arXiv:2509.18028v2 [math.OA] 11 Nov 2025

CANTOR CORRELATIONS I. OPERATOR SYSTEMS AND
CANTOR GAMES
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AND LYUDMILA TUROWSKA

ABSTRACT. We study no-signalling correlations over Cantor spaces, placing the
product of infinitely many copies of a finite non-local game in a unified general
setup. We define the subclasses of local, quantum spatial, approximately quan-
tum and quantum commuting Cantor correlations and describe them in terms
of states on tensor products of inductive limits of operator systems. We provide
a correspondence between no-signalling (resp. approximately quantum, quantum
commuting) Cantor correlations and sequences of correlations of the same type
over the projections onto increasing number of finitely many coordinates. We
introduce Cantor games, and associate canonically such a game to a sequence of
finite input/output games, showing that the numerical sequence of the values of
the games in the sequence converges to the corresponding value of the compound
Cantor game.
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1. INTRODUCTION

Non-local games have been at the centre of the fruitful interactions between op-
erator algebras and quantum information theory witnessed in the past decade (see
e.g. [9, 22, 23, 26, 28, 29} B1]). These are games, played cooperatively by players
Alice and Bob against a Verifier; in a single round of the game, the Verifier draws
a pair (s,t) of inputs form the cartesian product S x T' of two finite sets according
to a certain probability distribution, and sends s (resp.t) to Alice (resp. Bob). The
players respond with a pair (u, v) of outputs from the cartesian product U x V' of two
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(perhaps different) finite sets; the tandem Alice-Bob wins the round if the quadruple
(s,t,u,v) satisfies a given predicate, known to the players, and interpreted as the
rules of the game. The players are not allowed to communicate during the course
of the game, but they may agree beforehand on using a specific strategy.

Several types of strategies thus appear, depending on the physical model the play-
ers avail of (that is, the way of forming the joint physical system of their individual
systems), leading to a type hierarchy of no-signalling correlations between them,
expressed through a proper inclusion chain

(1) Cloc - Cqs - an - ch - Cn57

where each of C is the set of correlations between Alice and Bob observed during a
repetition of game rounds. In particular, the class Cq, arising by utilising the com-
muting operator model, strictly contains the the class Cy, obtained by using liminal
finite dimensional entanglement [I7]. The inequality Cqa # Cqc answers in the nega-
tive the Tsirelson problem in theoretical physics [36] and, simultaneously, thanks to
[15] 18] 27], the Connes Embedding Problem in operator algebra theory [8]. At the
heart of the equivalence between the aforementioned problems lie characterisations
of the strategies from the classes Cy, and Cqc via states on, respectively, the minimal
and maximal tensor products of two universal C*-algebras, each associated to one
of the players.

The correspondence between strategies and states on the tensor product of these
universal C*-algebras is not bijective; in fact, a given strategy may arise from mul-
tiple such states. This phenomenon lies at the core of quantum self-testing [11} 28],
and leads to the necessity to use more economical, bijective, correspondences be-
tween strategies and states. This was achieved in [22] [32], where characterisations
of strategies were obtained via states on different types of tensor products of uni-
versal operator systems, as opposed to C*-algebras, associated with the players of
the game.

Parallel repetition [7, [34], that is, the formation of the product [24] of a se-
quence of copies of the game, played successively and independently, is at the base
of defining and studying the asymptotic value of the game which, among others,
is instrumental for demonstrating separation between classical and quantum mod-
els in device-independent cryptography. The product of countably many copies of
a game can naturally be viewed as a single game, played over the Cantor spaces
arising from the underlying finite sets of inputs/outputs. In this Cantor setup, the
inputs/outputs are elements of those Cantor spaces; from an operational point of
view, such Cantor games can be thought of as non-local games, in which the play-
ers receive a string of inputs of arbitrary (but equal) length, and are required to
respond with strings of outputs of the same length. In fact, the Cantor setup is sub-
stantially more general, as the induced rules on the successively larger (but finite)
input/output sets do not need to be products of a given common underlying rule,
that is, the successive rounds captured within the compound Cantor game are not
necessarily independent or identical.
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The aim of the present paper is the study of strategies of Cantor games and
the one-shot values (that is, the optimal winning probabilities in a single game
round, according to the strategy type used) thereof. While a general definition
and basic properties of no-signalling correlations over standard measure spaces was
given in [6], the Cantor setup contains the crucial distinctive element of inductivity.
More precisely, a no-signalling strategy I' of a given Cantor game G corresponds
in a unique way to a sequence (I'y)nen, where T, is a no-signalling strategy of the
restriction of G to its first n coordinates. We show that the passage from I" to (I'y,)nen
preserves the quantum commuting and approximately quantum correlation types,
but not necessarily the quantum spatial correlation type. We define a universal
operator system for each of the players in the Cantor setup, and show that the
Cantor correlations of different types arise from states on different kinds of operator
system tensor product [2I] of these universal operator systems. As a consequence,
the class of quantum commuting Cantor correlations is closed in the (natural to
employ in our setting [0, [6]) Arveson BW topology [2]. Our main tools are drawn
from operator algebra theory, including ultrapowers (see e.g. [I] and [33], Section
11.5]), operator system theory, including their tensor products [2I], co-products
[20] and inductive limits [25], and operator-valued information theory over abstract
alphabets (see [5, [6] 14, [19]).

We apply the Cantor correlation setup to examine the behaviour of the values
of Cantor games. We focus on the case where the question set is endowed with
the uniform probability distribution, which, in the Cantor setting, corresponds to
the product of uniform probability measures, and obtain a continuity result for the
values of inductive sequences of games, inscribing the latter fact in a series of results
about tensor norm expressions of game values (see [9], 10, 29]).

We have postponed some topics, naturally arising from our results, for future
work, such as descriptions of synchronicity (which is examined in the upcoming
article [4]), and consideration of inputs that are not independent and identically
distributed.

In the sequel, we describe the content of the paper in more detail. Section 2]
is preliminary and contains the necessary background in operator system theory
and the operator-algebraic approach to no-signalling correlations in the finite case.
After reviewing operator-valued information channels in Section [3] given Cantor
spaces arising from sequences X = (X, )neny and A = (A, )nen of increasing sets of
underlying finite coordinates, we introduce Alice’s universal operator system Sx 4 as
a direct limit of an appropriately defined inductive sequence, where the embeddings
take into account the uniform distributions over the question sets X,,, n € N. We
show that the unital completely positive maps from Sx 4 into the C*-algebra B(H)
of all bounded operators on a Hilbert space H are in a canonical correspondence
with the B(H)-valued information channels indexed by elements of the Cantor space
associated with X.

In Section [4] we define the main Cantor correlation types, namely those of local,
quantum spatial, approximately quantum, quantum commuting and no-signalling
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ones, establish the inclusion chain in the Cantor setup, and show that the Can-
tor no-signalling correlations correspond to states on the maximal tensor product
Sx, 4 @max Sy, (here Sx 4 and Sy p are the Alice and Bob universal operator sys-
tems, respectively). En route, we provide a general result about diagonals of succes-
sive inductive limits in the operator system category. We establish the no-signalling
type preservation for the operation I' — (I';,) nen.

The same property for the quantum commuting correlation type is provided in
Section [5| and relies on an ultraproduct construction. It leads to a characterisation
of quantum commuting Cantor correlations via states on the commuting tensor
product Sx 4 ®c Sy,p. An analogous characterisation is shown to hold for the
approximately quantum correlations, this time via states on the minimal tensor
product Sx 4 ®minSy,p. While the classes of quantum commuting and, by definition,
approximately quantum, Cantor correlations are closed in Arveson’s BW topology,
we show that this is not the case for the quantum spatial correlation type.

Section [0] is devoted to Cantor games and their values. We show that a finite
game has the same value (of any type t among the local, quantum spatial, quantum
commuting or no-signalling ones) as the canonical Cantor game arising from it after
embedding the rules in the first coordinate of the corresponding Cantor spaces. By
projecting on the first n coordinates, every Cantor game G gives rise to a decreasing
sequence (Gp)nen of finite games. We show that the value w(G) of G is the limit
of the (decreasing) sequence (wt(Gn))nen of finite game values. As a consequence,
wt(G) can be obtained as a limit of a (decreasing) sequence of norms of increasingly
larger game tensors, canonically associated with G, in the maximal, commuting and
minimal tensor product of the corresponding universal operator systems. Finally,
we discuss a class of examples to which our results apply.
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pean Union — Next Generation EU (Implementation Body: HFRI. Project name:
Noncommutative Analysis: Operator Systems and Nonlocality. HFRI Project Num-
ber: 015825) The third named author was supported by NSF grants 2115071 and
2154459. The fourth named author was supported by the Swedish Research Council
project grant 2023-04555 and GS Magnusons Fond MF2022-0006. The authors are
grateful to BIRS for funding and hospitality during a “Research in Teams” stay in
September 2025, during which this work was completed.

2. FINITE NO-SIGNALLING CORRELATIONS

In this section, we provide the necessary background on operator systems, com-
pletely positive maps, no-signalling correlations over finite sets, and their operator
systems characterisation, for later reference. We refer the reader to [30] for further
background and details.

Given a vector *-space V over the complex field, let M, (V') be the vector *-space
of all n by n matrices with entries in V', and M, (V'); be the real vector space of all
self-adjoint elements of M, (V). An operator system is a tuple (V, (Cy,)nen, €), where
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V is a vector *-space, C, is a proper cone in M, (V') the family (C), ),en is consistent
in that o*Cpa C C,, for all scalar n by m matrices «, and the element e € (] is
an Archimedean matrix order unit for (Cp)nen. We usually write M, (V)T = C,,.
Given operator systems (V, (Cp)nen, €) and (V', (C),)nen, €') and a linear map ¢, we
let o™ : M, (V) — M, (V") be the (linear) map, given by 6™ ((2; ;)i ;) = (¢(i;))i-
The map ¢ is called positive if ¢(C1) C C1, and completely positive if ™ is positive
for every n € N; it is called a complete order embedding if it is injective and
o™ (M, (V) N M, (V)T = ¢ (M,(V)T), and a complete order isomorphism if it
is a surjective complete order embedding.

If H is a Hilbert space, we denote by B(H) the space of all bounded linear
operators acting on H and by Iy the identity operator on H. All Hilbert spaces
we use will be assumed separable. After letting B(H)" denote the cone of all
positive operators in B(H) and making the identification M, (B(H)) = B(H"), we
have that every unital selfadjoint subspace S C B(H) is an operator system with
cones M, (S)* := M, (8) N M,,(B(H))™"; we call operator systems of the latter type
concrete. By virtue of the Choi-Effros Theorem (see e.g. [30, Theorem 13.1]), every
operator system is completely order isomorphic to a concrete operator system. We
note that every operator system is an operator space in a canonical way, and write
CB(S,T) (resp. UCP(S,T)) for the operator space (resp. convex set) of completely
bounded (resp. unital completely positive) maps from S into 7.

We recall the definitions of the operator system tensor products that will be used
subsequently, and refer to [2I] for further details. Given operator systems S C B(H)
and T C B(K) (where H and K are Hilbert spaces), we write S ® T for their
algebraic tensor product; all three tensor products that we define have the latter as
their underlying vector *-space. The minimal tensor product S @umin T is equipped
with the matricial cones that make the inclusion S®7T C B(H ® K) a complete order
embedding (we denote by H ® K the Hilbertian tensor product). The commuting
tensor product S ®. T has matricial cones defined by letting w € M, (S ®. T)* if
(¢ - )™ (w) € B(L)" whenever ¢ : S — B(L) and ¢ : T — B(L) are completely
positive maps with commuting ranges, L is a Hilbert space and ¢-1 : S® T — B(L)
is the linear map, given by (¢ - 9)(u ® v) = ¢(u)(v) (we say that ¢ and 1 form a
commuting pair). Finally, the mazimal tensor product S ®@max T has matricial cone
structure, generated by the elementary tensors of the form S®T', where S € M, (S)*
and T € M, (T)+.

