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Abstract

Rotating machinery is widely used across many industrial fields and functions
as the core of operations. Such machines usually work in harsh environments,
which accelerates machine degradation. To ensure reliability of rotating ma-
chinery, the implementation of condition monitoring (CM) and fault diagnosis
strategies is crucial for identifying anomalies at an early stage.

This thesis focuses on the development of a simulation-driven transfer
learning framework, with particularly emphasis on bearing fault diagnosis
across different rotational speeds. The framework defines a target domain
where the actual task takes place, and a well-defined source domain where
the fault-related knowledge is acquired. Through transfer learning, knowledge
gained from the source domain is effectively applied to real diagnostic tasks in
the target domain. To build the target domain, an open-source bearing dataset
is first used. After conducting experiments on the test rig at LUT University,
an experimental bearing dataset is constructed by collecting vibration signals
under different operating conditions.

In parallel, multibody dynamics (MBD) models are developed for generating
vibration responses that reproduce representative fault characteristics. To build
the source domain, a full-scale MBD model of the test rig is developed, where
the geometries of all components and faults are consistent with the physical
system. The model is then validated against the measurements, demonstrating
its accuracy in reproducing fault signatures. For large-scale data generation,
the computational cost of the MBD model is assessed in comparison to an
analytical model. This process provides valuable insights into how the system
dynamics and computational efficiency evolve with increasing model fidelity.

During the diagnostic model training stage, feature extraction methods are
integrated into the transfer learning framework. These methods are designed
to extract fault-related signatures across different operating conditions, while
preserving consistent physical information. Finally, the diagnostic model,
which is trained using the simulated-fault features, successfully distinguishes
bearing conditions in the measurement data. The results demonstrate the
proposed framework’s potential for addressing more complex scenarios in future
applications.

Keywords: condition monitoring, transfer learning, multibody dynamics
simulation, bearing modelling, feature extraction, fault diagnosis.
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CHAPTER 1

Introduction

Rotating machinery refers to equipment that operates rotational motion to
perform its function. Unlike static equipment such as pipes or vessels, rotating
machinery converts input energy into mechanical motion. It plays a pivotal
role in power transmission across a wide range of industrial sectors. Examples
include pumps, turbines, motors, and propellers, which serve as the core
components of many mechanical systems, analogous to the human heart.

With increasing demands for precision, reliability and sustainability in in-
dustries, condition monitoring (CM) has been essential for ensuring operational
effectiveness and optimal performance of rotating machinery [1], [2]. To enable
predictive maintenance strategies, CM identifies anomalies at an early stage
during operation that may indicate the development of severe damages. For
rotating machinery, fault diagnosis of rolling bearings is particularly critical,
as bearing faults account for approximately 30-50% of all machine failures [3],
[4]. Therefore, bearing fault diagnosis is a fundamental starting point for CM
of entire rotating systems.

1.1 Bearing fault characteristics

Since ball bearings are one of the most used components in rotating machinery
[5], deep-groove ball bearings with localized defects are selected as the targets in
this thesis. A typical ball bearing consists of four primary components: an outer
ring (OR), an inner ring (IR), rolling elements (REs) and a cage. Normally,
the OR is fixed to the bearing housing, while the IR rotates synchronously
along with the shaft. The cage maintains a uniform spacing between the REs
and rotates at a relative speed with respect to the IR.

When REs pass over a localized defect at a constant rotational speed,
periodic impulses are generated during each revolution. These impulses manifest
themselves at characteristic fault frequencies. Specifically, defects on the outer
race and the inner race generate vibration components at the ball-pass frequency
of the outer race (BPFO) and the ball-pass frequency of the inner race (BPFI),
respectively, which are the target fault frequencies in this thesis and defined as
[6]:
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BPFO (Hz) = ”g (1 - gcos(a)> , (1.1)
BPFI (Hz) = ”QfT (1 + gcos(a)) , (1.2)

where n is the number of rolling elements, f, is the rotational speed of the
IR and normally identical to the shaft rotational speed, d is the diameter
of the REs, D is the pitch diameter of the bearing, and « is the contact
angle, respectively. To visualize the parameters, Figure 1.1 shows the radial
cross-section of a ball bearing.

Figure 1.1: Radial ball bearing cross-section with contact angle due to axial
preload.

Typically, the contact angle a of a deep-groove ball bearing is assumed to
be zero. However, the introduction of an axial preload changes the contact
angle, which leads to an increase in the BPFO and a decrease in the BPFI, as
indicated by Equations (2.1) and (2.2). A detailed discussion of this effect is
presented in Paper A.

1.2 Transfer learning in fault diagnosis

Achieving fault diagnosis relies heavily on effective data acquisition, since
monitoring data is used to establish health indicators that extract fault-related
information from measured signals [7]. Although traditional data-driven deep
learning (DL) methods have achieved notable success in bearing fault diagnosis,
their performance heavily relies on a substantial amount of labeled data for
model training [4], [8], [9]. However, rotating machinery typically operates
under healthy conditions for most of its lifespan, making the acquisition of
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1.3. Simulation-driven transfer learning based on multibody dynamics
simulation

sufficient fault data from operating real systems both challenging and imprac-
tical [10]. This imbalance in training data between health and fault datasets
can adversely affect the performance of diagnostic models [11]. In addition,
collecting diverse fault scenarios from physical systems is both cost-intensive
and time-consuming [12]. To overcome such limitations, transfer learning (TL)
methods are considered as a promising alternative to conventional DL-based
training strategies [13], [14].

