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Abstract

We study the optimal rates of emulation (also called interconversion) between quantum channels.
When the source and the target channels are idempotent, we give a single-letter expression for the
zero-error emulation capacity in terms of structural properties of the range of the two channels.
This expression shows that channel emulation is not reversible for general idempotent channels.
Furthermore, we establish a strong converse rate that matches with the zero-error emulation capacity
when the source or the target channel is either an identity or a completely dephasing channel.

1 Introduction

Given target and source quantum channels F and G (respectively), a central problem in quantum in-
formation theory is to understand the optimal interconversion rates k/n such that one can use n copies
of G, combined with an encoder and a decoder channel, to emulate the action of k copies of F. In the
special case where F is a perfect (noiseless) channel, this corresponds to the problem of channel coding
for G, which is central in Shannon theory [14]. Symmetrically, in the special case where G is the identity
channel, this corresponds to the problem of channel simulation for F which is also well-studied within
both classical and quantum Shannon theory [2-5].

In this article, we study the interconversion problem for more general channels. We start by consid-
ering the zero-error regime. We say that a channel G can emulate another channel F with rate r, if there
exists an encoding and a decoding channel € and D (respectively) as well as a pair of integers (k,n) such
that

f_'®k: — Dg@ng7

and r < k/n. Such a rate r is called achievable. The supremum of achievable rates is called the zero-
error emulation capacity of F by G and is denoted C(G — F). We note that, unlike most works in the
literature on reverse Shannon theory [2], the model we consider here does not allow shared randomness
or entanglement between the encoder and decoder. The first contribution of this work is a single-letter
expression of C(G — F) when both F and G are assumed to be idempotent, i.e. they satisfy F o F = F
and G oG = G. Note that for an arbitrary channel ®, the sequential composition & = ® o --- o ® has
a subsequence that converges as n — oo to an idempotent channel [19]. The capacities of sequential
composition of channels have been studied in [8,15,16].

Theorem 1. Let F = FoF and G =G oG be two idempotent channels with \(F) # (1), then

log([|A(G)]l»)

CG=F) = Il el

(1)

f A(F) = (1), then F is basically a replacer channel (see Proposition 1) and it is simple to see that we can emulate it
with any other idempotent channel G with an arbitrarily large rate.
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In particular, when F or G is either the identity channel or the completely dephasing channel, it suffices
to restrict the infimum to p € {1,4+o00}:

log(|[A(9)]l»)
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In the right-hand side of eq. (1), the two terms A(F) and A(G) are integer vectors which contain
information on decomposition properties of F and G. They are called the shape vector of their respective
channel and their precise definition will be given in Section 3, Proposition 1. For now, it suffices to
say that the definition of shape vector is specific to idempotent channel and that given an idempotent
channel F : L(H) — L(H), A(F) can be computed in polynomial time in the dimension of H (see [§]
for the algorithm). Shape vectors were first introduced by Kuperberg in [12] to study the problem of
emulating quantum memories one with another. Also, for u € C™ and p € [1,+00], ||ul|, denotes the
¢p-norm of u.

A remarkable aspect about this result is that it is a single-letter formula, i.e. the expression does
not involve a limit. This comes from the fact that the norm of the shape vector is multiplicative under
tensor product. Another implication is that the emulation capacity of idempotent channels is additive
under tensor products of source channels, i.e. C(G1 ® Go — F) = C(G1 — F) + C(G2 — F).

One interesting consequence of this formula is that emulating F with G is in general not reversible.
In fact, as shown in Example 1, there exists idempotent channels for which C(G +— F)C(F — G)~! < 1.
This follows from the fact that the infimum in the formulas for C(G — F) and C(F +— G) can be reached
for different values of p.

Next, we consider the setting beyond the zero-error regime, where the emulation does not need to be
exact: the rate r is achievable with error § € [0,1] if there exists channels £, D and k,n with r < k/n
such that

1
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where || - ||o is the diamond norm (the completely bounded norm between trace classes). We believe that
for idempotent channels, the capacity (with vanishing error) should be the same as the zero-error case.
Here, we only proved a weaker statement: the capacity cannot be larger than the same formula except
that we only take the minimum over p € {1,400}. More specifically, we establish a strong converse rate
for the emulation capacity.

Theorem 2 (Strong converse rate). Let F = FoF and G = G o G be two idempotent channels with
AMF) # (1). Let (ku)ven and (ny,)yen be two integer sequences with lim, o n, = 400 such that there

ezists € > 0 satisfying:
1
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Then, for all sequences of encoding and decoding channels (€,)ven, (Dy)ven,

L im |FEk —D,GEE, ||, = 1. (4)
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Note that for any two channels ® and ¥, we have that ||®—¥||, < 2. Therefore, Theorem 2 states that
if one tries to emulate F with G with a rate greater than log(||A(G)ll,)/ log(||A(F)]|p) for p € {1, +oc0},
the error in the limit of large block-length is maximal.

If F or G are identity channels or dephasing channels, then the achievability result of Theorem 1
and the strong converse rate in Theorem 2 match. In particular, for the case of F = Id, we obtain an
expression for the quantum capacity of arbitrary idempotent channels together with a strong converse.
In the case of self-adjoint idempotent channels (also known as tracial conditional expectation), this was
proved in [9] (see also [13]).

We conjecture that Theorem 2 can be improved to take an infimum over all p € [1, +00], which would
imply that the zero-error achievability in Theorem 1 is tight for all idempotent channels F, G even if
vanishing error is allowed.

The techniques used in our proofs stem from the theory of operator algebras. Nevertheless, familiarity
with this theory is not required to understand the present article. We will introduce in Section 2 the
basic theory of operator algebras that we use throughout our work.



This article is structured as follows. In Section 2, we introduce our notations and basic preliminaries
on quantum information and operator algebra theories. In Section 3, we discuss the decomposition
properties of idempotent channels. In Section 4, we prove Theorem 1. We prove Theorem 2 in Section 5.
Finally, we apply the theory of approximate C*-algebras recently developed by Kitaev [10] to strengthen
the converse of Theorem 1 in the appendix.

2 Preliminaries and notations

All Hilbert spaces in this work are assumed to be finite-dimensional. Given a Hilbert space H, we write
L(H) the set of linear operators on H. This set is endowed with the Hilbert-Schmidt inner product,
denoted (x,y) := tr(z*y) for z,y € L(H), with z* the conjugate transpose of x and tr(-) the trace on
L(H). Note that z* is the adjoint of x for the Hermitian product of H. We denote 1 € L(H) the
identity operator on H. Given x € L(H), we call the (right) support of x, denoted supp(z) C H, the
orthogonal complement of its (right) kernel. We write 2° the orthogonal projector on the support of z,
parallel to its kernel. Furthermore, for x € L(H), we write ||z||; for its Schatten 1-norm and ||z| its
Schatten oco-norm, which coincide with its operator norm as a linear operator on H. Recall that the set
of Hermitian operators in L(H) is a partially ordered set: for z = 2*,y = y* € L(H), we write z < y
whenever y — x is positive semidefinite.

A state is represented by a positive semidefinite operator p € L(H) with trace one, which is called a
density operator. We will take D(H) C L(H) to be the set of density operators belonging to £(#H). A
measurement on a physical system £(?) is represented by a Positive Operator Valued Measure, POVM
for short, which is a set of positive operators pi1, ..., ux € L(H), called effects, which sum to the identity,
ie. Zszl e = 1.

A quantum channel F : L(H) — L(H') is a completely positive trace preserving linear map. Each
linear map F : L(H) — L(H') admits an adjoint F* : L(H') — L(H) for the Hilbert-Schmidt inner
product such that for all z € L(H), y € L(H'), (F(x),y) = (x, F*(y)). When F is a channel, its
adjoint F* is a unital completely positive map. In Section 5, part of the discussion will be focused on
the identity channel which we write Idg : £(C%) — L£(C?%) and on the completely dephasing channel
Ag i L(CY) — L£(C?), which maps every z € £(C?%) onto its diagonal Diag(x11,...,%4) (W.r.t. the
standard orthonormal basis). This channel is a ‘classical identity’ as it preserves perfectly the classical
information while mapping its input state on a completely decorrelated state, hence a classical one.

We use, in Theorem 2, the diamond norm as a figure of merit for the quality of the emulation. We
recall that for F : L(H) — L(H'), the diamond norm is defined as

| Fllo = sup [|F @ Idpll1-1,
neN*

with || - |11 the ‘one-to-one’ norm, i.e. the map norm when the input and output spaces are endowed
with the Schatten 1-norm, denoted || - ||;. That is, for all linear maps F : L(H) — L(H'),

[Flo1 = Sulef(x)lh-

|1 <

Then, we recall basic properties of the ¢,-norms. For v € C" and p € [1,+0o0), the {,-norm of u is

defined as N
lully = (3 ul?) (5)
k=1

and ||ul|co = supy |ug|- In the discussions of the next sections, we will frequently make use of the fact
that the £,-norm are multiplicative under the tensor product of vectors. Given u € C", v € C™, the
tensor product u®v € C™ is the vector whose coordinates are the products of the coordinates of u and
v, i.e. (upvy)g, for k € [n], I € [m]. Then, for all p € [1,4+00], |[u ® v||, = [Jullpllv]p.

Finally, we end this section by introducing the notions of finite-dimensional *-algebras and their
morphisms.

In this article, we actually consider only x-subalgebras of L(H). Such a #-subalgebra A C L(H) is a
linear subspace of L£(H) which is stable under the multiplication and the * operation of L(H), i.e. taking
the transpose conjugate. That is, for all z,y € A, zy € A and for all z € A, z* € A. Furthermore, all



x-algebras in this work are assumed to be wnital, that is there is an identity 1 € A satisfying 1* = 1
and, for all z € A, 12 = 21 = z. Such an identity operator is necessarily unique in each x-algebra.

