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Abstract. We study no-signalling correlations over Cantor spaces, placing the
product of infinitely many copies of a finite non-local game in a unified general
setup. We define the subclasses of local, quantum spatial, approximately quan-
tum and quantum commuting Cantor correlations and describe them in terms
of states on tensor products of inductive limits of operator systems. We provide
a correspondence between no-signalling (resp. approximately quantum, quantum
commuting) Cantor correlations and sequences of correlations of the same type
over the projections onto increasing number of finitely many coordinates. We
introduce Cantor games, and associate canonically such a game to a sequence of
finite input/output games, showing that the numerical sequence of the values of
the games in the sequence converges to the corresponding value of the compound
Cantor game.
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1. Introduction

Non-local games have been at the centre of the fruitful interactions between op-
erator algebras and quantum information theory witnessed in the past decade (see
e.g. [9, 22, 23, 26, 28, 29, 31]). These are games, played cooperatively by players
Alice and Bob against a Verifier; in a single round of the game, the Verifier draws
a pair (s, t) of inputs form the cartesian product S × T of two finite sets according
to a certain probability distribution, and sends s (resp. t) to Alice (resp. Bob). The
players respond with a pair (u, v) of outputs from the cartesian product U×V of two
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(perhaps different) finite sets; the tandem Alice-Bob wins the round if the quadruple
(s, t, u, v) satisfies a given predicate, known to the players, and interpreted as the
rules of the game. The players are not allowed to communicate during the course
of the game, but they may agree beforehand on using a specific strategy.

Several types of strategies thus appear, depending on the physical model the play-
ers avail of (that is, the way of forming the joint physical system of their individual
systems), leading to a type hierarchy of no-signalling correlations between them,
expressed through a proper inclusion chain

(1) Cloc ⊆ Cqs ⊆ Cqa ⊆ Cqc ⊆ Cns,

where each of Ct is the set of correlations between Alice and Bob observed during a
repetition of game rounds. In particular, the class Cqc, arising by utilising the com-
muting operator model, strictly contains the the class Cqa obtained by using liminal
finite dimensional entanglement [17]. The inequality Cqa ̸= Cqc answers in the nega-
tive the Tsirelson problem in theoretical physics [36] and, simultaneously, thanks to
[15, 18, 27], the Connes Embedding Problem in operator algebra theory [8]. At the
heart of the equivalence between the aforementioned problems lie characterisations
of the strategies from the classes Cqa and Cqc via states on, respectively, the minimal
and maximal tensor products of two universal C*-algebras, each associated to one
of the players.

The correspondence between strategies and states on the tensor product of these
universal C*-algebras is not bijective; in fact, a given strategy may arise from mul-
tiple such states. This phenomenon lies at the core of quantum self-testing [11, 28],
and leads to the necessity to use more economical, bijective, correspondences be-
tween strategies and states. This was achieved in [22, 32], where characterisations
of strategies were obtained via states on different types of tensor products of uni-
versal operator systems, as opposed to C*-algebras, associated with the players of
the game.

Parallel repetition [7, 34], that is, the formation of the product [24] of a se-
quence of copies of the game, played successively and independently, is at the base
of defining and studying the asymptotic value of the game which, among others,
is instrumental for demonstrating separation between classical and quantum mod-
els in device-independent cryptography. The product of countably many copies of
a game can naturally be viewed as a single game, played over the Cantor spaces
arising from the underlying finite sets of inputs/outputs. In this Cantor setup, the
inputs/outputs are elements of those Cantor spaces; from an operational point of
view, such Cantor games can be thought of as non-local games, in which the play-
ers receive a string of inputs of arbitrary (but equal) length, and are required to
respond with strings of outputs of the same length. In fact, the Cantor setup is sub-
stantially more general, as the induced rules on the successively larger (but finite)
input/output sets do not need to be products of a given common underlying rule,
that is, the successive rounds captured within the compound Cantor game are not
necessarily independent or identical.
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The aim of the present paper is the study of strategies of Cantor games and
the one-shot values (that is, the optimal winning probabilities in a single game
round, according to the strategy type used) thereof. While a general definition
and basic properties of no-signalling correlations over standard measure spaces was
given in [6], the Cantor setup contains the crucial distinctive element of inductivity.
More precisely, a no-signalling strategy Γ of a given Cantor game G corresponds
in a unique way to a sequence (Γn)n∈N, where Γn is a no-signalling strategy of the
restriction of G to its first n coordinates. We show that the passage from Γ to (Γn)n∈N
preserves the quantum commuting and approximately quantum correlation types,
but not necessarily the quantum spatial correlation type. We define a universal
operator system for each of the players in the Cantor setup, and show that the
Cantor correlations of different types arise from states on different kinds of operator
system tensor product [21] of these universal operator systems. As a consequence,
the class of quantum commuting Cantor correlations is closed in the (natural to
employ in our setting [5, 6]) Arveson BW topology [2]. Our main tools are drawn
from operator algebra theory, including ultrapowers (see e.g. [1] and [33, Section
11.5]), operator system theory, including their tensor products [21], co-products
[20] and inductive limits [25], and operator-valued information theory over abstract
alphabets (see [5, 6, 14, 19]).

We apply the Cantor correlation setup to examine the behaviour of the values
of Cantor games. We focus on the case where the question set is endowed with
the uniform probability distribution, which, in the Cantor setting, corresponds to
the product of uniform probability measures, and obtain a continuity result for the
values of inductive sequences of games, inscribing the latter fact in a series of results
about tensor norm expressions of game values (see [9, 10, 29]).

We have postponed some topics, naturally arising from our results, for future
work, such as descriptions of synchronicity (which is examined in the upcoming
article [4]), and consideration of inputs that are not independent and identically
distributed.

In the sequel, we describe the content of the paper in more detail. Section 2
is preliminary and contains the necessary background in operator system theory
and the operator-algebraic approach to no-signalling correlations in the finite case.
After reviewing operator-valued information channels in Section 3, given Cantor
spaces arising from sequences X = (Xn)n∈N and A = (An)n∈N of increasing sets of
underlying finite coordinates, we introduce Alice’s universal operator system SX,A as
a direct limit of an appropriately defined inductive sequence, where the embeddings
take into account the uniform distributions over the question sets Xn, n ∈ N. We
show that the unital completely positive maps from SX,A into the C*-algebra B(H)
of all bounded operators on a Hilbert space H are in a canonical correspondence
with the B(H)-valued information channels indexed by elements of the Cantor space
associated with X.

In Section 4, we define the main Cantor correlation types, namely those of local,
quantum spatial, approximately quantum, quantum commuting and no-signalling
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ones, establish the inclusion chain (1) in the Cantor setup, and show that the Can-
tor no-signalling correlations correspond to states on the maximal tensor product
SX,A ⊗max SY,B (here SX,A and SY,B are the Alice and Bob universal operator sys-
tems, respectively). En route, we provide a general result about diagonals of succes-
sive inductive limits in the operator system category. We establish the no-signalling
type preservation for the operation Γ → (Γn)n∈N.

The same property for the quantum commuting correlation type is provided in
Section 5 and relies on an ultraproduct construction. It leads to a characterisation
of quantum commuting Cantor correlations via states on the commuting tensor
product SX,A ⊗c SY,B. An analogous characterisation is shown to hold for the
approximately quantum correlations, this time via states on the minimal tensor
product SX,A⊗minSY,B. While the classes of quantum commuting and, by definition,
approximately quantum, Cantor correlations are closed in Arveson’s BW topology,
we show that this is not the case for the quantum spatial correlation type.

Section 6 is devoted to Cantor games and their values. We show that a finite
game has the same value (of any type t among the local, quantum spatial, quantum
commuting or no-signalling ones) as the canonical Cantor game arising from it after
embedding the rules in the first coordinate of the corresponding Cantor spaces. By
projecting on the first n coordinates, every Cantor game G gives rise to a decreasing
sequence (Gn)n∈N of finite games. We show that the value ωt(G) of G is the limit
of the (decreasing) sequence (ωt(Gn))n∈N of finite game values. As a consequence,
ωt(G) can be obtained as a limit of a (decreasing) sequence of norms of increasingly
larger game tensors, canonically associated with G, in the maximal, commuting and
minimal tensor product of the corresponding universal operator systems. Finally,
we discuss a class of examples to which our results apply.

Acknowledgements. The second named author was supported by the Euro-
pean Union – Next Generation EU (Implementation Body: HFRI. Project name:
Noncommutative Analysis: Operator Systems and Nonlocality. HFRI Project Num-
ber: 015825) The third named author was supported by NSF grants 2115071 and
2154459. The fourth named author was supported by the Swedish Research Council
project grant 2023-04555 and GS Magnusons Fond MF2022-0006. The authors are
grateful to BIRS for funding and hospitality during a “Research in Teams” stay in
September 2025, during which this work was completed.

2. Finite no-signalling correlations

In this section, we provide the necessary background on operator systems, com-
pletely positive maps, no-signalling correlations over finite sets, and their operator
systems characterisation, for later reference. We refer the reader to [30] for further
background and details.

Given a vector *-space V over the complex field, let Mn(V ) be the vector *-space
of all n by n matrices with entries in V , and Mn(V )h be the real vector space of all
self-adjoint elements ofMn(V ). An operator system is a tuple (V, (Cn)n∈N, e), where
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V is a vector *-space, Cn is a proper cone inMn(V )h, the family (Cn)n∈N is consistent
in that α∗Cnα ⊆ Cm for all scalar n by m matrices α, and the element e ∈ C1 is
an Archimedean matrix order unit for (Cn)n∈N. We usually write Mn(V )+ = Cn.
Given operator systems (V, (Cn)n∈N, e) and (V ′, (C ′

n)n∈N, e
′) and a linear map ϕ, we

let ϕ(n) :Mn(V ) →Mn(V
′) be the (linear) map, given by ϕ(n)((xi,j)i,j) = (ϕ(xi,j))i,j .

The map ϕ is called positive if ϕ(C1) ⊆ C ′
1, and completely positive if ϕ(n) is positive

for every n ∈ N; it is called a complete order embedding if it is injective and
ϕ(n)(Mn(V )) ∩Mn(V

′)+ = ϕ(n)(Mn(V )+), and a complete order isomorphism if it
is a surjective complete order embedding.

If H is a Hilbert space, we denote by B(H) the space of all bounded linear
operators acting on H and by IH the identity operator on H. All Hilbert spaces
we use will be assumed separable. After letting B(H)+ denote the cone of all
positive operators in B(H) and making the identification Mn(B(H)) = B(Hn), we
have that every unital selfadjoint subspace S ⊆ B(H) is an operator system with
cones Mn(S)+ :=Mn(S) ∩Mn(B(H))+; we call operator systems of the latter type
concrete. By virtue of the Choi-Effros Theorem (see e.g. [30, Theorem 13.1]), every
operator system is completely order isomorphic to a concrete operator system. We
note that every operator system is an operator space in a canonical way, and write
CB(S, T ) (resp. UCP(S, T )) for the operator space (resp. convex set) of completely
bounded (resp. unital completely positive) maps from S into T .

We recall the definitions of the operator system tensor products that will be used
subsequently, and refer to [21] for further details. Given operator systems S ⊆ B(H)
and T ⊆ B(K) (where H and K are Hilbert spaces), we write S ⊗ T for their
algebraic tensor product; all three tensor products that we define have the latter as
their underlying vector *-space. The minimal tensor product S ⊗min T is equipped
with the matricial cones that make the inclusion S⊗T ⊆ B(H⊗K) a complete order
embedding (we denote by H ⊗K the Hilbertian tensor product). The commuting
tensor product S ⊗c T has matricial cones defined by letting w ∈ Mn(S ⊗c T )+ if

(ϕ · ψ)(n)(w) ∈ B(L)+ whenever ϕ : S → B(L) and ψ : T → B(L) are completely
positive maps with commuting ranges, L is a Hilbert space and ϕ ·ψ : S⊗T → B(L)
is the linear map, given by (ϕ · ψ)(u⊗ v) = ϕ(u)ψ(v) (we say that ϕ and ψ form a
commuting pair). Finally, the maximal tensor product S ⊗max T has matricial cone
structure, generated by the elementary tensors of the form S⊗T , where S ∈Mn(S)+
and T ∈Mm(T )+.

For d ∈ N, let [d] = {1, . . . , d}. Given operator systems Si, i ∈ [d], their coproduct
[16, 20] is a pair of the form

(
S1 ⊕1 · · · ⊕1 Sd, (ιi)di=1

)
, where S1 ⊕1 · · · ⊕1 Sd is an

operator system, and ιi : Si → S1⊕1 · · ·⊕1 Sd is a unital complete order embedding,
such that if R is an operator system and ϕi : Si → R is a unital completely
positive map, i ∈ [d], then there exists a unique unital completely positive map

ϕ : S1 ⊕1 · · · ⊕1 Sd → R, such that ϕ ◦ ιi = ϕi, i ∈ [d]. We will write ⊕̇d
i=1Si =

S1⊕1· · ·⊕1Sd. Given, in addition, operator systems Ti, i ∈ [d], and unital completely
positive maps ψi : Si → Ti, i ∈ [d], there exists a unique unital completely positive
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map ⊕̇d
i=1ψi : ⊕̇

d
i=1Si → ⊕̇d

i=1Ti, such that
(
⊕̇d
i=1ψi

)
(ιi(u)) = (ιi ◦ ψi)(u), u ∈ Si,

i ∈ [d]. Indeed, the map ιi ◦ ψi : Si → ⊕̇d
j=1Tj is unital and completely positive,

i ∈ [d], and the existence of ⊕̇d
i=1ψi follows from the universal property of the

coproduct of the family {Si}di=1.
We will require some preliminaries on inductive limits of operator systems, which

we now include; we refer the reader to [25] for further details. Let

(2) S1
ϕ1−→ S2

ϕ2−→ S3
ϕ3−→ · · ·

be an inductive system in the operator system category; this means that Sk is an
operator system and ϕk is a unital completely positive map for every k ∈ N. The
inductive limit of (2) is a pair (S, (ϕk,∞)k∈N), where S is an operator system and
ϕk,∞ : Sk → S is a unital completely positive map, k ∈ N, with the property that
if R is an operator system and ρk : Sk → R, k ∈ N, are unital completely positive
maps, such that ρk+1 ◦ ϕk = ρk, k ∈ N, then there exists a unique unital completely
positive map ρ : S → R such that ρ ◦ ϕk,∞ = ρk, k ∈ N. Such an operator system
S is unique up to a complete order isomorphism; we write S = lim−→Sk.

Given a finite set A, we let MA be the algebra of all |A| × |A| matrices with
complex entries, and DA be its subalgebra of all diagonal matrices. Given another
finite set X, we let AX,A = DA ∗ · · · ∗ DA︸ ︷︷ ︸

|X| times

be the free product, amalgamated over

the units, and

(3) SX,A = DA ⊕1 · · · ⊕1 DA︸ ︷︷ ︸
|X| times

.

We note the unital completely order isomorphic inclusion SX,A ⊆ AX,A [22, 32]. We
write ex,a, x ∈ X, a ∈ A, for the canonical generators of SX,A, that is, ex,a = ιx(δa),
where ιx : DA → SX,A is the inclusion map of the x-th copy of DA, and (δa)a∈A is
the canonical basis of DA.