Unlike traditional DL approaches which train models independently within
isolated domain, TL involves two datasets respectively drawn from a source
domain and a target domain. The source domain typically consists of abundant
labeled data (containing foundational knowledge), whereas the target domain
represents a new task with limited labeled data where the acquired knowledge
is applied. By leveraging knowledge acquired from the source domain, TL
reduces the data preparation effort required for individual diagnostic cases.
Therefore, TL is particularly well-suited for scenarios with limited labeled data
[15]. Tt effectively mitigates data scarcity while enhancing diagnostic robustness
in practical industrial applications.

1.3 Simulation-driven transfer learning based
on multibody dynamics simulation

To reduce the reliance of TL on measurement data, simulation-driven methods
provide a scalable approach of generating large quantities of labeled data for
constructing the source domain [10], [16]. Although many analytical bearing
models have been adopted in TL applications [17], [18], the target domain is
constructed using data generation from a single bearing model. The limited
number of degrees of freedom (DOF) inherent in analytical models constrains
their ability to generate various fault data [19], especially compound faults
data.

For the development of more comprehensive diagnostic models, both the
diversity and the physical information of the simulation data are critical.
Multibody dynamics (MBD) simulations offer higher physical fidelity and are
therefore particularly well-suited for generating a wider range of fault scenarios
under realistic operating conditions. Recent studies have demonstrated the
effectiveness of simulation-driven approaches via MBD models in fault diagnosis,
highlighting their potential for broader applications [20], [21]. However, high-
fidelity MBD models typically lead to high computational cost, making large-
scale data generation more challenging than using analytical models [22].
Therefore, addressing this trade-off between model fidelity and computational
efficiency remains a major research challenge in TL applications.
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1.4 Scope of research

This thesis presents a simulation-driven TL framework based on MBD simu-
lations, with particularly emphasis on bearing fault diagnosis across different
rotational speeds. The main objectives of this research are summarized as
follows:

e Development of a simulation-driven TL framework for bearing fault
diagnosis.

e Establishment of in-house bearing fault dataset.

e Development and evaluation of MBD models with manageable computa-
tional cost.

e Integration of a robust signal processing procedure for bearing fault
diagnosis under varying operating conditions.

Figure 1.2: The TL framework for this thesis.

To this end, the proposed framework integrates three interconnected parts:
a target domain, signal processing, and a source domain, as illustrated in Figure
1.2.

In the target domain (left), before building our bearing dataset, the open-
source bearing dataset from Case Western Reserve University (CWRU) [23]
is first utilized. A short introduction of the CWRU database is presented in
Chapter 2.1. Following the establishment of our test rig and the fabrication of
faulty bearings, the experimental measurements are carried out on the test rig
presented in Chapter 2.2 and 2.3.

In the source domain (right), a single-rotor-bearing MBD model is built,
and the bearing fault data are generated for diagnosing the CWRU bearing
dataset. After collecting an in-house bearing dataset using the test rig, a virtual

6
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counterpart of the test rig is developed to construct a more comprehensive
source-domain dataset.

In the signal processing procedure, fault-related features are extracted from
both domains and used to train and fine-tune the diagnostic model through TL
approaches. The adaptive feature extraction and TL are detailed in Chapter 4.
Finally, the fine-tuned diagnostic model is used to diagnose the target domain
dataset.

The remainder of this thesis is organized as follows. Chapter 2 describes
the bearing dataset obtained from both the open-source CWRU database
and the test rig. Chapter 3 introduces the development of the multibody
dynamics model for the test rig. Chapter 4 introduces the TL framework and
the associated signal processing procedure. Chapter 5 summarizes the main
conclusions of the thesis and discusses future research directions. Summaries of
the appended papers are provided in Chapter 6, followed by the three papers.






CHAPTER 2

Target domain

In this Chapter, construction of the target domain is presented. The open-
source bearing dataset from the Case Western Reserve University (CWRU)
database is first introduced. Following the establishment of the test rig at
LUT University, the bearing vibration data are collected. The experimental
arrangements and faulty bearing fabrication are also introduced here.

2.1 Case Western Reserve University bearing
dataset

The CWRU bearing dataset [23] has been widely accepted as a standard refer-
ence, which provides access to the healthy and faulty bearing data [24], [25].
The test bench consists of a two-hp motor, a torque transducer and a dynamo-
meter, as shown in Figure 2.1. The test bearings support the motor shaft. One
SKF 6205-2RS deep-groove ball bearing is used for the drive-end bearing, and
one SKF 6203-2RS is used for the fan-end bearing. Single-point faults were
introduced to the test bearings using electro-discharge machining with different
fault diameters. Vibration signals are collected by several accelerometers under
healthy and single-fault bearings at both drive-end and fan-end.

