EMG signals that are not publicly available, hinders
comparisons between control algorithms and may be limiting
the advancement in this field. This lack of standardization
across research tools and algorithms remains a significant bar-
rier to advancing lower limb prosthetic control.

One example of a proprietary software solution is the Con-
trol Algorithms for Prosthetics System (CAPS), developed at
the Shirley Ryan AbilityLab, Chicago, USA [17, 18]. Similarly,
the Joint Department of Biomedical Engineering at North Car-
olina State University & University of North Carolina at
Chapel Hill, USA, has developed a software which records
and processes data recorded from EMG and nonbiological
sensors for real-time control of upper and lower limb prosthet-
ics [18, 19]. These platforms have been used to produce
ground-breaking research; however, due to their proprietary
nature, it is not possible to openly access or modify them,
preventing them from being used as common research tools.
One existing, open-source software solution for upper limb
prosthetics is BioPatRec [20], which is suitable for collegial
development of upper limb control systems. However, a limi-
tation with BioPatRec being used for lower limb prosthetic
control is that the quasi-cyclic nature of walking poses different
processing requirements compared to upper limb dynamics.

In this work, our goal was to advance the field of lower limb
prosthetic control by developing an open-source and modular
research platform for locomotion decoding (LocoD). LocoD
aims to serve as a unified foundation for research, allowing
for seamless comparisons of various processing and control
algorithms. In this study, we utilized LocoD to evaluate differ-
ent combinations of biological and nonbiological sensors,
assessing their accuracy in detecting locomotion during gait.
Our findings demonstrate that LocoD can be used to conduct
research in lower limb prosthetic control and thereby poten-
tially accelerate the development of technical solutions to close
the functionality gaps in lower limb prosthetics.

A preprint of this study was previously made publicly avail-
able via SSRN [21], and this article represents the final version
following peer review.

2. Methods

2.1. LocoD Software Platform and Data Repository. LocoD
was developed using MATLAB (2021b, MathWorks, USA)
[22], incorporating a user interface inspired by BioPatRec
[20]. LocoD’s main release branch is maintained on GitHub,
which also includes LocoD build documentation, sample use
cases, and user manuals [23].

2.2. Signal Acquisition and Processing (Preprocessing, Feature
Extraction, and Classification). LocoD can acquire signals in
real time using supported hardware (e.g., DELSYS Trigno
system (Trigno, Delsys, USA) [24]) or process prerecorded
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FIGURE 1: LocoD graphic user interface (GUI). (a) Analog front-end GUI to set recording properties, (b) recording session GUI to observe
signal and keyed-in tags in locomotion mode, and (c) offline processing GUI to process signal from preprocessing to validation.

datasets, provided they follow LocoD’s data structure. Inputs
may include biological and/or mechanical signals such as
EMG, IMU, pressure sensors, or load cells. The required
structure specifies both the organization of the data
(MATLAB files with predefined channel order) and the
naming conventions for each parameter.

The ultimate output from LocoD is a prediction of the
locomotion mode, albeit outputs at each module in the signal
chain can also be obtained. In each recording session, the oper-
ator should:

A. Select the signal recording settings, for example, the
combination of sensors used and the type of data acqui-
sition system.

B. Start signal acquisition while the participant performs a
predefined set of movements (e.g., walking or climbing
stairs). The actual locomotion mode should be keyed in
while the recording is ongoing. This will be used as the
classifier’s label input. The operator then terminates the
recording session.

Then processing consists of signals conditioning and
decoding, and the user must:

A. Specify the preprocessing and processing algorithms
and their parameters, including, for example, the type
of features to be extracted, how the signal should be
divided into windows, and how cross-validation takes
place.

B. Train the classifier and obtain the classification
accuracy, which can then be compared between differ-
ent sensor combinations or different methods of
classification.

2.3. Software Architecture. LocoD uses the object-oriented
software development paradigm. It employs MATLAB
classes to define various concepts. The use of classes allows
changes, enhancements, or replacements in any part of the
program, independent of other modules or classes. Different
graphical user interfaces (GUIs) allow researchers to change
and test different parameters related to every step of recording
and signal processing (preprocessing, feature extraction, and
classification).

Developers can also modify or add any parameters to the
GUI (Figure 1).

The software architecture of LocoD can be thought to
consist of four classes: (1) recording properties; (2) recording
functions; (3) signals acquired; and (4) decoding (Figure 2).

The Recording Properties class consists of all settings to
record and store signals, for example, number and order of
channels, data acquisition device, sampling frequency, and
type of sensors. There is a dedicated GUI where these settings
can be changed (Figure 1a).