Given two *-algebras A and B, a x-homomorphism ¢ : A — B is a linear map that preserves the
product and the * operation in A. That is, for all z,y € A, ¢(zy) = t(z)i(y) and ¢(z*) = ¢(x)*. In many
texts, *-homomorphisms between unital x-algebras are assumed to be unital as well, that is they are
assumed to map the identity of A4 on the identity of . Nevertheless, in this article, we will work with
more general subunital *-homomorphisms. Such a map ¢ : A — B maps the identity of A on (1 4),
which satisfies ¢(1 4) < 15. Note that x-homomorphisms are completely positive [6].

We summarized all the notations we use throughout this article in Table 1.

H A finite-dimensional Hilbert space
L(H) Set of linear operators on H
D(H) Set of density operators in L(H)
A, B x-subalgebras of L(H)
P, 0 Density operators
supp(z) Support of
20 Orthogonal projector on the support of x
¥ Hermitian adjoint of x
I lp ¢p-norm Eq. (5)
F* Adjoint of F for the Hilbert-Schmidt product
F Reduced channel associated to F Prop. 1, eq. (9)
Rg(F) Range of F
AF) Shape vector of F Prop. 1
[n] The set of integers {1,...,n}

Table 1: Notations

3 Decomposition properties of idempotent channels

In this section, we discuss the decomposition properties of the range of idempotent channels, which are
summarized in the following propositions. The range of a map f : Q — €, denoted Rg(f), is the set of
all possible images over its domain Q, i.e. Rg(f) = {f(z) | € Q}. The range of an idempotent channel
coincides with its set of fixed points and the structure of this space is well understood, see for example
the lecture notes [19]. The following proposition summarizes the properties that we use.

Proposition 1 (Structure of the range of idempotent channels, see [19]). Let F : L(H) — L(H) be an
idempotent channel, i.e. satisfying F = F o F. We can write H as the direct sum

H =Ho D Ha, (6)

with Ho = supp(F (1)) and H1 = ker(F(1)), and Ho can further be decomposed as the orthogonal direct
sum

K
Ho = Hia @ Ha, (7)
k=1

so that there is a set of density operators {pr, € D(Hi2) | k € (K]}, such that

Rg(F) = (@ L(Hp1) ®pk) 0. ®)

K
k=1

Lete = F(1)° € L(H) be the orthogonal projector on Hy, and V : Ho — H be the isometry embedding
Ho into H such that VV* = e and V*V = 1 the identity operator in L(Ho). The reduced quantum

channel associated to F, denoted F : L(Ho) — L(Ho) is then defined as

F iz VIF(VZVH)Y, (9)



which is idempotent and whose range can be written as

K
Rg(F) = P L(Hr.1) @ p. (10)

k=1

Furthermore, we can express F and its adjoint F* in the following way:

K
Flx) = Ztrk,z(PkJCPk) ® ks (11)
k=1
and
R K
Fr(z) =Y trea(PeaPi(lla, ® pr)) @ Lo, (12)
k=1

where, for all k € [K|, Py is the orthogonal projector onto Hi1 ® Hyo, di = dim(Hg1) > 1, my =
dim(Hg,2) and tri o 1 L(Hp1 ® Hi2) = L(Hi,1) is the partial trace over Hy o.
Therefore, the range of F* is a unital x-subalgebra of L(Ho) and the following decomposition holds:

K
Rg(F") = P L(Hk1) @ T, (13)
k=1

We call the shape of F the K-dimensional vector whose coordinates are the dimensions (dy)re|k)
sorted in non-increasing order, which we write A(F).

Note that F and its reduced channel F both have the same shape vector, i.e. A(F) = A(F).
As an example of a shape vector, consider the qubit channel F : £(C?) — £(C?) defined as

Fia e tr(@)|0)0] = (tréx) 8) ,

where the matrix expression is written in the basis (]0),|1)). We have

F(1) = (3 8) .

Then, in the notations of eq. (7), we get Ho = supp(F (1)) = C|0), H; = ker(F(1)) = C|1), we can
write Rg(F) = C® |0X0]| & 0 and thus A(F) = (1). To construct the reduced version of F we can take

the isometry V = : Ho — H, where the expression of V is written in the basis (|0),|1)). Note that

1
0
we clearly have

1 0

* _ 0
o
Then, F : L(C) — L(C) is defined by the equation
Flz) = V*F(VaV*)V ==z,

so that F is the identity on £(C).
Furthermore, we remark that we have A(F) = (1) if and only if its reduced channel is a replacer
channel, i.e. Friae tr(x)p with p a fixed state. This fact follows easily from eq. (11) taking K = 1.
Before we present the proof of Proposition 1, we need to state the two following lemmas which will
be used in the proof.

Lemma 3. Let ® : L(H) — L(H) be a positive linear map?, let Ho = supp(®(1)) and let V : Ho — H
be an isometry embedding Ho into H so that VV* € L(H) is the orthogonal projection on Hgy. Then for
all z € L(H),

VV*o(x)VV* = &(x).

2Here 'positive’ means that = > 0 implies ®(z) > 0.




Proof. Let © € L(H) be positive semidefinite, then
0<z<l|z|L,

so that by positivity of ®, we have
0 < ®(z) < ||=|@(1).

Hence, ®(x) is supported on the support of ®(1) which is, by definition, Hgy. Furthermore, as x and 1
are positive semidefinite, ®(z) and ®(1) are positive semidefinite as well so that their respective range
(as linear maps on H) coincides with their support. Hence, we have

VV*e(z)VV* = &(x).
Now, if € L(H) is arbitrary, we can use the polarisation identity (see eq. (1.45) in [19]) to write

3
sz (z +i*1)* (z 4 i*1),
k=0

Ak\'—‘

so that z is a linear combination of four positive semidefinite elements of L(#). Now, by linearity, we
get
VV*®(2)VV* = &(x).

O
Furthermore, we remark that the set of fixed points and the range of an idempotent function coincide.

Lemma 4. Let f:Q — Q be an arbitrary idempotent function, with Q an arbitrary set, then

Rg(f) ={z Q| f(z) = «}. (14)
Proof. If x is a fixed point, x = f(z) € Rg(f). For the other inclusion, if y = f(z), we also have
fy)=F(f(z)) = f(z) =y, so y is a fixed point. O

Proposition 1 then basically follows from statements in Section 6.4 [19] and we detail it here only for
the convenience of the reader. Similar derivation can be found in [1] in the Heisenberg picture.

Proof of Proposition 1. We will first prove that the reduced channel F , defined in eq. (9), is actually a
channel. It is clearly completely positive as it is a composition of completely positive maps and it is
trace preserving because for all x € L(H),

tr(]?(x)) =tr(V*FVaV*)V) =te(VV*F(V2VHVV*) = tr(F(VaV™)) = tr(VaV*) = tr(x),
where the third equality follows from Lemma 3. Furthermore, Fis idempotent as, for z € L(Ho),

F(F(z) = V*F(VV*F(VaV)VV*V
=V*F(F(VaV*)V
=V*F(VaV*V
The second equation follows from Lemma 3, and the third from the idempotence of F.

Furthermore, 7 admits a full-rank fixed point. Indeed, F (V*F)V) is a fixed point of F, since F
is idempotent, and we have

FV*FO)V) = V*FVV*FLVVHV = V*FFA)V = V*F1)V,

which is full-rank in Ho = supp(F(1)), again using Lemma 3 for the second equality.

Therefore, we can apply Theorem 6.12 in [19] to the adjoint F*of F. Hence, the set of fixed points of
Frisa x-subalgebra of L(H). By Lemma 4, since F*is idempotent, its set of fixed points coincides with
its range, so that its range is a x-subalgebra of L£(Hg). It is well known (see e.g. [17]), that if A C L(Ho)



is a #-subalgebra of L(Hy), we can find a basis of H( in which it can be expressed as an orthogonal direct
sum as in eq. (13), which proves this equation. Furthermore, we get by the Proposition 1.5 of [19] that
F* takes the form of eq. (12). Then, taking the adjoint of this equation, we obtain that F=F"c

be written as in eq. (11). Then, for € L(Hy), we have that

K K

x) = Ztrk,z(Pk-l“Pk) ® pi € @E(Hk,l) ® Pk-
=1 k=1

Conversely, if
K K
T = Z.’Ek ® pr € @ﬁ(?‘lk,ﬂ & Pk,
k=1 k=1

where, for each k € [K], i, € L(Hy,1), we have that Pz, ®pr Py = 0,17 ® pr, since the spaces Hy 1 @Hy 2
are two by two orthogonal, so that © = F(z), and finally € Rg(F). This proves eq. (10).
Finally, to prove eq. (8), let € Rg(F). We then have

x=F(x)=VV*"F(x)VV* =VV*2VV™, (15)
so that x € L(Ho) ® 0 where the 0 operator acts on H;. Then, V*aV € L(Hy) and
F(V*aV) = V-F(VV2VV*)V = V*F(a)V = V*aV,
by Lemma 3 and by eq. (15). Hence,

K
V*zV e @ﬁ(%kJ) X Pk,
k=1

by eq. (10) and
K

x=VVaVV* e @ LMHr1) @ pr ®0.
k=1

I ) 0
= o)

Conversely, if

with
K
xo € @ﬁ(Hk,l) ® P
k=1
then R
© = VagV* = VE(@o)V* = VV* F(VaoVIVV* = F(VaoV*) = Fla),
so that z € Rg(F). O

We will now show that if 7 and G are two idempotent channels, it is equivalent to study the emulation
of F by G and the emulation of their reduced version, i.e. F by G. First, we can explicitly find an encoder
and a decoder channel to convert any idempotent channel F into its reduced version F and vice versa
as shown in the following proposition.