In Paper C, a dataset comprising one healthy bearing and three bearing
fault types, including an inner-race fault, an outer-race fault and a RE fault,
is used. The selected fault diameters are 0.021 inches (0.53 mm) for all cases.
The fault depths are 0.05 inches (1.27 mm)for both the inner race and outer
race fault, and 0.15 inches (3.81 mm) for the RE fault. Each case is recorded
for 10 seconds at a sampling rate of 12 kHz. For demonstration, an example of
the one-second acceleration signals for all cases are shown in Figure 2.2.

2.2 Test rig arrangement

The experiments were carried out in the Laboratory of Machine Dynamics at
LUT University, Lappeenranta, Finland, in April 2025. The experimental test
rig, illustrated in Figure 2.3, comprised an AC motor driving a shaft, two discs,
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Figure 2.1: The CWRU test bench [23].

(@) (b)
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Figure 2.2: The CWRU data for four bearing conditions: (a) healthy bearing;
(b) bearing with an outer-race fault; (c) bearing with an inner-race fault; (d)
bearing with a RE fault.

two bearing housings and two deep-groove ball bearings. Based on the test
rig design, the SKF 6007-27Z ball bearing was selected. The ball bearings were
positioned at the drive end (DE) and non-drive end (NDE) of the shaft, with
the NDE bearing intentionally selected as the target for fault diagnosis.

To acquire vibration responses, a PCB 356A03 tri-axial accelerometer was
mounted on the NDE bearing housing, and it was connected to a DeweSoft
SIRIUS@®) data acquisition unit operating at a 10 kHz sampling rate.

10



2.3. Faulty bearing fabrication

A remote optical tachometer (ROS-W) was installed adjacent to the DE of
the shaft to monitor the shaft rotational speed. To investigate bearing fault
diagnosis under varying rotational speed, two rotational speeds were used in
this test. Although the nominal rotational speeds were set to 600 RPM and
1200 RPM, the measured rotational speeds were 588 RPM (f, = 9.8 Hz) and
1188 RPM (f, = 19.8 Hz). These measured rotational speeds were used as the
input rotational speeds for the simulations presented in Chapter 3.

Figure 2.3: The experimental setup of the test rig.

Figure 2.4: The test ball bearings with single ORF (left) and single IRF (right).

2.3 Faulty bearing fabrication

To ensure that the BPFO and BPFI can be clearly identified in the vibration
response, artificial defects were designed as rectangular-shaped dents on the
raceways. Two ball bearings with a single localized fault, one outer race fault
(ORF) and one inner race fault (IRF), were fabricated using laser machining, as
shown in Figure 2.4. The fabrication was conducted in the Laboratory of Laser
Processing and Additive Manufacturing at LUT University, Lappeenranta,
Finland, in April 2025. The machining process was performed under identical
operating parameters and cutting angles to maintain consistency. Each defect

11
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was measured by a microscope to be approximately 2 mm in length, 0.5 mm in
width and 0.2 mm in depth.

2.4 Measurement data from the test rig

The vertical vibration data of the NDE bearing housing are used in Paper
A and Paper B. For demonstration, an example of the one-second time
waveform for all three cases are shown in Figure 2.5.

—
&

@ Amplitude (g)

Amplitude (g)

—~~
()
~—

Amplitude (g)

Time (s)

Figure 2.5: The measurement data from the test rig for three bearing conditions
when f, = 9.8 Hz: (a) healthy bearing; (b) faulty bearing with an ORF; (c)
faulty bearing with an IRF.
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CHAPTER 3

Source domain

In this Chapter, source-domain construction using multibody dynamics (MBD)
simulations is presented. Since the MBD model for our test rig is more
comprehensive, the single-rotor-bearing model is not presented in this chapter.
A virtual counterpart of the test rig is built using the MBD software MSC
Adams [26], which all dimensions consistent with those of the physical test
rig. Subsequently, to preserve manageable computational cost, a high-fidelity
(hi-fi) bearing model with simplified cage-pocket interaction is introduced. For
comparison, an analytical bearing model is implemented within the same MBD
model. The model validation and comparative analysis between two bearing
models are summarized here.

3.1 Multibody dynamics model

The full MBD assembly is built using the MBD software MSC Adams [26], as
depicted in Figure 3.1. In this model, the shaft is modelled as a flexible body,
while all other components are considered as rigid bodies. An overview of the
model topology is provided in Figure 3.2. At the drive-end (DE) part, the shaft
is connected to the motor with a cylindrical joint with an axial spring-damper
element, allowing rotation and displacement about axial direction (X-axis in
Figure 3.1) under axial preload. A velocity-dependent driving torque is directly
applied to the cylindrical joint, and the axial spring-damper element is included
to control longitudinal motion and mitigate additional axial vibration.

To reduce the computational load, the DE bearing is modelled as a bushing
element, since the non-drive-end (NDE) bearing is the primary objective of
the fault diagnosis. The bushing representation comprises three rotational and
three translational spring-damper elements. In contrast, the NDE bearing is
modelled using both the hi-fi bearing model and the analytical bearing model
for comparison. Two disks are rigidly fixed to the shaft between the two bearing
housings and rotate about the same longitudinal axis as the shaft.