Ford € N, let [d] = {1, ...,d}. Given operator systems S;, i € [d], their coproduct
[16] 20] is a pair of the form (51 P1 - D1 Sy, (Li)le), where S1 ®1 -+ ®1 Sq is an
operator system, and ¢; : S; — S1 @1 - - P1 Sy is a unital complete order embedding,
such that if R is an operator system and ¢; : &; — R is a unital completely
positive map, i € [d], then there exists a unique unital completely positive map
b8 B B1 Sy — R, such that do v = ¢y, i € [d. We will write &%_,S; =
S1@1---@18,. Given, in addition, operator systems 7;, ¢ € [d], and unital completely
positive maps ; : S; — T, ¢ € [d], there exists a unique unital completely positive
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- d - d - d - d
map B, ¢ @ B;—1Si = D;—Ti, such that (@i:ﬂ/’i) (ti(w)) = (i o) (u), u € S;,
i € [d]. Indeed, the map ¢; 09 : S; — @?217} is unital and completely positive,
i € [d], and the existence of @?:11/% follows from the universal property of the
coproduct of the family {S;}4,.

We will require some preliminaries on inductive limits of operator systems, which
we now include; we refer the reader to [25] for further details. Let

2) S 2 Sy Sy B

be an inductive system in the operator system category; this means that S is an
operator system and ¢ is a unital completely positive map for every £ € N. The
inductive limit of (2)) is a pair (S, (¢k,00)ken), Where S is an operator system and
koo : S — S is a unital completely positive map, £ € N, with the property that
if R is an operator system and pg : S — R, k € N, are unital completely positive
maps, such that px1+1 0 ¢r = pk, k € N, then there exists a unique unital completely
positive map p : S — R such that p o ¢ oo = pi, kK € N. Such an operator system
S is unique up to a complete order isomorphism; we write S = lim Sy.

Given a finite set A, we let M4 be the algebra of all |A| x |A| matrices with
complex entries, and D4 be its subalgebra of all diagonal matrices. Given another
finite set X, we let Ax 4 = Da x---xDy be the free product, amalgamated over

—
| X | times
the units, and

(3) Sx,A=Da®1--®1Da.

| X | times

We note the unital completely order isomorphic inclusion Sx 4 C Ax a [22,32]. We
write e; 4, © € X, a € A, for the canonical generators of Sx 4, that is, ez 4 = t4(da),
where t5 : Dy — Sx 4 is the inclusion map of the a-th copy of D4, and (dg)aca is
the canonical basis of Dy.

Given finite sets X, Y, A and B, a no-signalling correlation over the quadruple
(X,Y,A,B) is a family {(p(a,b|z,y))ep : * € X,y € Y}, where p(-,-|z,y) is a
probability distribution over A x B for every (z,y) € X x Y,

> pla,blz,y) =Y pla,bla,y), zeX,y,y €Y,a€A,
beB beB

and

Zp(a,blz,y) = Ep((l, b‘l',,y)a xaxl € Xay € va € B.
a€A a€A

Recall that a positive operator-valued measure (POVM) is a (finite) family (F;)L, of

positive operators acting on a Hilbert space, such that Z?Zl FE; = 1. A no-signalling
correlation p over (X,Y, A, B) is called quantum commuting if it has the form

(4) b ((I, b|$, y) = <Px,aQy,b§> f),
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where § is a unit vector in a Hilbert space H, and (Pyq),c 4 and (Qyp)ycp, T € X,
y €Y, are POVM’s on H such that P, ,Qy, = QypFPreforallz € X, yeY,ac A
and b € B. The correlation p is called quantum spatial if the Hilbert space in the
representation can be chosen of the form H = H, ® Hp for some Hilbert spaces
Hy and Hp, and P, , (resp. Qyy) has the form P, , = Pg’c,a®IHB (resp. Qyp = I, ®

;/ p)- We further say that p is an approzimately quantum correlation if p is the limit

(in the vector space R¥ x RY x R4 x RB) of quantum spatial correlations. We denote
by Cns(X,Y, A, B) (resp. Cqe(X,Y, A, B), Cqu(X,Y, A, B), Cis(X, Y, A, B)) the set of
all no-signalling (resp. quantum commuting, approximately quantum, quantum
spatial) correlations over the quadruple (X,Y, A, B). We refer the reader to [22] for
further details regarding no-signalling correlations, and record here characterisations
of correlation types in terms of operator system tensor products that will be needed
in the sequel ([22, Corollary 3.2] and [22], Corollary 3.3]).

Theorem 2.1. Let X, Y, A and B be finite sets. The no-signalling (resp. quantum
commuting, approzimately quantum) correlations p = {(p(a,b|z,y))ep : v € X,y €
Y} are in bijective correspondence to states s : Sx A ®max Sy, — C (resp. s :
Sx.4®c Sy, =+ C, 5s:Sx,4 Qmin Sy,B = C) via the assignment

pla,blz,y) = s(era ®eyp), xz€X,yeY,acAbeB.

3. THE CANTOR OPERATOR SYSTEM

In this section, we review the definitions of operator-valued information channels
[6], specialising to the context of Cantor spaces, introduce a class of operator systems
that will be used in later sections, and describe their universal property.

3.1. Operator-valued channels. Let G be a second countable compact Hausdorff
space. We let Bg be the Borel o-algebra of &, C(&) be the C*-algebra of all
continuous complex-valued functions on &, and M (&) be the space of all Radon
measures on &. For a (separable) Hilbert space H, a quantum probability measure
(QPM) over & with values in B(H) is a map E : Bg — B(H)" such that E(0) =0,
E(6) =1, and E (U ;) = > 2, E(a;) in the strong operator topology whenever
(a)ien is a sequence of mutually disjoint elements of B.

Let X be a(nother) second countable compact Hausdorff space, equipped with a
probability measure p € M(X). An operator-valued information channel from X
to & with values in B(H) is a family F = E(-|x)zex of QPM’s over & such that,
for every a € Bg, the function x — E(alz) is weakly p-measurable, that is, the
functions Ee¢,(al-) := (E(al-)&,n) are measurable for all {,n € H [6]. We write
¢(6, X; H) for the set of all operator-valued information channels from X to & with
values in B(H), and view its elements as measurable versions of families of POVM’s
in that the latter are operator-valued information channels over a pair of finite sets.
We say that the channels E, E' € €(6, X; H) are p-equivalent (and write E ~,, E')
if

E(alz) = E'(alz) p-almost everywhere,
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for every a € Bg. We write €,(6,X; H) for the set of all ~-equivalent classes of
¢(6,X; H). Elements of ¢,(6,X; H) will be called operator-valued p-information
channels from X to & with values in B(H) (see [5] and note that a slightly different
terminology was used therein); without risk of confusion, we will use the same sym-
bol for an equivalence class and for a representative thereof. Let L3°(X, u, B(H))
be the von Neumman algebra of all equivalent classes of weak* measurable essen-
tially bounded functions F' : X — B(H), and note the canonical identification
L>(X, n)®@B(H) = L°(X, u, B(H)). Here, and below, we use ® to denote the von
Neumann algebra tensor product. For future reference, we recall the correspondence
between p-information channels with values in B(H) and unital completely positive
maps from C(&) into L (X, u, B(H)) established in [5, Theorem 3.11].

Theorem 3.1. If £ € €,(6,X; H) then there exists a unital completely positive
map g : C(68) — L (X, u, B(H)) such that

(5) <<I>E(f)($)f,7l> = /6 f(a)dE§777(a|x) p-a.e., f € 0(6)7£a ne H.

Conversely, if ® : C(6) — LX (X, u, B(H)) is a unital completely positive map then
there exists a (unique up to ~,-equivalence) channel E € €,(6,X; H) such that
b =op.

Recall that, if X and ) are Banach spaces, the BW topology [2] on the bounded
subsets of the space B(X,)*) of all bounded liner maps from & into Y* is de-
fined as the restriction of the point-weak® topology. The set €,(&,X; H) will be
hereafter equipped with the topology (which we continue to refer to as the BW
topology) according to which a net (E*) ea € €,(6, X; H) converges to an element
E € ¢,(6,X;H) if ®pr converges to @ in the BW topology (see [5]). We note
that, by [0, Theorem 3.14], the space (€,(6,X; H),BW) is compact. Since the
operator projective tensor product C(&)QL (X, u)®T (H) is separable, the space
(€.(6,X; H),BW) is metrisable (see e.g. [I12, Theorem V.5.1]).

3.2. Inductive channel families. If X; and X» are finite sets, we write X;|Xs
if there exists d € N such that X9 = X; X [d]. Assuming that Xo = X X [d], let
Lx,,X, : Dx, = Dx, be the unital *-monomorphism, given by tx, x,(T) =T ® I,
after the canonical identification Dx, = Dx, ® Dig;.

A family X = (X,,)nen of finite sets will be called inductive if X,,|X,, 41 for every
n € N. The inductive limit of the sequence

LX4. X LXo X LXp 1,Xn LXn,X,
1,459 2,4X3 n s sAn41

DXl — DX2 —_— — ’Dxn

in the category of C*-algebras will be denoted by Dx. Assuming that X, 11 =
X, x [dX], where dX € N, n € N, we note that Dy is *-isomorphic to the C*-algebra
C(Qx) of all continuous functions on the Cantor space Qx = [[02 [dX] (where
we have set di = |X1|); equivalently, Dx = ®nzoDigx) as an infinite C*-algebraic
tensor product.
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All tracial algebras will be equipped with normalised traces, and dualities will
always be with respect to the latter. For a finite set X, the (normalised) trace on
Dx, will be denoted by trx,. We note that, if X;|X5 then the embedding ¢x, x,
is trace-preserving. For an inductive family X = (X, )nen, we set 7x = Rpobr(gx]-
We note that 7x|py, = trx,,n € N. In the sequel, we write L' (Qx) for L' (Qx, pux)
and py, for the uniform probability measure on X,,, n € N. We note that L!(Qx)
coincides with the L!-space L}(Dx) of the C*-algebra Dy with respect to (the trace)
TX.

The unital (completely) positive trace-preserving maps tx, x,., : Px,, = Dx,,
give rise to the canonical conditional expectations £x, ., x, : Dx,,; — Dx,; we
note that £x, ., x, = idx, ®trg,. As Dx C L®(Qx) C L'(Qx), the canonical

(n) (n)

map ¢y : Dx, — Dx induces a weak™® continuous, unital *-monomorphism LX oo

Dx, — L™(Qx), as well as a unital isometry Lg?)l : Dx, — LY(Qx) with respect to

the trace norm. The map L()?)oo admits a predual map £x, : L'(Qx) — Dy, , which is

faithful, trace-preserving, and satisfies the identity x,, o Lg?)l =idpy, . Thus, when

identifying Dy, as a subspace of L!(Qx) via Lg?)l, the map Ex,, is the canonical

conditional expectation. At the von Neumann algebra level, there exists a faithful,
trace-preserving, weak™ continuous conditional expectation ES L™ (Qx) — Dx,,,

which is the dual of the isometry Lg?)l. If H is a Hilbert space, we further write

é}’(on =X, ®@idp(g) for the conditional expectation
EL 1 L®(Qx)®B(H) — Dx, @ B(H),

é}’fﬂ X, = ?HH x, @ 1idp(g) for the conditional expectation

EZ.. % : Dxoyy ® B(H) = Dx, @ B(H), neN,

and %) : Dx, ® B(H) — L®(Qx)®B(H) and ix, x,., : Dx, ® B(H) - Dx,,, ®

B(H) for the maps, given by Zg?)oo = L_()?)OO ®@idga), and ix, X, 1 = LX,, X0 @idBw),

n € N. We note that the superscript/subscript co is used to indicate that the domain
or the range of the corresponding map is an L°°-space.

We say that a family (®,,)nen, where ®,, : Dy, — Dx, ® B(H) is a unital
completely positive map, n € N, is inductive if

(6) ¢, = anH,Xn 0Pyt 0 LAp,Api1y NE N,

that is, if the diagram

LA'fl’An+1
DAn > DAn+1

Jén l(bnﬁ—l

Dx, ® B(H) «——— Dx,,, ©@ B(H)

an+1 Xn
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is commutative for each n € N.

Theorem 3.2. Let H be a Hilbert space, and X = (X,)nen and A = (Ap)nen be
inductive families of sets.

(i) If ®: C(24) — L>®(Qx)RB(H) is a unital completely positive map and
(7) o, = c‘:'})(onoQDOLgl), n €N,

then the family (®,)nen is inductive.