Proposition 2. Let F : L(H) — L(H) be an idempotent channel, let Hy = supp(F(1)) and let F :
L(Ho) = L(Ho) be its reduced quantum channel. Then, there is £ : L(Ho) — L(H), D : L(H) — L(Ho),
E:LH) = L(Ho) and D : L(Ho) — L(H) such that

F =DFE, and F = DFE. (16)



Proof. Let V' : Ho — H be the isometry embedding Ho into H which defines F asin Proposition 1. For
the first equality, let £ : L(H) — L(Ho) be defined by

£z VF(2)V,
and D : L(Ho) — L(H) be defined by
D:x— VaV*.
Both € and D are completely positive trace preserving map. The complete positivity is easy. D is
trace preserving because tr(VzV*) = tr(V*Vx) = tr(z) and & is trace preserving as well because for all

x € L(H),
r(VF(@)V) = te(VV* F(2)VV?) = tr(F(x)) = tr(w),

where the second equality follows from Lemma 3. Then we have the factorisation
F =DFE.
Indeed, let = € L(H), we have

o~~~

DFE(x) =VV*F(VV*F(x)VV*)VV*

where the second equality follows from Lemma 3. Now, for the factorisation of F et £ = Dand D =& ,
for x € L(Ho), we have:

DFE(x) = EFD(x)
=V*F(F(VaV*)V
=V*F(VaV*)V
O

As a consequence of this proposition, we get that studying the interconversion of two idempotent
channels F and G, is equivalent to study the interconversion of their reduced versions F and G.

Proposition 3. Let F: L(HF) — L(HF) and G : L(Hg) — L(Hg) be two idempotent channels and F,
G be their associated reduced channels, as defined in Proposition 1, then

inf | 7 - DGE|l. = inf |.F ~ DG, an)

where the infimum are taken over encoders and decoders channels £ and D between appropriate spaces.

Proof. Let £ : L(Hr) — L(Hg) and D : L(Hg) — L(Hr) be a pair of channels. Let &1, Dy, &, D be
channels such that R R
F = legl, and Q = Dgggg, (18)

which exist by Proposition 2. Then,
|F —~ DGE|lo = | F — DD:GEL o
= |D1flo|lF — DDGEL o1 EL o
> || D1 FE — D1DD2§52551||<>
= |F = DiDD,GELE o,

where we used in the second equality that as &, D; are channels, ||€1]lo = || D1]lo = 1.

Therefore, R R
inf || F — DGE||o < inf || F — DGE||o-
DE DE

We can apply the same line of argument but converting F to F and g to é to prove the converse
inequality. O



As mentioned in the introduction, the shape vector A(F) of an idempotent channel F : L(H) — L(H)
can be computed efficiently in terms of the dimension of H.

Proposition 4 (Theorem 2.6 and Algorithm 1 in [8]). Given F : L(H) — L(H) an idempotent channel,
there is an algorithm that computes A\(F) in time O(d®log(d)) where d is the dimension of H.

We now show that the range and the shape vector of idempotent channels preserve the tensor product,
a property that will be used in the proofs of our Theorems 1 and 2. Indeed, it will allow us to reduce the
study of the problem of emulating k copies of F using n copies of G for general pairs of integers (k, n)
to the case where k = n.

Proposition 5. Let F; : L(H1) = L(H1) and Fo : L(H2) — L(H2) be two idempotent channels, we
have

Rg(F1 ® F2) = Rg(F1) @ Rg(Fa), (

Rg(F1 ® F3) = Rg(F7) ® Rg(F3), (
FloFo=Fi @ Fa, (21

AMFL @ Fa) = A(F1) @ M(Fa), (

where f@z, .7?2 and .7?2 are respectively the reduced channels associated to F, @ Fo, F1 and Fo.

Proof. The proof of eq. (19) and eq. (20) is elementary and these equations actually hold for every linear
maps ®: L(H1) — L(H]) and ¥ : L(H2) — L(H)). Indeed, since Rg(®) @ Rg(¥) = Span{y1 ®y2 | 11 €
Rg(®),y2 € Rg(¥)}, we argue on product elements y; ® y2 € Rg(®) ® Rg(¥) with y; € Rg(®) and
y2 € Rg(¥). We have

Y1 @ yYg = (I)(le) X \I’(xz) =0d® \I'(xl ®$2) € Rg(‘b X \I/),

where 21 € L(H1) and z2 € L(Hz). Conversely, for y € Rg(® ® ¥) we have y = ® @ ¥(z), with
x € L(H1 ® Hz). Thus, we can write = as

J
r = ngj) ®xéj),
j=1
with x ) e L(H;) for (i,7) € [2] x [J]. Therefore,

J J
y=20¥(> o @) =Y o) v(Y)) € Rg(®) ® Rg(W).
j=1

j=1

Then, we prove the compatibility of taking the reduced version of idempotent channels with the tensor
product. We write 17 and 15 respectively the identity operators in £(H1) and L(Hz) and 1; 5 = 1; ®15.
We also write ’HZ(O) = supp(F;(1;)) and 7—[1(»1) = ker(F;(1;)) for ¢ € [2] and the corresponding isometries
Vi : ’H,EO) — H; defining ]?Z Then, F; @ Fa(112) = Fi(11) @ Fa(12), hence supp(F1 @ Fa(l12)) =
supp(Fi1(11)) ® supp(Fz2(12)) and F1® P maps £(H§0) ® ’Hgo)) into itself. If we write e10 = F1 ®
F2(112)° the orthogonal projector onto 7—[50) ® Héo) the support of F; @ Fa(1;2), we also have that
e12=e1®er = (V1@ Vo) (Vi ®Va)* with ey = V1 V" = F1(11)° and ea = Vo V5 = Fa(12)° the orthogonal
projectors onto the respective supports of F;(1;), ¢ € [2]. Then for x; € L(H1) and zo € L(H2), we have

]'—i®\.7'—2($1 & 132) = (Vl ® VQ)*]:l ® fQ((Vl ®R VZ)(fl R Iz)(vl ® ‘/2)*)(‘/1 ® VQ)
=V F (Vi Vi)V @ Vo' Fo(Vaxa Vo ) Va
= ]?1(91?1) ® j':g(l‘g).
Eq. (21) then follows on the whole space L(H1 ® Ha) = L(H1) ® L(H2) by linearity.
(8

The last equality, eq. (22), is then seen by injecting eq. (8) into eq. (19) and by the definition of the
shape vector of an idempotent channel. O]



We end this section by the following remark on the origin of the concept of shape vectors.

Remark 1. Note that the shape of an idempotent channel F coincides with the shape of the x-algebra
Rg(F*), with F the reduced channel associated to F. The notion of shape vector for x-algebras was
introduced by Kuperberg in [12]. If A is a *-algebra, we can decompose

K
A=),
k=1

for a set of integers {dy | k € [K]|} and we write A\(A) the shape vector of A, which coordinates are the
integers (di)re(k) sorted in non-increasing order.?

4 Emulation of idempotent channels with zero error

Now that we have presented the decomposition properties of idempotent channels, we move on to proving
Theorem 1 in this section, which is divided into two subsections. In the first one, we prove that every

rate lesser than
pe(L,+o00] log([|A(F)]|)

is achievable. In the second one, we prove that any rate strictly greater than eq. (23) is not achievable.

Before presenting these proofs, we provide some examples for the expression eq. (23). In particular,
we gather in Table 2 the expression of the emulation capacity C(G — F) when F or G is an identity
quantum channel or a completely dephasing channel. In fact, when F = Id,, then A(F) = (d) and thus
[IN(F)||p = d for all p > 1. As ||A(G)]|p is non-increasing in p, this shows that C(G — F) = %.
The other cases are similar. Note that, when G = Ay, log(||A(Ad)|lec) = log(1) = 0. Therefore, in
Table 2, we divided the case G = Ay in two more cases: the one where F is any idempotent channel
such that at least one coordinate of A(F) is greater or equal to 2, and the one where \(F) = (1,...,1),
in which case, for all p € [1, +o0],

log([[MAa)llp) _ plog([AMAd)ll,) _ — log(d)
log([IA(F)llp)  plog(IMF)Ilp)  log(IAF) 1)

Note that in the first case, i.e. A(F) has a coefficient greater or equal to two, the emulation capacity of
F by the completely dephasing channel is zero, that is it is impossible to emulate a channel preserving
some quantum information with a classical one, without error.

(23)

F g C(G— F)
Idy g %

log(d)
F da | wemoom

lo G
Aq g %

Fsto MF) #(1,...,1) | Ag 0

Fst. M(F)=(1,...,1) | Aq %

Table 2: Emulation capacities when either F or G is the identity or the completely dephasing channel.

Then, we also note that, as a corollary to our Theorem 1, the emulation capacity of idempotent
channels is additive under tensor products of source channels, which yields that the zero-error quantum
and classical capacities of idempotent channels are additive.

Corollary 1. Let F, G1 and Gy be three idempotent channels, then

31n fact, in all this article and in Kuperberg’s work [12], the order with respect to which the coordinates of shape vectors
are sorted is actually irrelevant.
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Proof. By Theorem 1, we have

o 1os(A(GL© G),)
velitia) log(AE)],)

log(IMGDl) . log(IAG2)]ly)
= oML/ £ =M T2/ lp)
pettoroc) Tog(INF),)  peltsioct Tog(IAF)])
=C(G1— F)+C(Ga — F)

CG1®G— F) =

where we used Proposition 5 and the multiplicativity of the £,-norms over the tensor product in the
second equation. O

The following example shows that the emulation capacity is not reversible, i.e. that C(G — F) #
C(F — G)~! in general.