Objects of the Recording functions class facilitate connec-
tion to the data acquisition device, streaming the signals, paus-
ing or stopping streaming, and saving the recorded signal in a
file for further processing (Figure 1b).
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From pre-processing to post-
processing
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Tags
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Feature extraction
Classification
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Ficure 2: Different classes of LocoD and their role in recording or processing signals. EMG, electromyogram; IMU, inertial measurement

unit.

The Signals acquired class stores recorded signal together
with its complementary metadata, such as sampling frequency,
number of channels, and recording device. An instance of a
signal is a matrix of sample values for each channel (EMG,
IMU, pressure sensor, or any additional sensors). In addition,
locomotion modes (tags) indicated by the operator are
stored here.

The Decoding class handles all processing steps (Figure 2).
Processing is performed after the signal is recorded and consists
of three major steps: (1) preprocessing; (2) feature extraction,
and (3) classification. The “offline classification GUI window”
provided in LocoD allows the operator to configure and run the
process (Figure 1c).

Step 1 (Preprocessing): Preprocessing consists of two parts
of filtering and windowing. Raw data cannot be used directly
for classification; therefore, preprocessing maximizes informa-
tion from the recorded signal by filtering the signal and remov-
ing noisy channels. Next, the pressure sensor signal is used to
indicate heel contact and toe-off gait events, for which the
surrounding signal time series is taken and cut into small win-
dows. Signal time span around the gait events can be adjusted
as well as the windowing method (incremental or nonincre-
mental) (Figure 3). Then, each signal window gets a label based
on the locomotion transition tags, which were previously keyed
in by the operator for each transition. The operator was
instructed to key in each tag for a new locomotion mode right

before the participant entered it. The manually entered tags
serve only as ground truth for validation, without influencing
the recognition process itself.

To eliminate human timing error with the keyed-in tags,
entered tags are automatically projected to the next heel con-
tact or toe-off moment (heel contact and toe-off moments
extracted from the pressure sensor). For the transition of
walking to stair ascent and stair ascent to walking, the transi-
tion tags are applied to the next toe-off onwards, while in the
case of ramp descent to walking and stair descent to walking,
they are projected to the next heel contact moment [25]
(Figure 4). In all other cases, labels were aligned to the next
gait event (toe-off or heel strike).

Based on the sequence of previously entered tags and the
current ones, the system determines the current locomotion
state and the state to which the participant is transitioning.
This allows the system to automatically mark and save the
signal windows surrounding these gait events under the correct
transition class, without requiring any further input from the
operator.

Step 2 (Feature extraction): Common classifiers do not use
time series as input to classify different classes. Instead, features
extracted from time windows are fed as input (Figure 5). These
features can be extracted in the time domain, for example,
mean absolute value and standard deviation, or in the fre-
quency domain, such as power spectral density, or in the
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FIGURE 3: (a) Pressure sensor signal, (b) EMG signal, (c) 300 ms of extracted data around each gait phase, including 200 ms from before each
gait phase and 100 ms from after each gait phase, and (d) extracted windows with 30 ms of increment from extracted data. The same
overlapping windowing scheme was applied to EMG, IMU, and pressure sensor signals to ensure consistent feature extraction across
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g
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FIGURE 4: The red line is the tag entered by the operator. For the transition of walking to stair ascent and stair ascent to walking, the transition
tags are applied to the next toe-off onwards (blue line). In the case of ramp descent to walking and stair descent to walking, they are projected

to the next heel contact moment (blue line).

time—frequency domain, such as wavelet [26]. LocoD was
released with 20 different features in the time and frequency
domains. This is based on the feature extraction method that
was implemented in BioPatRec [20].

Step 3 (Classification and validation): Extracted features get
passed to a classifier that detects the locomotion mode. The
classifier’s architecture used with LocoD has two characteristics:
mode-specific (Figure 6) and phase-dependent. Classification is
performed for features of signal windows extracted around any
gait phase change, heel contact, and toe-off (phase-dependent).

Here, based on the label of the previous window, we can limit
the possible labels for the current window. For example, if the
previous window was classified as a stair/ramp ascent/descent
locomotion mode, then the current window can only be classi-
fied as the same or walking (hence mode-specific) [27]. There-
fore, LocoD employs an array of classifiers that are chosen
based on the prediction outcome of the previous window.
Considering having five locomotion modes and two gait
phases, this leads to 10 classifiers. The classifier used for the
validation in this study is based on linear discriminant analysis
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FiGure 6: Mode-specific classification architecture. There is one classifier for each locomotion mode. The classifier is chosen based on the

previous mode. Each classifier has limited classes, for example, if the

previous class is stair ascent, the stair ascent classifier will be used. In this

classifier, the output can remain in stair ascent or transition to walking.