(ii) If ®,, : Da, — Dx, ® B(H) is a unital completely positive map, n € N,
such that the family (®p)nen is inductive then there exists a unique unital
completely positive map @ : C(Q4) — L™= (Qx)QB(H) satisfying (7).

Proof. (i) Since
g%on = SNXMLX,L o c‘f}’(onH and Lff) = LXLH) O LA, Apir
condition @ is implied by .

(ii) For each n € N, let ¥,, : C'(24) — L*°(Qx)®B(H) be defined by setting ¥,, :=
Zg?)oo od, o gﬁ’C(QA); note that the maps ¥, are unital and completely positive.
The sequence (¥,,),en has a BW cluster point @ : C(Q4) — L®(Qx)RB(H ), whose
existence follows from the compactness of UCP(C(Q4), L>®(Qx)®B(H)) in the BW
topology ([5, Theorem 3.14]). Next we show that (7] is satisfied for the map ®.
Consider k£ > n and note that

(n) _ (k) Goo _ & G oo
Ly =1ty ota, A, and EXn—EXk,XHOEXk

so that

o N
X, © Lgc,)oo =&x,,x, and EF o L(ﬂo = LA, Ay

here we have set € x. X, = Ex..x, ®idggy). Therefore, for k > n, we have
ks Xn ks Xn B(H)
g%onolllkoéz)oo = g%on olgéf’)oooq)kogzz OLEZ;)OO = ng,Xn o®poua, 4, = Pn,

where the last equation follows from the inductivity relations @ Letting k£ — oo,
we obtain .

We claim that the unital completely positive map & satisfying @ is unique.
Indeed, if ®' is another such map satisfying , then, as g’%"m od(9) = c‘f}}om o ®'(9),

for every S € LE:) (Da, ), m > n, we get, using density arguments, that ®(S) = &'(5),

giving the uniqueness. U

3.3. Definition and universal property. We next identify a canonical operator
system, associated with an inductive family of sets, which will serve as universal
encoding object for each of the players of a non-local game over Cantor spaces.
For d € N, recall the operator system Sjgj 4, defined, in , as a coproduct of d
copies of Dy,,. Denoting by ¢j the embedding of D4, in the k-th term of Sgj 4, , let
Bd,A, : Da, — Sjaj,4, be the unital completely positive map, given by

Bun, (u) = % (@) + -+ 1q(u)), uweDa.
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We have that the maps

2| Xn | )
@izl LAnyAn+1 . SXn,An — SXn,An+1
and
# | Xn | .
693':1 /Bdf,An+1 . SXn,An+1 — SXn+1,An+1

are unital and completely positive; thus, the composition
- | X, - X,
’YXn,An = (GB"L':l'/Bd,}f,A,H,l) 0 (eBL:l‘LAnaAnqtl)

is a unital completely positive map from Sx,, 4, to Sx, ;.4
inductive sequence

wi1- We thus obtain an

VYXq,A VXo,A YX3,A
(8) SX1,A1 —5! 8X27A2 =5 SX3,A3 0
in the operator system category. We let Sx a4 = @S Xn,A, be the corresponding

inductive limit. We let 'yg?)A : 8x,,4, — Sx, 4 be the canonical unital completely

positive map, arising from the inductive sequence , n € N.

Remark 3.3. Let (X,)nen and (A4 )nen be inductive families of sets. Using known
results about inductive limits and coproducts in the operator system category,
namely [25] Proposition 4.13] and [20} Section 8], one can show that the maps vx,, 4,
and 'YE?)A are unital complete order isomorphisms; thus, Sx,, 4, can be canonically
identified with an operator subsystem of Sx 4, n € N. Since this fact will not be

needed in the sequel, we do not include its proof.

Theorem 3.4. Let H be a Hilbert space, and (Xp)nen and (Ap)nen be inductive
families of sets. The unital completely positive maps I' : Sx 4 — B(H) are in
a canonical bijective correspondence with the unital completely positive maps @ :

C(Q4) — L>(Qx)RB(H).

Proof. For k € N and w € Dx,, let L, : Dx, ® B(H) — B(H) be the slice map,
given by

L,(S®T)=(w,S)T, Se€Dx,TecB(H)
(we recall that the duality is with respect to normalised traces).

By the universal property of the inductive limit, the unital completely positive
maps I' : Sx 4 — B(H) are in a canonical correspondence with the sequences
(T'n)nen of unital completely positive maps, where I'y, : Sx, 4, — B(H), n € N,
satisfy the conditions

(9) Lp=Tni109x,,4,, neN

On the other hand, the unital completely positive maps I'y, : Sx,, 4, — B(H) are
in a canonical correspondence with unital completely positive maps ®,, : Dy, —
Dx, @ B(H) via the assignment ®,,(54) = > ,cx, 0z @ I'n(ezq). We note that the
latter equality is equivalent to the identities

(10) |Xn|L6z ((I)n((sa)) = Fn(ew,a)a r € Xp,ac Ay
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Finally, observe that condition @ is equivalent to condition @ being satisfied for
the family (®,,)nen, as follows from the fact that, if z € X,, and a € A4, then

dy  df}

1
FnJrl(VXn,An(ew,a)) = ax Z Z Fn+1(€(r,un),(a,>\n))

N dn
= ’Xn| Z Z L(S(%Hn)(q)nJrl((S(a,)\n)))

pn=1Ap=1

Y
= Xl Y Loy (@ryr 004, 4,,,)(0a))
pn=1

= ’XH‘LLX,“X”JA((SI)(((I)H-H © /'An,An+1)(5a))

= | XnlLs, ((Ex011.%0 0 Pr 1004, 4,11) (6a))-

The statement now follows from Theorem [3.2] O

Remark 3.5. We point out for further use that the statement of Theorem is
true and, up to our knowledge, part of folklore in the case where X and A are finite
sets instead of inductive families; a proof readily follows from that of Theorem
with the straightforward modifications.

Remark 3.6. The statement of Theorem remains true when the map I' is a (not
necessarily unital) completely positive map; this follows by inspection of the proof,
together with the fact that the operator system inductive limit satisfies a universal
property for inductive families of completely positive maps that are not necessarily
unital. To show the latter fact, suppose that is an inductive sequence in the
operator system category, R is an operator system, and py : S — R are completely
positive maps, such that pxi1 0 ¢x = pi, & € N. Since the map ¢y in is unital,
we have that there exists w € R such that py(ls,) = w for every k € N; clearly,
0 < w < 1g. Let (sg)ren be an inductive sequence of states, where s; : S — C,
and s : lim S — C be the associated state on the inductive limit operator system.
Let ay : Sk — R be the map, given by ai(u) = sk(u)(1 —w), and pp = pr + ax;
thus, pr : S — R is a unital completely positive map, k& € N. Moreover,

(Prst 0 68) (1) = prr(61(w) + s(u)(1 — w) = fiu(u), u€ Sk

By the universal property of the inductive limit (for unital completely positive
maps), there exists a unital completely positive map p : ligSk — R such that
PO @ oo = P for every k € N.

Let a : lim S — R be the map, given by a(u) = s(u)(1 — w). We have that

P (B (1) — o™ (6 () € Ma(R)F,  u € My(Si)*.
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By density, p := p — « is completely positive. Finally, if kK € N then
(P 0 Br,00) (1) = P(Pk,00(1) — A Proo(t)) = pr(u) — ar(u) = pr(u).

Remark 3.7. Let (X,,)nen and (A )nen be inductive families of sets. Suppose that
x € X, and a € A, for some n € N. Equation can be rewritten as

| X (0r @ w, @,(0a)) = <Fn(€x,a)aw>, w € B(H)x,
that is,

1 n n n
(11) <MWL&,’1@> ®w,¢><bi,,2,o<6a>>> = (T(v{y(exa)), )

for every w € B(H).. By identity and uniform boundedness, the map ® — T is

BW continuous. Since the linear span of the elements of the form WLE?)I (02)®
Tx (tx 10z ’

w is dense in L'(Qx)®B(H )., we have, in fact, that the correspondence ® <+ I is a
BW-BW homeomorphism.

We note that, as the predual of L>(Qy), the space L'(Q2x) admits a canonical
operator space structure, and that, if C(Q4)®L'(Qx) denotes the operator space
projective tensor product, up to a canonical complete isometry we have that

(C(QA)BL'(Qx))" = CB(C(Qa), L®(Qx))

(see [13, Proposition 7.1.2]). By the previous paragraph, there exists a canonical
weak*-homeomorphic order isomorphism between the positive cones of S% 4, and
UCP(C(R24), L>®(Q2x)). Passing to preduals, we obtain a order isomorphiém be-
tween 8;’ 4 and a dense subspace of the predual cone (C(€24)&L'(Q X))Jr of the
cone CP(C(Q4),L>(Qx)). A straightforward argument shows that the latter cor-
respondence can be extended to the whole of Sx 4. Through the latter identification,
for r € X,, and a € A, the element 7&224(6%&) corresponds to the elementary tensor
Xixa = X& ® Xa, where

(12) = {:c:c'::z:/E ﬁ [d,LX]} and a = {aa’:a'e ﬁ [df‘]}

i=n+1 i=n-+1

4. CANTOR NO-SIGNALLING CORRELATIONS

In this section we define no-signalling correlations over Cantor spaces and provide
characterisations thereof in terms of states on the maximal operator system tensor
product of operator systems from the class introduced in Section [3| In view of the
nuclearity of abelian C*-algebras, in the sequel we will use the symbol ® for their
C*-algebraic tensor product.

Assume that S,T,U and V are finite sets. A no-signalling correlation p =
{(p(u,v]s,t))up : s € S,t € T} (see Section [2)) gives rise to the unital (completely)
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positive map I', : Dy ® Dy — Dg ® Dr, given by
(6, ®dy) = Z Zp(u, v[s,t)0s @, ueUveV;
seS teT
it is straightforward to verify that, moreover,
(13) Fp(DU X 1Dv) CDs® 1DT and Fp(lDU & Dv) - 1Ds ® Drp.

Conversely, every unital (completely) positive map I' : Dy @ Dy — Dg ® Dy satisfy-
ing the conditions is easily seen to have the form I' = I, for some no-signalling
correlation p. Therefore, by abuse of terminology, we use the term “no-signalling
correlation” in reference to unital (completely) positive maps satisfying . Fix-
ing inductive families of finite sets X = (X,)nen, ¥ = (Yn)nen, A = (An)nen and
B = (Bp)nen, these observations justify the following definition.

Definition 4.1. A unital completely positive map
[':C(Q4)0C(02) = L™®(Qx)RL*(Qy)
will be called a no-signalling correlation over the quadruple (X,Y, A, B) if
[(C(Qa)®1p) C LT (Qx) @ 1y

and
F(14®C(Qp)) C 1x ® L=(Qy).

We denote by Cns(X,Y, A, B) the set of all no-signalling correlations over the
quadruple (X,Y, A, B), and write Cps in case no confusion may arise.
Given a unital completely positive map

[':C(Q4) ® C(Q2B) = L=(Qx )L™ (Qy),

define (unital completely positive) maps

I'y: Da, ® D, — Dx, ® Dy,,, neN,
by setting
(14) Ty = (EF @ E2) 0T o (11 @47y,
by Theorem the family (T'),),en is inductive, that is,
(15) In = (Expi, X0 ® Eviiavi) 0 Tng1 0 (t4,,4000 @ LBy By )s NEN;
we say that the family (I'y,)nen is associated with the map T

Proposition 4.2. Let T': C(Q4) @ C(Qp) — L=(Nx)RL>®(Qy) be a unital com-
pletely positive map and (I'y)nen be the inductive family associated with T'. The
following are equivalent:

(i) T e Cps(X,Y, A, B);

(ii) Ty, € Cps(Xn, Ya, Ay, Bp) for every n € N.
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Proof. (i) = (ii) Let n € N and f € Dj4,. By symmetry, it suffices to show that
I'(f®lp,) € Dx, ®1p,. Since I is no-signalling, F(Lf:)(f) ®1p) € L>®(Qx)®1p.
The claim follows from the fact that (£x, ® &y, )(L*°(Qx) ® 15) = Dx, ® 1p,,.