Example 1. Let F = Idy be the identity channel on L(C*) and G : L(C*) — L(C*) be such that
AG) = (2,2). Then, by the first row of Table 2, we have

10g([A(G)lloc) _ log(2) _ 1

ClG—7F) = log(4) ~ log(4) 2’

whereas by the second row,

log(4)  log(4)

log(IAQ),) ~ logd)

C(F—G) =

Therefore,
C(G—F) t=2#1=C(F~G).

This example shows that neither the emulation capacity nor the strong converse rate given in Theorem 2
are reversible, since, as F is taken to be an identity channel in this example, both quantity match.

Although, when either F or G is an identity channel or a completely dephasing one, the infimum in
eq. (1) is reached for p € {1,400}, we show in the following example, that this is not the case in general.

In particular, the fact that the infimum in eq. (1) can be reached for p & {1,400} implies that, for
general idempotent channels 7 and G, the chain of emulation G — Id4 — F (where each arrow represents
an emulation) is less efficient than directly emulating F by G.

Example 2. Let F : L(C®) — L(C®) and G : L(C'®) — L(C®) be two idempotent channels such that
AF) = (5,3) and A(G) = (10,3,1,1), then, we numerically find that the infimum

log([[M9)ll)

C(G—F)= pe[llI}Jroo] log([|A(F)|lp)

~ 1.29916,

is reached for p = 1.15401. In contrast, the infimum

L s(AB)) _ log()
CF =0 = I Toe(IA@)],) ~ Tog(10)

is reached for p = 4o00. We can verify that

_y_ log(10)
OF = G)! = o ~ 143068 £ O(G = 7).

4.1 Achievability in Theorem 1

To prove the achievability direction of Theorem 1, we first show the following proposition in the case
where only one copy of F is emulated for each copy of G used, we will then use Proposition 5 on the
compatibility of the shape vector with the tensor product to conclude.



Proposition 6. Let F and G be two idempotent channels such that, for all p € [1,+00],
A < [IAG)p-
Then, there exists n € N*, € and D two channels such that
FEm = DGO"E.
To prove this proposition, we use the following theorem on embeddability of x-algebras.

Theorem 5 (Proven in [12]). If A and B are two finite-dimensional x-algebras such that, for all p €
[1, +o0],
IACA) [ < IAB) 5, (25)

then, there is n € N* such that there exists a subunital injective x-homomorphism ¢ : A®™ — B,

Proof. This theorem, despite not being stated explicitly in [12], is proven in the proof of Theorem 1.1
of [12]. O

For our achievability proof, it will be useful to lift ¢ into a unital completely positive map.

In the statement of the following lemma, we will use the fact that it is always possible, given
A C L(H4) a x-subalgebra of £(H 4) with the same identity operator as L(H 4), to construct a unital
completely positive map E 4 : L(H.4) — A such that for all x € A, E4(x) = . This fact is easily seen
as if A is a x-subalgebra of L(H 4) with the same identity operator, we can write the orthogonal direct
sum decompositions

K K
Ha = @Hk,l @ Hrpo, A= @ﬁ(ﬂm) ® 1,
k=1 k=1

with my, = dim(#Hy2) for k € [K]. Then, we can take E4 : L(H4) — A defined by
K

1
Egia— Y trya(PaPy) @ m—knmk, (26)
k=1

which is called the tracial conditional expectation on A (see e.g. Proposition 1.5 in [19]).
Lemma 6. Let A C L(Ha), B C L(HB) be two finite-dimensional unital *-subalgebras of L(H.4) and
L(Hp) respectively, where we assume that the identity operator in A coincides with the one in L(H.4),

denoted 1 4 and the one in B coincides with the one in L(Hp), denoted 1. Let v : A — B be an injective
subunital x-homomorphism.

Then, writing H(BO) = supp(t(14)) C Hp, we have that P, = (1 4) € L(Hp) is the orthogonal
projector on 7-[530). We denote V : ’Hg)) — Hp the isometry embedding 7—[(80) into Hp such that VV* = P,
and we define the reduced x-homomorphism 7: A — E(H,(BO)) by

Tix e Via(x)V. (27)

Thenv: A — E(Hg))) is a unital injective x-homomorphism and 1(A) is a unital x-subalgebra of E("Hg)))
where both T(A) and E(Hg))) share the same identity operator. We will write 71 : 7(A) — A the inverse
of T, which is itself a unital injective x-homomorphism.

We write E4 : L(Ha) — A and Eyy : E(?—Lg))) — U(A) the tracial conditional expectations on A
and T(A) respectively. Then, the maps

T:L(HA) = BC L(HB)

7> o(Balz)) + tz;‘?) (15— P), 28
and
TV L(HB) = AC L(HA) (29)
z = T (B (VFaV))
are unital completely positive and satisfy for all x € A,
Tlol(x) = 2. (30)
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Proof. First, we prove that P, = (14) is an orthogonal projector on supp(t(14)). As ¢ is a *-
homomorphism, it preserves both the operation of taking the adjoint and the multiplication, so that
Pr=u(1a)" =u(1%) =P, and P? = 1(14)? = 1(1%) = P..

We move on to prove that 7: A — E(ng)), with ’Hg)) = supp(¢(1 4)) is a *-homomorphism, which is
also unital and injective. First 7is clearly linear. Let x € A,

z) = (V(z)V) = Vi(z)'V* = Vi(z*)V* =7(z"),
and for y € A,

Woy) =V ilay)V = V@)V @ VYV @VV )V = Ta)ily).
The equality (a) holds by applying Lemma 3 on the map ® = ¢ which is positive as it is a *-homomorphism*.
To show the unitality, we have

/L\(]IA) = V*L(]IA)V = V*PLV =VVV*YV = 17-1530)’

with 1, () the identity operator in E(Hg))). We finish with the injectivity property. Let = € ker(7),
B
0=1z) =V*i(z)V.

Hence, by Lemma 3
(z) =VV*i(x)VV* =0,
so that « € ker(¢), thus z = 0 by injectivity of ¢.

Since 7 is a unital x-homomorphism, 7(.A) is a *-subalgebra of E(?—Lg])) and has the same identity oper-
ator as E(’Hg))), so that the tracial conditional expectation Ey4) is well-defined by eq. (26). Furthermore,
as 7 is injective 77! is well-defined and is a unital *-homomorphism as well.

Now, we show that 7 and 7~! are unital completely positive maps. By unitality of E 4, Ey 4y and T
it is clear that 7 and 7~! are unital. Furthermore, 7~! is the composition of completely positive maps
and is thus completely positive. Moreover, as ¢ was assumed to be subunital, (1 4) = P, < 15 so that
is completely positive.

We also have that 7(£(H.4)) C B. Indeed, as B is unital of unit 1z and as the range of ¢ is in B,
1 — P, € Band ((E4(x)) € B for all z € L(Hp). Hence i1(A) C B.

Finally, note that 1z — P, is the orthogonal projector on ker(P,) which is orthogonal to supp(P,) =
Rg(V), so that (1g — P,)V = 0. Hence, for x € A,

T (il@) = TN By (VI Ea(2)V) =T (B (2)) =71 (i(2)) = =

We now prove Proposition 6.

Proof of Proposition 6. Let F : L(HF) — L(Hr) and G : L(Hg) — L(Hg) be two idempotent channels.
We can suppose without loss of generality that F = F and G = é as, by Proposition 3, we can convert
G into F if and only if we can convert the reduced channel of G into the one of F. Therefore, by
Proposition 1, we can suppose that both Rg(G*) and Rg(F*) are unital x-subalgebras of £(Hg) and
L(H F) respectively and that the identity operators of £L(H ) and Rg(F™*) coincide as well as those of
L(Hg) and Rg(G*). Thus, by assumption, for all p € [1, +o0],

IAR(F NIy = MP)p < [IAG)]lp = ARG )],

Therefore, by Theorem 5, there is an n € N* such that there exists an injective subunital *-homomorphism
t: Rg(F*)®" — Rg(G*)®™ between the two x-algebras Rg(F*)®" and Rg(G*)®". Then, by Proposition 5,
Rg(F*)®" = Rg(F*®™) and Rg(G*)®™ = Rg(G*®™), so that ¢ injects Rg(F*®") into Rg(G*®™). We then
show that we have the factorisation:

]_-*@m :Z'—l o g*@n o070 ]_-*(Xm’ (31)

4 Actually, *-homomorphisms are even completely positive [7].
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with 7 and 7~! being defined as in Lemma 6. Indeed, for € L(HZ"), T{(F*®"(z)) € Rg(G*®"). Then,
since G*®" is idempotent, every element of its range is one of its fixed points, so that G*®™ (7(F*®"(x))) =
UF*On(z)). As F*®n(z) € Rg(F*®"), we can finally apply eq. (30) to get that 7 17(F*®"(x)) =
FrOn(z).

We then write £ = 77! and D* = 7o F*®". By Lemma 6, both £* and D* are unital completely
positive, so that their adjoint £ and D are channels. Taking the adjoint of eq. (31), we finally get

FOm = DGo"E.

Then we can prove the achievability in Theorem 1.

Proof of achievability in Theorem 1. Let F, G be idempotent channels and

pe[L+o0] log([IA(F)lp)”

By density of the rational numbers into the reals, there exists k,n € N* such that

K 1og(JA(G)]l,)
< . —_— .
TS0 peliiioo] og(INA)],)

r <

Then, for every p € [1,+00], we have
IMFE I < IAGE™) s

where we used Proposition 5 on the shape vectors of the tensor product of channels.
Then, by Proposition 6, there is m € N*, £ and D channels such that

]_-®km — Dg@nmg’

and r < k/n = km/(nm) is thus an achievable rate. O

4.2 Converse of Theorem 1

We now move on to the proof of the converse of Theorem 1. To prove this direction, we use a result
of [12] which is almost a converse to Theorem 5.