(LDA), but it is also possible to use support vector machine
(SVM) classifiers with this release of LocoD.

After classification, there is an optional step of cross-
validation. LocoD has built-in n-fold cross-validation. To
address the imbalance between the number of steady-state
samples and transition samples in these types of datasets, we
recommend using this validation feature. This approach
ensures a more accurate and robust evaluation of the classifier’s
performance across different locomotion modes. The outcome
measure is calculated as the classification accuracy of different
locomotion modes in two conditions, steady-state and transi-
tion. Here, steady-state accuracy is the percentage of windows
correctly classified when there was no transition, while transi-
tional accuracy is defined as the percentage of windows accu-
rately classified from one locomotion mode to the other (e.g.,
transition from walking to stair ascent).

2.3.1. Data Collection and Repository. A data repository
recorded using LocoD is included in this release [28] and con-
sists of sample data from 12 female and nine male able-bodied

subjects with no prior LocoD experience. The participants were
between 23 and 31 years old, with a mean age of 27 = 2.3 years.
The recorded data corresponds to one recording per partici-
pant, digitalized at 2 kHz. Data were collected using 10 Delsys
Trigno sensors [24], each capable of recording both EMG and
IMU signals. Of these 10 sensors, eight were used for EMG
recordings. They were placed on the semitendinosus, biceps
femoris long and short heads, tensor fasciae latae, rectus
femoris, vastus lateralis, vastus medialis, and gracilis muscle
[4], followed SENIAM guidelines [29]. The rectus femoris
sensor also provided IMU data in addition to EMG. Two
further Trigno sensors were mounted below the knee and
on the foot, where EMG channels were disabled and only
IMU data were collected. This configuration provided IMU
signals from three sites: above the knee (rectus femoris),
below the knee, and the foot. A pressure sensor integrated
into an insole was used to capture heel strike and toe-off
events (Figure 7).

Data consists of 30 trials of a circuit per participant with
sensors on their leg, which included walking, stair ascent, stair
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FIGURE 7: Sensor placement on the front and rear of a participant includes the following: (a) tensor fasciae latae, (b) gracilis, (c) rectus femoris
and IMU 1, (d) vastus lateralis, (e) vastus medialis, (f) IMU 2, (g) pressure sensor adapter, (h) IMU 3, (i) pressure sensor in the insole,
(j) semitendinosus, (k) biceps femoris long head, and (1) biceps femoris short head.

Stairs Level ground platform Ramp

FiGURE 8: Data recording circuit: Stairs, level ground walking, and ramp.

descent, ramp ascent, and ramp descent (Figure 8). These sur-
faces were selected as they are the most common movements in
daily life. All data were collected under identical conditions at
Sahlgrenska University Hospital Molndal, Sweden. To ensure
consistent conditions for all participants, the environment was
carefully controlled. The setup comprised 200 cm of walking, a
ramp with a 7° slope, 140 cm of level ground walking, a stair-
case with six steps (each with a 30 cm tread and a 10 cm riser),
followed by another 200 cm of walking.

For this study, written informed consent from participants
and ethical approval from the Swedish Ethical Review Author-
ity (2020-06479) were obtained.

2.4. Validation of LocoD. To validate LocoD, we processed the
recordings in the data repository in three different sensor com-
binations: combined nonbiological signals + EMG, EMG only,
and nonbiological signals (IMU + pressure sensor) only. EMG
data were filtered using a 20-500 Hz bandpass filter [30] and a
sixth-order notch filter at 50 Hz to remove power line interfer-
ence. Signal blocks were extracted around each gait phase (heel
contact and toe-off) from 200 ms before to 100 ms after
(300 ms in total). Windows of 200 ms with 30 ms increments
were then extracted from this data (Figure 3). Mean absolute
value, waveform length, number of zero crossings, and slope
sign change were extracted from each window of the EMG
signal [31, 32], whereas mean, maximum, minimum, and

standard deviation features were extracted from each window
of IMU and pressure sensors [27, 33].

Extracted features of selected sensor channels were merged
into the feature vectors used for classification. For example, for
the case of nonbiological signals + EMG we concatenated fea-
tures from the IMU channels and pressure sensor with the
features from EMG channels in the same feature vector. We
had three separate IMU sensors, each IMU had six axes (three
for gyroscope, and three for accelerometer), and from each axis
we extracted four features, which resulted in 72 features in total.
We had one channel of a pressure sensor, from which we
extracted four features. We had eight channels of EMG signals
from which we extracted four features each (32 features in
total). Putting all features together, a total of 108 features
were extracted per time window. Extracted features were
passed to an LDA classifier with a phase-dependent mode-
specific architecture and 10-fold cross-validation [27]. The
classifier was trained per participant.