The simulated vibration responses are obtained at the NDE bearing housings,
matching the location of the accelerometer in the experimental setup as shown
in Figure 2.3. The interfaces between the housings and the supporting platform

13



Chapter 3. Source domain

Figure 3.1: The full-scale MBD model of the test rig. The Y and Z axes are
the radial direction and the X axis is the longitudinal direction in the global
coordinate.

are represented by undamped bushing elements. Because the actual stiffness
and damping values of these connections are not directly measurable, their
parameters are calibrated to match the two dominant modal frequencies of the
test rig obtained from experimental modal analysis. The calibrated results are
shown in Table 3.1, ensuring that the simulated structural boundary conditions
approximate the dynamic behavior of the physical system at given rotating
speeds.

Table 3.1: The modal frequencies after calibration in the simulation against
the experimental modal analysis.

1t shaft vertical bending mode 15t shaft lateral bending mode
(H2) (H2)
Experiments 31.25 33.75
Simulations 33.82 34.93
Side View Top View

!

3.2 Bearing models

In the hi-fi bearing model, the 3D CAD geometries of the IR and OR are
obtained from the manufacturer [27] and the complete assembly is shown in

14



3.2. Bearing models

Figure 3.2: The topology of the proposed MBD model.

Figure 3.3: The complete hi-fi bearing model.

Figure 3.3. The cage is modelled as a rigid torus and connected to the IR
through a revolute joint at its center of mass. Following the findings reported
in [28], contact forces between the cage pockets and the REs are neglected in
this study, as they significantly increase the computational time while offering
limited benefit to the simulated fault characteristics.

To represent the ball-cage interaction, an in-plane joint is applied based on
the work in [29]. Each RE is connected to the cage by an in-plane joint, allowing
three rotational DOF about the X’, Y’ and Z’ axes and two translational DOF
about the X’ and Y’ axes in the reference frame of the cage, as illustrated in
Figure 3.4. Each in-plane joint is attached to the cage in its reference frame at
the corresponding RE position and rotates along with the cage. Consequently,
the REs are constrained to remain within the same geometric plane, thereby
preserving equal angular spacing between REs while rotating.

Following the artificial faulty bearings in Figure 2.4, the faults are modelled
by introducing cut-off geometries to replicate the dimensions of the actual
faults, as shown in Figure 3.5.

15
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Figure 3.4: Each RE is constrained by an in-plane joint (left), which rotates
along with the cage about the same axis and eliminates the DOF about the
perpendicular direction (black arrow). In each in-plane joint (right), five red
arrows depict five corresponding DOF .

In contrast, a 6-DOF analytical ball bearing model considering both an
elastohydrodynamic film and non-Hertzian contact deformations is implemented
within the same MBD model. This bearing model is detailed in [5], [30].

< 2m
Q% 't\"” Qﬁ.‘i\'«\
0.2 mm
e%t 0.2 mm

Figure 3.5: The hi-fi bearing model with single ORF (left) and IRF (right).

3.3 Comparison of the MBD models and the
experimental measurements

For clarity, two cases for comparison are hereafter referred to as:

e Case 1: the DE bearing is modelled as a bushing element and the NDE
bearing is modelled as a hi-fi bearing presentation.

e Case 2: the DE bearing is modelled as a bushing element and the NDE
bearing is modelled as an 6-DOF analytical bearing representation.

To validate the fault characteristics, the envelope spectra of three scenarios

16
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Figure 3.6: Envelope spectra of the vertical NDE housing acceleration for all
cases: (al) measurement data with single ORF; (a2) measurement data with
single IRF (b1) Case 1 with single ORF (b2) Case 1 with single IRF (c1) Case
2 with single ORF (c¢2) Case 2 with single IRF.

are compared, namely measurement data, Case 1, and Case 2. The results for
the single ORF case are presented in Figures 3.6(al), (bl) and (c1). Both the
measurement and simulated results exhibit comparable fault characteristics,
with dominant frequency components corresponding to the BPFO and its
harmonics. However, in Figure 3.6(b1), the amplitude of the second BPFO
is higher than that of the first BPFO in Case 2. This discrepancy can be
attributed to the simplified geometry of the simulated ORF, which generates

17
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two impacts when each RE rolls in and out the defect, thereby amplifying
the second BPFO. Further investigations of the influence on simulated fault
geometry and model calibration will be addressed in future work.

The results for the single IRF case are presented in Figures 3.6(a2), (b2) and
(c2). The characteristics of BPFIs and their sidebands are clearly visible in the
simulated results, as shown in Figures 3.6(b2) and (c2). These results highlight
that the MBD model successfully reproduces the bearing fault characteristics
that can be used for TL applications.

To evaluate the computational efficiency, Case 1 and Case 2 are simulated
under identical computational conditions and compared with a model with two
simplified bearings (modelled as bushing element). Table 3.2 shows an example
of the computational cost of the proposed MBD framework, highlighting its
suitability for large-scale fault simulation studies. The simulation time of Case
1 is only 1.13 times compared to Case 2, which is acceptable for generating
massive simulated data. Moreover, the proposed MBD model is capable
of accommodating more complex fault conditions, including RE faults and
compound fault scenarios. More discussion and details are presented in Paper
A.

Table 3.2: Simulation time of three scenarios. The simplified bearing is modelled
as a bushing element.