(ii) = (i) Assume that I'), is no-signalling for every n € N. It suffices to show that
L™ (f,) ®1p) € L®(Qx) ® 1y for every f, € D4, and n € N. Indeed, if we then
pick f € C(Q4) and set f, :=Ea,(f) € Da

norm and, as I' is continuous,

L(f ®1p) = lim T((fy) © 1p) € L®(Qx) © 1y

we have that f = lim,, L%)(fn) in

n?

Let f € Dy, for some n € N. Let k£ > n, and note that

(€2 &) o) () @ 1p)
= (€ 0EX) oT o (Y @l (1apa (f) @ 15,) = Thlea, 4, (f) @ 15,).

Thus, (5, ®&y7) oF(LEf)(f) ®1p) € Dx, ®1y, for all k > n since I'y, is no-signalling
for all £ € N. Hence,

(B @My o (e @ 62) o TP (f) @ 15) € L¥(Qx) @ 1y
for all £ > n and if we take the limits in norm as k£ — 0o, we conclude that
LA (f) © 1) € L®(Qx) @ 1y,

as desired. The result follows by symmetry. Il

Given a no-signalling correlation T over the quadruple (X,Y, A, B), we write
pr,n for the family of conditional probability distributions on A, x B, indexed by
X, x Y, corresponding to I';, by , that is,

pF,n(a7 b|az,y) = |Xn||Yn| <5:c ® 6yyrn(5a & 5b)> 5

where ¢ € X,,, y € Yo, a € A,, b € B, and, as before, the pairing is given
by the normalised traces (that is, (01 ® d2,w1 ® we) = trx, (d1w1) try, (dow2)). By
Proposition the correlations pr , are no-signalling. By Theorem there exist
states sr,, : Sx,,,4,, ®max Sy,,B, — C, such that

ST, (€z,a @ ey p) = [Xn||[Ynl(6z @ 0y, T'n(da ® 6p))

forx e X,,,y€Y,, a€ A, and b € B,. The proof of the next lemma is similar to
that of Theorem [3.4] and is omitted.

Lemma 4.3. Let (X;)nen, (Yo)nen, (An)nen and (Byp)nen be inductive families of
sets, and I'y, : D4, @ Dp, — Dx, ® Dy, be a no-signalling correlation, n € N. The
family (Ty,)nen is inductive if and only if

srn+1 © (’YXnyAn ® ’YYTMBH) = an’ ne N
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In the proof of the next theorem, we will need an auxiliary fact about operator
system inductive limits. Let 7 be an operator system tensor product (see [21]). We
will say that 7 commutes with inductive limits if, for every inductive sequence

S 2 Sy P Sy

in the operator system category, and every operator system 7T, we have that
hgl(sk ®,; T) = (hﬂ Sk) ®: T,

up to a canonical complete order isomorphism.
Lemma 4.4. Let 7 be an operator system tensor product that commutes with in-
ductive limits, and

S sy sy B
and
be inductive sequences in the operator system category with inductive limits S and
T, respectively. Then

hg(sk r 7;6) = Sr T7
up to a canonical complete order isomorphism.
Proof. For brevity, we will use the symbol id; to denote the identity map on either
Sy, or T, depending on the context. Write R := %(Sk ®; Tx) and set 0, = ¢, @idT;
thus, 0, : $,®; T — Sp+1®. 7T is a unital completely positive map, n € N. Trivially,

en o (idn X ¢k,oo) = (idn—i-l ® ¢k:,oo) ° (¢n & idk)a ke N.

On the other hand, using [25, Remark 2.15], we have that the diagram

idp, @y idn, ®1/)n+1
S’I’L®T7;1—>S’YL®T7;L+1%‘STL@T%‘FQ%...
J(bn,n@ldn Jfﬁn,n«kl ®idn+l J¢n,n+2®idn+2
On®@Yn

¢n+1 ®'¢’n+1 S

Sn @7 T ——— Spt1 @r Tnpt 42 @r Tpyo ——— -+

yields a canonical unital completely positive map
Y :Sn @ T = R,
such that
Yn © (dn ® Yr00) = (Pk @ Yk)oo © (P ®idy), &k >n.
Thus, the pair (R, (7n)nen) satisfies
o (id,, ® ¢k:,oo) = Yng1 0 (idpy1 ® Q/’k,oo) o (¢n, ®1idg)
= (P @ Vi) oo © (Pny1k ®@idy) 0 (¢n @ idy)
= (P @ Vk)oc © (P ® idy)
= Yo (id, ® lz)k,oo)

(Yn+100n)
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for each £k > n + 1, hence y,4+1 0 6, = 7, and by the universal property of the
inductive limit lim (S ®- 7') (see [25, Definition 2.13]) there exists a canonical unital
completely positive map a : S ®, T — R, such that

Qo ((Z)n,oo b2y ldT) =Y, nEN

Similarly, the diagram

S 9. Ts b1®Y1 S, @, T h2@12 Ss@.Ts

J{idl ®Y1,00 J{id2 ®Y2,00 J{ida ®Y3,00

id id
81®7'7- ¢1®1T>82®7'7— ¢2®1T>83®7'7- >7

yields a canonical unital completely positive map
B R—=>8:T,
such that

B © ((;Sn @ 77Z)n)oo = (an,oo ® id’T) o (idn & wn,oo), n € N.

We show that the maps o and g are inverse to each other; indeed,

aofo(pn®Yn)e =0 (¢n,oo ®idr) o (id, ® 1/}71,00)
= Y © (idp ® Yn,co) = (Dn @ ¥n)oco(Pnn @ idy)
= (¢n ® ¢n)oo
for all n € N. Hence, ao § = id. On the other hand,

Boao(Pnoeo®Proo) =B0ao (dne ®idy) o (idn ® Pk,c0)
= B o, o (idy ® Yr,o0)
= B o (¢ ® Y)oo © (P @ idg)
= (Pk,00 @ id7)o(idk ® Yk 00)o(Pn ke @ idy)
= ¢n,oo ® d}k,oo
for all n, k € N with k£ > n, showing that o a =id. U
For the formulation of the next theorem, we recall the notation for the

cylinders associated with elements x € X, and a € A,,; we employ similar notation
for cylinders based on y € Y,, and b € B,,.

Theorem 4.5. Let X = (X,)nen, Y = (Yo)nen, A = (An)nen and B = (Bp)nen
be inductive families of finite sets.

(i) If T' € Cus(X, Y, A, B) then there exists a state st : Sx,4 @max Sy, = C
such that

st (Xaxa © Xyxp) = [XnllYal(xz @ x5, T(xa © x3))
forallz e X, yeY,, a€e A,, b€ B,, and alln € N.
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(ii) If s is a state on Sx A @max Sy,B then there exists I' € Cys(X,Y, A, B) such
that s = sr.

Proof. (i) Let I' be no-signalling and, for each n € N, set
— (EF @ &) oTo (1P @M.

By Proposition [£.2] ', is no-signalling and hence, by Theorem [2.T], there exist states
Sp ‘SXH,An Omax SYH,Bn — (C, nec N, such that

(16) Sp(€za ®@eyp) = | Xn||Ynl(0z @ 3y, ['(da ® &), n €N,
for every (z,y,a,b) € X,, x Y, x A, X B,. By Theorem and Lemma

8n+1 © (’YXTIJATL ® PYYnan) = Sn7

and therefore by the universal property of inductive limits, Lemma and [25

Theorem 4.34] there exists a state s : Sx A4 ®max Sy, — C such that so (fyg?zA ®

'yg;%) = 8n, n € N. Using , it follows that, if x € X,,,y € Y, a € A, and b € B,
then

S(X@Xa ® ngl;) = Sn(em a® ey,b)
— | X[Vl (62 © 8, (€. @ E2) 0T 0 (0 @ \7) (6, @ 63))
= | XallVal (0 © )8 ©6,). T (xa @ x3))
= [ XY (xz ® x5, ' (Xa ® X3))-

(ii) Setting s, = so (fygy)A ® 7&%), n € N, we have that s, is a state on the
tensor product Sx,, 4, @max Sy .Bn and consequently it gives rise, via Theorem
to a no-signalling correlation I'), over (X,,Y,, A,, By), n € N. Note that s,41 o
(VX An @ V,,Bn) = Sn, n € N, and thus, by Lemma the family (I'y)nen is
inductive. By Theorem there exists a (unique) unital completely positive map
[':C(Q4)®C(Qp) = L>®(Qx)RL>(Qy) that satisfies the relations

EL ®ER)oTo (@) =T,, neN;
Xn Yn A B

by Proposition I' is no-signalling. If z € X,,, y € Y, a € A, and b € B,,, then
st (Xaxa @ Xgup) = [XallYal(xe @ x5, T(Xa © X3))
= [Xul[Ynl(6z ® by, Tn(da ® 6b)) = sn(€za @ €yp)
= (50 (104 @ Wik (era ® ey0) = s(xaxa © Xy7)

and, since the elements yzxg ® Xgxi when n varies, form a generating set for

Sx,A @max Sy,B, we have that sp = s. 0
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5. THE TYPE HIERARCHY

In this section, we consider other types of correlations over Cantor spaces, that
lie within the class of all no-signalling correlations defined in Section [4) and obtain
corresponding operator algebraic descriptions. We require some preparations; in the
next subsection, we develop the bipartite versions of operator-valued channels from
Subsection that will be needed in the sequel.

5.1. Bipartite operator-valued channels. Let X, ), G and ¥ be second count-
able compact Hausdorff spaces, yu € M(X) and v € M () be probability measures,
and H be a Hilbert space. Given F € €,(6,X;H) and F € ¢,(%,9); H), and de-
noting by f the flip between the first and the second tensor terms in the three-leg
expressions below, we let

¢p : C(6) — L(X, n)@L>(Y,v)RB(H)
and

¢r : C(T) = L=(X, p)@L>* (Y, v)@B(H)
be the maps, defined by setting

oe(f) =f(ly ® ®r(f)) and ¢r(g) = 1x @ Pr(g).

We say that E and F' form a commuting pair if ¢ and ¢ have commuting ranges.

Theorem 5.1. Let £ € €,(6,%X;H) and F € €,(%,9;H) be operator-valued
channels that form a commuting pair. Then there exists a unique, up to ~x,-
equivalence, channel E - F € €,5,(6 x T, X x Q; H) such that

(17) (E-F)(ax Blz,y) = E(a|z)F(Bly) wxv-ae., o€ Bg,s e Be.

Proof. Since ¢ and ¢ are unital completely positive maps with commuting ranges,
by [30, Theorem 12.8], there exists a unique unital completely positive map
O - op:C(6)RC(T) = L®(X xY,ux v)RIB(H),
such that
(0E - 9r)(f @ 9g) = or(flor(g), [€C(6),geC(T).

Noting the canonical identification C(& x ) = C(6) @ C(T), we consider ¢g - ¢p
as a map from C(& x ) into L*(X x 9, x v)@B(H). By Theorem there
exists a unique E- F € €, (6 x T, X x2); H) such that, for any h € C(6 x T) and
&,m € H, we have

(@5 or) @) = [ Hab)i(E- Fleyfabiay) o vac
X
Applying approximation arguments similar to those in the proof of [6, Lemma 3.1],

we obtain . g
Theorem easily yields the following corollary; the detailed proof is omitted.
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Corollary 5.2. Let H and K be Hilbert spaces, E € €,(&,X; H) and F € €,(%,9;
K). Then there exists EQF € €, (6 xET, X xQ; HRK) such that, for all o € B
and B € Bg, we have that

(E® F)(ax Blz,y) = E(a|lr) ® F(Bly) px v-almost everywhere.