Accuracy of classification is reported in three ways: consid-
ering all windows, only locomotion transition windows, and
only steady-state windows (when no transition is happening).

Accuracy is emphasized in this study because it is the most
widely recognized and utilized outcome measure for control-
ling lower limb prosthetics through EMG and machine learn-
ing methods [4-6].
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TasLE 1: Classification accuracy of each locomotion mode and transitions in three different sensor combinations (nonbiological signals +

EMG*, EMG, nonbiological signals) averaged over all participants.

Locomotion modes Nonbiological signals + EMG EMG Nonbiological signals
Walking 96.38 95.27 95.73
Stair ascent 93.27 86.30 91
Stair descent 95.88 82.54 92.60
Ramp ascent 97.70 93.31 96.31
Ramp descent 97.94 93.02 96.73
Walk to stair ascent 90.61 68.68 85.79
Walk to stair descent 89.85 60.02 86.38
Walk to ramp ascent 92.04 63.18 86.01
Walk to ramp descent 86.79 38.47 82.05
Stair ascent to walk 94.30 88.52 90.86
Stair descent to walk 95.75 84.32 94.10
Ramp ascent to walk 92.42 65.89 89.01
Ramp descent to walk 91.73 66.25 88.87
Abbreviation: EMG, electromyogram.
kokck kR
100 - e T . — .
-

40 -

Classification accuracy (%)

Steady-state

B Non-biological signal + EMG
B EMG

Transition

All data

Non-biological signal

FiGure 9: Classification accuracy in three different sensor combinations (nonbiological signals + EMG, EMG, nonbiological signals). Average
over all participants (1) steady-state locomotion mode (While there was no transition between different surfaces), (2) transition between
different locomotion modes (e.g., transition from stair ascent to level ground walking), and (3) all data refer to the combined accuracy across
both steady-state and transition windows. The Y-axis ranges from 30% to 100% for clearer presentation. A cross in the middle of each box

plot represents the mean. *** indicates a p-value <0.001.

2.5. Statistical Analyses. To examine whether adding EMG to
the nonbiological signals has a significant impact on classifica-
tion accuracy, we compared the classification results of using
nonbiological data alone versus using nonbiological signals +
EMG and EMG data alone versus nonbiological signals + EMG
data for each participant. Given the nonnormality of our data,
verified by the Kolmogorov—Smirnov test, and the pairwise
nature of our comparison, we opted for the Wilcoxon
signed-rank test (MATLAB 2021b, USA).

3. Results

The locomotion detection algorithm was tested with the par-
ticipation of 21 able-bodied individuals. Table 1 provides an
overview of the classification accuracy for each locomotion
mode, considering various sensor combinations. These accu-
racy values are averaged across all participants.

Figure 9 shows classification accuracy in three different
sensor combinations (nonbiological signals + EMG, EMG,
nonbiological signals). Average over all participants in the three
scenarios of steady-state, transition from one locomotion to
another mode, and a combination of both steady-state and
transition data together.

4. Discussion

In this study, we introduced LocoD, open-source platform
designed to enable the seamless development and evaluation
of algorithms for controlling prosthetic legs using a variety of
signal sources. Our objective was to test this platform and
evaluate the locomotion detection accuracy when using differ-
ent sensors, such as IMU + pressure sensor (nonbiological sig-
nals), EMG, and IMU + pressure sensor + EMG. In this article,
we did not aim to present a novel prosthetic control system,
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but to introduce LocoD as a tool that helps researchers to
investigate such systems. Although the cyclic nature of gait
can facilitate locomotion intention recognition, it also poses
unique requirements such as event-driven segmentation,
phase-dependent classification, and transition handling. Soft-
ware that was originally developed for upper-limb prosthetic
control does not natively support these features. LocoD was
therefore designed to integrate these modules, making it suit-
able for lower-limb applications.