Theorem 7 (Forward direction of Theorem 1.1 in [12]). Let A and B be two finite-dimensional x-algebras.
If there is an injective x-homomorphism of A into B, then for all p € [1,+00],

IACA I < IAGB) - (32)

Note that Theorems 5 and 7 are not converse one from another because the inequality between the
¢p,-norms of the shape vectors is strict in one case but not in the other.
The converse of Theorem 1 then follows from Theorem 7 combined with the following proposition.

Proposition 7. Let F : L(HFr) — L(HF) and G : L(Hg) — L(Hg) be two idempotent channels equal
to their reduced channels, i.e. F = F and G = G. Suppose that there are two channels £, D satisfying

F = DGE. (33)

We write 1z and 1g the identity operator in L(Hr) and L(Hg) respectively. To simplify our notations,
we also denote ege = GE(17)Y. Define

Gz egeGH(x)ege. (34)

Then, egs Rg(G*)ege is a unital x-subalgebra of L(Hg) whose identity operator is egs and G*D* restricted
to the x-algebra Rg(F*) is an injective unital x-homomorphism which embeds Rg(F*) into ege Rg(G*)ege
as a subalgebra.

Furthermore, for all p € [1,+0o0]

[A(ege Re(G")ege)llp < [IAMRe(G™))lp-

14



The proof of this proposition uses the following lemma.
Lemma 8. Let & : L(H) — L(H') be a quantum channel and write e = ®(1)°. Then,
i) for allx € L(H'), ®*(x) = P*(exe),
ii) for all positive semidefinite x € L(H'), ®*(x) = 0 implies exe = 0.

Proof. Let H{ = supp(®(1)) and V : H{, — H’ be the isometry such that e = VV*. Let y € L(H) and
x € L(H), then

tr(y®*(z)) = tr(P(y)z) = tr(VV*®(y)VV*z) = tr(e®(y)ex) = tr(y®* (exe)),

where the second equality follows by Lemma 3. Therefore ®*(x) = ®(exe).
For the second statement, let z € L(H') be positive semidefinite such that ®*(z) = 0. Then

0 =tr(®"(z)) = tr(®(1)x) = tr(eP(1)ex) > Amin(P(1)) tr(exe),

with Apin (®(1)) the minimal non-zero eigenvalue of ®(1). Therefore, tr(exe) = 0 and, by positivity of
z, exe = 0. O]

Then, we move on to the proof of Proposition 7. This proof uses the Kadison-Schwarz inequality
(eq. (5.2) in [19]), which is a generalisation of the well-known Cauchy-Schwarz inequality to maps on
operators. For every channel F : L(H) — L(H'), for all z € L(H'),

Fr(z")F*(z) < F*(z"x). (35)

Furthermore, in this proof, we will use the notion of multiplicative domain of linear maps. Given
F*: L(H') = L(H) a linear map, the multiplicative domain of F* is the set

{z e L) |y € L), Fr(xy) = F(x)F"(y) and F*(yz) = F* (y) 7" (2)}.

If F* is furthermore Hermitian preserving then its multiplicative domain is closed under taking the
adjoint and is therefore a x-algebra. Moreover, in this case, J* acts as a (non necessarily unital)
*-homomorphism on its multiplicative domain. Furthermore, when F* satisfies the Kadison-Schwarz
inequality, by Theorem 5.7 in [19], we can write its multiplicative domain as

{z e LH) | F*(z*z) = F*(2*)F*(x) and F*(zz*) = F*(z)F*(2)}.

In particular, if 7* is unital completely positive®, it satisfies the Kadison-Schwarz inequality (eq. (35))
and we can use this second characterisation of its multiplicative domain.

Proof of Proposition 7. Let F : L(Hr) — L(HF) and G : L(Hg) — L(Hg) be two idempotent channels
equal to their reduced channels, i.e. F = F and G = G, and let D, £ be two channels such that

F =DGE.
Taking the adjoint of this equation, we get

where the right-hand side follows from the idempotence of G*. Let « € L(Hr), applying Lemma 8 to
the channel ® = G&€, we get that

F(x) =E"G (egeG" D" (x)ege) = (ﬁ’*‘g*(j*l)*(a:)7

5In fact, it suffices for F* to be subunital 2-positive for it to satisfy the Kadison-Schwarz inequality, see Section 5.2
of [19] for more details.
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with G* defined in the statement of Proposition 7. Let 2 € Rg(F*). By the assumption that F = j-:,
Rg(F*) is a #-subalgebra of L(Hx), thus z*x € Rg(F*), and as F* is idempotent, xz* is a fixed point
of F*, so that we have:

¥ = F*(x*x)
(a) ~ ~
> E"G*(G"D*(2")G "D ()
©] ~ -
=z,

where we used the Kadison-Schwarz inequality to get both (a) and (b). Since the left-hand side and the
right-hand side of this chain of inequalities coincide, we conclude that (a) and (b) are in fact equalities.
Therefore,

£G*(G*D* (a"x) — G*D* (¢*)G*D* (x)) = 0,
where, by the Kadison-Schwarz inequality,
G*D*(2*z) — G*D*(a*)G D" (z) > 0.
Therefore, by the second statement in Lemma 8 applied to the channel ® = G€, we obtain
G*D*(2*z) — G*D*(a*)G D" (z) = 0.
We can swap the roles of x and z* in (a) and (b) to find that
G*D* (zz*) — G*D* ()G *D*(x*) = 0.

Therefore, x is in the multiplicative domain of G*D*. Thus, G*D* restricted to Rg(F*) is an injective
unital *-homomorphism into the x-algebra egs Rg(G*)ege, which is a *-subalgebra of £(Hg) and whose
identity operator is egg. It is injective as, for all € Rg(F*),

x = F*(x) = E*G*G*D*(x),

hence G*D*(z) = 0 implies # = 0. It is unital as it maps the identity of £(Hr) to ege which is the
identity operator of the *-algebra ege Rg(G*)ege. Indeed, as both G and D are channels, G* and D* are
unital so that G*D*(1£) = 1g and G*D*(15) = ege.

Now, to show that ege Rg(G*)ege is a x-subalgebra of L(Hg) which satisfies for all p € [1,+0o0],
[IA(ege Rg(G*)ege)llp < |AMRg(G*))]lp, it suffices to remark that, by Proposition 1, we can decompose
the Hilbert space Hg as

K
Hg = @Hm @ Hy 2,
k=1
and the *-algebra Rg(G*) as
K
Rg(G") = @E(Hk,l) ® Ly,
k=1

with my, = dim(Hg,2) for all k € [K]. Then GE(1£) € Rg(G) can itself be decomposed as
K
GE(LF) = Zxk ® Pk,
k=1
with {Ik € E(’H}cg) ‘ ke [K]} and {pk S D(/Hk,g) | ke [K}} Thus,

K
ege = GE(LF)’ =) af ® pp,
=1
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and
K

ege Re(G")ege = @D 2 L(Hi )2 @ pf.
k=1

Hence, egs Rg(G*)ege is a x-subalgebra for all k& € [K], the k-th coordinate of the shape vector of
ege Rg(G*)ege satisfies
Aege Rg(G")ege)r < MRg(G™))k,

which allows us to conclude. [
We can now prove the converse of Theorem 1.

Converse of Theorem 1. Let F : L(Hr) — L(Hx)and G : L(Hg) — L(Hg) be two idempotent channels,
let k,n € N* such that there are two channels £ and D satisfying

FEk =Dpgere.

By Proposition 3, then, if we denote F®* and QTGQ\” the reduced channels associated to F®* and G®n,
this condition is equivalent to

Fon - pigane!
for some channels D', £. Thus, by Proposition 7, there is an injective unital *-homomorphism from

— %

Rg(f@“*) into the x-algebra eganes Rg(Gen )eg/@g,, which is itself a x-subalgebra of £(#Hg). Then, by

Theorem 7 and the second statement of Proposition 7, we have for all p € [1, +00]:
IMFER) o = IAR(FE Dllp < [Megan g, Re(GE™ Jegae)llp < IARS(GE™ )l = [MGE™ ]I

By the multiplicativity property of the shape vectors and the ¢,-norms with the tensor product (Propo-
sition 5), we get for all p € [1, +0o0]:

IXEE = IMF)E < IAG)IE = IMG)|2.

Thus,
. LEUNO)
pel+oo] Jog([IA(F)]lp)’

which ends the proof. O

k
- <
n

Finally, we give a slightly stronger version of the converse of Theorem 1 when allowing for dimension
dependent errors in the Appendix. This stronger result is an application of approximate C*-algebras,
which were recently introduced by Kitaev in [10].

5 Emulation of idempotent channels with errors

In Theorem 1, the converse states that it is impossible to emulate an idempotent channel F by another
idempotent channel G at a rate higher than the infimum in eq. (1) without error. In this section, we
prove Theorem 2 which shows that we can not achieve better rates than

wf LosllAG)p)
pe{1,+oo} 10g([[A(F)|lp)’

even if one allows errors. This strong converse rate is probably not tight in general, as the emulation
capacity is expressed in Theorem 1 as an infimum over all p € [1, +o0], we therefore conjecture that our
strong converse rate can be improved to the infimum over all p € [1, +00].

Theorem 2 is actually a corollary of the following theorem, which gives a lower bound on the min-
imal error achievable for the one-shot emulation of 7 by G. Note that this theorem can be seen as a
generalisation of eq. (18) in [11] about emulation of identity channels. In fact, even in the special case
of identity channels, we strengthen the bound of [11] by a factor of 2.
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Theorem 9. Let F and G be two idempotent channels, then

IO
F—DGE|lo >1— _— 36
ol |77 = Dge|| pel ey TN, (%)

l\D\»—l

To prove this theorem, we use the Holevo-Helstrom bound applied to the problem of channel discrim-
ination.