Given finite sets X, Y , A and B, a no-signalling correlation over the quadruple
(X,Y,A,B) is a family {(p(a, b|x, y))a,b : x ∈ X, y ∈ Y }, where p(·, ·|x, y) is a
probability distribution over A×B for every (x, y) ∈ X × Y ,∑

b∈B
p(a, b|x, y) =

∑
b∈B

p(a, b|x, y′), x ∈ X, y, y′ ∈ Y, a ∈ A,

and ∑
a∈A

p(a, b|x, y) =
∑
a∈A

p(a, b|x′, y), x, x′ ∈ X, y ∈ Y, b ∈ B.

Recall that a positive operator-valued measure (POVM) is a (finite) family (Ei)
d
i=1 of

positive operators acting on a Hilbert space, such that
∑d

i=1Ei = I. A no-signalling
correlation p over (X,Y,A,B) is called quantum commuting if it has the form

(4) p (a, b|x, y) = ⟨Px,aQy,bξ, ξ⟩,
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where ξ is a unit vector in a Hilbert space H, and (Px,a)a∈A and (Qy,b)b∈B, x ∈ X,
y ∈ Y , are POVM’s on H such that Px,aQy,b = Qy,bPx,a for all x ∈ X, y ∈ Y , a ∈ A
and b ∈ B. The correlation p is called quantum spatial if the Hilbert space in the
representation (4) can be chosen of the form H = HA⊗HB for some Hilbert spaces
HA andHB, and Px,a (resp. Qy,b) has the form Px,a = P ′

x,a⊗IHB
(resp. Qy,b = IHA

⊗
Q′
y,b). We further say that p is an approximately quantum correlation if p is the limit

(in the vector space RX×RY ×RA×RB) of quantum spatial correlations. We denote
by Cns(X,Y,A,B) (resp. Cqc(X,Y,A,B), Cqa(X,Y,A,B), Cqs(X,Y,A,B)) the set of
all no-signalling (resp. quantum commuting, approximately quantum, quantum
spatial) correlations over the quadruple (X,Y,A,B). We refer the reader to [22] for
further details regarding no-signalling correlations, and record here characterisations
of correlation types in terms of operator system tensor products that will be needed
in the sequel ([22, Corollary 3.2] and [22, Corollary 3.3]).

Theorem 2.1. Let X, Y , A and B be finite sets. The no-signalling (resp. quantum
commuting, approximately quantum) correlations p = {(p(a, b|x, y))a,b : x ∈ X, y ∈
Y } are in bijective correspondence to states s : SX,A ⊗max SY,B → C (resp. s :
SX,A ⊗c SY,B → C, s : SX,A ⊗min SY,B → C) via the assignment

p(a, b|x, y) = s(ex,a ⊗ ey,b), x ∈ X, y ∈ Y, a ∈ A, b ∈ B.

3. The Cantor operator system

In this section, we review the definitions of operator-valued information channels
[6], specialising to the context of Cantor spaces, introduce a class of operator systems
that will be used in later sections, and describe their universal property.

3.1. Operator-valued channels. Let S be a second countable compact Hausdorff
space. We let BS be the Borel σ-algebra of S, C(S) be the C*-algebra of all
continuous complex-valued functions on S, and M(S) be the space of all Radon
measures on S. For a (separable) Hilbert space H, a quantum probability measure
(QPM) over S with values in B(H) is a map E : BS → B(H)+ such that E(∅) = 0,
E(S) = I, and E (∪∞

i=1αi) =
∑∞

i=1E(αi) in the strong operator topology whenever
(αi)i∈N is a sequence of mutually disjoint elements of BS.

Let X be a(nother) second countable compact Hausdorff space, equipped with a
probability measure µ ∈ M(X). An operator-valued information channel from X
to S with values in B(H) is a family E = E(·|x)x∈X of QPM’s over S such that,
for every α ∈ BS, the function x 7→ E(α|x) is weakly µ-measurable, that is, the
functions Eξ,η(α|·) := ⟨E(α|·)ξ, η⟩ are measurable for all ξ, η ∈ H [6]. We write
C(S,X;H) for the set of all operator-valued information channels from X to S with
values in B(H), and view its elements as measurable versions of families of POVM’s
in that the latter are operator-valued information channels over a pair of finite sets.
We say that the channels E,E′ ∈ C(S,X;H) are µ-equivalent (and write E ∼µ E

′)
if

E(α|x) = E′(α|x) µ-almost everywhere,
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for every α ∈ BS. We write Cµ(S,X;H) for the set of all ∼µ-equivalent classes of
C(S,X;H). Elements of Cµ(S,X;H) will be called operator-valued µ-information
channels from X to S with values in B(H) (see [5] and note that a slightly different
terminology was used therein); without risk of confusion, we will use the same sym-
bol for an equivalence class and for a representative thereof. Let L∞

σ (X, µ,B(H))
be the von Neumman algebra of all equivalent classes of weak* measurable essen-
tially bounded functions F : X → B(H), and note the canonical identification
L∞(X, µ)⊗̄B(H) = L∞

σ (X, µ,B(H)). Here, and below, we use ⊗̄ to denote the von
Neumann algebra tensor product. For future reference, we recall the correspondence
between µ-information channels with values in B(H) and unital completely positive
maps from C(S) into L∞

σ (X, µ,B(H)) established in [5, Theorem 3.11].

Theorem 3.1. If E ∈ Cµ(S,X;H) then there exists a unital completely positive
map ΦE : C(S) → L∞

σ (X, µ,B(H)) such that

⟨ΦE(f)(x)ξ, η⟩ =
∫
S
f(a)dEξ,η(a|x) µ-a.e., f ∈ C(S), ξ, η ∈ H.(5)

Conversely, if Φ : C(S) → L∞
σ (X, µ,B(H)) is a unital completely positive map then

there exists a (unique up to ∼µ-equivalence) channel E ∈ Cµ(S,X;H) such that
Φ = ΦE.

Recall that, if X and Y are Banach spaces, the BW topology [2] on the bounded
subsets of the space B(X ,Y∗) of all bounded liner maps from X into Y∗ is de-
fined as the restriction of the point-weak* topology. The set Cµ(S,X;H) will be
hereafter equipped with the topology (which we continue to refer to as the BW
topology) according to which a net (Eλ)λ∈Λ ⊆ Cµ(S,X;H) converges to an element
E ∈ Cµ(S,X;H) if ΦEλ converges to ΦE in the BW topology (see [5]). We note
that, by [5, Theorem 3.14], the space (Cµ(S,X;H),BW) is compact. Since the
operator projective tensor product C(S)⊗̂L1(X, µ)⊗̂T (H) is separable, the space
(Cµ(S,X;H),BW) is metrisable (see e.g. [12, Theorem V.5.1]).

3.2. Inductive channel families. If X1 and X2 are finite sets, we write X1|X2

if there exists d ∈ N such that X2 = X1 × [d]. Assuming that X2 = X1 × [d], let
ιX1,X2 : DX1 → DX2 be the unital *-monomorphism, given by ιX1,X2(T ) = T ⊗ Id,
after the canonical identification DX2 = DX1 ⊗D[d].

A family X = (Xn)n∈N of finite sets will be called inductive if Xn|Xn+1 for every
n ∈ N. The inductive limit of the sequence

DX1

ιX1,X2−→ DX2

ιX2,X3−→ · · ·
ιXn−1,Xn−→ DXn

ιXn,Xn+1−→ · · ·

in the category of C*-algebras will be denoted by DX . Assuming that Xn+1 =
Xn× [dXn ], where d

X
n ∈ N, n ∈ N, we note that DX is *-isomorphic to the C*-algebra

C(ΩX) of all continuous functions on the Cantor space ΩX =
∏∞
n=0

[
dXn

]
(where

we have set dX0 = |X1|); equivalently, DX = ⊗∞
n=0D[dXn ] as an infinite C*-algebraic

tensor product.



CANTOR CORRELATIONS I. OPERATOR SYSTEMS AND CANTOR GAMES 9

All tracial algebras will be equipped with normalised traces, and dualities will
always be with respect to the latter. For a finite set X0, the (normalised) trace on
DX0 will be denoted by trX0 . We note that, if X1|X2 then the embedding ιX1,X2

is trace-preserving. For an inductive family X = (Xn)n∈N, we set τX = ⊗∞
n=0tr[dXn ].

We note that τX |DXn
= trXn , n ∈ N. In the sequel, we write L1(ΩX) for L

1(ΩX , µX)

and µXn for the uniform probability measure on Xn, n ∈ N. We note that L1(ΩX)
coincides with the L1-space L1(DX) of the C*-algebra DX with respect to (the trace)
τX .

The unital (completely) positive trace-preserving maps ιXn,Xn+1 : DXn → DXn+1

give rise to the canonical conditional expectations EXn+1,Xn : DXn+1 → DXn ; we

note that EXn+1,Xn = idXn ⊗ trdn . As DX ⊆ L∞(ΩX) ⊆ L1(ΩX), the canonical

map ι
(n)
X : DXn → DX induces a weak* continuous, unital *-monomorphism ι

(n)
X,∞ :

DXn → L∞(ΩX), as well as a unital isometry ι
(n)
X,1 : DXn → L1(ΩX) with respect to

the trace norm. The map ι
(n)
X,∞ admits a predual map EXn : L1(ΩX) → DXn , which is

faithful, trace-preserving, and satisfies the identity EXn ◦ ι(n)X,1 = idDXn
. Thus, when

identifying DXn as a subspace of L1(ΩX) via ι
(n)
X,1, the map EXn is the canonical

conditional expectation. At the von Neumann algebra level, there exists a faithful,
trace-preserving, weak* continuous conditional expectation E∞

Xn
: L∞(ΩX) → DXn ,

which is the dual of the isometry ι
(n)
X,1. If H is a Hilbert space, we further write

Ẽ∞
Xn

:= E∞
Xn

⊗ idB(H) for the conditional expectation

Ẽ∞
Xn

: L∞(ΩX)⊗̄B(H) → DXn ⊗ B(H),

Ẽ∞
Xn+1,Xn

:= E∞
Xn+1,Xn

⊗ idB(H) for the conditional expectation

Ẽ∞
Xn+1,Xn

: DXn+1 ⊗ B(H) → DXn ⊗ B(H), n ∈ N,

and ι̃
(n)
X,∞ : DXn ⊗B(H) → L∞(ΩX)⊗̄B(H) and ι̃Xn,Xn+1 : DXn ⊗B(H) → DXn+1 ⊗

B(H) for the maps, given by ι̃
(n)
X,∞ = ι

(n)
X,∞⊗idB(H), and ι̃Xn,Xn+1 = ιXn,Xn+1⊗idB(H),

n ∈ N. We note that the superscript/subscript∞ is used to indicate that the domain
or the range of the corresponding map is an L∞-space.

We say that a family (Φn)n∈N, where Φn : DAn → DXn ⊗ B(H) is a unital
completely positive map, n ∈ N, is inductive if

(6) Φn = ẼXn+1,Xn ◦ Φn+1 ◦ ιAn,An+1 , n ∈ N,
that is, if the diagram

DAn DAn+1

DXn ⊗ B(H) DXn+1 ⊗ B(H)

Φn

ιAn,An+1

Φn+1

ẼXn+1,Xn
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is commutative for each n ∈ N.

Theorem 3.2. Let H be a Hilbert space, and X = (Xn)n∈N and A = (An)n∈N be
inductive families of sets.

(i) If Φ : C(ΩA) → L∞(ΩX)⊗̄B(H) is a unital completely positive map and

(7) Φn := Ẽ∞
Xn

◦ Φ ◦ ι(n)A , n ∈ N,
then the family (Φn)n∈N is inductive.

(ii) If Φn : DAn → DXn ⊗ B(H) is a unital completely positive map, n ∈ N,
such that the family (Φn)n∈N is inductive then there exists a unique unital
completely positive map Φ : C(ΩA) → L∞(ΩX)⊗̄B(H) satisfying (7).

Proof. (i) Since

Ẽ∞
Xn

= ẼXn+1,Xn ◦ Ẽ∞
Xn+1

and ι
(n)
A = ι

(n+1)
A ◦ ιAn,An+1 ,

condition (6) is implied by (7).
(ii) For each n ∈ N, let Ψn : C(ΩA) → L∞(ΩX)⊗̄B(H) be defined by setting Ψn :=

ι̃
(n)
X,∞ ◦ Φn ◦ E∞

An
|C(ΩA); note that the maps Ψn are unital and completely positive.

The sequence (Ψn)n∈N has a BW cluster point Φ : C(ΩA) → L∞(ΩX)⊗̄B(H), whose
existence follows from the compactness of UCP(C(ΩA), L

∞(ΩX)⊗̄B(H)) in the BW
topology ([5, Theorem 3.14]). Next we show that (7) is satisfied for the map Φ.
Consider k > n and note that

ι
(n)
A = ι

(k)
A ◦ ιAn,Ak

, and Ẽ∞
Xn

= ẼXk,Xn
◦ Ẽ∞

Xk

so that
Ẽ∞
Xn

◦ ι̃(k)X,∞ = ẼXk,Xn and E∞
Ak

◦ ι(n)A,∞ = ιAn,Ak

(here we have set ẼXk,Xn = EXk,Xn ⊗ idB(H)). Therefore, for k > n, we have

Ẽ∞
Xn

◦Ψk ◦ ι
(n)
A,∞ = Ẽ∞

Xn
◦ ι̃(k)X,∞ ◦Φk ◦E∞

Ak
◦ ι(n)A,∞ = ẼXk,Xn

◦Φk ◦ ιAn,Ak
= Φn,

where the last equation follows from the inductivity relations (6). Letting k → ∞,
we obtain (7).

We claim that the unital completely positive map Φ satisfying (7) is unique.

Indeed, if Φ′ is another such map satisfying (7), then, as Ẽ∞
Xm

◦Φ(S) = Ẽ∞
Xm

◦Φ′(S),

for every S ∈ ι
(n)
A (DAn),m > n, we get, using density arguments, that Φ(S) = Φ′(S),

giving the uniqueness. □

3.3. Definition and universal property. We next identify a canonical operator
system, associated with an inductive family of sets, which will serve as universal
encoding object for each of the players of a non-local game over Cantor spaces.
For d ∈ N, recall the operator system S[d],An

defined, in (3), as a coproduct of d
copies of DAn . Denoting by ιk the embedding of DAn in the k-th term of S[d],An

, let
βd,An : DAn → S[d],An

be the unital completely positive map, given by

βd,An(u) =
1

d
(ι1(u) + · · ·+ ιd(u)) , u ∈ DAn .
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We have that the maps

⊕̇|Xn|
i=1 ιAn,An+1 : SXn,An → SXn,An+1

and

⊕̇|Xn|
i=1 βdXn ,An+1

: SXn,An+1 → SXn+1,An+1

are unital and completely positive; thus, the composition

γXn,An =
(
⊕̇|Xn|
i=1 βdXn ,An+1

)
◦
(
⊕̇|Xn|
i=1 ιAn,An+1

)
is a unital completely positive map from SXn,An to SXn+1,An+1 . We thus obtain an
inductive sequence

(8) SX1,A1

γX1,A1−→ SX2,A2

γX2,A2−→ SX3,A3

γX3,A3−→ · · ·
in the operator system category. We let SX,A = lim−→SXn,An be the corresponding

inductive limit. We let γ
(n)
X,A : SXn,An → SX,A be the canonical unital completely

positive map, arising from the inductive sequence (8), n ∈ N.