Scenarios fr (Hz) Simulation period (s) Step size (s) Elapsed time (s)
Case 1 19.8 10 1076 8251.25
Case 2 19.8 10 1076 7255.17
2 simplified bearings  19.8 10 1076 5408.75

18



CHAPTER 4

Simulation-driven transfer learning
framework

This Chapter introduces the TL framework and the associated signal processing
procedure. The goal is to diagnose three bearing conditions: outer-race fault
(ORF), inner-race fault (IRF) and healthy status. The target domain is
constructed by the bearing dataset measured from our test rig presented in
Chapter 2.4, while the source domain is built by the simulation data generated
by the MBD model in Case 2 presented in Chapter 3.3. Next, the feature
extraction procedure for varying rotational speed is applied on both domains
to acquire the fault-related features (knowledge for fault diagnosis). These
features are then used to train and fine-tune a diagnostic model. Finally, this
chapter concludes the results of the proposed simulation-driven TL framework.

4.1 Transfer learning framework

As introduced in Chapter 1.2, TL enables the diagnostic model to learn fault
discrimination from the source domain and transfer this knowledge to the
target domain. The proposed TL framework is shown in Figure 4.1.

Figure 4.1: The proposed TL framework.

The source domain is composed of the bearing vibration data generated by
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Chapter 4. Simulation-driven transfer learning framework

the MBD model that incorporates a 6-DOF analytical bearing representation.
Meanwhile, the target domain contains the bearing vibration data measured
from the physical test rig. Initially, feature extraction techniques are applied
to the source domain to capture fault-related features while preserving their
physical interpretations. The extracted features are then used to construct a
pre-trained diagnostic model.

In the fine-tuning stage, the parameters of the feature extraction stage
are frozen, and only the parameters of the diagnostic model are fine-tuned
using a small portion of the target domain dataset. This fine-tuning process
allows the model to effectively adapt to real data and improves its classification
performance.

4.2 Feature extraction

Feature extraction in fault diagnosis refers to the transformation of raw data
into representative features that highlight fault-sensitive information. Therefore,
reliable feature extraction is essential for improving fault diagnosis performance
[31]. Based on the bearing fault characteristics introduced in Chapter 1.1,
this research aims to design a feature extraction procedure that tracks fault
frequencies across different rotational speeds. The proposed feature extraction
procedure is depicted in Figure 4.2.

Figure 4.2: Feature extraction procedure.

Both source domain and target domain data are sampled at 10 kHz frequency,
resulting in a 5000 Hz range. A low-pass filter with a 4000 Hz cut-off frequency
is first applied to suppress aliasing and high-frequency noise. In the field of
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Figure 4.3: Envelope order spectra of the measurement data at two rotational
speeds: when f, = 9.8 Hz, BPFO = 4.59 order (left); when f. = 19.8 Hz,
BPFO = 4.6 order (right).

bearing fault detection, since bearing fault signals are usually modulated by
low-frequency waveforms, the Fast Fourier Transform (FFT) usually falls short
of identifying fault frequencies [6], [32]. Instead, envelope analysis (envelope
spectrum) that uses the Hilbert transform to extract envelope signals, followed
by FFT, is widely accepted as an efficient method to demodulate vibration
signals and to identify their fault frequencies and harmonics [33]. The envelope
spectra of the target domain and source domain are shown in Figure 3.6 and
discussed in Chapter 3.3.

Figure 4.4: Construction of the feature matrix, where each row corresponds to
a sample and each column represents a feature.

According to the bearing fault frequencies introduced in Chapter 1.1, the
BPFO and BPFI vary with shaft rotational speeds. To represent the same
fault type, the fault frequencies should be mapped to consistent locations in
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Figure 4.5: Group scatter after feature extraction: the source domain data
(left) and the target domain data (right).

the feature matrix for diagnostic model training. Therefore, envelope spectra
are converted into envelope order spectra using order tracking [34], where
features are represented by multiples of rotational orders rather than absolute
frequencies, as shown in Figure 4.3.

To construct the feature matrix, the order axis of each envelope order
spectrum is resampled at 0.5-order intervals, ranging from 0.5 to 50, leading
to 100 data points. The amplitude within each interval is computed using
root-mean-square (RMS) value. As shown in Figure, the RMS amplitudes of
the resampled envelope order spectrum are used as input features for diagnostic
model training, resulting a feature matrix with a dimensionality of the numbers
of samples multiplied by 100.

To verify that feature extraction process preserves the critical fault-related
information, ¢-distributed Stochastic Neighbor Embedding (¢-SNE) is applied
to visualize the high-dimensional data. By projecting the data onto two t-SNE
components, as shown in Fig. 4.5, the three different conditions are well separ-
ated in both the source and target domains, confirming that the envelope order
spectra effectively capture the bearing fault signatures at different rotational
speeds.

4.3 Diagnostic model

The diagnostic model (classifier) is implemented using a feed-forward neural
network. After evaluating several network configurations, the final architec-
ture consists of three fully-connected layers with ReLLU activation function,
followed by an output layer with Softmax classification [35]. Table 4.1 lists the
architecture of the diagnostic model and the visualization is shown in Figure
4.6.

In the fine-tuning stage, the parameters of the fully-connected layers are
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frozen, and only the output layer (dense_4) of the diagnostic model is fine-tuned
using a small portion of the target domain dataset. This fine-tuning process
allows the model to effectively adapt to real data and improves its classification
performance.

Table 4.1: Architecture of the diagnostic model.