Lemma 10 (see e.g. Theorem 3.52 in [18]). Let &1, ®o : L(H) — L(H') be two quantum channels. For
any choice of auziliary system L(H") of dimension d = dim(H"), for any choice of positive semidefinite
operator p € L(H' @ H") satisfying u < 1 and of density operator o € D(H @ H"),

1
§||<I>1 — Dglo > tr(p®; ® Id4(0)) — tr(pdPs @ Id4(0)). (37)

We can now prove Theorem 9.

Proof of Theorem 9. Let F : L(HF) — L(HF) and G : L(Hg) — L(Hg) be two idempotent channels. If
we denote F and G their respective reduced channels, we showed as Proposition 3 that

inf | F — DGE||s = inf || F — DGE|s.
D.E D.E

Therefore, to simplify our notations, we will suppose without loss of generality that / and G are equal
to their reduced version, i.e. F = Fand G=G. We prove separately the two following equations:

Lt e — _ M9l

5 inf |F —DGE|l, > 1 AL (38)
a“d i el

5 L IF = DGEllo =1 - A (39)

which taken together amount to the statement of Theorem 9.
To prove each equation, we use Lemma 10 on the channels ®; = F and $5 = DGE and we find an
Ansatz (o, ) in eq. (37) such that on the one hand

tr(uF @ Ida(o)) = 1,

and, on the other hand
IIA(Q)Ilp

with p = 1 for one Ansatz and p = oo for the other.
We begin with the case p = 1. As we saw in Proposition 1, we can decompose H# as an orthogonal
direct sum

K
Hr = @Hk,l ® M2,
k=1
so that
K
Rg(F) = €D L(Hr1) © pi,
k=1

with, for all £ € [K], pr € D(Hg,z2). To simplify our notations, we write dy, = dim(H,1) and my =
dim(Hg2) for all k € [K], so that [|A(F)|1 = Zle di. Now, for each k € [K], let {|v), | v € [di]}
be an orthonormal basis of Hy ;. We define our Ansatz o as being, basically, the sum of the maximally
correlated states on the My 1 spaces for k € [K]:

K dg

1
7= T 2 2

k=1v=1

® )l ® 22k, (10)
my
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where |v)v|r = |V)x(v|r for notational simplicity. Then, we take

K dy
p=Y ) [NV @ L, @ )Vl @ L (41)
k=1v=1
We now have:
tr(uF @ 1d(o))
=tr(F* @ Id(p)o)
—
K dy, dys 1 1
YUk @ Ly, @ [)V]e @ Liny) VWV | @ m’“'@uy/ U
K
[VXv]e @ [v)Xvlk)
- T ZZ
dy,
T INF ||1Z
:1,

where, for the second equality, we used the fact that as |v)v|r € L(Hi,1), [V)V|k ® 1, € Rg(F*) for
all k € [K] so that F* ® Id(u) = p. For the upper bound on tr(uDGE ® Id(o)), we have

tr(uDGE @ 1d(0))
”)\(I)H tl"(( Z |V><1/|k®]1mk®\V><V|k®]lmk)< Z Dg5(|yl><’//|k' ];;nk,) ®|1/ N |k o ]i;:kl/)),
kel K e [K] k
v € [di] V'€ [dy]
so that o
tr(uDGE ® 1d(0)) = ”A i (3" S (X vlk ® L, ) (DGE (V)] @ ﬂmin:c))). (42)
k=1v=1

From Proposition 1, we can decompose Hg and G as

K/
Hg = @H;m @ Mo
k=1
and
K/
Gz Ztrk72(P,gxP,g) ® Pl
k=1
with P the orthogonal projector on Hj, ; @ Hj, 5, trg 2(-) the partial trace over Hj , and pj, € D(H,, ,) for
all k € [K']. We can therefore factorise G into two channels, one being the sum of the partial traces and

the other being the sum of tensor products with the states p), for k € [K’]. We write Hg, = EB,CKZ,I
and we define Gy : L(Hg) = L(Hg,) and Gy : L(Hg,) — L(Hg) as

I

Gi:x— Ztrkg(P,go:P,g), (43)
k=1
K’ ~ ~

Go:w s Z PlxP| ® ph., (44)
k=1
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where ﬁ,g € L(Hg,) is the orthogonal projector on H,, , for all k € [K']. Now, G; and Gy are channels
and we can write G = Gy o G;. Furthermore, let 1g, be the identity operator in L(Hg, ), we then have,
similarly as in the proof of eq. (18) in [11],

K
NG = dim(H} )
k=1

= dim(Hg,)

= tr(]lgl)
(i) tr(g;D*(]l]_-))
K dy
=33 (G D (vl @ )
k=1v=1
K dg .
Z Ztr(ggD*(|V><l/|k ® L, )GLE(JV) Y|k ® mL:))
=1lv=1
. ]1
= Z Ztr(|V><V|k ® ]lmk’Dgzglg(‘Vka ® mi:))
k=1v=1
K dg

= (> (WHvls © L, ) (DGE(

k=1v=1
where (a) follows from the fact that DG, : L(Hg,) — L(HF) is a channel, so that G5D* is unital.
Then (b) follows from the fact that for all ¥ € [K] and v € [di], [vXv|k ® Imi s a state so that

mp
tr(Gi&r (Jv)v|r ® nmk’“)) = 1, hence 0 < G & (Jv) v ® IL"T’C) < 1g,, and that as G5D* is completely

positive, G3D*(|[v) V| @ Ly, ) > 0. We then simply use that if A > 0 and B <1, tr(A) > tr(AB). When
injecting the last equation into eq. (42), we find

®)
>

PRVl ),

[AG) I
tr(uDGE(0)) < i
IACF) 1
We now move on to the proof of eq. (39), i.e. the case p = +o00. To deal with the case where the
blocks of the range of F* have multiplicities, we factorise F = Fy o F; as we did for G in eq. (43), so
that we have the decompositions

K
H= EBHk,l ® He,2,
k=1
K
F .z Ztrk)g(kaPk) @ Pk,
k=1
K
Fir:xz Ztrk,g(kaPk),
k=1
K ~ ~
Fo x> ZPkak & Pk,
k=1

where, for k € [K], pi € D(Hy,2), Pi is the orthogonal projector on Hy 1 ® Hy 2 and Pp € L(HF,) is

the orthogonal projector on Hy i with Hr, = @szl Hp,1. Then, although we have the factorisation
F = Fy 0 Fy, we also have the identity F; = F; o F. Therefore, we can write

[F1 = FADGElo = |F1 o (F = DGE)||o < | FrllollF = DGElo = [|F — DGE||o,

where the last equality follows from the fact that F; is a channel and thus, ||F1]lc = 1. Therefore, to
prove eq. (39), we will prove that

A9l

]:—]:DQSH >1— ——,
1#2 = FrDGElle 2 1 =37
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using Lemma 10. Let koo € [K] be such that Hy__ 1 has maximal dimension. To simplify our notations,
we write d = dim(Hi__ 1) = [|AM(F)| o and we let {|v) | v € [d]} be an orthonormal basis of Hy__ 1. The
Ansatz we choose for o and p is then the maximally entangled state on Hy__ 1

d
Z vXm|. (45)

Then,

tr(uF1 ©1d(0)) = — tr(( S ) nn|)( Z Fu(v' Yol @ ' 1))

v,n=1 n'=1
1 d
=t Y [l V')
v, =1
1, & d
=5 (D2 ml V) (D ' lww))
n,v'=1 v,n'=1

where we used the fact that as [v/)n'| € L(Hy, 1) for all v/, 5’ € [d], we have F1(|[v'}n']) = [V Xn'|.

For the upper bound on tr(uF1DGE @ Id(o)), we use techniques much similar to those of the proof
of Theorem 2.3 in [8]. First, we remark that the quantity tr(uF1DGE ®1d(0)) is actually very similar to
the entanglement fidelity of F;DGE and can be easily expressed in terms of its Kraus operators, which
we write, for now, {K; | i € [R]}°. Then:

d R d
tr(uF1 DGE @ 14(0) (Z ) nn\) (Z > Kilv)n |K;*®|u/><n/|))
v,n=1 i=1 v n'=1
L
= @Z > w(()nl K}y K;)
i=1v,n=1
1 & .
= EZ >l Kilm)v|K; |v)
i=1v,n=1
1 & ”
— EZHr(P K;)|
i=1

where we write Pog = P = Yo, lvXv| € L(HF,) the orthogonal projector onto Hy__ 1. Now, we use
the fact that the channel is of the form F1DGE. First, we factorise G = G o G using the notations of
eq. (43) and we furthermore define the pinching map P : L(Hg,) = L(Hg, ) as

K/
P:x— Zﬁ,@azﬁé, (46)
k=1

with P € L(Hg,) the orthogonal projector on Hj, o for all k € [K']. We then have the full factorisation
G = Gy 0P oG;. For notational simplicity, we write respectively {D, }q, {E.}. the Kraus operators of the
channels F; oD oGy and Gy o €. Hence, we can write Kraus operators {K;}; of F1DGE as {DaﬁéEc}a,b,o
Note that we can express ||A(G)]|s in terms of the Kraus operators of P as ||A(G)|lcc = maxy tr(]sé).
Therefore, we have

tr(uFiDGE @ 1d(0)) = % > | tr(Px Do Py E) .

a,b,c

6We do not suppose this Kraus decomposition to be minimal.
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By the Cauchy-Schwarz inequality on operators, for 2 and y of adequate dimensions, we have | tr(z*y)|? <
tr(z*x) tr(y*y). Hence,

1 - -
tr(uF1DGE(0)) = 22 Z |tr(PooDaPéEc)|2
a,b,c

1 ~ ~ ~
=5 > | tr(Do PPy E.Py)|?

a,b,c

IN

1 ~ ~ ~
= > (Do Py D}) tr(Poc Ef P E.)
a,b,c

(a) 1 = D * D/
= 2 ((B)> (P B PE,)
42 - ( b - b )

o max tr(P})

< e > tr(PwE; BE,)
b,c

) maxy, tr(]S’) ~
= Tb Ztr(POOEC Ec)

—

(c) max, tr(P]) ~
Al
IAF) oo

—

For (a), we used the fact that the operators {D,}, are the Kraus operators of F1DGa, which is a channel

and hence trace preserving. For (b), we used that ), 15,; = 1g,. Finally, for (c¢), we used the Kraus
relation ), E¥E. = 17 for the channel G; o £. This ends the proof of eq. (39). O

We can now present the proof of Theorem 2.