Remark 3.3. Let (Xn)n∈N and (An)n∈N be inductive families of sets. Using known
results about inductive limits and coproducts in the operator system category,
namely [25, Proposition 4.13] and [20, Section 8], one can show that the maps γXn,An

and γ
(n)
X,A are unital complete order isomorphisms; thus, SXn,An can be canonically

identified with an operator subsystem of SX,A, n ∈ N. Since this fact will not be
needed in the sequel, we do not include its proof.

Theorem 3.4. Let H be a Hilbert space, and (Xn)n∈N and (An)n∈N be inductive
families of sets. The unital completely positive maps Γ : SX,A → B(H) are in
a canonical bijective correspondence with the unital completely positive maps Φ :
C(ΩA) → L∞(ΩX)⊗̄B(H).

Proof. For k ∈ N and ω ∈ DXk
, let Lω : DXk

⊗ B(H) → B(H) be the slice map,
given by

Lω(S ⊗ T ) = ⟨ω, S⟩T, S ∈ DXk
, T ∈ B(H)

(we recall that the duality is with respect to normalised traces).
By the universal property of the inductive limit, the unital completely positive

maps Γ : SX,A → B(H) are in a canonical correspondence with the sequences
(Γn)n∈N of unital completely positive maps, where Γn : SXn,An → B(H), n ∈ N,
satisfy the conditions

(9) Γn = Γn+1 ◦ γXn,An , n ∈ N.

On the other hand, the unital completely positive maps Γn : SXn,An → B(H) are
in a canonical correspondence with unital completely positive maps Φn : DAn →
DXn ⊗ B(H) via the assignment Φn(δa) =

∑
x∈Xn

δx ⊗ Γn(ex,a). We note that the
latter equality is equivalent to the identities

(10) |Xn|Lδx(Φn(δa)) = Γn(ex,a), x ∈ Xn, a ∈ An.



12 G. BAZIOTIS, A. CHATZINIKOLAOU, I. G. TODOROV, AND L. TUROWSKA

Finally, observe that condition (9) is equivalent to condition (6) being satisfied for
the family (Φn)n∈N, as follows from the fact that, if x ∈ Xn and a ∈ An, then

Γn+1(γXn,An(ex,a)) =
1

dXn

dXn∑
µn=1

dAn∑
λn=1

Γn+1(e(x,µn),(a,λn))

= |Xn|
dXn∑
µn=1

dAn∑
λn=1

Lδ(x,µn)
(Φn+1(δ(a,λn)))

= |Xn|
dXn∑
µn=1

Lδ(x,µn)
((Φn+1 ◦ ιAn,An+1)(δa))

= |Xn|LιXn,Xn+1
(δx)((Φn+1 ◦ ιAn,An+1)(δa))

= |Xn|Lδx((ẼXn+1,Xn ◦Φn+1◦ιAn,An+1)(δa)).

The statement now follows from Theorem 3.2. □

Remark 3.5. We point out for further use that the statement of Theorem 3.4 is
true and, up to our knowledge, part of folklore in the case where X and A are finite
sets instead of inductive families; a proof readily follows from that of Theorem 3.4
with the straightforward modifications.

Remark 3.6. The statement of Theorem 3.4 remains true when the map Γ is a (not
necessarily unital) completely positive map; this follows by inspection of the proof,
together with the fact that the operator system inductive limit satisfies a universal
property for inductive families of completely positive maps that are not necessarily
unital. To show the latter fact, suppose that (2) is an inductive sequence in the
operator system category, R is an operator system, and ρk : Sk → R are completely
positive maps, such that ρk+1 ◦ ϕk = ρk, k ∈ N. Since the map ϕk in (2) is unital,
we have that there exists w ∈ R such that ρk(1Sk

) = w for every k ∈ N; clearly,
0 ≤ w ≤ 1R. Let (sk)k∈N be an inductive sequence of states, where sk : Sk → C,
and s : lim−→Sk → C be the associated state on the inductive limit operator system.

Let αk : Sk → R be the map, given by αk(u) = sk(u)(1 − w), and ρ̃k = ρk + αk;
thus, ρ̃k : Sk → R is a unital completely positive map, k ∈ N. Moreover,

(ρ̃k+1 ◦ ϕk)(u) = ρk+1(ϕk(u)) + s(u)(1− w) = ρ̃k(u), u ∈ Sk.

By the universal property of the inductive limit (for unital completely positive
maps), there exists a unital completely positive map ρ̃ : lim−→Sk → R such that
ρ̃ ◦ ϕk,∞ = ρ̃k for every k ∈ N.

Let α : lim−→Sk → R be the map, given by α(u) = s(u)(1− w). We have that

ρ̃(n)(ϕ
(n)
k,∞(u))− α(n)(ϕ

(n)
k,∞(u)) ∈Mn(R)+, u ∈Mn(Sk)+.
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By density, ρ := ρ̃− α is completely positive. Finally, if k ∈ N then

(ρ ◦ ϕk,∞)(u) = ρ̃(ϕk,∞(u))− α(ϕk,∞(u)) = ρ̃k(u)− αk(u) = ρk(u).

Remark 3.7. Let (Xn)n∈N and (An)n∈N be inductive families of sets. Suppose that
x ∈ Xn and a ∈ An for some n ∈ N. Equation (10) can be rewritten as

|Xn|⟨δx ⊗ ω,Φn(δa)⟩ = ⟨Γn(ex,a), ω⟩, ω ∈ B(H)∗,

that is,

(11)

〈
1

τX(ι
(n)
X,1(δx))

ι
(n)
X,1(δx)⊗ ω,Φ(ι

(n)
A,∞(δa))

〉
= ⟨Γ(γ(n)X,A(ex,a)), ω⟩

for every ω ∈ B(H)∗. By identity (11) and uniform boundedness, the map Φ → Γ is

BW continuous. Since the linear span of the elements of the form 1

τX(ι
(n)
X,1(δx))

ι
(n)
X,1(δx)⊗

ω is dense in L1(ΩX)⊗̂B(H)∗, we have, in fact, that the correspondence Φ ↔ Γ is a
BW-BW homeomorphism.

We note that, as the predual of L∞(ΩX), the space L1(ΩX) admits a canonical
operator space structure, and that, if C(ΩA)⊗̂L1(ΩX) denotes the operator space
projective tensor product, up to a canonical complete isometry we have that(

C(ΩA)⊗̂L1(ΩX)
)∗

= CB(C(ΩA), L
∞(ΩX))

(see [13, Proposition 7.1.2]). By the previous paragraph, there exists a canonical
weak*-homeomorphic order isomorphism between the positive cones of S∗

X,A and

UCP(C(ΩA), L
∞(ΩX)). Passing to preduals, we obtain a order isomorphism be-

tween S+
X,A and a dense subspace of the predual cone

(
C(ΩA)⊗̂L1(ΩX)

)+
of the

cone CP(C(ΩA), L
∞(ΩX)). A straightforward argument shows that the latter cor-

respondence can be extended to the whole of SX,A. Through the latter identification,

for x ∈ Xn and a ∈ An, the element γ
(n)
X,A(ex,a) corresponds to the elementary tensor

χx̃×ã := χx̃ ⊗ χã, where

(12) x̃ =

{
xx′ : x′ ∈

∞∏
i=n+1

[dXi ]

}
and ã =

{
aa′ : a′ ∈

∞∏
i=n+1

[dAi ]

}
.

4. Cantor no-signalling correlations

In this section we define no-signalling correlations over Cantor spaces and provide
characterisations thereof in terms of states on the maximal operator system tensor
product of operator systems from the class introduced in Section 3. In view of the
nuclearity of abelian C*-algebras, in the sequel we will use the symbol ⊗ for their
C*-algebraic tensor product.

Assume that S, T, U and V are finite sets. A no-signalling correlation p =
{(p(u, v|s, t))u,v : s ∈ S, t ∈ T} (see Section 2) gives rise to the unital (completely)
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positive map Γp : DU ⊗DV → DS ⊗DT , given by

Γp(δu ⊗ δv) =
∑
s∈S

∑
t∈T

p(u, v|s, t)δs ⊗ δt, u ∈ U, v ∈ V ;

it is straightforward to verify that, moreover,

(13) Γp(DU ⊗ 1DV
) ⊆ DS ⊗ 1DT

and Γp(1DU
⊗DV ) ⊆ 1DS

⊗DT .

Conversely, every unital (completely) positive map Γ : DU ⊗DV → DS⊗DT satisfy-
ing the conditions (13) is easily seen to have the form Γ = Γp for some no-signalling
correlation p. Therefore, by abuse of terminology, we use the term “no-signalling
correlation” in reference to unital (completely) positive maps satisfying (13). Fix-
ing inductive families of finite sets X = (Xn)n∈N, Y = (Yn)n∈N, A = (An)n∈N and
B = (Bn)n∈N, these observations justify the following definition.

Definition 4.1. A unital completely positive map

Γ : C(ΩA)⊗ C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY )

will be called a no-signalling correlation over the quadruple (X,Y,A,B) if

Γ (C(ΩA)⊗ 1B) ⊆ L∞(ΩX)⊗ 1Y

and

Γ (1A ⊗ C(ΩB)) ⊆ 1X ⊗ L∞(ΩY ).

We denote by Cns(X,Y,A,B) the set of all no-signalling correlations over the
quadruple (X,Y,A,B), and write Cns in case no confusion may arise.

Given a unital completely positive map

Γ : C(ΩA)⊗ C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY ),

define (unital completely positive) maps

Γn : DAn ⊗DBn → DXn ⊗DYn , n ∈ N,

by setting

(14) Γn := (E∞
Xn

⊗ E∞
Yn) ◦ Γ ◦ (ι(n)A ⊗ ι

(n)
B );

by Theorem 3.2, the family (Γn)n∈N is inductive, that is,

Γn = (EXn+1,Xn ⊗ EYn+1,Yn) ◦ Γn+1 ◦ (ιAn,An+1 ⊗ ιBn,Bn+1), n ∈ N;(15)

we say that the family (Γn)n∈N is associated with the map Γ.

Proposition 4.2. Let Γ : C(ΩA) ⊗ C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY ) be a unital com-
pletely positive map and (Γn)n∈N be the inductive family associated with Γ. The
following are equivalent:

(i) Γ ∈ Cns(X,Y,A,B);
(ii) Γn ∈ Cns(Xn, Yn, An, Bn) for every n ∈ N.
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Proof. (i) ⇒ (ii) Let n ∈ N and f ∈ DAn . By symmetry, it suffices to show that

Γn(f ⊗ 1Bn) ∈ DXn ⊗ 1Bn . Since Γ is no-signalling, Γ(ι
(n)
A (f)⊗ 1B) ∈ L∞(ΩX)⊗ 1B.

The claim follows from the fact that (EXn ⊗ EYn)(L∞(ΩX)⊗ 1B) = DXn ⊗ 1Bn .
(ii) ⇒ (i) Assume that Γn is no-signalling for every n ∈ N. It suffices to show that

Γ(ι(n)(fn)⊗ 1B) ∈ L∞(ΩX)⊗ 1Y for every fn ∈ DAn and n ∈ N. Indeed, if we then

pick f ∈ C(ΩA) and set fn := EAn(f) ∈ DAn , we have that f = limn→∞ ι
(n)
A (fn) in

norm and, as Γ is continuous,

Γ(f ⊗ 1B) = lim
n→∞

Γ(ι(n)(fn)⊗ 1B) ∈ L∞(ΩX)⊗ 1Y .

Let f ∈ DAn for some n ∈ N. Let k ≥ n, and note that(
(E∞
Xk

⊗ E∞
Yk
) ◦ Γ

)
(ι

(n)
A (f)⊗ 1B)

= (E∞
Xk

⊗ E∞
Yk
) ◦ Γ ◦ (ι(k)A ⊗ ι

(k)
B )(ιAn,Ak

(f)⊗ 1Bk
) = Γk(ιAn,Ak

(f)⊗ 1Bk
).

Thus, (E∞
Xk

⊗E∞
Yk
)◦Γ(ι(n)A (f)⊗1B) ∈ DXk

⊗1Yk for all k ≥ n since Γk is no-signalling
for all k ∈ N. Hence,

(ι
(k)
X ⊗ ι

(k)
Y ) ◦ (E∞

Xk
⊗ E∞

Yk
) ◦ Γ(ι(n)A (f)⊗ 1B) ∈ L∞(ΩX)⊗ 1Y

for all k ≥ n and if we take the limits in norm as k → ∞, we conclude that

Γ(ι
(n)
A (f)⊗ 1B) ∈ L∞(ΩX)⊗ 1Y ,

as desired. The result follows by symmetry. □

Given a no-signalling correlation Γ over the quadruple (X,Y,A,B), we write
pΓ,n for the family of conditional probability distributions on An × Bn, indexed by
Xn × Yn, corresponding to Γn by (14), that is,

pΓ,n(a, b|x, y) = |Xn||Yn| ⟨δx ⊗ δy,Γn(δa ⊗ δb)⟩ ,

where x ∈ Xn, y ∈ Yn, a ∈ An, b ∈ Bn and, as before, the pairing is given
by the normalised traces (that is, ⟨δ1 ⊗ δ2, ω1 ⊗ ω2⟩ = trXn(δ1ω1) trYn(δ2ω2)). By
Proposition 4.2, the correlations pΓ,n are no-signalling. By Theorem 2.1, there exist
states sΓn : SXn,An ⊗max SYn,Bn → C, such that

sΓn(ex,a ⊗ ey,b) = |Xn||Yn|⟨δx ⊗ δy,Γn(δa ⊗ δb)⟩

for x ∈ Xn, y ∈ Yn, a ∈ An and b ∈ Bn. The proof of the next lemma is similar to
that of Theorem 3.4 and is omitted.

Lemma 4.3. Let (Xn)n∈N, (Yn)n∈N, (An)n∈N and (Bn)n∈N be inductive families of
sets, and Γn : DAn ⊗DBn → DXn ⊗DYn be a no-signalling correlation, n ∈ N. The
family (Γn)n∈N is inductive if and only if

sΓn+1 ◦ (γXn,An ⊗ γYn,Bn) = sΓn , n ∈ N.
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In the proof of the next theorem, we will need an auxiliary fact about operator
system inductive limits. Let τ be an operator system tensor product (see [21]). We
will say that τ commutes with inductive limits if, for every inductive sequence

S1
ϕ1−→ S2

ϕ2−→ S3
ϕ3−→ · · ·

in the operator system category, and every operator system T , we have that

lim−→(Sk ⊗τ T ) ∼= (lim−→Sk)⊗τ T ,
up to a canonical complete order isomorphism.

Lemma 4.4. Let τ be an operator system tensor product that commutes with in-
ductive limits, and

S1
ϕ1−→ S2

ϕ2−→ S3
ϕ3−→ · · ·

and

T1
ψ1−→ T2

ψ2−→ T3
ψ3−→ · · ·

be inductive sequences in the operator system category with inductive limits S and
T , respectively. Then

lim−→(Sk ⊗τ Tk) ∼= S ⊗τ T ,
up to a canonical complete order isomorphism.