Remark 5.3. We fix inductive families of sets X = (Xp)nen, ¥ = (Yn)nen, A =
(Ap)nen and B = (B )nen and let Qx, Qy, Q4 and Qp be their respective Cantor
spaces. Given F € €, (24,Qx;H) and n € N, we denote by E, € €(A,, X,; H)
the (B(H )-valued) information channel (from X, to A,) for which the equality

(18) o, zg}’(onoq)EoLgtlo

is satisfied, n € N. Set

\I/n = Zg?,)oo O(I)En Ogjon|C(QA), n e N;

thus, (Vy,)neny € UCP(C(24), L*(2x)R@B(H)). We have that lim,, o ¥, = ®g in
the BW topology. Indeed, note that

Tim i) 0 %, = id e )@B0)

in the BW topology, and

nlg]rolo Lfglo 0 &X lowa) = ideo(ay)

in the point-norm topology. Fix w € B(H ), with ||w|1 <1, e > 0 and f € C(Qa),
and let NV € N be such that

|« eex)n -1 <35
and i
(@, () 0 €8, 0 @B)()) = {0, D (£)] <

whenever n > N. Then

[, Tn(f)) = (w, @5 ()]
< |{w, Wal) = (o, (e 0 8%, 0 @8)()

|, (0 8%, 0 @) (1) — (w0, @)
= |, (1 0 8%, 0 @p a0 E2)()) — (w, (0 0 &, 0 ®R)())
| (w, (s 0 8%, 0 @) (1)) — (w, @) < €

for every n > N.

Remark 5.4. The channels F € €, (24,Qx; H) and F' € €, (Qp,Qy; H) form a
commuting pair if and only if the (finite) channels E,, and F,,, obtained via equation
from F and F', respectively, also do so, for all n and m. Indeed, assume that

N
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(n) (m)

(E, F) is a commuting pair, then the channels ®goty’, Provy ’ form a commuting
pair and we can write

o5, (f) = (2. ® 1y, ® idpn) (@5 (1)1s)
and
65, (9) = (1x, © & @ idgm) (@r (0" (9))2.3),

from which the statement follows immediately (in the displayed equations, we have
used standard leg notation).

On the other hand, assume that ®g, and &5, form a commuting pair for every
n,m € N. Then the maps Lg() o®p, o0&, lcw,) and L§/ m) o®p, o0&, lowy) also
form a commuting pair. By Remark [5.3] the latter unital completely positive maps
converge to & and ®r respectively in the BW topology. By taking iterated limits

we conclude that & and &y have commuting ranges.

Lemma 5.5. Let T : Sx 4 — B(H) and % : Sy, — B(H) be unital completely
positive maps, and let

' C(Qa) — L™(0x)QB(H), % C(Qp) — L™=(Qy)2B(H)

be their corresponding channels ariding via Theorem . Then T and T'? form a
commuting pair if and only if ®1 and ®% do so.

Proof. We work at finite levels and pass to the limit. For n,m, let

T, :Sx,.a, — B(H), T2 :Sy, 5, — B(H),
and the corresponding

®l Dy — Dx, @B(H), 2 :Dp, — Dy, @B(H),

with

=) 6®Th(era),  Po() = > 0, T2 (ey0).

TEXy, YEYm

We compute

(19) [(@(0a))18, (@2,(0))28] = D D 6:®6, @ [Th(€aa), Timleys)]-

reX, yEYm

If Fl and I'? have commuting ranges then [T} (ezq), ['2 (ey b)) =0 for all z,y,a,b,
and (| vanishes on generators; by linearity ®. and ®2, have commuting ranges
for all n,m € N. By Remark - 5.4 &' and ®? have commutmg ranges.

If ®! and ®2 form a commutmg pair, by Remark. DL (6a))13, (P2,(0p))2.3] =
0, apply the slice Ly, gs, to (19) to obtain [I'}(ezq), I (ey,b)] = 0 for all z,y,a,b;
by linearity this yields [['}(u ) F 2 2 (v)] = 0 for all u,v and hence by density I'! and
I'? have commuting ranges.

O
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5.2. An ultraproduct channel construction. We collect some details about ul-
traproducts that we will need in the sequel, and refer the reader to [I] for further
background. Fix a free ultrafilter w on N. For a sequence (X,) of Banach spaces,
set £°(X,) = {(xy) : sup, ||z,| < oo} and N, = {(z,) : limy, ||| = 0}. Then
the space (X;,)* := £*°(X,) /N, endowed with the norm ||[z,]|| = lim,, ||z, | (where
[x,] denotes the coset containing the sequence (x,)nen), is a Banach space, called
the Banach space ultraproduct of (X,,). For a sequence (H,),en of Hilbert spaces,
the Banach space ultraproduct H“ is a Hilbert space when endowed with the in-
ner product ([x,], [yn]) = limy(zy,y,). For a sequence (M,,),en of C*-algebras,
the ultraproduct (M,,)¥ is again a C*-algebra when equipped with the pointwise
multiplication and involution of sequences. If (T},)nen is a uniformly bounded se-

quence, where T,, € B(H,,), the formula 7, ([T,])[xn] = [Tnxs] defines an isometric
*-homomorphism 7, : (B(H,))* — B(H%). For simplicity we will write [T},],, for
7o ([Tn))-

Let M,, C B(H,,) be von Neumann algebras, n € N. Write 7, : (M) — B(H¥)
for the canonical representation induced on the ultraproduct Hilbert space H*. The
abstract ultraproduct [Il, Definition 3.5]

w

[TMa. H,) = ma((M))

T CB(HY)

is the strong-operator closure of 7, ((M,;)*¥). In particular, when M,, = B(H,,) one
has [[“(B(H,), H,) = B(H“) (see [1, Lemma 3.4]).

Lemma 5.6. Let S be an operator system, H, be a Hilbert space, n € N, and
®,, : S — B(Hy,) unital completely positive maps for every n € N. Then the map

O . S — B(HY), given by ®¥(s) := ﬂ'w([q)n(s)])v

1s unital and completely positive.

Moreover, if T is another operator system and V,, : T — B(H,,) are unital com-
pletely positive maps such (9, Vy,) is a commuting pair for every n, then (®“, ¥+)
15 a commuting pair.

Proof. The map from S into ¢*°(B(H,)), sending an element s € S to the se-
quence (®,(s)), is unital and completely positive. The quotient map ¢*°(B(H,,)) —
(B(Hy))“ is a unital sx-homomorphism because Z,, = {(z,) : limy ||z,| = 0}
is a closed two-sided *-ideal. Finally, m, : (B(H,))*¥ — B(HY) is a unital *-
homomorphism. Thus the composition s — (®,,(s)) — [Pn(s)] = Tw([Pr(s)]) is
unital and completely positive, proving the first claim.

To prove commutation, fix s € S, t € T and £ = [§,] € H¥. Then

() U2 (t) € = [n(8)Un(t) &n] = [Tn(t)Pn(s) &n] = V(1) D¥(s) &,

since ®,,(s) and ¥, (¢) commute for each n. Hence [®¥(s), U¥(¢)] = 0 in B(HY), as
required. [l
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5.3. Definitions and characterisations. Motivated by the hierarchy of types in
the case of correlations over finite input and output sets, we now adapt the definitions
of no-signalling correlation types from [6] to the Cantor setup.

Definition 5.7. Let X = (X,,)nen, ¥ = (Yo)nen, A = (An)neny and B = (Bp)nen
be inductive families of sets. A unital completely positive map I' : C'(24)2C(Qp) —
L>*(Qx)RL>®(Qy) is called a
(i) local correlation if it is a finite convex combination of maps of the form
& @ W, where @ : C(Q4) — L>®(Qx) and ¥ : C(Qp) — L>°(Qy) are unital
completely positive maps;
(ii) quantum spatial correlation if there exist separable Hilbert spaces H and K,
a unit vector { € H® K, and operator-valued channels E € €, (24, Qx; H)
and F € €, (2B, Qy; K), such that

(20) (9,T'(h)) = (g ® &7, Prar(h))
whenever h € C(Q4)®C(2p) and g € LY (Qx)QLY(Qy).
(iii) quantum approximate correlation if I' € CTISBW;
(iv) quantum commuting correlation if there exist a separable Hilbert space H,

a unit vector £ € H, and operator-valued channels E € €, (Q4,Qx; H)
and F € €, (B, Qy; H) that form a commuting pair, such that

(21) (9, T(h)) = (g @ &7, @ (h))
whenever h € C(Q4)®C(2p) and g € LY (Qx )L (Qy).

In the context of Definition [5.7| (iv), we will say that the triple (H, E, F,§) is a re-
alisation of the correlation I'. We denote by Cioc(X,Y, A, B) (resp. Cys(X,Y, A, B),
Cqa(X,Y, A, B), Cqe(X,Y, A, B)) the set of all local, (resp. quantum spatial, quan-
tum approximate, quantum commuting) no-signalling correlations over (X, Y, A, B),
and simply use C; when the quadruple (X,Y, A, B) is clear from the context.

Theorem 5.8. Let ' : C(Q4)@C(Qp) — L=(Qx)RL*(Qy) be a unital completely
positive map and (I'y)nen be its associated inductive family of maps. The following
are equivalent:

(i) T € Cqe(X,Y, A, B);

(i) Ty, € Cye(Xn, Y, An, By) for every n € N.

Proof. We recall that c‘:’;’("n : L®(Qx)®B(H) — Dx, ® B(H) is the canonical expec-
tation.

(i)=(ii) Let I' € Cqc, and let H be a Hilbert space, £ € H be a unit vector, and E €
Cux (Q4,Qx; H) and F € €, (Q2p,Qy; H) be channels forming a commuting pair,
such that is satisfied. Further, let E,, € €(A,, X,;H) and F,, € €(B,,Y,; H)
be the channels such that

@En:gj?noCIDEOLE:) and @Fn:gﬁ‘;OQFOLg), n € N.

By Remark (En, Fy,) is a commuting pair for every n € N.
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We show that Iy, is a quantum commuting correlation with realisation (H, E,, F},, ).
Indeed, if x € X,,, y € Y,,, a € A, and b € B,, then
{0z ® 6y, T'n(da @ 0p)) =
= (0, ®0,, (€%, @ &%) o T o () @15 (00 © 1))
= () ® WD ©8,),T 0 (1) @ 15) (0. @ &)
— () @) (6, ©6,) @ €6, Dpp o (1) @ 5 (00 @ 6)
= ((0:©0,) ® ", (65, D7) 0 o (1) ©15") (0, © 6))
= ((6z ® dy) ® £€7, P, (0a © Ob)),
where the last equality follows from the fact that
(EF @ &%) 0 bpro (1] @ 05 (00 ® 8)
= (6%, ® EX)((@B( Y (6a))1a(@r (5 (6)))2a)
= (%, (@5 (0165 (15 (50))25.

(ii)=(i) By assumption, for each n € N there exist a Hilbert space H,, a unit
vector &, € H,,, and channels

E, e €A, X,;Hy,) and F, € €(B,,Y,; H,),
forming a commuting pair and realising I';,:

(22)  (g,I'n(h)) = (g ® &S, PE,F,(h), g€ Dx,®@Dy,, h € Da, ®Dp,.
In addition, we have the inductivity relations
(23) Ln = (Expir, X0 @EVi1vn) ©Tng1 0 (Lan Ansy @ tBy,Busy)s N EN.
Combining equations and , for all g € Dx,, ® Dy,,, h € Da, ® Dp, we
have
(9@ &k, PEpr, (f)) = (9, Tn(h))
=9, (EXpi1,X0 @ Eviir,vn) © Tn1 0 (L4, 40410 ® LB, Boyr ) (R))
= ((tXnr1,Xn @ ¥pi1,¥)(9), Tt © (LA, A4niy ® BBy ) (R))
= ((tXnr1,Xn ® Woi1, ¥ )(9) ® Ent1&ny 15 PE - Frug © (44,4010 ® LB, By ) (D))
Thus, for all g € Dx, ® Dy,, h € Da, ® Dp,, we obtain
(24)
(9®&&, Pp,.p(h)) = <g @ &nr1énity (Expin X0 @ Ev, i y,)

© (I)En+1'Fn+1 ((LAruA'rH»l ® LBmBnJrl)(h)) >
Define the channels

T = Ty 0 @, 0 EX () : C(24) = L¥(Qx)OB(Hy),
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O =1\ 0 Bp, 0 EF |oay) : C(QB) — LZ(Qy)BB(H,),

which form a commuting pair at each level n. By Theorem (with H = H,),
there exist unique unital completely positive maps

©, :Sx,a — B(H,) and A, :Syp — B(H,),
such that
Xonl L 5, (®, (157 (00)) = On (1A (€0

[Yon| LLg,”;)(ay)(cI)an(Lgl)((sb))) = An( %B)(ey,b))

forallm e N, z € X,,,, a € A, y € Yy, b € By, (see (10). In particular, by
Lemma we obtain that (0,,A,) a commuting pair, n € N.