Proof of Theorem 2. Let F, G be two idempotent channels, (k) en, (n,),en be two integer sequences
and € > 0 satisfying the assumptions of Theorem 2. Let ppn € {1,400} be such that

win 108(MDp) _ Tog(IING)
pe{l,+oc} log(IN(F)llp)  log([|A(F)

plnin)

Prnin)

Then, we have
ke 108(MG) )

> te.
v=oomy — 10g([[A(F)lpomin)

Then, for all v big enough,
ky o 10g(IA(Gllpwsn) , €

1y = 10g(IA(F) lpsn) 2
so that
Pmin .
INE AR M) B
As, by assumption, n,, — 00 and [|A(F)l|p,,, > 1, we get that

T (517

y

A )
im 7” 9l ]Z"‘“‘ =0. (47)
v |INF) [Iphuin

However, by Theorem 9, for all v € N, all encoding and decoding channels &,, D,,

A e, O,
H)\(‘F®ku) Pmin ||)\('7:) H];[l:]in ’
where we used for the right-hand side equality the fact that both the shape vector and the £,-norms are

compatible with the tensor product, i.e. Proposition 5. Then, Theorem 2 follows by injecting eq. (47)
in this last inequality. O

1
SIFEH = DuGEm e, o > 1
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A An application of approximate C*-algebras

In a recent article, Kitaev introduced and studied approximate C*-algebras and almost idempotent
quantum channels, in order to find an algebraic framework which allows to naturally express the effects
of the noise on quantum information [10]. As most of our proofs in Section 4 exploit the decomposition
properties of finite-dimensional x-algebras, we use approximate C*-algebras to strengthen the converse
of Theorem 1 and show that it holds even if a small error is allowed.

Theorem 11. Let F : L(HF) = L(HF) and G : L(Hg) — L(Hg) be two idempotent channels and E,
D be two channels. Let d = dim(Hx), Smax be the absolute constant” of Theorem 12 and Amin,n be the
minimal non-zero eigenvalue of GE"E (1 rer). If

Omax Ami
Qk N max/\min,n
||JT: - Dg gHO S T7

then
log([[A(9) )

1n —_— .
pelL+oo] log([|A(F)|p)

Note that in Theorem 11, the error allowed depends on the dimension of the input space of F, on
the number of copies of F obtained and the number of copies of G used as well as on the encoder used
for the emulation. This theorem is therefore less operationally motivated than Theorems 1 and 2, but
it still strengthens the converse of Theorem 1 and its proof leads to nice mathematical developments,
especially on multiplicative domains (see Theorem 13).

Note that an interesting direction would be to extend our Theorem 1 to the problem of emulating
almost idempotent channels one with another, but we leave this for future work.

The Appendix is divided as follows. In Subsection A.1, we recall, for completeness, the Error Reduc-
tion Theorem for approximate C*-algebras. We then move on to proving Theorem 13 on approximate
multiplicative domain of maps satisfying the Kadison-Schwarz inequality in Subsection A.2, which will
be used in the proof of Theorem 11 in Subsection A.3.

Note that this Appendix assumes familiarity with basic concepts from operator algebras.

k
Z <
n

A.1 The Error Reduction Theorem
We begin by recalling the definitions of e-C*-algebras and é-homomorphisms.

Definition 1 (e-C*-algebra, Definition 2.1 in [10]). An e-Banach algebra is a Banach space A, endowed
with a bilinear multiplication map A X A — A such that

Vo,y € A, lzyl < (1+ )yl
Vr,y,z € A, (zy)z — x(y2)ll < e llz]llyll=]-

A xe-Banach algebra is a complex e-Banach algebra with a conjugate linear involution x — x* satisfying
the equations:

Ve,y € A, 27| = flzfl,  (2y)" =y o™ (48)

"Here, ‘absolute’ means that dmax does neither depend on the dimension of H  nor of Hg.
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An e-C*-algebra is one satisfying the following property:
Vo € A, |lz*z| > (1 —¢)|z|* (49)
The unit element 1 € A should satisfy the following conditions:
ol —zf| <ell], [[To—zf <ellz, [[L] -1 <e. (50)

If A is involutive, we also have
1" = 1. (51)

A §-homomorphism is then naturally defined in the following way.
Definition 2 (4-homomorphism, Definition 2.2 in [10]). A é-homomorphism from an €’-Banach algebra

A’ to an €”-Banach algebra A" is a bounded linear map v : A" — A" that almost preserves the unit and

the multiplication.:
Vo,y € A, [o(1) — 1] <4,
lo(zy) — v(@)e(y)] < syl
A non-unital 6-homomorphism is defined by imposing only the second condition. In the x-algebra setting,
it is also required that v(x*) = v(x)*.
A d-inclusion is a §-homomorphism such that

Ve e A, (1=0)llz]l < llv(@)ll < (1+3)]=l|.

(52)

The Error Reduction Theorem then states that if there is a d-inclusion of an exact C*-algebra A into
an e-C*-algebra B for § < dpnax and € < enyax, which are constants that do not depend on the dimensions
of A and B, one can ‘correct’ this d-inclusion into a less noisy approximate inclusion.

Theorem 12 (Error Reduction Theorem, Corollary 8.3 in [10]). There exists some positive constants
Emazx, Omaz and co such that for all € < €maz, if a finite-dimensional C*-algebra A 18 0pmqq-included into
an e-C*-algebra B, then there is also a (co€)-inclusion. If the original inclusion is bijective, then so is
the new inclusion.

Note that as every C*-algebra is a 0-C*-algebra, Theorem 12 states that when we have a 0y ax-
inclusion between two C*-algebras, it is possible to lift it to an exact inclusion. This can be interpreted
as a case of complete correction in the sense that the reduction of the error parameter § is total.

A.2 Approximate Multiplicative Domains
We used in the proof of the converse of Theorem 1 the fact that, for a map F* : L(H') — L(H), which
satisfies the Kadison-Schwarz inequality, its multiplicative domain can be expressed as

{z € LH) | F*(z*z) = F*(2*)F*(x) and F*(zz*) = F*(z)F*(2)}.

In order to prove Theorem 11, we have to extend this result to the approximate case. For F* :
L(H') — L(H) a linear map satisfying the Kadison-Schwarz inequality, we define, for § > 0 the following
sets:

it = {x € LAIIF* (z*a) = F*(a*)F* ()l < d)l|*},
Cy = {z € LOAH|IF (zz*) — F*(2)F* (") < 8]},
C; =CEnck.
We can show the following theorem.
Theorem 13. Let F* : L(H') — L(H) be a linear map satisfying the Kadison-Schwarz inequality. Then,
for all § > 0, F* is 20-multiplicative on Cs, i.e.
Va,y € Cs, | F*(zy) — F* () F*(y)l| < 26[|lz[[ly]- (53)

More precisely, we have that

Vo € C5 Yy € CF | F* (ay) — F* (@) F* ()| < 28]12Il1yll- (54)
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The proof of this theorem uses the following lemma.

Lemma 14. Let {zy € L(H) | k € [K]} and {7} € L(H) | k € [K]} be two sets of operators such that
for all k even,

ry < Ty,
and for k odd,
T = Ek.
Then, for allt € R,
K K
Zthk < Ztkik. (55)
k=1 k=1
Proof of Lemma 14. Let t € R:
K K
Ztkik — Zthk = Z tk(ik —xp) >0,
k=1 k=1 ke[K], k even

where the right-hand side inequality follows from the assumption that T > x; for all k even and also
that, for all t € R, t*¥ > 0 for k even. O

Proof of Theorem 13. This proof generalises the ones of Theorems 5.4 and 5.7 in [19]. In this proof, we
let 1 denote the identity operator of L(H').
We have that = € CF if and only if 2* € CF and vice versa. Therefore, it suffices to show that for all
z,y € CE,
[F*(2"y) = F* (") F (y)l| < 26| [lyl]. (56)

Let x,y € CE, t € R and z =tz +y. As F* satisfies the Kadison-Schwarz inequality,
0 < F*(z*2) — F*(z")F*(2).
If we develop the right-hand side, we get:
0<t2Q+tV 4+ W,

with

Q=F'(z"x) - F* (") F (x),
W =F(y"y) = F(y") F(y),
v=F(2"y) - F(2")F" (),
V =v+0"
Then, as F* satisfies the Kadison-Schwarz inequality, 0 < @Q and 0 < W. Furthermore, Q < ||Q]|1 <
Sll]|?1 and W < ||W||1 < §]jy||*1 by assumption. Therefore, by Lemma 14, for all ¢ € R:
0 <2Q+tV +W < 26|z||*1 + tV + §||y|*1.
As V = v+v* is Hermitian, we have V = UDU™* with U a unitary matrix and D a diagonal matrix with
real coefficients. Conjugating the last inequality by U, we get
0 < ¢35 z||*1 + tD + d||y|*1.