We validated LocoD by showing that the addition of EMG
to nonbiological sensors, such as IMU and pressure sensors,
significantly enhances locomotion detection classification
accuracy (p-value <0.001). Our findings are consistent with
the existing literature [4, 5, 13, 14] and reiterate the value of
EMG as an information source for improving prosthetic leg
control. Regarding previous work in the field [4, 5, 13, 14], a
distinguishing finding of our study lies in the accuracy of indi-
vidual movements. For example, the accuracy of walking to
ramp descent was drastically lower than the other movements
(Table 1), whereas no such variance between movements has
been reported in the literature. This divergence could be attrib-
uted to differences in the experimental setup and the unique
execution of movements by individuals with amputation and
those with able bodies, or likely due to the greater biomechani-
cal variability of these movements. Descent involves eccentric
muscle activity and diverse strategies for stability, resulting in
more variable EMG and kinematic patterns compared to ascent
or level walking [34]. Future work could address this reduced
robustness by incorporating adaptive classification techniques,
which may capture the continuous nature of biomechanical
modulation during descent. Expanding the training dataset
with larger samples of descent tasks, or including features sen-
sitive to eccentric muscle activity, may also improve decoding
accuracy [35].

One can argue that in lower limb prosthetic control,
improvements that might appear incremental can be of sub-
stantial importance, particularly in mitigating the risk of
adverse events such as falls. However, a critical evaluation of
the translation of our findings into clinically meaningful out-
comes is essential. As a next step, real-time testing involving
participants with amputations and active prosthetic legs is
imperative to validate the practical applicability of our results.
This aligns with findings by Hargrove et al. [18], who empha-
sized the necessity of real-world testing to confirm the labora-
tory results.

Our study had several limitations, such as the reliance on
able-bodied participants for validation. This choice was inten-
tional, as we wanted to thoroughly test the platform and its
algorithms in a controlled environment before advancing to
trials with participants with amputations. This approach aligns
with common practices in developing new algorithms, where
initial testing on able-bodied individuals is standard for safety
reasons [36]. Nevertheless, it does not fully capture the per-
formance expected and the challenges faced by people with
amputation. Although this study used a full set of sensors in
able-bodied participants, LocoD’s modular framework
enables systematic evaluation of reduced or alternative sensor

configurations, making it adaptable to different populations.
Additionally, our platform primarily focuses on continuous
locomotion detection, which may not be as effective in non-
continuous or nonweight-bearing movements, such as sitting
or standing up. The integration of EMG signals also presents
challenges, requiring precise sensor placement and calibra-
tion, which can be time-consuming and may vary between
users, impacting data consistency.

Future steps for LocoD include establishing communica-
tion with the Open Source Leg (OSL) or other prosthetic legs
[2], implementing more advanced control techniques such as
deep neural networks, and expanding the sensor repertoire to
encompass various biological and nonbiological sources,
including EEG and load cells. In addition, regression-based
modules represent an important direction for future develop-
ment (e.g., estimating ground reaction forces from proximal
sensors and EMG [37]), which could further improve robust-
ness. Other promising avenues include advanced postproces-
sing techniques to attenuate misclassifications and source-
selection methods to filter out less informative signals. In this
study, pressure sensors were used to detect heel strike and toe-
off events due to their robustness and reliability in providing
ground truth. However, IMUs can also serve this purpose, and
LocoD’s modular framework allows for the integration of such.
Another avenue for improvement involves optimizing the win-
dow size used in data analysis. Most studies, including ours,
have relied on a fixed window size. Developing a metric that
adapts the window size to walking speed could lead to more
personalized and effective control. Finally, an automatic label-
ing system represents a logical next step, reducing operator
dependance and eliminating variability in manual annotation.

By addressing these challenges through ongoing research
and development, we hope that LocoD will help researchers to
bring their prosthetic control systems closer to successful
deployment in clinical practice, ultimately enhancing the qual-
ity of life for users of prosthetic devices.

The LocoD platform offers significant potential for appli-
cations in the realm of lower limb assistive devices. By integrat-
ing EMG signals with IMUs and pressure sensors, LocoD can
significantly enhance the natural control and responsiveness of
motorized prosthetic limbs. Looking ahead, this technology can
be adapted to power exoskeletons and orthotic devices,
enabling smoother transitions and more intuitive movements
for individuals with lower limb neuromuscular impairments.
Moreover, we hope for LocoD to serve as a collaborative
research platform, fostering innovation and ultimately driving
advancements in the field of lower limb prosthetics and
orthotics.

5. Conclusion

Restoration of lower limb function in the real world is the
ultimate goal in the field of bionic lower limbs, and natural
control is an important part of it. None of the commercial
prosthetic legs in the market use EMG as their control input,
even though published results indicate that its use, in combina-
tion with other nonbiological sensors, can improve control.
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Our results support previous reports showing that EMG can be
a useful source of information for the natural control of a
prosthetic leg.