Proof. For brevity, we will use the symbol idk to denote the identity map on either
Sk or Tk, depending on the context. Write R := lim−→(Sk⊗τ Tk) and set θn = ϕn⊗idT ;
thus, θn : Sn⊗τ T → Sn+1⊗τ T is a unital completely positive map, n ∈ N. Trivially,

θn ◦ (idn ⊗ ψk,∞) = (idn+1 ⊗ ψk,∞) ◦ (ϕn ⊗ idk), k ∈ N.
On the other hand, using [25, Remark 2.15], we have that the diagram

Sn ⊗τ Tn Sn ⊗τ Tn+1 Sn ⊗τ Tn+2 · · ·

Sn ⊗τ Tn Sn+1 ⊗τ Tn+1 Sn+2 ⊗τ Tn+2 · · ·

ϕn,n⊗idn

idn ⊗ψn

ϕn,n+1⊗idn+1

idn ⊗ψn+1

ϕn,n+2⊗idn+2

ϕn⊗ψn ϕn+1⊗ψn+1

yields a canonical unital completely positive map

γn : Sn ⊗τ T → R,
such that

γn ◦ (idn ⊗ ψk,∞) = (ϕk ⊗ ψk)∞ ◦ (ϕn,k ⊗ idk), k ≥ n.

Thus, the pair (R, (γn)n∈N) satisfies
(γn+1 ◦ θn) ◦ (idn ⊗ ψk,∞) = γn+1 ◦ (idn+1 ⊗ ψk,∞) ◦ (ϕn ⊗ idk)

= (ϕk ⊗ ψk)∞ ◦ (ϕn+1,k ⊗ idk) ◦ (ϕn ⊗ idk)

= (ϕk ⊗ ψk)∞ ◦ (ϕn,k ⊗ idk)

= γn ◦ (idn ⊗ ψk,∞)
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for each k ≥ n + 1, hence γn+1 ◦ θn = γn and by the universal property of the
inductive limit lim−→(Sk⊗τ T ) (see [25, Definition 2.13]) there exists a canonical unital
completely positive map α : S ⊗τ T → R, such that

α ◦ (ϕn,∞ ⊗ idT ) = γn, n ∈ N.

Similarly, the diagram

S1 ⊗τ T1 S2 ⊗τ T2 S3 ⊗τ T3 · · ·

S1 ⊗τ T S2 ⊗τ T S3 ⊗τ T · · · ,

id1 ⊗ψ1,∞

ϕ1⊗ψ1

id2 ⊗ψ2,∞

ϕ2⊗ψ2

id3 ⊗ψ3,∞

ϕ1⊗idT ϕ2⊗idT

yields a canonical unital completely positive map

β : R → S ⊗τ T ,
such that

β ◦ (ϕn ⊗ ψn)∞ = (ϕn,∞ ⊗ idT ) ◦ (idn ⊗ ψn,∞), n ∈ N.

We show that the maps α and β are inverse to each other; indeed,

α ◦ β ◦ (ϕn ⊗ ψn)∞ = α ◦ (ϕn,∞ ⊗ idT ) ◦ (idn ⊗ ψn,∞)

= γn ◦ (idn ⊗ ψn,∞) = (ϕn ⊗ ψn)∞◦(ϕn,n ⊗ idn)

= (ϕn ⊗ ψn)∞

for all n ∈ N. Hence, α ◦ β = id. On the other hand,

β ◦ α ◦ (ϕn,∞ ⊗ ψk,∞) = β ◦ α ◦ (ϕn,∞ ⊗ idT ) ◦ (idn ⊗ ψk,∞)

= β ◦ γn ◦ (idn ⊗ ψk,∞)

= β ◦ (ϕk ⊗ ψk)∞ ◦ (ϕn,k ⊗ idk)

= (ϕk,∞ ⊗ idT )◦(idk ⊗ ψk,∞)◦(ϕn,k ⊗ idk)

= ϕn,∞ ⊗ ψk,∞

for all n, k ∈ N with k ≥ n, showing that β ◦ α = id. □

For the formulation of the next theorem, we recall the notation (12) for the
cylinders associated with elements x ∈ Xn and a ∈ An; we employ similar notation
for cylinders based on y ∈ Yn and b ∈ Bn.

Theorem 4.5. Let X = (Xn)n∈N, Y = (Yn)n∈N, A = (An)n∈N and B = (Bn)n∈N
be inductive families of finite sets.

(i) If Γ ∈ Cns(X,Y,A,B) then there exists a state sΓ : SX,A ⊗max SY,B → C
such that

sΓ(χx̃×ã ⊗ χỹ×b̃) = |Xn||Yn|⟨χx̃ ⊗ χỹ,Γ(χã ⊗ χb̃)⟩,

for all x ∈ Xn, y ∈ Yn, a ∈ An, b ∈ Bn, and all n ∈ N.
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(ii) If s is a state on SX,A ⊗max SY,B then there exists Γ ∈ Cns(X,Y,A,B) such
that s = sΓ.

Proof. (i) Let Γ be no-signalling and, for each n ∈ N, set

Γn := (E∞
Xn

⊗ E∞
Yn) ◦ Γ ◦ (ι(n)A ⊗ ι

(n)
B ).

By Proposition 4.2, Γn is no-signalling and hence, by Theorem 2.1, there exist states
sn : SXn,An ⊗max SYn,Bn → C, n ∈ N, such that

(16) sn(ex,a ⊗ ey,b) = |Xn||Yn|⟨δx ⊗ δy,Γn(δa ⊗ δb)⟩, n ∈ N,

for every (x, y, a, b) ∈ Xn × Yn ×An ×Bn. By Theorem 3.2 and Lemma 4.3,

sn+1 ◦ (γXn,An ⊗ γYn,Bn) = sn,

and therefore by the universal property of inductive limits, Lemma 4.4 and [25,

Theorem 4.34] there exists a state s : SX,A ⊗max SY,B → C such that s ◦ (γ
(n)
X,A ⊗

γ
(n)
Y,B) = sn, n ∈ N. Using (16), it follows that, if x ∈ Xn, y ∈ Yn, a ∈ An and b ∈ Bn

then

s(χx̃×ã ⊗ χỹ×b̃) = sn(ex,a ⊗ ey,b)

= |Xn||Yn|⟨δx ⊗ δy, (E∞
Xn

⊗ E∞
Yn) ◦ Γ ◦ (ι(n)A ⊗ ι

(n)
B )(δa ⊗ δb)⟩

= |Xn||Yn|⟨(ι(n)X ⊗ ι
(n)
Y )(δx ⊗ δy),Γ(χã ⊗ χb̃)⟩

= |Xn||Yn|⟨χx̃ ⊗ χỹ,Γ(χã ⊗ χb̃)⟩.

(ii) Setting sn = s ◦ (γ
(n)
X,A ⊗ γ

(n)
Y,B), n ∈ N, we have that sn is a state on the

tensor product SXn,An ⊗max SYn,Bn and consequently it gives rise, via Theorem 2.1,
to a no-signalling correlation Γn over (Xn, Yn, An, Bn), n ∈ N. Note that sn+1 ◦
(γXn,An ⊗ γYn,Bn) = sn, n ∈ N, and thus, by Lemma 4.3, the family (Γn)n∈N is
inductive. By Theorem 3.2, there exists a (unique) unital completely positive map
Γ : C(ΩA)⊗ C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY ) that satisfies the relations

(E∞
Xn

⊗ E∞
Yn) ◦ Γ ◦ (ι(n)A ⊗ ι

(n)
B ) = Γn, n ∈ N;

by Proposition 4.2, Γ is no-signalling. If x ∈ Xn, y ∈ Yn, a ∈ An and b ∈ Bn, then

sΓ(χx̃×ã ⊗ χỹ×b̃) = |Xn||Yn|⟨χx̃ ⊗ χỹ,Γ(χã ⊗ χb̃)⟩
= |Xn||Yn|⟨δx ⊗ δy,Γn(δa ⊗ δb)⟩ = sn(ex,a ⊗ ey,b)

= (s ◦ (γ(n)X,A ⊗ γ
(n)
Y,B))(ex,a ⊗ ey,b) = s(χx̃×ã ⊗ χỹ×b̃)

and, since the elements χx̃×ã ⊗ χỹ×b̃, when n varies, form a generating set for

SX,A ⊗max SY,B, we have that sΓ = s. □
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5. The type hierarchy

In this section, we consider other types of correlations over Cantor spaces, that
lie within the class of all no-signalling correlations defined in Section 4, and obtain
corresponding operator algebraic descriptions. We require some preparations; in the
next subsection, we develop the bipartite versions of operator-valued channels from
Subsection 3.1 that will be needed in the sequel.

5.1. Bipartite operator-valued channels. Let X, Y, S and T be second count-
able compact Hausdorff spaces, µ ∈M(X) and ν ∈M(Y) be probability measures,
and H be a Hilbert space. Given E ∈ Cµ(S,X;H) and F ∈ Cν(T,Y;H), and de-
noting by f the flip between the first and the second tensor terms in the three-leg
expressions below, we let

ϕE : C(S) → L∞(X, µ)⊗̄L∞(Y, ν)⊗̄B(H)

and

ϕF : C(T) → L∞(X, µ)⊗̄L∞(Y, ν)⊗̄B(H)

be the maps, defined by setting

ϕE(f) = f(1Y ⊗ ΦE(f)) and ϕF (g) = 1X ⊗ ΦF (g).

We say that E and F form a commuting pair if ϕE and ϕF have commuting ranges.

Theorem 5.1. Let E ∈ Cµ(S,X;H) and F ∈ Cν(T,Y;H) be operator-valued
channels that form a commuting pair. Then there exists a unique, up to ∼µ×ν-
equivalence, channel E · F ∈ Cµ×ν(S× T,X×Y;H) such that

(E · F )(α× β|x, y) = E(α|x)F (β|y) µ× ν-a.e., α ∈ BS, β ∈ BT.(17)

Proof. Since ϕE and ϕF are unital completely positive maps with commuting ranges,
by [30, Theorem 12.8], there exists a unique unital completely positive map

ϕE · ϕF : C(S)⊗ C(T) → L∞(X×Y, µ× ν)⊗̄B(H),

such that

(ϕE · ϕF )(f ⊗ g) = ϕE(f)ϕF (g), f ∈ C(S), g ∈ C(T).

Noting the canonical identification C(S× T) ∼= C(S)⊗ C(T), we consider ϕE · ϕF
as a map from C(S × T) into L∞(X × Y, µ × ν)⊗̄B(H). By Theorem 3.1, there
exists a unique E ·F ∈ Cµ×ν(S×T,X×Y;H) such that, for any h ∈ C(S×T) and
ξ, η ∈ H, we have

⟨(ϕE · ϕF )(h)(x, y)ξ, η⟩ =
∫
S×T

h(a, b)d(E · F )ξ,η(a, b|x, y) µ× ν-a.e.

Applying approximation arguments similar to those in the proof of [6, Lemma 3.1],
we obtain (17). □

Theorem 5.1 easily yields the following corollary; the detailed proof is omitted.
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Corollary 5.2. Let H and K be Hilbert spaces, E ∈ Cµ(S,X;H) and F ∈ Cν(T,Y;
K). Then there exists E⊗F ∈ Cµ×ν(S×T,X×Y;H⊗K) such that, for all α ∈ BS

and β ∈ BT, we have that

(E ⊗ F )(α× β|x, y) = E(α|x)⊗ F (β|y) µ× ν-almost everywhere.

Remark 5.3. We fix inductive families of sets X = (Xn)n∈N, Y = (Yn)n∈N, A =
(An)n∈N and B = (Bn)n∈N and let ΩX , ΩY , ΩA and ΩB be their respective Cantor
spaces. Given E ∈ CµX (ΩA,ΩX ;H) and n ∈ N, we denote by En ∈ C(An, Xn;H)
the (B(H)-valued) information channel (from Xn to An) for which the equality

(18) ΦEn = Ẽ∞
Xn

◦ ΦE ◦ ι(n)A,∞

is satisfied, n ∈ N. Set

Ψn = ι̃
(n)
X,∞ ◦ ΦEn ◦ E∞

An
|C(ΩA), n ∈ N;

thus, (Ψn)n∈N ⊆ UCP(C(ΩA), L
∞(ΩX)⊗̄B(H)). We have that limn→∞Ψn = ΦE in

the BW topology. Indeed, note that

lim
n→∞

ι̃
(n)
X,∞ ◦ Ẽ∞

Xn
= idL∞(ΩX)⊗̄B(H)

in the BW topology, and

lim
n→∞

ι
(n)
A,∞ ◦ E∞

An
|C(ΩA) = idC(ΩA)

in the point-norm topology. Fix ω ∈ B(H)∗ with ∥ω∥1 ≤ 1, ϵ > 0 and f ∈ C(ΩA),
and let N ∈ N be such that ∥∥∥(ι(n)A,∞ ◦ E∞

An
)(f)− f

∥∥∥ < ϵ

2

and ∣∣∣⟨ω, (ι̃(n)X,∞ ◦ Ẽ∞
Xn

◦ ΦE)(f)⟩ − ⟨ω,ΦE(f)⟩
∣∣∣ < ϵ

2
whenever n ≥ N . Then

|⟨ω,Ψn(f)⟩−⟨ω,ΦE(f)⟩|

≤
∣∣∣⟨ω,Ψn(f)⟩−⟨ω, (ι̃(n)X,∞ ◦ Ẽ∞

Xn
◦ΦE)(f)⟩

∣∣∣
+
∣∣∣⟨ω, (ι̃(n)X,∞ ◦ Ẽ∞

Xn
◦ΦE)(f)⟩−⟨ω,ΦE(f)⟩

∣∣∣
=

∣∣∣⟨ω, (ι̃(n)X,∞ ◦ Ẽ∞
Xn

◦ ΦE ◦ ι(n)A,∞ ◦ E∞
An

)(f)⟩−⟨ω, (ι̃(n)X,∞ ◦ Ẽ∞
Xn

◦ΦE)(f)⟩
∣∣∣

+
∣∣∣⟨ω, (ι̃(n)X,∞ ◦ Ẽ∞

Xn
◦ΦE)(f)⟩−⟨ω,ΦE(f)⟩

∣∣∣ ≤ ϵ

for every n ≥ N .

Remark 5.4. The channels E ∈ CµX (ΩA,ΩX ;H) and F ∈ CµY (ΩB,ΩY ;H) form a
commuting pair if and only if the (finite) channels En and Fm obtained via equation
(18) from E and F , respectively, also do so, for all n and m. Indeed, assume that
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(E,F ) is a commuting pair, then the channels ΦE ◦ ι(n)A , ΦF ◦ ι(m)
B form a commuting

pair and we can write

ϕEn(f) = (E∞
Xn

⊗ 1Ym ⊗ idB(H))(ΦE(ι
(n)
A (f))1,3)

and

ϕFm(g) = (1Xn ⊗ E∞
Ym ⊗ idB(H))(ΦF (ι

(m)
B (g))2,3),

from which the statement follows immediately (in the displayed equations, we have
used standard leg notation).

On the other hand, assume that ΦEn and ΦFm form a commuting pair for every

n,m ∈ N. Then the maps ι̃
(n)
X,∞ ◦ ΦEn ◦ EAn |C(ΩA) and ι̃

(m)
Y,∞ ◦ ΦFm ◦ EBn |C(ΩB) also

form a commuting pair. By Remark 5.3 the latter unital completely positive maps
converge to ΦE and ΦF respectively in the BW topology. By taking iterated limits
we conclude that ΦE and ΦF have commuting ranges.

Lemma 5.5. Let Γ1 : SX,A → B(H) and Γ2 : SY,B → B(H) be unital completely
positive maps, and let

Φ1 : C(ΩA) → L∞(ΩX)⊗̄B(H), Φ2 : C(ΩB) → L∞(ΩY )⊗̄B(H)

be their corresponding channels ariding via Theorem 3.4. Then Γ1 and Γ2 form a
commuting pair if and only if Φ1 and Φ2 do so.