The right-hand side of this equation is simply a diagonal operator, whose diagonal coefficients are
quadratic polynomials in ¢. As this equation gives us that this operator is positive semidefinite for all
t € R, each of these quadratic polynomials is always non-negative, and can thus have at most a single
root. Therefore, if we write {D,}; the diagonal entries of D, the discriminant of the polynomial

Sllz|*t* + Dt + 8lyll*,
has to be non-positive for all indices 4, that is

D} < 467l ly]|*.
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So that:
|Di| < 26]|z|[ly]-

As the Schatten co-norm of V.= UDU* is ||V|| = max; |D;|, we have:
o+ o[l = VI < 28] [|[|y]-
We can apply the same line of argument replacing y with iy to find
[liv — ™[] < 26| |[|y] (57)
We can decompose v = hy + ihs with by and hy Hermitian operators®, to find:
[v 4+ ™[] = 2[ha || < 26]|2][[y]],

liv — iv*|| = 2[|ha| < 26]|z|[[y]l-

Therefore,
[oll < hall + [lh2ll < 26][=[/[yll, (58)

which is what we claimed. O

A.3 Proof of Theorem 11

Finally, we prove in this subsection Theorem 11 in the same way as we proved the converse of Theorem 1,
that is by first proving the one-shot case and then using the compatibility of the shape vector and the
¢y,-norms with the tensor product to conclude.

Proposition 8. Let F : L(Hr) = L(HF) and G : L(Hg) — L(Hg) be two idempotent channels equal
to their reduced channels, i.e. F = F and G = G, such that there exists two channels €& and D satisfying

5max>\min 1
— D o < 777
|F - Dgel, < et (59)

with d = Aim(Hx), dmax s the constant of Theorem 12 and Amin1 is the minimal non-zero eigenvalue of
GE(LF). We write ege = GE(1£)° the orthogonal projector on the support supp(GE(1 7)) and we define

G* x> egeG* (2)ege.

Then, G*D* is a Smax-inclusion from the x-algebra Rg(F*) into the x-algebra ege Rg(G*)ege. By the
Error Reduction Theorem 12, there is therefore an injective unital x-homomorphism embedding Rg(F™)
into ege Rg(G*)ege, thus, for all p € [1,+o0],

A < [IAG)p-

We divide the proof that the map G*D* restricted to Rg(F*) satisfies all the properties of a dyax-
inclusion into egs Rg(G*)ege in multiple lemmas, each of which being devoted to prove one of these
properties.

We begin with the one related to the almost preservation of the Schatten co-norm. We use the
completely bounded operator norm in its proof, which is defined for all linear maps F : L(H) — L(H') as

H]:”Cb = Sup ||-F®Idn||oo—>007
neN*

with || [|oo—s 0o the ‘infinity-to-infinity’ norm, i.e. the map norm of linear maps from £L(H) to £L(H') when
the input and output spaces are endowed with the Schatten co-norms. That is:

[Flloosoo = sup [|F ().
Izl <1

Note that for any linear map F : L(H) — L(H'), we have

[Fllo = [IF" |eb-

8Taking hy = %(v +v*), ha = 2%(1) —v*).
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Lemma 15 (Almost norm preservation). Let F, G, (3, E and D be defined as in the statement of

Proposition 8 and let
0> || F=DGE||lo = |F* = E°G*D*||cpb-

Then, for all x € Rg(F*), _
(L =)=l < gD (@)]| < ll=|.

Note that this lemma implies that as long as || F —DGE||s < § < 1, G*D* is injective as every element
of its kernel x € ker(G*D*) satisfies (1 — 0)||z|| < [|G*D*(z)|| = 0, hence ||z|| = 0 so that x = 0.

Proof. The right-hand side inequality follows from the fact that G*D* : L(Hr) — L(Hg) is a subunital
completely positive map (when the identity considered in the output space of G*D* is the identity of
L(Hg)). For the left-hand side inequality, recall that, by Lemma 8, for all x € L(H7),

Then, we have for all z € Rg(F*):

- (a) ~
[zl = Ig"D* ()| < llzll — €7G*G D™ (=)l
(b)
< [z = E°G"D (2]

DY F(2) - £26"D* ()]

<|lFT = E°GTD|ep 2]
< 6]l],

where (a) follows from the fact that ||[£*G*G*D*(a)| < ||G*D*(x)||, since £*G* is a unital completely
positive map. Then, (b) follows from the triangular inequality. Finally, (¢) follows from the fact that
F*(z) =z for all z € Rg(F*). The last inequality can be rewritten as

(1= )]z| < |G D" ().
O

We then move on to the proof that G*D* : Rg(F*) — ege Rg(G*)ege is unital, where we recall that
the unit of the x-algebra ege Rg(G*)ege is ege, as, for every element © = egex’ege € ege Reg(G*)ege,
egex = rege = x. Also note that for a general d-inclusion, one only requires almost unitality.

Lemma 16 (Exact unitality). Let F, G, Q~, E and D be defined as in Proposition 8. Then:
G*D*(17) = ege.

Proof. As G and D are assumed to be channels, their adjoints are unital maps on £(Hg), so that
G*D*(15) = 1g.

Therefore _
G'D*(1r) = egeG*(D*(17))ege = egelgege = ege.
O

Finally, to prove the almost preservation of the multiplication on Rg(F*) by GV*D*, we will need the
following additional lemma.

Lemma 17. Let ® : L(H) — L(H') be a channel, write d = dim(H), e = ®(1)° and Amin1 the minimal
non-zero eigenvalue of ®(1). Then, for all positive semidefinite x € L(H'),

)\min, *
AL egel| < @ (2)]. (60)
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Proof. Let x € L(H') be positive semidefinite, then
* 1 *
127 (@)]] = 7 tr(®*(2))
= é tr(z®(1))
A

min,1

Y

tr(exe)

)\min, 1

Y

lexe]|.

O

Note that this lemma implies the second statement of Lemma 8. We can now move on to the
proof of the almost preservation of the multiplication, which uses our Theorem 13 on the approximate
multiplicative domain of maps satisfying the Kadison-Schwarz inequality.

Lemma 18 (Almost preservation of the multiplication). Let F, G, QN, E and D be defined as in the
statement of Proposition 8, let
0 2 ||'F_ Dgg”ov

let Amin,1 be the minimal non-zero eigenvalue of G*&*(1x), d = dim(Hz) and let z,y € Rg(F*). We
then have:

Ak Yk ok % Sk gk 6od

167D (wy) = G"D* (@)D" (W)l = —ll=[llyll-
Proof. We prove that, for all € Rg(F™*),

Ak YK (K PR YK (K (R TYE 3dd

IG"D"(2"2) — G"D"(27)G" D" ()| < — 1||3?H2,

Ak TyE * Ak TyE Pk Yk [k 3dd

16" D" (za™) = "D (2)G" D" (") < — 1||517H2,

and then use Theorem 13 to conclude. First, to simplify our notations, we let &* = £*G*D* = E*G*G*D*.
We have:

197 (2" x) — @*(27)@"(2) || = [|[@*(2"2) — " (™)™ () + 2" — 2" x|
< @7 (a"x) — 2tz + ||lzte — (") () + 2" @7 (x) — 270 ()

(a)
< Sllal? + lllllz — @ (@) + [lz* — @* (=) || 2* ()]
®
< 36]|z/]%,
where (a) follows from the fact that as z € Rg(F*), we have
1@(a*2) — 2™zl = @ (" 2) — F*(z"x)|| < @ — F*|lebllz” 2] < 82|,

By the same argument, we also have that ||z — ®*(z)|| < d|z| and ||z* — ®*(z*)| < §|/z||, hence (b)
follows.
Then, applying the Kadison-Schwarz inequality, we get:

Therefore:

I€°G*(G*D* (z*x) — G"D*(27)G*D" (2))|| < " (2" x) — " (&™) " ()] < 30]|]*.
Thus, by Lemma 17, we obtain
3do

)\min,l

IG*D* (") = G*D*(a")G* D" ()| < [Edl

We can apply the exact same line of reasoning to prove the same inequality but with the roles of z and
z* swapped. O]
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Gathering all these lemmas, the proof of Proposition 8 is then as follows.

Proof of Proposition 8. Let 6 > ||F —DGE||,. Since we assumed that F and G are equal to their reduced
channels, i.e. F = F and G = G, Rg(F*) is a *-subalgebra of L(Hr) and ege Rg(G*)ege is a *-subalgebra
of L(Hg). By Lemmas 15, 16 and 18, G*D* is a max{d, A?jf }-inclusion (we trivially have that G*D* is

1

Hermitian preserving). However, as

d= tI‘(]]_]:) = tr(gf(]l]:)) Z >\min,17

d_ > 1 so that § < +89—§. Finally, QN*D* is a )\L‘wl—inclusion of Rg(F*) into ege Rg(G*)ege.

Amin, 1 Amin, 1 min,
Then, if we suppose that
6dé

)\min,l

S 6111&)(7

ie.

5max)\min 1
F — DGE < <L /0=

by the Error Reduction Theorem (Theorem 12), there is an injective *-homomorphism from Rg(F*) into
ege Rg(G*)ege, thus by Kuperberg’s theorem (Theorem 7) and the second part of Proposition 7, for all
p € [1,+o0],

IMA)p < [IMege Re(G )ege)llp < IAG)lp-

We can finally show Theorem 11.

Proof of Theorem 11. Basically, we simply apply Proposition 8 to F®* : L'(”H}ef-k) — E(’H%k) and G®"
L’(’H?”) — ﬁ(H?"), with F and G the reduced channels respectively associated to F and G. Just note
that the dimension of ’H?ﬂk is d*, with d = dim(Hx). Thus, by Proposition 8, if the hypotheses of
Theorem 11 are met, for all p € [1, 4+00], we have:

IMFER [ = IMFE) [, < IMGE™)p = IAGE™) .

This implies, by the compatibility of the £,-norms of the shape vector with the tensor product, that

< inf IOg(H)‘(g)”p) _ C(g s ]:)7

k
n = pell,+oo] log([|A(F)][p)

where the right-hand side equality is the first statement in Theorem 1.
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