LocoD was developed as an open-source and modular plat-
form specifically to address the need for a shared research tool
in this area. By making LocoD open-source, we aim to encour-
age the sharing and comparison of algorithms on a common
platform, ultimately accelerating research and development in
prosthetic leg control. The platform’s ability to integrate vari-
ous sensors and process both biological and nonbiological sig-
nals provides a versatile foundation for researchers to develop
and test new control algorithms. As research continues, we
hope for LocoD to play a vital role in advancing the field toward
prosthetic legs that are seamlessly and naturally controlled by
their users.

Data Availability Statement

The datasets gathered and analyzed during the current study
are available in the Zenodo repository at https://zenodo.org/
records/7534679. The software developed for this study is pub-
licly accessible on GitHub at https://github.com/biopatrec/
LocoD.

Ethics Statement

This study was conducted in accordance with the ethical guide-
lines outlined by the Sweden Ethics Committee, which
approved the experimental protocol (Approval Number 20-
06479). Prior to participation, all individuals received a com-
prehensive explanation of the study’s objectives and proce-
dures. Informed consent was obtained from all participants
through signed consent forms. In addition to consenting to
participate in the study, all individuals also provided written
consent for the publication of any images captured during the
course of the research.

Disclosure

All authors edited and approved the final manuscript.

Conflicts of Interest

Max Ortiz-Catalan and Morten B. Kristoffersen have consulted
for Integrum AB. However, their affiliation with Integrum AB
did not influence the design, execution, analysis, or interpreta-
tion of the results presented in this study. Bahareh Ahkami and
Kirstin Ahmed declare no competing interests.

Author Contributions

Max Ortiz-Catalan conceptualized the platform. Bahareh
Ahkami designed and programed the platform. All authors
designed the study. Morten B. Kristoffersen supervised the
implementation of the platform and assisted with platform
testing. Max Ortiz-Catalan and Kirstin Ahmed supervised
the project. Max Ortiz-Catalan secured funding. Bahareh
Ahkami and Kirstin Ahmed drafted the manuscript.

Applied Bionics and Biomechanics

Funding

This work was supported by the Promobilia Foundation, the
IngaBritt and Arne Lundbergs Foundation, and the Swedish
Research Council (Vetenskapsradet).

References

[1] S. Manz, R. Valette, F. Damonte, et al., “A Review of User
Needs to Drive the Development of Lower Limb Prostheses,”
Journal of NeuroEngineering and Rehabilitation 19, no. 1
(2022): 119.

[2] A. F. Azocar, L. M. Mooney, J. F. Duval, A. M. Simon,
L.J. Hargrove, and E.]. Rouse, “Design and Clinical
Implementation of an Open-Source Bionic Leg,” Nature
Biomedical Engineering 4, no. 10 (2020): 941-953.

[3] M. Tran, L. Gabert, S. Hood, and T. Lenzi, “A Lightweight
Robotic Leg Prosthesis Replicating the Biomechanics of the
Knee, Ankle, and Toe Joint,” Science Robotics 7, no. 72 (2022):
eab03996.

[4] B. Ahkami, K. Ahmed, A. Thesleff, L. Hargrove, and M. Ortiz-
Catalan, “Electromyography-Based Control of Lower Limb
Prostheses: A Systematic Review,” IEEE Transactions on
Medical Robotics and Bionics 5, no. 3 (2023): 547-562.

[5] A. Fleming, N. Stafford, S. Huang, X. Hu, D. P. Ferris, and
H. H. Huang, “Myoelectric Control of Robotic Lower Limb
Prostheses: A Review of Electromyography Interfaces, Control
Paradigms, Challenges and Future Directions,” Journal of
Neural Engineering 18, no. 4 (2021): 041004.

[6] A. Cimolato, J. J. M. Driessen, L. S. Mattos, E. De Momi,
M. Laffranchi, and L. De Michieli, “EMG-Driven Control in
Lower Limb Prostheses: A Topic-Based Systematic Review,”
Journal of NeuroEngineering and Rehabilitation 19, no. 1
(2022): 43.

[7] R. Fluit, E. C. Prinsen, S. Wang, and H. van der Kooij, “A
Comparison of Control Strategies in Commercial and Research
Knee Prostheses,” IEEE Transactions on Biomedical Engineer-
ing 67, no. 1 (2020): 277-290.

[8] M. R. Tucker, J. Olivier, A. Pagel, et al., “Control Strategies for
Active Lower Extremity Prosthetics and Orthotics: A Review,”
Journal of NeuroEngineering and Rehabilitation 12, no. 1
(2015): 1.

[9] A.S. Voloshina and S. H. Collins, “A Review of Design and
Control Approaches in Lower-Limb Prosthetic Devices,” (2019):
1-21.