Proof. We work at finite levels and pass to the limit. For n,m, let

Γ1
n : SXn,An → B(H), Γ2

m : SYm,Bm → B(H),

and the corresponding

Φ1
n : DAn → DXn ⊗ B(H), Φ2

m : DBm → DYm ⊗ B(H),

with

Φ1
n(δa) =

∑
x∈Xn

δx ⊗ Γ1
n(ex,a), Φ2

m(δb) =
∑
y∈Ym

δy ⊗ Γ2
m(ey,b).

We compute

(19)
[
(Φ1

n(δa))1,3, (Φ
2
m(δb))2,3

]
=

∑
x∈Xn

∑
y∈Ym

δx ⊗ δy ⊗
[
Γ1
n(ex,a), Γ

2
m(ey,b)

]
.

If Γ1 and Γ2 have commuting ranges then [Γ1
n(ex,a),Γ

2
m(ey,b)] = 0 for all x, y, a, b,

and (19) vanishes on generators; by linearity Φ1
n and Φ2

m have commuting ranges
for all n,m ∈ N. By Remark 5.4 Φ1 and Φ2 have commuting ranges.

If Φ1 and Φ2 form a commuting pair, by Remark 5.4, [(Φ1
n(δa))1,3, (Φ

2
m(δb))2,3] =

0, apply the slice Lδx⊗δy to (19) to obtain [Γ1
n(ex,a),Γ

2
m(ey,b)] = 0 for all x, y, a, b;

by linearity this yields [Γ1
n(u),Γ

2
m(v)] = 0 for all u, v and hence by density Γ1 and

Γ2 have commuting ranges.
□
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5.2. An ultraproduct channel construction. We collect some details about ul-
traproducts that we will need in the sequel, and refer the reader to [1] for further
background. Fix a free ultrafilter ω on N. For a sequence (Xn) of Banach spaces,
set ℓ∞(Xn) = {(xn) : supn ∥xn∥ < ∞} and Nω = {(xn) : limω ∥xn∥ = 0}. Then
the space (Xn)ω := ℓ∞(Xn)/Nω, endowed with the norm ∥[xn]∥ = limω ∥xn∥ (where
[xn] denotes the coset containing the sequence (xn)n∈N), is a Banach space, called
the Banach space ultraproduct of (Xn). For a sequence (Hn)n∈N of Hilbert spaces,
the Banach space ultraproduct Hω is a Hilbert space when endowed with the in-
ner product ⟨[xn], [yn]⟩ = limω⟨xn, yn⟩. For a sequence (Mn)n∈N of C*-algebras,
the ultraproduct (Mn)

ω is again a C*-algebra when equipped with the pointwise
multiplication and involution of sequences. If (Tn)n∈N is a uniformly bounded se-
quence, where Tn ∈ B(Hn), the formula πω([Tn])[xn] = [Tnxn] defines an isometric
*-homomorphism πω : (B(Hn))

ω → B(Hω). For simplicity we will write [Tn]ω for
πω([Tn]).

Let Mn ⊆ B(Hn) be von Neumann algebras, n ∈ N. Write πω : (Mn)
ω → B(Hω)

for the canonical representation induced on the ultraproduct Hilbert space Hω. The
abstract ultraproduct [1, Definition 3.5]

ω∏
(Mn, Hn) := πω((Mn)ω)

SOT ⊆ B(Hω)

is the strong-operator closure of πω((Mn)
ω). In particular, when Mn = B(Hn) one

has
∏ω(B(Hn), Hn) = B(Hω) (see [1, Lemma 3.4]).

Lemma 5.6. Let S be an operator system, Hn be a Hilbert space, n ∈ N, and
Φn : S → B(Hn) unital completely positive maps for every n ∈ N. Then the map

Φω : S −→ B(Hω), given by Φω(s) := πω
(
[Φn(s)]

)
,

is unital and completely positive.
Moreover, if T is another operator system and Ψn : T → B(Hn) are unital com-

pletely positive maps such (Φn,Ψn) is a commuting pair for every n, then (Φω,Ψω)
is a commuting pair.

Proof. The map from S into ℓ∞(B(Hn)), sending an element s ∈ S to the se-
quence (Φn(s)), is unital and completely positive. The quotient map ℓ∞(B(Hn)) →
(B(Hn))

ω is a unital ∗-homomorphism because Iω = {(xn) : limω ∥xn∥ = 0}
is a closed two-sided ∗-ideal. Finally, πω : (B(Hn))

ω → B(Hω) is a unital ∗-
homomorphism. Thus the composition s 7→ (Φn(s)) 7→ [Φn(s)] 7→ πω([Φn(s)]) is
unital and completely positive, proving the first claim.

To prove commutation, fix s ∈ S, t ∈ T and ξ = [ξn] ∈ Hω. Then

Φω(s)Ψω(t) ξ =
[
Φn(s)Ψn(t) ξn

]
=

[
Ψn(t)Φn(s) ξn

]
= Ψω(t) Φω(s) ξ,

since Φn(s) and Ψn(t) commute for each n. Hence [Φω(s),Ψω(t)] = 0 in B(Hω), as
required. □
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5.3. Definitions and characterisations. Motivated by the hierarchy of types in
the case of correlations over finite input and output sets, we now adapt the definitions
of no-signalling correlation types from [6] to the Cantor setup.

Definition 5.7. Let X = (Xn)n∈N, Y = (Yn)n∈N, A = (An)n∈N and B = (Bn)n∈N
be inductive families of sets. A unital completely positive map Γ : C(ΩA)⊗C(ΩB) →
L∞(ΩX)⊗̄L∞(ΩY ) is called a

(i) local correlation if it is a finite convex combination of maps of the form
Φ⊗Ψ, where Φ : C(ΩA) → L∞(ΩX) and Ψ : C(ΩB) → L∞(ΩY ) are unital
completely positive maps;

(ii) quantum spatial correlation if there exist separable Hilbert spaces H andK,
a unit vector ξ ∈ H⊗K, and operator-valued channels E ∈ CµX (ΩA,ΩX ;H)
and F ∈ CµY (ΩB,ΩY ;K), such that

(20) ⟨g,Γ(h)⟩ = ⟨g ⊗ ξξ∗,ΦE⊗F (h)⟩
whenever h ∈ C(ΩA)⊗C(ΩB) and g ∈ L1(ΩX)⊗̂L1(ΩY ).

(iii) quantum approximate correlation if Γ ∈ Cqs
BW

;
(iv) quantum commuting correlation if there exist a separable Hilbert space H,

a unit vector ξ ∈ H, and operator-valued channels E ∈ CµX (ΩA,ΩX ;H)
and F ∈ CµY (ΩB,ΩY ;H) that form a commuting pair, such that

(21) ⟨g,Γ(h)⟩ = ⟨g ⊗ ξξ∗,ΦE·F (h)⟩
whenever h ∈ C(ΩA)⊗C(ΩB) and g ∈ L1(ΩX)⊗̂L1(ΩY ).

In the context of Definition 5.7 (iv), we will say that the triple (H,E, F, ξ) is a re-
alisation of the correlation Γ. We denote by Cloc(X,Y,A,B) (resp. Cqs(X,Y,A,B),
Cqa(X,Y,A,B), Cqc(X,Y,A,B)) the set of all local, (resp. quantum spatial, quan-
tum approximate, quantum commuting) no-signalling correlations over (X,Y,A,B),
and simply use Ct when the quadruple (X,Y,A,B) is clear from the context.

Theorem 5.8. Let Γ : C(ΩA)⊗C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY ) be a unital completely
positive map and (Γn)n∈N be its associated inductive family of maps. The following
are equivalent:

(i) Γ ∈ Cqc(X,Y,A,B);
(ii) Γn ∈ Cqc(Xn, Yn, An, Bn) for every n ∈ N.

Proof. We recall that Ẽ∞
Xn

: L∞(ΩX)⊗̄B(H) → DXn ⊗B(H) is the canonical expec-
tation.

(i)⇒(ii) Let Γ ∈ Cqc, and letH be a Hilbert space, ξ ∈ H be a unit vector, and E ∈
CµX (ΩA,ΩX ;H) and F ∈ CµY (ΩB,ΩY ;H) be channels forming a commuting pair,
such that (21) is satisfied. Further, let En ∈ C(An, Xn;H) and Fn ∈ C(Bn, Yn;H)
be the channels such that

ΦEn = Ẽ∞
Xn

◦ ΦE ◦ ι(n)A and ΦFn = Ẽ∞
Yn ◦ ΦF ◦ ι(n)B , n ∈ N.

By Remark 5.4, (En, Fn) is a commuting pair for every n ∈ N.
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We show that Γn is a quantum commuting correlation with realisation (H,En, Fn, ξ).
Indeed, if x ∈ Xn, y ∈ Yn, a ∈ An and b ∈ Bn then

⟨δx ⊗ δy,Γn(δa ⊗ δb)⟩ =

= ⟨δx ⊗ δy, (E∞
Xn

⊗ E∞
Yn) ◦ Γ ◦ (ι(n)A ⊗ ι

(n)
B )(δa ⊗ δb)⟩

= ⟨(ι(n)X,1 ⊗ ι
(n)
Y,1)(δx ⊗ δy),Γ ◦ (ι(n)A ⊗ ι

(n)
B )(δa ⊗ δb)⟩

= ⟨(ι(n)X,1 ⊗ ι
(n)
Y,1)(δx ⊗ δy)⊗ ξξ∗,ΦE·F ◦ (ι(n)A ⊗ ι

(n)
B )(δa ⊗ δb)⟩

= ⟨(δx ⊗ δy)⊗ ξξ∗, ( ˜E∞
Xn

⊗ E∞
Yn
) ◦ ΦE·F ◦ (ι(n)A ⊗ ι

(n)
B )(δa ⊗ δb)⟩

= ⟨(δx ⊗ δy)⊗ ξξ∗,ΦEn·Fn(δa ⊗ δb)⟩,

where the last equality follows from the fact that

( ˜E∞
Xn

⊗ E∞
Yn
) ◦ ΦE·F ◦ (ι(n)A ⊗ ι

(n)
B )(δa ⊗ δb)

= ( ˜E∞
Xn

⊗ E∞
Yn
)((ΦE(ι

(n)
A (δa)))1,3(ΦF (ι

(n)
B (δb)))2,3)

= (Ẽ∞
Xn

(ΦE(ι
(n)
A (δa)))1,3(Ẽ∞

Yn(ΦF (ι
(n)
B (δb)))2,3.

(ii)⇒(i) By assumption, for each n ∈ N there exist a Hilbert space Hn, a unit
vector ξn ∈ Hn, and channels

En ∈ C(An, Xn;Hn) and Fn ∈ C(Bn, Yn;Hn),

forming a commuting pair and realising Γn:

(22) ⟨g,Γn(h)⟩ = ⟨g ⊗ ξnξ
∗
n, ΦEn·Fn(h)⟩, g ∈ DXn ⊗DYn , h ∈ DAn ⊗DBn .

In addition, we have the inductivity relations

(23) Γn = (EXn+1,Xn ⊗ EYn+1,Yn) ◦ Γn+1 ◦ (ιAn,An+1 ⊗ ιBn,Bn+1), n ∈ N.

Combining equations (22) and (23), for all g ∈ DXn ⊗ DYn , h ∈ DAn ⊗ DBn we
have〈

g ⊗ ξnξ
∗
n, ΦEn·Fn(f)

〉
= ⟨g,Γn(h)⟩

= ⟨g, (EXn+1,Xn ⊗ EYn+1,Yn) ◦ Γn+1 ◦ (ιAn,An+1 ⊗ ιBn,Bn+1)(h)⟩
= ⟨(ιXn+1,Xn ⊗ ιYn+1,Yn)(g),Γn+1 ◦ (ιAn,An+1 ⊗ ιBn,Bn+1)(h)⟩
= ⟨(ιXn+1,Xn ⊗ ιYn+1,Yn)(g)⊗ ξn+1ξ

∗
n+1,ΦEn+1·Fn+1 ◦ (ιAn,An+1 ⊗ ιBn,Bn+1)(h)⟩.

Thus, for all g ∈ DXn ⊗DYn , h ∈ DAn ⊗DBn , we obtain
(24)〈
g ⊗ ξnξ

∗
n, ΦEn·Fn(h)

〉
=

〈
g ⊗ ξn+1ξ

∗
n+1, ( ˜EXn+1,Xn ⊗ EYn+1,Yn)

◦ ΦEn+1·Fn+1

(
(ιAn,An+1 ⊗ ιBn,Bn+1)(h)

)〉
.

Define the channels

Φ′
En

:= ι̃
(n)
X,∞ ◦ ΦEn ◦ E∞

An
|C(ΩA) : C(ΩA) → L∞(ΩX)⊗̄B(Hn),
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Φ′
Fn

:= ι̃
(n)
Y,∞ ◦ ΦFn ◦ E∞

Bn
|C(ΩB) : C(ΩB) → L∞(ΩY )⊗̄B(Hn),

which form a commuting pair at each level n. By Theorem 3.4 (with H = Hn),
there exist unique unital completely positive maps

Θn : SX,A → B(Hn) and Λn : SY,B → B(Hn),

such that

(25)

|Xm|Lι(m)
X,1(δx)

(
Φ′
En

(ι
(m)
A (δa))

)
= Θn

(
γ
(m)
X,A(ex,a)

)
,

|Ym|Lι(m)
Y,1 (δy)

(
Φ′
Fn

(ι
(m)
B (δb))

)
= Λn

(
γ
(m)
Y,B(ey,b)

)
for all m ∈ N, x ∈ Xm, a ∈ Am, y ∈ Ym, b ∈ Bm (see (10)). In particular, by
Lemma 5.5 we obtain that (Θn,Λn) a commuting pair, n ∈ N.

Fix a free ultrafilter ω on N and form the Hilbert ultrapower Hω and the abstract
ultraproduct

∏ω (B(Hn), Hn

)
= B(Hω) (see Subsection 5.2). Let ξ = [ξn]; thus,

ξ is a unit vector in Hω. By Lemma 5.6, we have unital completely positive maps
Θω : SX,A → B(Hω) and Λω : SY,B → B(Hω), given by

Θω(s) := [Θn(s)]ω and Λω(t) := [Λn(t)]ω,

that form a commuting pair. Apply Theorem 3.4 again (with H = Hω) to obtain
unital completely positive maps

Φ : C(ΩA) → L∞(ΩX)⊗̄B(Hω) and Ψ : C(ΩB) → L∞(ΩY )⊗̄B(Hω),

satisfying

(26)

|Xk|Lι(k)X,1(δx)

(
Φ(ι

(k)
A (δa))

)
= Θω

(
γ
(k)
X,A(ex,a)

)
,

|Yk|Lι(k)Y,1(δy)

(
Ψ(ι

(k)
B (δb))

)
= Λω

(
γ
(k)
Y,B(ey,b)

)
for all x ∈ Xk, a ∈ Ak, y ∈ Yk, b ∈ Bk, k ∈ N. By Lemma 5.5 again, the pair (Φ,Ψ)
is commuting.

Now, by Theorem 3.1, there exist operator-valued channels E ∈ CµX (ΩA,ΩX ;H)
and F ∈ CµY (ΩB,ΩY ;H) such that Φ = ΦE and Ψ = ΨF , and since E and F form
a commuting pair, by Theorem 5.1 we obtain the channel E · F , giving rise to the
unital completely positive map

ΦE·F : C(ΩA)⊗ C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY )⊗̄B(Hω).