Layer(type) Output shape Parameters
dense_1 (Dense) (None, 128) 12928
dropout_1 (Dropout)  (None, 128) 0
dense_2 (Dense) (None, 128) 16512
dropout_2 (Dropout)  (None, 128) 0
dense_3 (Dense) (None, 128) 16512
dropout_3 (Dropout)  (None, 128) 0
dense_4 (Dense) (None, 3) 387

Figure 4.6: Visualization of the design model.
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4.4 Diagnostic results

Both the source domain and target domain contain three types of the labeled
data, namely IRF, ORF and healthy. Table 4.2 lists the dataset arrangement.
The source domain comprises a total of 378 simulated samples, whereas the
target domain comprises a total of 180 experimental samples.

After constructing the pre-trained diagnostic model using 90% of the simu-
lated data for training and 10% for validation, the model is first evaluated on
the experimental dataset. The diagnostic result is shown in Figure 4.7(a).

Figure 4.7: Confusion matrix of bearing fault diagnosis at different stages: (a)
before fine-tuning (b) after fine-tuning by using 10% experimental data (c) after
fine-tuning by using 20% experimental data (d) fine-tuned model re-evaluation
on the simulation data.

The pre-trained model successfully distinguishes the IRF and ORF cases,
indicating that the simulated features well represent the realistic faulty bearing
behavior. However, it performs poorly on healthy data, resulting in an overall
accuracy of only 65%. This is because of the discrepancy between the simulated
and experimental healthy data, highlighting the necessity of applying a TL
method to adapt the pre-trained model to real data.
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Table 4.2: Dataset arrangement for TL framework.

Scenarios Faulty condition Simulated samples Experimental samples

1 IRF 67 30
2 IRF 67 30
3 ORF 67 30
4 ORF 67 30
5 Healthy 55 30
6 Healhty 55 30

As shown in Figures 4.7(b) and (c), after fine tuning the diagnostic model
using 10% of the measurement data, 83.3% of the healthy data are identified,
leading to an overall classification accuracy of 94.4%. Increasing the fine-tuning
dataset to 20% further improves the overall accuracy to 97.2% with 92.9%
of the healthy data identified. To ensure that the model does not overfit
the measurement data, the updated diagnostic model is re-evaluated on the
simulated dataset after fine-tuned by 20% of the measurement data. As shown
in Figure 4.7(d), the updated model achieves 100% overall accuracy on the
source-domain data, demonstrating it does not overfit the fine-tuning data.
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CHAPTER 5

Summary & Future work

This thesis presents a simulation-driven transfer learning framework (TL) that
successfully diagnoses real bearing faults across varying rotational speeds, using
data generated by multibody dynamics (MBD) models. The contributions of
this work are summarized as follows:

e Model validation against the experiment data demonstrates the MBD
model is capable of reproducing representative fault features.

e Comparative analysis between the hi-fi bearing and the analytical bearing
representations highlights the computational efficiency of the proposed
model.

e Feature extraction procedure successfully captures the fault-related sig-
natures across different rotational speeds, highlighting its potential for
addressing varying operation conditions.

e The fine-tuning process in TL significantly improves the diagnostic per-
formance by a small portion of real data.

However, the results reveal discrepancies between the MBD simulations
and the experimental measurements, indicating the need for further model cal-
ibration, particularly in the estimation of uncertain model parameters such as
friction coefficient, stiffness and damping values. Moreover, the target-domain
dataset in this thesis lacks sufficient diversity, which limits the comprehensive
evaluation of the proposed feature extraction methods. Furthermore, the ideal-
ized bearing faults may not fully represent real fault characteristics, suggesting
that more extensive case studies with realistic fault types are required to further
enhance robustness of the proposed framework. Based on these findings, the
directions for future work are summarized as follows:

¢ MBD model calibration
Several estimated model parameters are currently selected based on
literature review or trial-and-error approaches. Future work will focus
on parameter optimization using experimental measurements to reduce
discrepancies between simulated and measured responses.
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Chapter 5. Summary & Future work

e Realistic faults and multi-fault diagnosis
To enrich the target domain dataset, a new test rig is currently under
construction. It allows for the introduction of different levels of misalign-
ment, unbalance and soft support conditions. Moreover, bearing faults
with more realistic geometries and degradation characteristics should
be investigated. Future studies will investigate various combinations of
compound faults to further validate the proposed framework.

e TL architectures and the associate feature extraction methods
Although the proposed TL framework performs well at the current stage,
further investigation is required as the size of the target-domain dataset
increases. Moreover, it is important to investigate the effect of the amount
of fine-tuning data. The goal is to minimize the required fine-tuning
samples, ideally enabling the diagnostic model to be fine-tuned using only
health-condition data. Furthermore, more advanced architectures, such
as convolution neural network (CNN), may provide improved robustness
and diagnostic performance.
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CHAPTER 6

Summary of appended papers

Paper A

Y. H. Pai, K. Shehzad, P. T. Piiroinen, H. Johansson, C. Nutakor, J. Sopanen,
I. Poutiainen, S. Kumar, T. Choudhury, ”A full-scale multibody dynamics
framework for simulation-driven transfer learning in bearing fault diagnosis,”
To be submitted for international publication.