Fix a free ultrafilter w on N and form the Hilbert ultrapower H“ and the abstract
ultraproduct [[* (B(H,), H,) = B(H“) (see Subsection . Let £ = [¢,]; thus,
¢ is a unit vector in H*. By Lemma we have unital completely positive maps
©Y :Sx a4 — B(H”) and A* : Sy, p — B(HY), given by

O“(s) :==[On(s)]w and A“(t) := [An(t)]w,
that form a commuting pair. Apply Theorem again (with H = HY) to obtain
unital completely positive maps
D:C(Qy) = L7 (Qx)RB(HY) and ¥ :C(Qp) — L>=(Qy)RB(HY),

satisfying

(25)

Xkl L) 5, (B4 (00)) = ©° (3 (ex.0)),
Yl L0 5, (P05 (00))) = A% (355 (ey))

forall x € Xy, a € Ax, y € Yy, b€ By, k € N. By Lemmaagain, the pair (@, )
is commuting.

Now, by Theorem there exist operator-valued channels £ € €, (Q4,Qx; H)
and F' € €, (2B, Qy; H) such that & = &g and ¥ = ¥, and since E and F form
a commuting pair, by Theorem we obtain the channel E - F, giving rise to the
unital completely positive map

Ppp:C(Qy) @C(QB) = L®(Qx)RL™(Qy )RB(H®Y).

FixneN,a€ A,, b€ B,, and take any k > n, x € Xi, y € Y. By inductivity

and ,
@7 (26 26,), T @ )0 e 8))
= <5x & 5y, Fk((LAn,Ak X LBn,Bk)((Sa & 55))>

= (0, @ 0, ® 6685, P ((La,a, © 05,,5) (00 © 8)) ).

(26)
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Using , we have

(0 0 40 @ 8) @ 66", 2rr() (02) @ 150
= (L, @05 ) Ly, (V5 @ € €)

(L 5y @ 004, 4,600 Lo 5 (W05 0 1,5, (B0))) €. € )

lx
1 (k) (k)
S = . AW .
|Xk‘| |Yk;| <9 (,YX’A (XX: ezv(av)‘))) (VYB zﬁ: ey’(b“u) 5’ €>’
where the summations are over X = (Apg1, ..., ) € [d 1] x ... x [df] and ji =

(fnt1, -5 o) € [dB 1] x ... x [dP]. Taking the limit along the ultrafilter and using

, we obtain

(W @ df)6. @) @ €6, pp() (6a) @ o) (60)) )

1 w k w k)
= | Xk Y] <@ (’Vg(,)A(Z 6x,(a,5\'))) A ('75(/,)3(2 ey,(bﬁ))) 3 §>
X

g 1 (k) ; (k)
o JBEL | X5| Y] <®m(’VX,A(Z ex,(a,)\))) Am(’YY,B(Z ey,(b,u)))§m7 §m>

- —

i

5.y (@, (15 () €y €m )

ty1(8y

= lim <L (k) (5 )(Cbl (L,(:)((sa))) L w

m—w

= lim (0,0, @ Enhs ((EF, 0 5, ) (7015 ((E5F 0 @, )15 (00)))as )
if m > k then, by the inductivity relations and equation , we have

(82 © 8, ® €, (5, © @5, )05 01 (855 0 @, )15 ()2

2®0y®REm & (Ex,x, 0 PE) (tana, (0a))1,3((Evy vi 0P R, (LB, B (5b)))2,3>

= (s
<5x ® Oy ® Emém, (ng,X/k_éiCﬂYm,Yk o®p, .F, 0 (LA, A, ® LBn,Bm)>(5a ® 5b)>

0z ® 0y @ &y, (PEy-Fy, © (La,.4, ®tB,.B,)) (0o @ 5b)>

{
O ® 4 @) (0. @ 8)) ).
< ) ® Yl 5, ®6,), T((}) @) ®5))>
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Combining the previous calculations, we conclude that

<(Lg’;}1 © ) (0: ©6,), T @ 5 (6, @ 5b))>
= (0 @ i@ ©6,) @€, Brr(P6) @ 5 (3));
therefore I € Cqc (X, Y, A, B). O

Corollary 5.9. Let X, Y, A and B be inductive families of finite sets. Then the
set Cqo(X, Y, A, B) is closed in the BW topology.

Proof. The claim follows from Theorem the fact that the map I' — T, is
continuous in the BW topology, and the fact that the class of all quantum commuting
correlations over a quadruple of finite sets is closed (see Theorem [2.1]). O

Proposition 5.10. Let X, Y, A and B be inductive families of finite sets. Then,
writing Cy = Cy(X, Y, A, B), we have

Cloc - Cqs - an - ch - Cns-

Proof. We show that quantum commuting correlations are no-signalling. Assume
that I € Cqc; we claim that I'(C(Q24) ® 1) € L>®(Qx) ® 1y and I'(14 ® C(Qp)) C
1x ® L>®(Qy). Fix h € C(Q4); it suffices to show that L,(I'(h® 15)) € C- 1y for
all w € LY(Qx). Let g € LY(Qy) and note that

(9, Lu(T(h®1p))) = (g @w, I'(h® 1p))
=(w®g) @& Ppr(h®lp)) =(weg)®E", Pp(h) @ 1y)
= (9, Lugee= (Pu(h)) - 1y)

and, since g is arbitrary, we have that
Ly(T(h ©1p)) = Lugeer (Pr(h)) - 1y

for every w € L'(Qy), as desired. The fact that T'(14 ® C(Qp)) C 1x ® L>®(Qy)
follows by symmetry.

The first inclusion can be shown in a standard way following the finite case, the
second one is trivial, while the third follows from Corollary and the fact that
Cqs C Cye- O

Our next aim is to obtain an operator algebraic description of quantum commut-
ing and approximately quantum correlations over Cantor spaces.

Remark 5.11. Given a correlation A of quantum commuting type over a quadruple
(S,T,U,V) of finite sets, let s5 be the (unique) state of Sgr @, Sty corresponding
to A via Theorem [2.1] By Lemma [£.3] if T, is a no-signalling correlation over
(X0, Yn, Ap, Bp), n € N, then the family (I'),)pen is inductive if and only if

(28) SFn+1 o (’YXnyAn ® nynan) = SFn’ n E N
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Lemma 5.12. Let t € {loc,qs,qc,ns}, n € N and I'y, € Co(Xn, Yn, An, By). Then
the correlation '), defined by letting

Pn = (ke ®157%) 0 Tn o (€3, ® EF)lc@nscias)
belongs to Cy(X,Y, A, B).

Proof. We only include the proof for the case t = qc; the case t = gs is similar and
the cases t = loc,ns are immediate. Let (H, E, F,&) be a realisation of T',; thus,
Op: Dy, — Dx,®B(H) and ®f : Dp, — Dy, ®B(H) are unital completely positive
map and € € H is a unit vector. Let E € €. (Q4,Qx; H) and F ¢ C. (OB, Qv H)
be the operator-valued channels, satisfying

Py = [’g?)oo o®g oEfﬁJC(QA) and 5 = Lﬁﬂo odp Og%?JC(QB)'

It is straightforward to check that (H, E, ﬁ’,f) is a realisation of T),. O

For the formulation of the next theorem, recall once again the notation for
cylinders in Cantor spaces.

Theorem 5.13. Let X = (Xy,)nen, ¥ = (Yo)nen, A = (An)nen and B = (Bp)nen
be inductive families of finite sets, and letT : C'(24)RC(Qp) — L®(Qx)RL>(Qy)
be a no-signalling correlation. The following are equivalent:
(i) T € Cqe(X,Y, A, B) (resp. I' € Cqu(X,Y, A, B));
(ii) there ezists a state s : Sx 4 ®c Sy,p = C (resp. s : Sx,4 @min Sy,B = C),
such that

s(Xaxa ® Xjx5) = [ Xnl[Yal(xz ® x5, T (xa ® X3)),
forallz e X, yeY,, a€e A,, b€ B,, and alln € N.

Proof. We first establish the equivalence in the quantum commuting case.

(i)=(ii) Assume that I' € Cq(X, Y, A, B), and let H be a separable Hilbert space,
¢ € H be a unit vector, and E € €,, (24,0x;H) and F € €, (Qp,Qy; H) be
operator-valued channels, satisfying (21)). Let ®p : C(Q4) — L>(Qx)RB(H) and
Op: C(Qp) = L>(Qy)RB(H) be the unital completely positive maps, associated
with F and F, respectively, via Theorem Let (®,)nen and (¥, )nen be the
inductive families, associated with ®p and ®p, respectively, via . Let @, :
Sx,.A, — B(H) and and ¥, : Sy, g, — B(H) be the unital completely positive
maps, arising from ®, and V¥,, respectively, through Remark It follows from
the proof of Theorem [3.4] that

D, =P, 410 VX0, An and ¥, =W, o0 YYpn,Bny T E N.

By the universal property of the operator system inductive limit, there exist unital
completely positive maps ® : Sx 4 — B(H) and and V¥ : Sy,p — B(H), such that

éoygglzén and \iJOfy)(/iL)B:\ilm n e N.
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Since the pair (®p, Pr) is commuting, so is (<I> \I/) By the definition of the operator
system commuting tensor product, the map ® - ¥ : S x,A @c Sy, — B(H) is (unital
and) completely positive. Let s : Sx 4 ®. Sy,p = C be the state, given by

s(u) = (2 ¥)(u),£,€), u € Sx.a®cSy,p-

Set s, 1= so(y (n )®71(4 )) thus, s, is a state on Sx,, 4, ®c Sy, B, Let I', be given
via (14), n € N, and observe that, if x € X,,, y € Y,,, a € A, and b € B,,, then

s(Xaxa @ Xgup) = Snl€aa®eyp) = (D (ex,a)Vnleyp)E, €)

= (L5, (Pn(da))Ls,(¥n(dp))E, E)
= |X,||Y5] ®5y>r (00 @ 0p))

{0z
= IXallYal((5) @ ) (62 © 8,), T(xa @ X5))
= [ XallYal(xz © x5, T'(xa © x3))-
(ii)=-(i) Setting
Sn —so(7§?24®7§:%) n €N,

we obtain a family (sy,)nen of states, where s, : Sx,, 4, ®c Sy, B, = C, n € N, satis-
fying and therefore quantum commuting correlations I',, over (X,,, Yy, Ay, By)
which by Remark form an inductive family. Theorem [3.2] gives rise to a unital
completely positive map I' : C(Q4) ® C(2p) — L>®(Qx)RL>®(Qy) that satisfies

(EX, @&y ) ol o (1y S )®L(")):Fn, n € N.

By Theorems and I' e Coo(X,Y, A, B).

We now consider the approximately quantum case. Assume that the implication
(i)=(ii) holds in the case where I' € Cqs(X,Y, A, B); to conclude it in the full
generality, let I' € Cqa(X,Y, A, B) and (TFE)en C Cys(X,Y, A, B) be a sequence
with BW limit T. Let s : Sx A4 ®min Sy.z — C be a state yielding T*), k € N.

Let (sg,)ien be a subsequence such that sy, —;_, s in the weak™ topology; then

(ygle(em a) ®’y}(fg(ey7b)) agrees with | Xy, |[Y%, |(xz ® x3,T' (xa ® x3)) for all z € Xy,

Yy € Ykl, a € Ay, and b € By, and all | € N. By uniform boundedness, the density of
the linear span of the elements xz ® x; in C(Q4) ® C(2p), and the weak™* density
of the elements xz ® xj in L™ (Qx)®L>*(Qy ), we conclude that s = sr.

To complete the proof of the implication (i)=-(ii), we note that in the case where
I' € Cys(X,Y, A, B) the statement follows readily by inspecting the proof of the
same implication in the quantum commuting case, working with tensor, instead of
operator products, and using the fact that unital completely positive maps on the
individual terms tensor to a unital completely positive map on the minimal operator
system tensor product.