Fix n ∈ N, a ∈ An, b ∈ Bn, and take any k ≥ n, x ∈ Xk, y ∈ Yk. By inductivity
and (22),

(27)
〈
(ι

(k)
X,1 ⊗ ι

(k)
Y,1)(δx ⊗ δy), Γ

(
(ι

(n)
A ⊗ ι

(n)
B )(δa ⊗ δb)

)〉
=

〈
δx ⊗ δy, Γk

(
(ιAn,Ak

⊗ ιBn,Bk
)(δa ⊗ δb)

)〉
=

〈
δx ⊗ δy ⊗ ξkξ

∗
k, ΦEk·Fk

(
(ιAn,Ak

⊗ ιBn,Bk
)(δa ⊗ δb)

)〉
.
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Using (26), we have

〈
(ι

(k)
X,1 ⊗ ι

(k)
Y,1)(δx ⊗ δy)⊗ ξξ∗, ΦE·F (ι

(n)
A (δa)⊗ ι

(n)
B (δb))

〉
=

〈
L
ι
(k)
X,1(δx)

(Φ(ι
(n)
A (δa)))Lι(k)Y,1(δy)

(Ψ(ι
(n)
B (δb))) ξ, ξ

〉
=

〈
L
ι
(k)
X,1(δx)

(Φ(ι
(k)
A ◦ ιAn,Ak

(δa)))Lι(k)Y,1(δy)
(Ψ(ι

(k)
B ◦ ιBn,Bk

(δb))) ξ, ξ
〉

=
1

|Xk| |Yk|

〈
Θω

γ(k)X,A

∑
λ⃗

e
x,(a,λ⃗)

 Λω

γ(k)Y,B

∑
µ⃗

ey,(b,µ⃗)

 ξ, ξ
〉
,

where the summations are over λ⃗ = (λn+1, . . . , λk) ∈ [dAn+1] × . . . × [dAk ] and µ⃗ =

(µn+1, . . . , µk) ∈ [dBn+1]× . . .× [dBk ]. Taking the limit along the ultrafilter and using
(25), we obtain

〈
(ι

(k)
X,1 ⊗ ι

(k)
Y,1)(δx ⊗ δy)⊗ ξξ∗, ΦE·F (ι

(n)
A (δa)⊗ ι

(n)
B (δb))

〉
=

1

|Xk| |Yk|

〈
Θω(γ

(k)
X,A(

∑
λ⃗

e
x,(a,λ⃗)

)) Λω(γ
(k)
Y,B(

∑
µ⃗

ey,(b,µ⃗))) ξ, ξ
〉

= lim
m→ω

1

|Xk| |Yk|

〈
Θm(γ

(k)
X,A(

∑
λ⃗

e
x,(a,λ⃗)

)) Λm(γ
(k)
Y,B(

∑
µ⃗

ey,(b,µ⃗))) ξm, ξm

〉
= lim

m→ω

〈
L
ι
(k)
X,1(δx)

(Φ′
Em

(ι
(n)
A (δa)))Lι(k)Y,1(δy)

(Φ′
Fm

(ι
(n)
B (δb))) ξm, ξm

〉
= lim

m→ω

〈
δx ⊗ δy ⊗ ξmξ

∗
m, ((Ẽ∞

Xk
◦ Φ′

Em
)(ι

(n)
A (δa)))1,3 ((Ẽ∞

Yk
◦ Φ′

Fm
)(ι

(n)
B (δb)))2,3

〉
;

if m ≥ k then, by the inductivity relations (24) and equation (27), we have

〈
δx ⊗ δy ⊗ ξmξ

∗
m, ((Ẽ∞

Xk
◦ Φ′

Em
)(ι

(n)
A (δa)))1,3 ((Ẽ∞

Yk
◦ Φ′

Fm
)(ι

(n)
B (δb)))2,3

〉
=

〈
δx⊗δy⊗ξmξ∗m,((ẼXm,Xk

◦ΦEm)(ιAn,Am
(δa)))1,3((ẼYm,Yk ◦ΦFm)(ιBn,Bm(δb)))2,3

〉
=

〈
δx ⊗ δy ⊗ ξmξ

∗
m,

(
˜EXm,Xk
⊗ EYm,Yk ◦ ΦEm·Fm ◦ (ιAn,Am ⊗ ιBn,Bm)

)
(δa ⊗ δb)

〉
=

〈
δx ⊗ δy ⊗ ξkξ

∗
k, (ΦEk·Fk

◦ (ιAn,Ak
⊗ ιBn,Bk

))(δa ⊗ δb)
〉

=
〈
(ι

(k)
X,1 ⊗ ι

(k)
Y,1)(δx ⊗ δy), Γ

(
(ι

(n)
A ⊗ ι

(n)
B )(δa ⊗ δb)

)〉
.
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Combining the previous calculations, we conclude that〈
(ι

(k)
X,1 ⊗ ι

(k)
Y,1)(δx ⊗ δy), Γ

(
(ι

(n)
A ⊗ ι

(n)
B )(δa ⊗ δb)

)〉
=

〈
(ι

(k)
X,1 ⊗ ι

(k)
Y,1)(δx ⊗ δy)⊗ ξξ∗, ΦE·F (ι

(n)
A (δa)⊗ ι

(n)
B (δb))

〉
;

therefore Γ ∈ Cqc(X,Y,A,B). □

Corollary 5.9. Let X, Y , A and B be inductive families of finite sets. Then the
set Cqc(X,Y,A,B) is closed in the BW topology.

Proof. The claim follows from Theorem 5.8, the fact that the map Γ → Γn is
continuous in the BW topology, and the fact that the class of all quantum commuting
correlations over a quadruple of finite sets is closed (see Theorem 2.1). □

Proposition 5.10. Let X, Y , A and B be inductive families of finite sets. Then,
writing Ct = Ct(X,Y,A,B), we have

Cloc ⊆ Cqs ⊆ Cqa ⊆ Cqc ⊆ Cns.

Proof. We show that quantum commuting correlations are no-signalling. Assume
that Γ ∈ Cqc; we claim that Γ(C(ΩA)⊗ 1B) ⊆ L∞(ΩX)⊗ 1Y and Γ(1A ⊗C(ΩB)) ⊆
1X ⊗ L∞(ΩY ). Fix h ∈ C(ΩA); it suffices to show that Lω(Γ(h⊗ 1B)) ∈ C · 1Y for
all ω ∈ L1(ΩX). Let g ∈ L1(ΩY ) and note that

⟨g, Lω(Γ(h⊗ 1B))⟩ = ⟨g ⊗ ω,Γ(h⊗ 1B)⟩
= ⟨(ω ⊗ g)⊗ ξξ∗,ΦE·F (h⊗ 1B)⟩ = ⟨(ω ⊗ g)⊗ ξξ∗,ΦE(h)⊗ 1Y ⟩
= ⟨g, Lω⊗ξξ∗(ΦE(h)) · 1Y ⟩

and, since g is arbitrary, we have that

Lω(Γ(h⊗ 1B)) = Lω⊗ξξ∗(ΦE(h)) · 1Y

for every ω ∈ L1(ΩX), as desired. The fact that Γ(1A ⊗ C(ΩB)) ⊆ 1X ⊗ L∞(ΩY )
follows by symmetry.

The first inclusion can be shown in a standard way following the finite case, the
second one is trivial, while the third follows from Corollary 5.9 and the fact that
Cqs ⊆ Cqc. □

Our next aim is to obtain an operator algebraic description of quantum commut-
ing and approximately quantum correlations over Cantor spaces.

Remark 5.11. Given a correlation Λ of quantum commuting type over a quadruple
(S, T, U, V ) of finite sets, let sΛ be the (unique) state of SS,U ⊗c ST,V corresponding
to Λ via Theorem 2.1. By Lemma 4.3, if Γn is a no-signalling correlation over
(Xn, Yn, An, Bn), n ∈ N, then the family (Γn)n∈N is inductive if and only if

sΓn+1 ◦ (γXn,An ⊗ γYn,Bn) = sΓn , n ∈ N.(28)
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Lemma 5.12. Let t ∈ {loc, qs, qc,ns}, n ∈ N and Γn ∈ Ct(Xn, Yn, An, Bn). Then

the correlation Γ̃n defined by letting

Γ̃n = (ι
(n)
X,∞ ⊗ ι

(n)
Y,∞) ◦ Γn ◦ (E∞

An
⊗ E∞

Bn
)|C(ΩA)⊗C(ΩB)

belongs to Ct(X,Y,A,B).

Proof. We only include the proof for the case t = qc; the case t = qs is similar and
the cases t = loc, ns are immediate. Let (H,E, F, ξ) be a realisation of Γn; thus,
ΦE : DAn → DXn⊗B(H) and ΦF : DBn → DYn⊗B(H) are unital completely positive

map and ξ ∈ H is a unit vector. Let Ẽ ∈ Cµ(ΩA,ΩX ;H) and F̃ ∈ Cµ(ΩB,ΩY ;H)
be the operator-valued channels, satisfying

ΦẼ = ι
(n)
X,∞ ◦ ΦE ◦ E∞

An
|C(ΩA) and ΦF̃ = ι

(n)
Y,∞ ◦ ΦF ◦ E∞

Bn
|C(ΩB).

It is straightforward to check that (H, Ẽ, F̃ , ξ) is a realisation of Γ̃n. □

For the formulation of the next theorem, recall once again the notation (12) for
cylinders in Cantor spaces.

Theorem 5.13. Let X = (Xn)n∈N, Y = (Yn)n∈N, A = (An)n∈N and B = (Bn)n∈N
be inductive families of finite sets, and let Γ : C(ΩA)⊗C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY )
be a no-signalling correlation. The following are equivalent:

(i) Γ ∈ Cqc(X,Y,A,B) (resp. Γ ∈ Cqa(X,Y,A,B));
(ii) there exists a state s : SX,A ⊗c SY,B → C (resp. s : SX,A ⊗min SY,B → C),

such that

s(χx̃×ã ⊗ χỹ×b̃) = |Xn||Yn|⟨χx̃ ⊗ χỹ,Γ(χã ⊗ χb̃)⟩,

for all x ∈ Xn, y ∈ Yn, a ∈ An, b ∈ Bn, and all n ∈ N.

Proof. We first establish the equivalence in the quantum commuting case.

(i)⇒(ii) Assume that Γ ∈ Cqc(X,Y,A,B), and let H be a separable Hilbert space,
ξ ∈ H be a unit vector, and E ∈ CµX (ΩA,ΩX ;H) and F ∈ CµY (ΩB,ΩY ;H) be
operator-valued channels, satisfying (21). Let ΦE : C(ΩA) → L∞(ΩX)⊗̄B(H) and
ΦF : C(ΩB) → L∞(ΩY )⊗̄B(H) be the unital completely positive maps, associated
with E and F , respectively, via Theorem 3.1. Let (Φn)n∈N and (Ψn)n∈N be the

inductive families, associated with ΦE and ΦF , respectively, via (7). Let Φ̃n :

SXn,An → B(H) and and Ψ̃n : SYn,Bn → B(H) be the unital completely positive
maps, arising from Φn and Ψn, respectively, through Remark 3.5. It follows from
the proof of Theorem 3.4 that

Φ̃n = Φ̃n+1 ◦ γXn,An and Ψ̃n = Ψ̃n+1 ◦ γYn,Bn , n ∈ N.

By the universal property of the operator system inductive limit, there exist unital
completely positive maps Φ̃ : SX,A → B(H) and and Ψ̃ : SY,B → B(H), such that

Φ̃ ◦ γ(n)X,A = Φ̃n and Ψ̃ ◦ γ(n)Y,B = Ψ̃n, n ∈ N.
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Since the pair (ΦE ,ΦF ) is commuting, so is (Φ̃, Ψ̃). By the definition of the operator

system commuting tensor product, the map Φ̃ · Ψ̃ : SX,A ⊗c SY,B → B(H) is (unital
and) completely positive. Let s : SX,A ⊗c SY,B → C be the state, given by

s(u) = ⟨(Φ̃ · Ψ̃)(u), ξ, ξ⟩, u ∈ SX,A ⊗c SY,B.

Set sn := s◦ (γ(n)X ⊗γ(n)A ); thus, sn is a state on SXn,An ⊗cSYn,Bn . Let Γn be given
via (14), n ∈ N, and observe that, if x ∈ Xn, y ∈ Yn, a ∈ An and b ∈ Bn, then

s(χx̃×ã ⊗ χỹ×b̃) = sn(ex,a ⊗ ey,b) = ⟨Φ̃n(ex,a)Ψ̃n(ey,b)ξ, ξ⟩
= ⟨Lδx(Φn(δa))Lδy(Ψn(δb))ξ, ξ⟩
= |Xn||Yn|⟨δx ⊗ δy,Γn(δa ⊗ δb)⟩

= |Xn||Yn|⟨(ι(n)X,1 ⊗ ι
(n)
Y,1)(δx ⊗ δy),Γ(χã ⊗ χb̃)⟩

= |Xn||Yn|⟨χx̃ ⊗ χỹ,Γ(χã ⊗ χb̃)⟩.

(ii)⇒(i) Setting

sn = s ◦ (γ(n)X,A ⊗ γ
(n)
Y,B), n ∈ N,

we obtain a family (sn)n∈N of states, where sn : SXn,An ⊗cSYn,Bn → C, n ∈ N, satis-
fying (28) and therefore quantum commuting correlations Γn over (Xn, Yn, An, Bn)
which by Remark 5.11 form an inductive family. Theorem 3.2 gives rise to a unital
completely positive map Γ : C(ΩA)⊗ C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY ) that satisfies

(E∞
Xn

⊗ E∞
Yn) ◦ Γ ◦ (ι(n)A ⊗ ι

(n)
B ) = Γn, n ∈ N.

By Theorems 2.1 and 5.8, Γ ∈ Cqc(X,Y,A,B).

We now consider the approximately quantum case. Assume that the implication
(i)⇒(ii) holds in the case where Γ ∈ Cqs(X,Y,A,B); to conclude it in the full

generality, let Γ ∈ Cqa(X,Y,A,B) and (Γ(k))k∈N ⊆ Cqs(X,Y,A,B) be a sequence

with BW limit Γ. Let sk : SX,A ⊗min SY,B → C be a state yielding Γ(k), k ∈ N.
Let (skl)l∈N be a subsequence such that skl →l→∞ s in the weak* topology; then

s(γ
(kl)
X,A(ex,a)⊗ γ

(kl)
Y,B(ey,b)) agrees with |Xkl ||Ykl |⟨χx̃⊗χỹ,Γ(χã⊗χb̃)⟩ for all x ∈ Xkl ,

y ∈ Ykl , a ∈ Akl and b ∈ Bkl and all l ∈ N. By uniform boundedness, the density of
the linear span of the elements χã ⊗ χb̃ in C(ΩA)⊗ C(ΩB), and the weak* density
of the elements χx̃ ⊗ χỹ in L∞(ΩX)⊗̄L∞(ΩY ), we conclude that s = sΓ.

To complete the proof of the implication (i)⇒(ii), we note that in the case where
Γ ∈ Cqs(X,Y,A,B) the statement follows readily by inspecting the proof of the
same implication in the quantum commuting case, working with tensor, instead of
operator products, and using the fact that unital completely positive maps on the
individual terms tensor to a unital completely positive map on the minimal operator
system tensor product.