This paper presents the development of a full-scale MBD model that incorpor-
ates a hi-fi bearing representation. This work aims to reproduce bearing fault
characteristics for data generation in TL applications, while preserving manage-
able computational efficiency. To do this, a test rig is built to acquire vibration
signals and to construct experimental dataset. Subsequently, a full-scale MBD
model is developed and validated against the experimental measurements. To
further investigate the simulated fault features and computational efficiency,
an analytical bearing model is implemented within the same MBD framework
and used as a benchmark for comparison. The fault frequencies generated by
the hi-fi bearing model are successfully reproduced, matching the experimental
results and theoretical predictions. The comparative analysis highlights that
the computational time of the hi-fi bearing model is only 1.13 times compared
to the analytical model. In addition, the comparison provides deeper insight
into the simulated fault features when the model fidelity increases. However,
discrepancies remain between the simulated fault patterns and the experimental
measurements, indicating that further model calibration is required in future
work.

Paper B

Y. H. Pai, P. T. Piiroinen, H. Johansson, S. Kumar ”Simulation-driven dia-
gnostic method via a multibody dynamics model for rotating machinery,” Submitted
to the 12th IFToMM International Conference on Rotordynamics 2026.

To develop a diagnostic model for bearing fault diagnosis across different ro-
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tational speeds, this paper proposes a simulation-driven TL framework based
on the MBD model that incorporates the analytical bearing representation
introduced in Paper A. The source-domain dataset is fully generated using the
MBD model, while the target-domain is constructed by the experimental meas-
urements reported in Paper A. Subsequently, feature extraction is performed
using order envelope spectra to capture fault-related features across different
rotational speeds. The extracted features from the source domain are used
to train a pre-trained diagnostic model. This model is then fine-tuned using
a small subset of the target-domain data, enabling effective adaption to the
real measurements. The proposed simulation-driven TL framework successfully
classifies the experimental data, highlighting its potential for extension to more
complex fault scenarios in future industrial integrations.

Paper C

Y. H. Pai, P. T. Piiroinen, S. Kumar and H. Johansson, ”Machine-Learning
Based Fault Diagnosis for a Rotordynamic System Using Multibody Simu-
lations,” Proceedings of 15th International Workshop on Structural Health
Monitoring (IWSHM), 2025.

This paper presents a TL framework for bearing fault diagnosis based on a
single-rotor-bearing MBD model. The source domain is constructed by the
simulated data, while the target domain is formed using the open-source bearing
fault dataset from Case Western Reserve University (CWRU). During feature
extraction procedure, the fault-related features are extracted from envelope
spectra using wavelet packet decomposition. An autoencoder neural network is
subsequently applied to identify and select the most critical features. Finally,
the diagnostic model is established within the TL framework and successfully
classifies bearing faults in CWRU dataset. This paper lays a solid methodology
foundation for subsequent studies presented in Paper A and Paper B.
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Abstract

Bearing fault diagnosis is a critical aspect of condition monitoring in rotating machinery.
Conventional deep learning approaches rely on large labeled datasets from operating ma-
chines, which are often impractical and costly to obtain in industrial applications. As an
alternative, simulation-driven fault diagnosis provides a scalable data generation for training
diagnostic models. Therefore, developing a comprehensive and physical consistent model
for data generation is essential. This study presents a full-scale multibody dynamics (MBD)
model that incorporates a high-fidelity ball bearing representation for a physical test rig,
designed to reproduce bearing fault characteristics with manageable computational cost for
simulation-driven approaches. The MBD model is first validated against the experimental
measurements from the physical test rig, demonstrating its capability to accurately replicate
bearing fault signatures. A comparative analysis with an analytical bearing model further
highlights the advantages of the proposed MBD model in both accuracy and computational
efficiency. By capturing more detailed physical interactions and realistic operating defect
responses, this study advances simulation-driven fault diagnosis and provides a promising
foundation for future integration with transfer learning methods in industrial applications.

Keywords: Multibody dynamics simulation; bearing fault diagnosis; ball bearings;
simulation-driven transfer learning; data generation.
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1. Introduction

Condition monitoring systems are integral to the reliable operation of rotating machinery
to ensure operational effectiveness and working performance at optimal levels [1-3]. They
serve as predictive maintenance tools for identifying anomalies at an early stage during
operation that can indicate the development of severe damages. For rotating machinery, fault
diagnosis of rolling bearing plays a pivotal role, given that such faults are responsible for
30% to 50% of all machine failures [4-7]. In the past, the application of deep learning (DL)
methods in bearing fault diagnosis has been widely studied [7-9]. Such approaches extract
fault-related features automatically from measurement data, rather than rely on engineers’
experience, and subsequently diagnose the current condition of machines.

Although DL methods have demonstrated significant success in bearing fault diagnosis,
their performance heavily depends on a substantial amount of labeled data for model training
[10, 11]. In practice, since rotating machines operate under normal conditions for most of
their lifespan, it is challenging to obtain sufficient fault data from real systems in operation
[12]. An imbalance in training data between health and fault datasets could adversely affect
the performance of diagnostic models. In addition, collecting various types of faults from
physical systems is both cost intensive and time consuming. To overcome such limitations,
transfer learning (TL) methods are considered a promising alternative to conventional data
generation approaches for training DLs [10, 13-15]. Applications of TL enable diagnostics
models to leverage knowledge acquired from one or multiple source domains and apply them to
relevant, but different, target domains [16, 17]. Such approaches facilitate effective condition
monitoring, especially in the field of rotating machinery, where fault data is insufficient
and thereby enhancing the adaptability and robustness of diagnostic models across varying
operating conditions.