For the implication (ii)=-(i) in the approximately quantum case, let s : Sx 4 ®min

Sy,p — C be a state, and s, = so(fyg()A(X)mm’y;)B) thus, s, is a state on Sx,, a,, ®mm

Sy, .B,, n € N. By Theorem s, gives rise to a no-signalling correlation I,
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Da, ® Dp, — Dx, ® Dy, of approximately quantum type. Let Lp: C(Q) ®
C(Qp) = L>®(Qx)RL>(Qy) be the map given by letting

(29) T = (1500 © 1§12) 0 T 0 (EF, @ E8)lciamecian)-

Using the argument from Remark we see that Ty, =00 I' in the BW topology.

It therefore suffices to show that I';, € Cqa(X, Y, A, B), n € N. To see that, fix n €
N, and let (O)ken C Cqs(Xn, Yn, An, By) be a sequence, such that ©p —1_00 .
It is straightforward to see that, if Oy, arises from Oy, as in then O — k00 In
in the BW topology. On the other hand, if H and K are separable Hilbert spaces,
§ € H® K is a unit vector, and £ € €, (A, Xp; H) and F € €, (B, Y,; K) are
operator-valued channels such that

(Ok(da @ 0p), 02 ® by) = (x ® 0y ® £67, (Pp ® Pp)(da @ 0p)),
then Oy, has the form for the channels E and F, satisfying

(30) (I)E = Lg?,)oo o (I)E o 52|C(QA) and ‘I)ﬁ = Lg?io o ‘I)F o 5%2|C(QB).
The proof is complete. O

The next statement, which is a straightforward consequence of Theorem [5.13
complements Theorem in the approximately quantum case.

Corollary 5.14. Let T' : C(Q4) @ C(QB) — L>®(Qx)RL>®(Qy) be a unital com-
pletely positive map and (I'y)nen be its associated inductive family of maps. Then
I' e Coa(X, Y, A, B) if and only if I';, € Cqa(Xn, Yn, An, By) for every n € N.

Remark 5.15. It is straightforward to see that, if I' € Cos(X, Y, A, B) (resp.I' €
Cioc(X,Y, A, B)) then I';, € Cys(X, Yn, Ap, By) (resp.T'y, € Cioe(X, Y, A, B)) for ev-
ery n € N. We finish this section by showing that Corollary does not hold in
the quantum spatial case and that the class Cys(X, Y, A, B) is not closed.

Theorem 5.16. There exist inductive families of finite sets X = (Xp)nen, ¥ =
(Yo)nen, A = (Ap)nen and B = (Bp)nen and a no-signalling correlation T' :
C(Q4)@C(2p) = L>®(Qx)RL>®(Qy) such that, if (Ty,)nen i its associated induc-
tie family, then I'y, € Cqs(Xn, Yn, An, By) for everyn € N, but I' ¢ Cos(X, Y, A, B).

Proof. By [35], there exist finite sets X, Y, A, B, such that Cys(X,Y, A, B) is not
closed, that is, there exist correlations p, € Cys(X, Y, A, B), n € N, and a correlation
P € Cqu(X,Y, A, B) \ Cys(X, Y, A, B) such that p,(a,blz,y) — p(a,blz,y) for all a, b,
T, Y.

Let f and f, be the states on Sx A ®min Sy yielding p and p,, respectively via
Theorem thus,

p(a, b‘l’, y) = f(e:c,a ® ey,b) and pn(a7 b‘:l]', y) = fn(ez,a 0y ey,b)

foralln € N. Set X,, = H?:_Ol Xand let X = (X,,)nen be the corresponding inductive
family of sets; define the families Y, A, B similarly. Let s, : Sx,, 4, ®minSy,.B, — C,
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n € N, be the linear maps, defined inductively by letting s; = f; and

Sn+1 (€(zar) (aa) ® €(yy), (b)) = Sn(€z,a ® €yp) fati(er o ® ey pr),

where z € X,,, 27/ e X, yeY,, v €Y, aec A,,d € Aand be B,, V) € B. To
see that the maps s,, are well-defined, we refer to the commutativity of the minimal
tensor product and the universal property of the C*-algebra Ax, , a,,,, according
to which the map

AXn+1,An+1 = -AXn,An Qmin AX,A; €zz’ .aa’ 7 €x.a ® €x' aly

gives rise to a x-homomorphism that restricts to a unital completely positive map
from Sx,,. ;4,1 10 Sx,,. 4, @min Sx,a, n € N. Moreover,

S7Z+1 (’YX'ruAn (em,a) ® 7Yn7Bn (ey,b))

1
- W Z Z Z Z 5n+1(6(mx’),(aa’) & e(yy’),(bb’))

z'eXy'eYa' cAbeB

1
XY D22 D snlera@eyp)furileww @ ey ) = snlera ®eyp):

r'eXy' eYa' €AV eB

By Lemma the family (s,,)nen gives rise to the inductive family of correlations
(T'y)nen- It is easy to see that, since p,, is of quantum spatial type, so is 'y, n € N.
Let I' : C(Q24) ® C(Q2p) — L*®(Qx)®L>*(2y) be the unique unital completely
positive map associated to the sequence (I'y,)nen and s : Sx, 4 @min Sy, — C be the
corresponding state, arising via Theorem [5.13| Then s o (’Yg?jq ® 'y)(/?? ])3) =Sy, n €N.

We now show that I' & Cqs(X,Y,A,B). Fixz € X,y €Y, a € A and b € B,
consider the sets A} = {(z;); € Qx : v, = v} and define Ay, A} and A} similarly.
Assuming, towards a contradiction, that I' is in Cqs(X, Y, A, B) we can find Hilbert
spaces H and K, unital completely positive maps ® : C(24) — L®(Qx)QB(H)
and U : C(Qp) — L>®(Qy)RB(K), and a unit vector £ € H ® K, such that

(Xar ® xan ® E67, @(xan) ® ¥(xayp))
= (xar ® xar, T(xar ® xap)) = s(XazxAr @ Xanxap)
= 3 SO W e wa) @ ey w)

I'yy/ﬂ',b/
= > sulewa)(a) @ ey, )
$,,y/,a/,b/

= Z Sn—l(ex’,a’ & ey’,b’)fn(ex,a ® 6y,b) = |Xn—1HYn—1 |fn(6:c,a b2y ey,b),

!l ! bl
x7y7a7b

where the summation is over (2, y/,a’,0') € X,;,_1 X Y,_1 X A1 X By_1.
Let ET, = |Xﬂi{llLW(<I>(><Ag)) € B(H) and F}, = \Yn%ﬂLXA{}((I)(XAI?)) € B(K).
Then
<(E:?,a & Fyn;b)§7€> = fn(ex,a ® ey,b) = pn(a’ b‘l’, y)7
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forall z € X, y € Y, a € A and b € B. Moreover, (E7,)aca and (F};)sep are
families of POVM’s for each x € X and y € Y. Choose subnets (E (F;g)a
converging to E, , and F,;, respectively, in the weak™ topology. We have

(B1) ((Bua ® Fyp)S, &) = m((Epg @ F7)E,€) = lim pa(a, bz, y) = p(a, blz,y).

As the families (E;.q)qea, (Fy boes, T € X, y € Y are again POVM’s, identity .
contradicts the fact that p is not of quantum spatial type.

na)
x,a

Corollary 5.17. There exist inductive families of finite sets X, Y, A and B for
which the set Cqs(X,Y, A, B) is not closed in the BW topology.

Proof. Let (I'y)nen be the inductive family from Theorem and let f:" be the
associated no-signalling correlations via Lemma By Lemma Iy, € Cos.
As IT';, = I in the BW topology, the statement follows from Theorem O

Remark. Since the elements of the form (’&ﬁ@’y&é)(em,a@ey,b), wherez € X,y €

Y,, a € A, and b € B, n € N, generate a dense Subspace of the operator system
Sx.4 @c Sy,B, the correspondence between Cqc(X,Y, A, B) (resp. Cqa(X,Y, A, B))
and the state space of Sx 4 ®; Sy,p (resp. Sx,4 @min Sy,B) from Theorem is
bijective.

6. CANTOR GAMES

In this section, we define values of non-local games over Cantor sets, based on the
correlation types studied in the previous sections, and establish continuity results
thereof. We recall that, if S, T, U and V are finite sets, a non-local game over the
quadruple (S,T,U, V) is a pair G = (A, p), where A : SXT xU xV — {0,1} and p is
a probability measure on S x T'; here, S (resp.U) is interpreted as the set of inputs
(resp. outputs) for player Alice, and T (resp. V') — as the set of inputs (resp. outputs)
for player Bob. Alice and Bob play collaboratively against a third party, Verifier.
In each round, the Verifier choses a pair (s,t) € S x T of questions according to the
probability measure p, and the players return a pair (u,v) € U x V; the tandem
Alice-Bob wins (resp. loses) the round if A(s,t,u,v) = 1 (resp.A(s,t,u,v) = 0).
Given a correlation type t over (S,T,U, V), the t-value of G is the parameter

wi (A, ) —SUPZZMSt ZZAstuv (u,v|s,t)

sGS teT uelU veV

(we note that wqs(A, 1) = wWqa(A, 1)).

Measurable games and their values were defined in [6]; here, we specialise those
to the case of Cantor topological spaces. For an inductive family X of finite sets,
we let for brevity Bx = Bq,. Let X = (Xp)nen, ¥ = (Yo)nen, 4 = (Ap)nen and
B = (Bp)nen be inductive families of finite sets. A Cantor game is a pair (k, ),
where kK C Qx X Qy X Q4 x Qp is a closed subset and p is a probability measure on
Qx xQy. In the sequel, we consider only the case where p is the uniform probability
measure, that is, p = ux X py.
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We equip X,, XY, with the uniform probability measure, and hence identify a non-
local game G,, over (X,,, Yy, An, By) with its rule function A, : X, x Y, x A, x B, —
{0,1}, n € N. Let, further kg, be the subset of Qx x Qy x Q4 x Qp, given by

(32) kg, = {((@r)r), (k) ((ar)r), ((Ox)r) :

((@r)7Zos (ur)iZo» (ar)iZos (Bk)7Zp) € supD An},

and note that kg, is (open and) closed. We say that the family (G, )nen is nested
if kg,,, C kg, for every n. For a nested family G = (G, )nen of games, we set
kg = NpeNkg, , and note that kg is a closed subset of Qx x Qy x Q4 x Qp. We call
the Cantor games of the latter form nested.

Lemma 6.1. Every Cantor game k C Qx X Qy X Q4 X Qp is nested.

Proof. Let m, : Qx X Qy x Q4 x Qp = X, X Y, X A, X B, be the projection, and
set kp, = m, Y(mn(k)), n € N. Clearly, k41 C Ky for every n, and K C N k.
Assuming that w € N2k, let w, € X, x Y, x A, x B, and W), € [[;5,[d] x
[dY] x [d£] x [dP] be such that w,, € m,(k) and w = wpwl,, n € N. Since w, € m,(k),
there exists w! € [[;,[dX] x [dY] x [d] x [dP], such that w(™ := w,w! € k. Let
w’' be a cluster point of the sequence (w("))neN; since k is closed, w’ € k. Since
n(w) = m,(w') for infinitely many n € N, we have that w = «’, implying that
w € K. O

In the sequel, we write for brevity puxy = px X py. By [B, Theorem 3.11],
every correlation I' : C(Q4)®C(2p) — L>®(Qx)RL>®(Qy) gives rise to a (unique)
classical information channel pr € €, (24 xQp, Qx xQy; C), viewed as a Qx xQy-
measurable family pr = (pr(-, ‘|, ¥)z,y) @)y x, Of Borel probability measures
over 24 x g, such that

(z,y)

33)  T(f)ay) = / F(a,b)dpr(a, b, y),  pixy-almost everywhere,
QAXQB

for every f € C(Q4) ® C(Q2p). We have that the map I' extends uniquely to the
space of all bounded Borel functions on 24 x Qg and satisfies

(34) L(xs)(z,y) = pr(d|z,y), d € Ba®@Bp, px X py-almost everywhere.