[10] J. Wright, V. G. Macefield, A. van Schaik, and J. C. Tapson, “A
Review of Control Strategies in Closed-Loop Neuroprosthetic
Systems,” Frontiers in Neuroscience 10 (2016): 312.

[11] C. Ferreira, L. P. Reis, and C. P. Santos, “Review of Control
Strategies for Lower Limb Prostheses,” in Advances in Intelligent
Systems and Computing, ed. V. Reis, A. P. Moreira, P. U. Lima,
L. Montano, and M. unozMartinezu, (2016): 209-220.

[12] N. A. Hamzaid, N. H. Mohd Yusof, and F. Jasni, “Sensory
Systems in Micro-Processor Controlled Prosthetic Leg: A
Review,” IEEE Sensors Journal 20, no. 9 (2019): 4544-4554.

[13] H.Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and
K. B. Englehart, “Continuous Locomotion-Mode Identifica-
tion for Prosthetic Legs Based on Neuromuscular—Mechanical
Fusion,” IEEE Transactions on Biomedical Engineering 58,
no. 10 (2011): 2867-2875.

[14] J. A. Spanias, A. M. Simon, K. A. Ingraham, and
L. J. Hargrove, “Effect of Additional Mechanical Sensor
Data on an EMG-Based Pattern Recognition System for a

85U8017 SUOWIWOD dAITID (qeot|dde au Aq peusenob ase Sajoile YO ‘8s J0 Sa|ni Joy Akelq18uluo 3|1 UO (SUONIPUD-PUR-SWLRIAL0D A8 |IM Afelq iUl UO//SANY) SUONIPUOD PUe SWe | 8L 89S *[9202/T0/9T] Uo AkeiqiTauluo A8(im ‘Bulupeseg suetels Aq 98TO9TE/0R/SSTT OT/I0P/W0D A8 1M Arelq Ul uo//sdny woiy papeojumod ‘T ‘9202 ‘60E6


https://zenodo.org/records/7534679
https://zenodo.org/records/7534679
https://zenodo.org/records/7534679
https://github.com/biopatrec/LocoD
https://github.com/biopatrec/LocoD

Applied Bionics and Biomechanics

Powered Leg Prosthesis,” International Conference on Neural
Engineering (2015): 639-642.

[15] A. M. Simon, N. P. Fey, K. A. Ingraham, A.]. Young, and
L. J. Hargrove, “Powered Prosthesis Control During Walking,
Sitting, Standing, and Non-Weight Bearing Activities Using
Neural and Mechanical Inputs,” in International Conference
on Neural Engineering (2013): 1174-1177

[16] N. E. Krausz, B. H. Hu, and L. J. Hargrove, “Subject- and
Environment-Based Sensor Variability for Wearable Lower-
Limb Assistive Devices,” Sensors 19, no. 22 (2019): 4887.

[17] T. A. Kuiken, “Targeted Muscle Reinnervation for Real-Time
Myoelectric Control of Multifunction Artificial Arms,” JAMA
301, no. 6 (2009): 619.

[18] L. J. Hargrove, A.]. Young, A. M. Simon, et al, “Intuitive
Control of a Powered Prosthetic Leg During Ambulation: A
Randomized Clinical Trial,” JAMA 313, no. 22 (2015): 2244—
2252.

[19] F.Zhang, M. Liu, S. Harper, M. Lee, and H. Huang, “Engineering
Platform and Experimental Protocol for Design and Evaluation
of a Neurally-Controlled Powered Transfemoral Prosthesis,”
Journal of Visualized Experiments, no. 89 (2014): 51059.

[20] M. Ortiz-Catalan, R. Branemark, and B. Hikansson, “BioPa-
tRec: A Modular Research Platform for the Control of Artificial
Limbs Based on Pattern Recognition Algorithms,” Source Code
for Biology and Medicine 8, no. 1 (2013): 11.

[21] B. Ahkami, K. Ahmed, M. Kristoffersen, and M. Ortiz-Catalan,
“Locomotion Decoding (LocoD) — An Open-Source and
Modular Platform for Researching Control of Lower Limb
Assistive Devices,” SSRN Electronic Journal (2023).

[22] MATLAB, “version 9.11.0 (R2021b),” (2021).

[23] B. Ahkami and LocoD, 2022, https://github.com/biopatrec/
LocoD.

[24] G. De Luca, “Fundamental Concepts in EMG Signal Acquisition,”
Distribution (2003): 1-31.