For the implication (ii)⇒(i) in the approximately quantum case, let s : SX,A⊗min

SY,B → C be a state, and sn = s◦(γ(n)X,A⊗minγ
(n)
Y,B); thus, sn is a state on SXn,An⊗min

SYn,Bn , n ∈ N. By Theorem 2.1, sn gives rise to a no-signalling correlation Γn :
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DAn ⊗ DBn → DXn ⊗ DYn of approximately quantum type. Let Γ̃n : C(ΩA) ⊗
C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY ) be the map given by letting

(29) Γ̃n = (ι
(n)
X,∞ ⊗ ι

(n)
Y,∞) ◦ Γn ◦ (E∞

An
⊗ E∞

Bn
)|C(ΩA)⊗C(ΩB).

Using the argument from Remark 5.3, we see that Γ̃n →n→∞ Γ in the BW topology.
It therefore suffices to show that Γ̃n ∈ Cqa(X,Y,A,B), n ∈ N. To see that, fix n ∈

N, and let (Θk)k∈N ⊆ Cqs(Xn, Yn, An, Bn) be a sequence, such that Θk →k→∞ Γn.

It is straightforward to see that, if Θ̃k arises from Θk as in (29) then Θ̃k →k→∞ Γ̃n
in the BW topology. On the other hand, if H and K are separable Hilbert spaces,
ξ ∈ H ⊗K is a unit vector, and E ∈ CµXn

(An, Xn;H) and F ∈ CµYn (Bn, Yn;K) are
operator-valued channels such that

⟨Θk(δa ⊗ δb), δx ⊗ δy⟩ = ⟨δx ⊗ δy ⊗ ξξ∗, (ΦE ⊗ ΦF )(δa ⊗ δb)⟩,

then Θ̃k has the form (20) for the channels Ẽ and F̃ , satisfying

(30) ΦẼ = ι
(n)
X,∞ ◦ ΦE ◦ E∞

An
|C(ΩA) and ΦF̃ = ι

(n)
Y,∞ ◦ ΦF ◦ E∞

Bn
|C(ΩB).

The proof is complete. □

The next statement, which is a straightforward consequence of Theorem 5.13,
complements Theorem 5.8 in the approximately quantum case.

Corollary 5.14. Let Γ : C(ΩA) ⊗ C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY ) be a unital com-
pletely positive map and (Γn)n∈N be its associated inductive family of maps. Then
Γ ∈ Cqa(X,Y,A,B) if and only if Γn ∈ Cqa(Xn, Yn, An, Bn) for every n ∈ N.

Remark 5.15. It is straightforward to see that, if Γ ∈ Cqs(X,Y,A,B) (resp. Γ ∈
Cloc(X,Y,A,B)) then Γn ∈ Cqs(Xn, Yn, An, Bn) (resp. Γn ∈ Cloc(X,Y,A,B)) for ev-
ery n ∈ N. We finish this section by showing that Corollary 5.14 does not hold in
the quantum spatial case and that the class Cqs(X,Y,A,B) is not closed.

Theorem 5.16. There exist inductive families of finite sets X = (Xn)n∈N, Y =
(Yn)n∈N, A = (An)n∈N and B = (Bn)n∈N and a no-signalling correlation Γ :
C(ΩA)⊗C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY ) such that, if (Γn)n∈N is its associated induc-
tive family, then Γn ∈ Cqs(Xn, Yn, An, Bn) for every n ∈ N, but Γ ̸∈ Cqs(X,Y,A,B).

Proof. By [35], there exist finite sets X, Y, A, B, such that Cqs(X,Y,A,B) is not
closed, that is, there exist correlations pn ∈ Cqs(X,Y,A,B), n ∈ N, and a correlation
p ∈ Cqa(X,Y,A,B) \ Cqs(X,Y,A,B) such that pn(a, b|x, y) → p(a, b|x, y) for all a, b,
x, y.

Let f and fn be the states on SX,A ⊗min SY,B yielding p and pn respectively via
Theorem 2.1; thus,

p(a, b|x, y) = f(ex,a ⊗ ey,b) and pn(a, b|x, y) = fn(ex,a ⊗ ey,b)

for all n ∈ N. SetXn =
∏n−1
i=0 X and letX = (Xn)n∈N be the corresponding inductive

family of sets; define the families Y , A, B similarly. Let sn : SXn,An⊗minSYn,Bn → C,
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n ∈ N, be the linear maps, defined inductively by letting s1 = f1 and

sn+1

(
e(xx′),(aa′) ⊗ e(yy′),(bb′)

)
= sn(ex,a ⊗ ey,b)fn+1(ex′,a′ ⊗ ey′,b′),

where x ∈ Xn, x
′ ∈ X, y ∈ Yn, y

′ ∈ Y, a ∈ An, a
′ ∈ A and b ∈ Bn, b

′ ∈ B. To
see that the maps sn are well-defined, we refer to the commutativity of the minimal
tensor product and the universal property of the C*-algebra AXn+1,An+1 , according
to which the map

AXn+1,An+1 7→ AXn,An ⊗min AX,A; exx′,aa′ 7→ ex,a ⊗ ex′,a′ ,

gives rise to a ∗-homomorphism that restricts to a unital completely positive map
from SXn+1,An+1 to SXn,An ⊗min SX,A, n ∈ N. Moreover,

sn+1(γXn,An(ex,a)⊗ γYn,Bn(ey,b))

=
1

|X||Y|
∑
x′∈X

∑
y′∈Y

∑
a′∈A

∑
b′∈B

sn+1(e(xx′),(aa′) ⊗ e(yy′),(bb′))

=
1

|X||Y|
∑
x′∈X

∑
y′∈Y

∑
a′∈A

∑
b′∈B

sn(ex,a ⊗ ey,b)fn+1(ex′,a′ ⊗ ey′,b′) = sn(ex,a ⊗ ey,b).

By Lemma 4.3, the family (sn)n∈N gives rise to the inductive family of correlations
(Γn)n∈N. It is easy to see that, since pn is of quantum spatial type, so is Γn, n ∈ N.
Let Γ : C(ΩA) ⊗ C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY ) be the unique unital completely
positive map associated to the sequence (Γn)n∈N and s : SX,A⊗min SY,B → C be the

corresponding state, arising via Theorem 5.13. Then s ◦ (γ(n)X,A ⊗ γ
(n)
Y,B) = sn, n ∈ N.

We now show that Γ ̸∈ Cqs(X,Y,A,B). Fix x ∈ X, y ∈ Y, a ∈ A and b ∈ B,
consider the sets Λnx = {(xi)i ∈ ΩX : xn = x} and define Λna , Λ

n
y and Λnb similarly.

Assuming, towards a contradiction, that Γ is in Cqs(X,Y,A,B) we can find Hilbert
spaces H and K, unital completely positive maps Φ : C(ΩA) → L∞(ΩX)⊗̄B(H)
and Ψ : C(ΩB) → L∞(ΩY )⊗̄B(K), and a unit vector ξ ∈ H ⊗K, such that

⟨χΛn
x
⊗ χΛn

y
⊗ ξξ∗,Φ(χΛn

a
)⊗Ψ(χΛn

b
)⟩

= ⟨χΛn
x
⊗ χΛn

y
,Γ(χΛn

a
⊗ χΛn

b
)⟩ = s(χΛn

x×Λn
a
⊗ χΛn

y×Λn
b
)

=
∑

x′,y′,a′,b′

s((γ
(n)
X,A ⊗ γ

(n)
Y,B)(e(x′x),(a′a) ⊗ e(y′y),(b′b)))

=
∑

x′,y′,a′,b′

sn(e(x′x),(a′a) ⊗ e(y′y),(b′b))

=
∑

x′,y′,a′,b′

sn−1(ex′,a′ ⊗ ey′,b′)fn(ex,a ⊗ ey,b) = |Xn−1||Yn−1|fn(ex,a ⊗ ey,b),

where the summation is over (x′, y′, a′, b′) ∈ Xn−1 × Yn−1 ×An−1 ×Bn−1.
Let Enx,a = 1

|Xn−1|LχΛn
x
(Φ(χΛn

a
)) ∈ B(H) and Fny,b =

1
|Yn−1|LχΛn

y
(Φ(χΛn

b
)) ∈ B(K).

Then

⟨(Enx,a ⊗ Fny,b)ξ, ξ⟩ = fn(ex,a ⊗ ey,b) = pn(a, b|x, y),
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for all x ∈ X, y ∈ Y, a ∈ A and b ∈ B. Moreover, (Enx,a)a∈A and (Fny,b)b∈B are

families of POVM’s for each x ∈ X and y ∈ Y. Choose subnets (Enα
x,a)α, (F

nα
y,b )α

converging to Ex,a and Fy,b, respectively, in the weak* topology. We have

(31) ⟨(Ex,a ⊗ Fy,b)ξ, ξ⟩ = lim
α
⟨(Enα

x,a ⊗ Fnα
y,b )ξ, ξ⟩ = lim

n→∞
pn(a, b|x, y) = p(a, b|x, y).

As the families (Ex,a)a∈A, (Fy,b)b∈B, x ∈ X, y ∈ Y are again POVM’s, identity (31)
contradicts the fact that p is not of quantum spatial type. □

Corollary 5.17. There exist inductive families of finite sets X, Y , A and B for
which the set Cqs(X,Y,A,B) is not closed in the BW topology.

Proof. Let (Γn)n∈N be the inductive family from Theorem 5.16 and let Γ̃n be the

associated no-signalling correlations via Lemma 5.12. By Lemma 5.12, Γ̃n ∈ Cqs.
As Γ̃n → Γ in the BW topology, the statement follows from Theorem 5.16. □

Remark. Since the elements of the form (γ
(n)
X,A⊗γ

(n)
Y,B)(ex,a⊗ey,b), where x ∈ Xn, y ∈

Yn, a ∈ An and b ∈ Bn, n ∈ N, generate a dense subspace of the operator system
SX,A ⊗c SY,B, the correspondence between Cqc(X,Y,A,B) (resp. Cqa(X,Y,A,B))
and the state space of SX,A ⊗c SY,B (resp. SX,A ⊗min SY,B) from Theorem 5.13 is
bijective.

6. Cantor games

In this section, we define values of non-local games over Cantor sets, based on the
correlation types studied in the previous sections, and establish continuity results
thereof. We recall that, if S, T , U and V are finite sets, a non-local game over the
quadruple (S, T, U, V ) is a pair G = (λ, µ), where λ : S×T×U×V → {0, 1} and µ is
a probability measure on S × T ; here, S (resp.U) is interpreted as the set of inputs
(resp. outputs) for player Alice, and T (resp.V ) – as the set of inputs (resp. outputs)
for player Bob. Alice and Bob play collaboratively against a third party, Verifier.
In each round, the Verifier choses a pair (s, t) ∈ S × T of questions according to the
probability measure µ, and the players return a pair (u, v) ∈ U × V ; the tandem
Alice-Bob wins (resp. loses) the round if λ(s, t, u, v) = 1 (resp.λ(s, t, u, v) = 0).
Given a correlation type t over (S, T, U, V ), the t-value of G is the parameter

ωt(λ, µ) = sup
p∈Ct

∑
s∈S

∑
t∈T

µ(s, t)
∑
u∈U

∑
v∈V

λ(s, t, u, v)p(u, v|s, t)

(we note that ωqs(λ, µ) = ωqa(λ, µ)).
Measurable games and their values were defined in [6]; here, we specialise those

to the case of Cantor topological spaces. For an inductive family X of finite sets,
we let for brevity BX = BΩX

. Let X = (Xn)n∈N, Y = (Yn)n∈N, A = (An)n∈N and
B = (Bn)n∈N be inductive families of finite sets. A Cantor game is a pair (κ, µ),
where κ ⊆ ΩX ×ΩY ×ΩA×ΩB is a closed subset and µ is a probability measure on
ΩX×ΩY . In the sequel, we consider only the case where µ is the uniform probability
measure, that is, µ = µX × µY .
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We equipXn×Yn with the uniform probability measure, and hence identify a non-
local game Gn over (Xn, Yn, An, Bn) with its rule function λn : Xn×Yn×An×Bn →
{0, 1}, n ∈ N. Let, further κGn be the subset of ΩX × ΩY × ΩA × ΩB, given by

κGn = {((xk)k), ((yk)k),((ak)k), ((bk)k) :(32) (
(xk)

n−1
k=0 , (yk)

n−1
k=0 , (ak)

n−1
k=0 , (bk)

n−1
k=0

)
∈ suppλn},

and note that κGn is (open and) closed. We say that the family (Gn)n∈N is nested
if κGn+1 ⊆ κGn for every n. For a nested family G = (Gn)n∈N of games, we set
κG := ∩n∈NκGn , and note that κG is a closed subset of ΩX ×ΩY ×ΩA×ΩB. We call
the Cantor games of the latter form nested.

Lemma 6.1. Every Cantor game κ ⊆ ΩX × ΩY × ΩA × ΩB is nested.

Proof. Let πn : ΩX × ΩY × ΩA × ΩB → Xn × Yn ×An ×Bn be the projection, and
set κn = π−1

n (πn(κ)), n ∈ N. Clearly, κn+1 ⊆ κn for every n, and κ ⊆ ∩∞
n=1κn.

Assuming that ω ∈ ∩∞
n=1κn, let ωn ∈ Xn × Yn × An × Bn and ω′

n ∈
∏
i≥n[d

X
i ] ×

[dYi ]× [dAi ]× [dBi ] be such that ωn ∈ πn(κ) and ω = ωnω
′
n, n ∈ N. Since ωn ∈ πn(κ),

there exists ω′′
n ∈

∏
i≥n[d

X
i ] × [dYi ] × [dAi ] × [dBi ], such that ω(n) := ωnω

′′
n ∈ κ. Let

ω′ be a cluster point of the sequence (ω(n))n∈N; since κ is closed, ω′ ∈ κ. Since
πn(ω) = πn(ω

′) for infinitely many n ∈ N, we have that ω = ω′, implying that
ω ∈ κ. □

In the sequel, we write for brevity µXY = µX × µY . By [5, Theorem 3.11],
every correlation Γ : C(ΩA)⊗C(ΩB) → L∞(ΩX)⊗̄L∞(ΩY ) gives rise to a (unique)
classical information channel pΓ ∈ CµXY (ΩA×ΩB,ΩX×ΩY ;C), viewed as a ΩX×ΩY -
measurable family pΓ = (pΓ(·, ·|x, y)x,y)(x,y)∈ΩX×ΩY

of Borel probability measures
over ΩA × ΩB, such that

Γ(f)(x, y) =

∫
ΩA×ΩB

f(a, b)dpΓ(a, b|x, y), µXY -almost everywhere,(33)

for every f ∈ C(ΩA) ⊗ C(ΩB). We have that the map Γ extends uniquely to the
space of all bounded Borel functions on ΩA × ΩB and satisfies

Γ(χδ)(x, y) = pΓ(δ|x, y), δ ∈ BA ⊗BB, µX × µY -almost everywhere.(34)

Indeed, using Stinespring’s Theorem and [3, Theorem 2.6.3], the map Γ can be
extended uniquely to the space of bounded measurable functions on ΩA × ΩB in
such a way that it has the following property: for every uniformly bounded sequence
of measurable functions (fn)n∈N which converges pointwise to zero, the sequence
(Γ(fn))n∈N converges strongly to zero. In particular, taking a uniformly bounded
sequence of continuous functions (fn)n∈N converging pointwise to χδ, δ ∈ BA⊗BB,
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for ξ, η ∈ L2(X × Y ) we obtain

⟨Γ(χδ)ξ, η⟩ = lim
n→∞

⟨Γ(fn)ξ, η⟩

= lim
n→∞

∫∫
fn(a, b)dpΓ(a, b|x, y)ξ(x, y)η(x, y)dµXY (x, y)

= ⟨pΓ(δ|·, ·)ξ, η⟩,

giving Γ(χδ)(x, y) = pΓ(δ|x, y) µXY -almost everywhere.
If, further, π is a Borel probability measure on ΩX×ΩY , let π⊗pΓ be the compound

measure of π and pΓ, that is, the Borel probability measure on ΩX ×ΩY ×ΩA×ΩB,
given by

(35) (π ⊗ pΓ)(M) =

∫
X
pΓ(Mx,y|x, y)dπ(x, y), M ∈ BX ⊗BY ⊗BA ⊗BB,

where

Mx,y := {(a, b) ∈ ΩA × ΩB : (x, y, a, b) ∈M}
is the (x, y)-section of M (see [19] and [6]). For t ∈ {loc, qs, qc, ns}, let the t-value
ωt(κ, µXY ) of κ with respect to the measure µXY be given by

ωt(κ, µXY ) = sup
Γ∈Ct

(µXY ⊗ pΓ)(κ).