Indeed, using Stinespring’s Theorem and [3, Theorem 2.6.3], the map I' can be
extended uniquely to the space of bounded measurable functions on Q4 x Qp in
such a way that it has the following property: for every uniformly bounded sequence
of measurable functions (f,)nen which converges pointwise to zero, the sequence
(T'(fn))nen converges strongly to zero. In particular, taking a uniformly bounded
sequence of continuous functions (fy,)nen converging pointwise to xs, d € B4 B p,
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for &,n € L?(X x Y) we obtain
(Fxa)&m = lim (T(fa)€m)

— lim / / fo (@, b)dpr(a, blzr, )€ ()0 ) dpxy (2, )

= ({pr(]--)&,m),

giving I'(xs)(z,y) = pr(d|z,y) pxy-almost everywhere.

If, further, 7 is a Borel probability measure on Q2 x Xy, let 7®@pr be the compound
measure of w and pr, that is, the Borel probability measure on 2x x Qy x Q4 X Qp,
given by

(35) (r®pr)(M) = / pr(Myylz,y)dr(z,y), M€ Bx By ® B ® Bp,
X
where

My :={(a,b) € Q4 x Qp : (z,y,a,b) € M}

is the (z,y)-section of M (see [19] and [6]). For t € {loc, gs, qc,ns}, let the t-value
wi (K, pxy) of Kk with respect to the measure pxy be given by

wi(k, pxy) = sup (uxy ® pr)(k).
I'eCy

We note that if k1 and ko are Cantor games with k1 C ko then
(36) O.)t(/il,,U/XY) S wt(’%QauXY)? te {lOC,qs,qC,nS}.

Remark 6.2. The setup of no-signalling correlations in this paper is established
using almost everywhere defined operator-valued information channels. Since we
are about to exploit the framework developed in [6], we note that the compound
measure pxy @pr is independent of the use of pxy-information channels as opposed
to everywhere defined information channels. We refer the reader to [6, Remark 6.1]
for a detailed argument.

Lemma 6.3. Let X, Y, A and B be inductive families of finite sets, k be a Cantor
game over (X,Y, A, B) andT',T',, € Cns(X,Y, A, B), n € N, be such thatT';, =, 500 I’
in the BW topology. If a subset kK C Qx x Qy x Q4 X Qp is closed and open then

(nxy ®pr,)(K) = nsoo (Bxy @ pr)(k).
Proof. If f € C(Qx x Qy) and g € C(24 x Qp) then

(hxy @pr,f®g) = f(z,y)9(a,b)d(pxy @ pr)(z,y, a,b)

/QXnyxQAxQB

— /QXXQY (/QAXQB q(a, b)dpp(a,b|x,y)> [z, y)dpxy (2, y)

— / L(g)(z,y) f(z,y)duxy(z,y).
Qx Xy
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If x is closed and open then Y, is the finite sum of functions of the form x, ® x3,
where a C Qxxy and 8 C Q4 p. The claim is now immediate. O

For a closed and open subset k C Qx xQy x Q4 xQp, we write I'(k) : Qx xQy —
C for the (measurable) function, given by I'(x)(x, y) = (X, , ) (%, ), and note that
the proof of Lemma shows that

(xy ® pry Xo) = /Q T ().

Lemma 6.4. Fizn € N and let G, = (X, Yy, An, Bn, \n) be a non-local game. If
I, €C and T, = (Lg?)oo ® Lgfgo) ol o (EX @ EF )lcaec@p) then
(11X, v, ® pr,)(supp An) = (kxy @ pp, )(Kn);
consequently, wy(Gn, ttx,v,) = wi(kn, pxy), t € {loc,qgs, qc,ns}.
Proof. Letting G,, = supp A\, and k, be defined as in , using the definition of
the compound measure and we have that
(nxy @ pp, )(kn) = (Ixy,Tn(kn))

(Ixy, (P @ ) 0Ty 0 (EX ® EX) (in))
= ((€x, ®5Yn)(1XY) [no(EX, ® ) (kn))

<1Xn Yo (Gn)> - (/"LXnYn ®prn)(Gn)

Now, since 'y, € Cy(X,, Y, An, By) = L, € Ci(X,Y, A, B), by Lemma we
obtain

Wi (Gns X, vn) < Wi(Kn, LXY)-
Next let I' € C¢(X,Y, A, B), set
r,= (5)°<°n ®5§:) olo (Lgl) ®Lg)>, n €N,
and note that (px,y, ® pr,)(Gn) = (txy @ pr)(k,). Indeed,
(/’LXTLYH ®prn)(Gn) = <1Xn}/;L7Fn(Gn)>

= (1x,v,, (EF, ® &) o T o (1)) @ 1)) (G)
= (€x, ® &y, )(1xy), (EX, @ 7)) o T'(kn))
= (Ixy,I(kn)) = (txy @ pr)(kn).

Now since I' € Cy(X,Y, A, B) = T',, € Ci(X,, Yn, An, By) (see Theorems and
and Remark , one obtains wi(Gn, ix,v,) = Wi(kn, LXY)- O

Theorem 6.5. Let G = (Gp,)nen be a nested family, where G, is a non-local game
over (X, Y, An, Bn), n € N. Ift € {loc,qgs,qc,ns} then

lim w(Gn, px,v,) = inf wi(Gn, px,v,) = wi(G, pxy).
n—o00 neN
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Proof. Let k = kg and k,, = 7, ' (supp \p). We have k = Npenkn. Fix I' € C; and
note that for any m > n, by monotonicity of the measures as (kp)nen is a decreasing
sequence of sets, one has

(Lxy @ pr)(Fm) < (pxy @ pr)(kn)-
By taking supremum over I' € C; we obtain that wi(km, txy) < wi(kn, pxy). By

Lemma [6.4]

Again by Lemma

Wi (G, XY ) < Wi (G 10X, Y )-

wi(G, puxy) < inf we(Gn, px,v,)-
neN

For the converse, fix € > 0, and let '), € C; such that

(37) Wt (Gms X0 Ye) — (XY @ pr,, ) (Km) < %,

and assume, without loss of generality, that (I',)men converges to I' in the BW
topology. By monotonicity of the measures again,

(xy @pp )(km) < (pxy @ pp )(kn) for all m >n,

and thus, using the convergence of [, to I', Lemma Lemma and 1) we
get

(38) niqré%Wt(Km“uXY) < (uxy @ pr)(kn).

By the monotonicity of measure and the fact that xk = N,enky, We obtain

(39) (pxy ®pr)(%) = lim(uxy ® pr)(sn).
Finally, combining relations and one obtains the desired result. O

Our next aim is to provide tensor norm descriptions of the quantum spatial and
the quantum commuting value of a Cantor game. Suppose first that G = (A, 1) is a
non-local game over a quadruple (S, T, U, V) of finite sets. The element

o= > > @ A, y,a,b)ena @ ey
(z,y)ESXT (a,b)eUxV

of the (algebraic) tensor product Sgyy ® Sty is usually referred to as the full game
tensor of G. It can easily be seen from Theorem [2.1] that

(40) qu()\,,u) = |lt¢|lmin; ch()\aﬂ) = [ltellc and wns(A, 1) = [[ta|lmax-

Assume that G = (Gp,)nen is a nested family, where G, is a non-local game over
(X, Y, Ay, By) with rule function \,,, n € N. Letting k,, = kg, , write

m_ 1
tg = m Z Z A2, Y, a,0)Xaxa @ Xgxb
(z,y)€Xn XYy (a,b)EARX By,
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considered as an element of Sx 4 ® Sy, B.

Lemma 6.6. Let G = (G )nen be a nested family of games.
(i) If 7 € {min, ¢, max} then ténﬂ) < tén) in Sx. 4 ®r Sy,B, n € N.
(ii) The limit lim, t(gn) exists in the weak™ topology of 8}2 A®S§‘/TB.
Proof. Write G,, = supp(\,,) for brevity.
(i) Fix n € N. Since the family G is nested,

supp(Ant1) € supp(An) x ([d5] x [d)] x [dg] x [d7]) .
Letting
Gl = {(za!,yy', ad ,bb) : (z,y,a,b) € Gy,
(«,y',d' V) € [dy] < [dy] x [dy] > [dF]},
we have

1
X0 [[Vo] Z Xaxa © Xpxi
(z,y,a,b)EGr

1
T X e ® X
|Xn+1 | ‘Yn+1|(:r,y,a,b)€Gn+1

= v Er Y ea S
T X[V dXdY Xixa © Xgx
(zy,a,b)€G] |4
1 &
s X&xa @ Xgxp
|Xn+1 | ‘Yn+l | (z,y,a,b)EGr41
1
S Xixa @ Xgxp-
RN
| Xt 1] [Yot1] (2,y,a,b)€G) | \Gn11

Since Yzxg € S;QA and Xgxb € S;;B, we have that

Z Xaxa @ Xgxp € (Sx,4 Omax Syv.p)T,
(w,y7a,b)€G’n+1\Gn+1
and hence
1 1
t(gn) - t(gn+ > Z Xixa © Xgxp = 0

— X Y,
| n+l|| n+1| (x,y,a,b)eG;1+1\Gn+1

in Sx A4 ®max Sy,B. The rest of the conclusions follow from the fact that
(Sx.4 @max Sy.B)T C (Sx.4®cSy)T C (Sx.4 Omin Sy.5) ™.

(ii) Consider " as an element of SY A®S§TB, n € N. By (i), the sequence

(t(gn))neN is monotone decreasing and bounded from below (by the zero element).
The conclusion is now immediate. U
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In view of Lemma set tg = w*-lim,_ o0 t(gn), considered as an element of
S}}*’ A®S§'}TB.

Theorem 6.7. Let (G,)nen be a nested family, where G, is a non-local game over
(Xn7 Yo, An; Bn); n € N. Then

() was(G: pixy) = limp oq [t mas;
(i) wae(Gy pxy) = limysoo [157lc, and
(ii1) was(G: ixv) = limp oo |57 lmin > [[tG]|owin-
Proof. The statements follow from and Theorem O

Example 6.8 (The IID case). Let Xy, Yy, Ag and By be finite sets, and A : Xy x Y x
Ap x By — {0,1} be a rule function of a game over the quadruple (X, Yy, Ao, Bo)-
Write £ = supp(A) and, letting X,, = X, Y,, =Y, A, = Ay and B,, = B, n € N,
consider the game over (X, Yy, Ay, By,), with rule function whose support is the set
En = {((zi)iz1s (a)iz1, (ai)izrs (bi)izy) : (%4, yi, ai, bi) € E for every i € [n]}.
Let X = (Xn)52,, Y = (Yo)o2,, A = (A,)52, and B = (By)>2, be the corre-
sponding inductive sequences, and embed E,, in the first n coordinates, yielding a
set kp, C Qx X Qy x Qg x Qp, n € N. The sequence (k)22 is nested and, if
K = NpeNKn, then

k= {((zi)i21, (Wi)i21, (ai)i2y, (0)i21) © (%0, yis @i, b)) € B or for every i € N}.

The Cantor game ~ encodes the infinite parallel repetition of the game E (that is,
the product of infinitely many copies of F).

Example 6.9 (Markov type). We describe a class of examples of non-IID Cantor
games, and therefore of games, to which Theorems|[6.5)and [6.7] apply. As in Example
let Xy, Yy, Ap and By be finite sets, and A : Xy x Yy x Ag x By — {0,1} be
a rule function of a game over the quadruple (Xo, Yy, Ao, By). Write E = supp(\)
and consider the game over (X,,Y,, A,, By), with rule function whose support is
the set

En = {((zi)izy, (i)iz (@i)izy, (bi)isy) « (26, i, a6, b;) € E or
(xz'+1, Yit1, Ait1, bi+1) < E, for every 1€ [n — 1]}
Let X = (X,)02,, Y = (Y;,)02,, A= (4,)52, and B = (B,)>2; be the correspond-

n=1» n=1»
ing inductive sequences, and embed E, in the first n coordinates, yielding a set
Kn C Qx X Qy x Qg x Qp, n € N. A straightforward inspection shows that the se-
quence (k)02 is nested. The corresponding Cantor game has a set x of admissible

quadruples, given by
k= {((@i)iZ1, Wi)im1, (@i)im1, (03)i21) * (2is Yis @iy b;) € E or
(Tiy1, Yir1, aip1,bip1) € E, for every i € N};

heuristically, this means that the rules of the Cantor game require that, in any two
individual rounds of the underlying finite game, the players win at least once.
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