[25] A. M. Simon, K. A. Ingraham, J. A. Spanias, A. J. Young, and
L. J. Hargrove, “Development and Preliminary Testing of a
Flexible Control System for Powered Knee-Ankle Prostheses,” in
Proceedings of the IEEE Robotics and Automation Society and
Engineering in Medicine and Biology Society International
Conference on Biomedical Robotics and Biomechatronics (2016):
704-709

[26] D. Farina, N. Jiang, H. Rehbaum, et al., “The Extraction of
Neural Information From the Surface EMG for the Control of
Upper-Limb Prostheses: Emerging Avenues and Challenges,”
IEEE Transactions on Neural Systems and Rehabilitation
Engineering 22, no. 4 (2014): 797-809.

[27] A.J. Young and L. J. Hargrove, “A Classification Method for
User-Independent Intent Recognition for Transfemoral Ampu-
tees Using Powered Lower Limb Prostheses,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering 24, no. 2
(2016): 217-225.

[28] B. Ahkami and LocoD Data Repository, (2022).

[29] D. Stegeman and H. Hermens, “Standards for Surface
Electromyography: The European Project Surface EMG for
Non-Invasive Assessment of Muscles (SENIAM),” (2007).

[30] C.J. De Luca, “The Use of Surface Electromyography in
Biomechanics,” Journal of Applied Biomechanics 13, no. 2
(1997): 135-163.

[31] H. Huang, T. A. Kuiken, and R. D. Lipschutz, “A Strategy for
Identifying Locomotion Modes Using Surface Electromyography,”
IEEE Transactions on Biomedical Engineering 56, no. 1 (2009): 65—
73.

11

[32] B. Hudgins, P. Parker, and R. N. Scott, “A New Strategy for
Multifunction Myoelectric Control,” IEEE Transactions on
Biomedical Engineering 40, no. 1 (1993): 82-94.

[33] H. A. Varol, F. Sup, and M. Goldfarb, “Multiclass Real-Time
Intent Recognition of a Powered Lower Limb Prosthesis,”
IEEE Transactions on Biomedical Engineering 57, no. 3 (2010):
542-551.

[34] A. N. Lay, C. J. Hass, and R. J. Gregor, “The Effects of Sloped
Surfaces on Locomotion: A Kinematic and Kinetic Analysis,”
Journal of Biomechanics 39, no. 9 (2006): 1621-1628.

[35] K. H. Ha, H. A. Varol, and M. Goldfarb, “Volitional Control
of a Prosthetic Knee Using Surface Electromyography,” IEEE
Transactions on Biomedical Engineering 58, no. 1 (2011):
144-151.

[36] A. Thesleff, B. Ahkami, J. Anderson, K. Hagberg, and M. Ortiz-
Catalan, “Design of a Stepwise Safety Protocol for Lower Limb
Prosthetic Risk Management in a Clinical investigation,” Annual
International Conference of the IEEE Engineering in Medicine
and Biology Society 2021 (2021): 4600-4604.

[37] A. Mengarelli, A. Tigrini, M. Scattolini, et al., “Myoelectric-Based
Estimation of Vertical Ground Reaction Force During Uncon-
strained Walking by a Stacked One-Dimensional Convolutional
Long Short-Term Memory Model,” Sensors 24, no. 23 (2024):
7768.

85U8017 SUOWIWOD dAITID (qeot|dde au Aq peusenob ase Sajoile YO ‘8s J0 Sa|ni Joy Akelq18uluo 3|1 UO (SUONIPUD-PUR-SWLRIAL0D A8 |IM Afelq iUl UO//SANY) SUONIPUOD PUe SWe | 8L 89S *[9202/T0/9T] Uo AkeiqiTauluo A8(im ‘Bulupeseg suetels Aq 98TO9TE/0R/SSTT OT/I0P/W0D A8 1M Arelq Ul uo//sdny woiy papeojumod ‘T ‘9202 ‘60E6


https://github.com/biopatrec/LocoD
https://github.com/biopatrec/LocoD
https://github.com/biopatrec/LocoD

	Locomotion Decoding (LocoD): An Open-Source and Modular Platform for Researching Control Algorithms for Lower Limb Assistive Devices
	1. Introduction
	2. Methods
	2.1. LocoD Software Platform and Data Repository
	2.2. Signal Acquisition and Processing (Preprocessing, Feature Extraction, and Classification)
	2.3. Software Architecture
	2.3.1. Data Collection and Repository

	2.4. Validation of LocoD
	2.5. Statistical Analyses

	3. Results
	4. Discussion
	5. Conclusion
	Data Availability Statement
	Ethics Statement
	Disclosure
	Conflicts of Interest
	Author Contributions
	Funding
	References