We note that if κ1 and κ2 are Cantor games with κ1 ⊆ κ2 then

(36) ωt(κ1, µXY ) ≤ ωt(κ2, µXY ), t ∈ {loc, qs, qc, ns}.

Remark 6.2. The setup of no-signalling correlations in this paper is established
using almost everywhere defined operator-valued information channels. Since we
are about to exploit the framework developed in [6], we note that the compound
measure µXY ⊗pΓ is independent of the use of µXY -information channels as opposed
to everywhere defined information channels. We refer the reader to [6, Remark 6.1]
for a detailed argument.

Lemma 6.3. Let X, Y , A and B be inductive families of finite sets, κ be a Cantor
game over (X,Y,A,B) and Γ,Γn ∈ Cns(X,Y,A,B), n ∈ N, be such that Γn →n→∞ Γ
in the BW topology. If a subset κ ⊆ ΩX × ΩY × ΩA × ΩB is closed and open then

(µXY ⊗ pΓn)(κ) →n→∞ (µXY ⊗ pΓ)(κ).

Proof. If f ∈ C(ΩX × ΩY ) and g ∈ C(ΩA × ΩB) then

⟨µXY ⊗ pΓ, f ⊗ g⟩ =

∫
ΩX×ΩY ×ΩA×ΩB

f(x, y)g(a, b)d(µXY ⊗ pΓ)(x, y, a, b)

=

∫
ΩX×ΩY

(∫
ΩA×ΩB

g(a, b)dpΓ(a, b|x, y)
)
f(x, y)dµXY (x, y)

=

∫
ΩX×ΩY

Γ(g)(x, y)f(x, y)dµXY (x, y).
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If κ is closed and open then χκ is the finite sum of functions of the form χα ⊗ χβ,
where α ⊆ ΩX×Y and β ⊆ ΩA×B. The claim is now immediate. □

For a closed and open subset κ ⊆ ΩX×ΩY ×ΩA×ΩB, we write Γ(κ) : ΩX×ΩY →
C for the (measurable) function, given by Γ(κ)(x, y) = Γ(χκx,y)(x, y), and note that
the proof of Lemma 6.3 shows that

⟨µXY ⊗ pΓ, χκ⟩ =
∫
ΩX×ΩY

Γ(κ)(x, y)dµXY (x, y).

Lemma 6.4. Fix n ∈ N and let Gn = (Xn, Yn, An, Bn, λn) be a non-local game. If

Γn ∈ Ct and Γ̃n = (ι
(n)
X,∞ ⊗ ι

(n)
Y,∞) ◦ Γn ◦ (E∞

An
⊗ E∞

Bn
)|C(ΩA)⊗C(ΩB) then

(µXnYn ⊗ pΓn)(suppλn) = (µXY ⊗ pΓ̃n
)(κn);

consequently, ωt(Gn, µXn,Yn) = ωt(κn, µXY ), t ∈ {loc, qs, qc, ns}.

Proof. Letting Gn = suppλn and κn be defined as in (32), using the definition of
the compound measure and (34) we have that

(µXY ⊗ pΓ̃n
)(κn) = ⟨1XY , Γ̃n(κn)⟩

= ⟨1XY , (ι(n)X,∞ ⊗ ι
(n)
Y,∞) ◦ Γn ◦ (E∞

An
⊗ E∞

Bn
)(κn)⟩

= ⟨(EXn ⊗ EYn)(1XY ),Γn ◦ (E∞
An

⊗ E∞
Bn

)(κn)⟩
= ⟨1XnYn ,Γn(Gn)⟩ = (µXnYn ⊗ pΓn)(Gn).

Now, since Γn ∈ Ct(Xn, Yn, An, Bn) =⇒ Γ̃n ∈ Ct(X,Y,A,B), by Lemma 5.12 we
obtain

ωt(Gn, µXn,Yn) ≤ ωt(κn, µXY ).

Next let Γ ∈ Ct(X,Y,A,B), set

Γn =
(
E∞
Xn

⊗ E∞
Yn

)
◦ Γ ◦

(
ι
(n)
A ⊗ ι

(n)
B

)
, n ∈ N,

and note that (µXnYn ⊗ pΓn)(Gn) = (µXY ⊗ pΓ)(κn). Indeed,

(µXnYn ⊗ pΓn)(Gn) = ⟨1XnYn ,Γn(Gn)⟩

= ⟨1XnYn , (E∞
Xn

⊗ E∞
Yn) ◦ Γ ◦ (ι(n)A ⊗ ι

(n)
B )(Gn)

= ⟨EXn ⊗ EYn)(1XY ), (E∞
Xn

⊗ E∞
Yn) ◦ Γ(κn)⟩

= ⟨1XY ,Γ(κn)⟩ = (µXY ⊗ pΓ)(κn).

Now since Γ ∈ Ct(X,Y,A,B) =⇒ Γn ∈ Ct(Xn, Yn, An, Bn) (see Theorems 4.5 and
5.8, and Remark 5.15), one obtains ωt(Gn, µXnYn) = ωt(κn, µXY ). □

Theorem 6.5. Let G = (Gn)n∈N be a nested family, where Gn is a non-local game
over (Xn, Yn, An, Bn), n ∈ N. If t ∈ {loc, qs, qc,ns} then

lim
n→∞

ωt(Gn, µXnYn) = inf
n∈N

ωt(Gn, µXnYn) = ωt(G, µXY ).
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Proof. Let κ = κG and κn = π−1
n (suppλn). We have κ = ∩n∈Nκn. Fix Γ ∈ Ct and

note that for any m ≥ n, by monotonicity of the measures as (κn)n∈N is a decreasing
sequence of sets, one has

(µXY ⊗ pΓ)(κm) ≤ (µXY ⊗ pΓ)(κn).

By taking supremum over Γ ∈ Ct we obtain that ωt(κm, µXY ) ≤ ωt(κn, µXY ). By
Lemma 6.4,

ωt(Gm, µXmYm) ≤ ωt(Gn, µXnYn).

Again by Lemma 6.4,

ωt(G, µXY ) ≤ inf
n∈N

ωt(Gn, µXnYn).

For the converse, fix ϵ > 0, and let Γm ∈ Ct such that

(37) ωt(Gm, µXmYm)− (µXY ⊗ pΓm)(κm) <
ϵ

m
,

and assume, without loss of generality, that (Γ̃m)m∈N converges to Γ in the BW
topology. By monotonicity of the measures again,

(µXY ⊗ pΓ̃m
)(κm) ≤ (µXY ⊗ pΓ̃m

)(κn) for all m ≥ n,

and thus, using the convergence of Γ̃m to Γ, Lemma 6.3, Lemma 6.4 and (37), we
get

inf
m∈N

ωt(κm, µXY ) ≤ (µXY ⊗ pΓ)(κn).(38)

By the monotonicity of measure and the fact that κ = ∩n∈Nκn, we obtain

(µXY ⊗ pΓ)(κ) = lim
n∈N

(µXY ⊗ pΓ)(κn).(39)

Finally, combining relations (38) and (39) one obtains the desired result. □

Our next aim is to provide tensor norm descriptions of the quantum spatial and
the quantum commuting value of a Cantor game. Suppose first that G = (λ, µ) is a
non-local game over a quadruple (S, T, U, V ) of finite sets. The element

tG :=
∑

(x,y)∈S×T

∑
(a,b)∈U×V

µ(x, y)λ(x, y, a, b)ex,a ⊗ ey,b

of the (algebraic) tensor product SS,U ⊗ST,V is usually referred to as the full game
tensor of G. It can easily be seen from Theorem 2.1 that

(40) ωqs(λ, µ) = ∥tG∥min, ωqc(λ, µ) = ∥tG∥c and ωns(λ, µ) = ∥tG∥max.

Assume that G = (Gn)n∈N is a nested family, where Gn is a non-local game over
(Xn, Yn, An, Bn) with rule function λn, n ∈ N. Letting κn = κGn , write

t
(n)
G =

1

|Xn||Yn|
∑

(x,y)∈Xn×Yn

∑
(a,b)∈An×Bn

λn(x, y, a, b)χx̃×ã ⊗ χỹ×b̃,
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considered as an element of SX,A ⊗ SY,B.

Lemma 6.6. Let G = (Gn)n∈N be a nested family of games.

(i) If τ ∈ {min, c,max} then t
(n+1)
G ≤ t

(n)
G in SX,A ⊗τ SY,B, n ∈ N.

(ii) The limit limn→∞ t
(n)
G exists in the weak* topology of S∗∗

X,A⊗̄S∗∗
Y,B.

Proof. Write Gn = supp(λn) for brevity.
(i) Fix n ∈ N. Since the family G is nested,

supp(λn+1) ⊆ supp(λn)×
(
[dXn ]× [dYn ]× [dAn ]× [dBn ]

)
.

Letting

G′
n+1 = {(xx′, yy′, aa′, bb′) : (x, y, a, b) ∈ Gn,

(x′, y′, a′, b′) ∈ [dXn ]× [dYn ]× [dAn ]× [dBn ]},
we have

1

|Xn||Yn|
∑

(x,y,a,b)∈Gn

χx̃×ã ⊗ χỹ×b̃

− 1

|Xn+1||Yn+1|
∑

(x,y,a,b)∈Gn+1

χx̃×ã ⊗ χỹ×b̃

=
1

|Xn||Yn|
· 1

dXn d
Y
n

∑
(x,y,a,b)∈G′

n+1

χx̃×ã ⊗ χỹ×b̃

− 1

|Xn+1||Yn+1|
∑

(x,y,a,b)∈Gn+1

χx̃×ã ⊗ χỹ×b̃

=
1

|Xn+1||Yn+1|
∑

(x,y,a,b)∈G′
n+1\Gn+1

χx̃×ã ⊗ χỹ×b̃.

Since χx̃×ã ∈ S+
X,A and χỹ×b̃ ∈ S+

Y,B, we have that∑
(x,y,a,b)∈G′

n+1\Gn+1

χx̃×ã ⊗ χỹ×b̃ ∈ (SX,A ⊗max SY,B)+,

and hence

t
(n)
G − t

(n+1)
G ≥ 1

|Xn+1||Yn+1|
∑

(x,y,a,b)∈G′
n+1\Gn+1

χx̃×ã ⊗ χỹ×b̃ ≥ 0

in SX,A ⊗max SY,B. The rest of the conclusions follow from the fact that

(SX,A ⊗max SY,B)+ ⊆ (SX,A ⊗c SY,B)+ ⊆ (SX,A ⊗min SY,B)+.

(ii) Consider t
(n)
G as an element of S∗∗

X,A⊗̄S∗∗
Y,B, n ∈ N. By (i), the sequence

(t
(n)
G )n∈N is monotone decreasing and bounded from below (by the zero element).

The conclusion is now immediate. □
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In view of Lemma 6.6, set tG := w∗- limn→∞ t
(n)
G , considered as an element of

S∗∗
X,A⊗̄S∗∗

Y,B.

Theorem 6.7. Let (Gn)n∈N be a nested family, where Gn is a non-local game over
(Xn, Yn, An, Bn), n ∈ N. Then

(i) ωns(G, µXY ) = limn→∞ ∥t(n)G ∥max;

(ii) ωqc(G, µXY ) = limn→∞ ∥t(n)G ∥c, and
(iii) ωqs(G, µXY ) = limn→∞ ∥t(n)G ∥min ≥ ∥tG∥min.

Proof. The statements follow from (40) and Theorem 6.5. □

Example 6.8 (The IID case). LetX0, Y0, A0 and B0 be finite sets, and λ : X0×Y0×
A0 ×B0 → {0, 1} be a rule function of a game over the quadruple (X0, Y0, A0, B0).
Write E = supp(λ) and, letting Xn = Xn

0 , Yn = Y n
0 , An = An0 and Bn = Bn

0 , n ∈ N,
consider the game over (Xn, Yn, An, Bn), with rule function whose support is the set

En = {((xi)ni=1, (yi)
n
i=1, (ai)

n
i=1, (bi)

n
i=1) : (xi, yi, ai, bi) ∈ E for every i ∈ [n]}.

Let X = (Xn)
∞
n=1, Y = (Yn)

∞
n=1, A = (An)

∞
n=1 and B = (Bn)

∞
n=1 be the corre-

sponding inductive sequences, and embed En in the first n coordinates, yielding a
set κn ⊆ ΩX × ΩY × ΩA × ΩB, n ∈ N. The sequence (κn)

∞
n=1 is nested and, if

κ = ∩n∈Nκn, then
κ = {((xi)∞i=1, (yi)

∞
i=1, (ai)

∞
i=1, (bi)

∞
i=1) : (xi, yi, ai, bi) ∈ E or for every i ∈ N}.

The Cantor game κ encodes the infinite parallel repetition of the game E (that is,
the product of infinitely many copies of E).

Example 6.9 (Markov type). We describe a class of examples of non-IID Cantor
games, and therefore of games, to which Theorems 6.5 and 6.7 apply. As in Example
6.8, let X0, Y0, A0 and B0 be finite sets, and λ : X0 × Y0 × A0 × B0 → {0, 1} be
a rule function of a game over the quadruple (X0, Y0, A0, B0). Write E = supp(λ)
and consider the game over (Xn, Yn, An, Bn), with rule function whose support is
the set

En = {((xi)ni=1, (yi)
n
i=1, (ai)

n
i=1, (bi)

n
i=1) : (xi, yi, ai, bi) ∈ E or

(xi+1, yi+1, ai+1, bi+1) ∈ E, for every i ∈ [n− 1]}.
Let X = (Xn)

∞
n=1, Y = (Yn)

∞
n=1, A = (An)

∞
n=1 and B = (Bn)

∞
n=1 be the correspond-

ing inductive sequences, and embed En in the first n coordinates, yielding a set
κn ⊆ ΩX ×ΩY ×ΩA ×ΩB, n ∈ N. A straightforward inspection shows that the se-
quence (κn)

∞
n=1 is nested. The corresponding Cantor game has a set κ of admissible

quadruples, given by

κ = {((xi)∞i=1, (yi)
∞
i=1, (ai)

∞
i=1, (bi)

∞
i=1) : (xi, yi, ai, bi) ∈ E or

(xi+1, yi+1, ai+1, bi+1) ∈ E, for every i ∈ N};
heuristically, this means that the rules of the Cantor game require that, in any two
individual rounds of the underlying finite game, the players win at least once.
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