Simulation-driven methods, using dynamic bearing models, provide a straightforward
way to construct a source domain for TL methods [11, 18]. The primary objective is to
generate sufficient bearing fault signatures from analytical models or numerical simulations
for diagnostic model training. In analytical bearing models, simplistic quasi-static or dynamic
models of bearings, with localized defects have laid a solid foundation for reproducing bearing
fault characteristics [19-21]. The joints between components are assumed to be ideal and
formulated by kinematic constraints, thereby accelerating the generation of simulated data
for TL applications. Based on these analytical bearing models, several studies have proposed
simulation-driven TL frameworks for bearing fault diagnosis [22-24|. However, the limited
number of degrees of freedom (DOF) inherent in analytical models constrains their ability
to simulate a wider range of defective conditions, thus limiting the applicability of TL
approaches. For instance, analytical models often fall short in accurately capturing dynamic
behavior associated with localized defects on rolling elements. The limitation arises primarily
because rolling elements are typically modeled as a single aggregated body rather than
as a set of discrete components. Moreover, localized defects are frequently represented in
two dimensions, which constrains the analysis and fails to account for the complex three-
dimensional interactions between individual rolling element and the defect. To overcome
such weaknesses and thus obtain more detailed dynamic behaviors within TL frameworks,
comprehensive bearing models incorporating a higher number of DOF, accounting for more
complex non-linear dynamics, have been suggested [25, 26].



Multibody dynamics (MBD) simulation has been widely accepted as a comprehensive and
accurate modelling technique in mechanical engineering [27]. It is particularly well-suited
for bearing models and large-scale rotor systems, as it enables a precise representation of
given diametral clearances and contact mechanisms [28-32]. Therefore, MBD simulations,
characterized by the flexibility to accommodate diverse system configurations, offer significant
advantages in constructing source domains for TL applications. Such models allow for
simulations and control of various defective scenarios. However, an increase in model
complexity significantly extends computational time and makes large-scale data generation
more challenging. For instance, Vehvilidinen et al. [28] developed a full-rigid-body MBD
model for a ball bearing, using a polygonal contact method, to investigate the responses of an
outer race fault in a bearing. Although this model successfully reproduced the distinct fault
frequencies of the outer race defect, the average computational time required for an 8-second
simulation was approximately 10 hours. Giraudo et al. [33] developed an MBD model with
all DOF considered to investigate the dynamic behavior of spherical roller bearings with
localized defects, precisely reproducing fault frequencies with a maximum deviation of 0.22%
from theoretical values. However, the simulation was computationally expensive, requiring
one day to compute 1.26 seconds. Hence, to strike a balance between computational efficiency
and accurate representation of fault characteristics, an appropriate level of simplification for
bearings in MBD models is essential, particularly for TL applications.

To the best of our knowledge, comprehensive MBD models suitable for simulation-driven
diagnostic model have not yet been developed and tested [25]. Although existing MBD models
accurately reproduce bearing fault frequencies, their computational cost is prohibitively high
to generate large-scale datasets required for diagnostic model training, even when flexible
bodies are neglected. In addition, most proposed approaches only simulate bearing dynamics
rather than a complete rotor system, and many are only tested on public experimental
datasets [7]. As a result, fault data generated from single-bearing models may not adequately
represent real rotating machinery, particularly in cases involving compound faults from other
components in rotating systems.

The present study aims to advance fault diagnosis in rotating machinery by using full-scale
rigid-flexible MBD simulations to construct source-domain data for TL applications. The
proposed MBD framework is to highlight its computational efficiency for full-scale simulations
and its modularity for various machine operating scenarios. To do this, a dedicated test rig is
established to acquire signals from the defective ball bearings. Next, a full-scale MBD model
is developed to reproduce bearing fault characteristics, are evaluated and validated against
experimental results. Finally, a comparative analysis of the proposed high-fidelity bearing
model and an analytical bearing model is performed. Both bearing models are implemented
within the same test rig framework to highlight the computational efficiency on one hand and
the modularity of the MBD framework on the other. The comparison not only demonstrates
the accuracy of the simulated fault characteristics, but also provides valuable insights for the
future development of simulation-driven approaches in bearing fault diagnosis.

The remainder of this paper is organized as follows. Section 2 introduces the methodology
for bearing fault analysis and describes the target fault characteristics in this study. Section
3 illustrates the experimental arrangements, including the configuration of the experimental
test rig and the fabrication of defective ball bearings. The systematic development of the
proposed MBD model is detailed in Section 4, covering geometric modelling, constraints and



contact mechanisms. This section also presents the proposed high-fidelity bearing model and
a 6-DOF analytical bearing model. Section 5 validates the proposed MBD model against
the experimental measurements, followed by a comparative analysis of two bearing models
to highlight their respective advantages and limitations. Finally, Section 6 provides the
concluding remarks of this study.

2. Bearing fault analysis

A typical ball bearing comprises four primary components: an outer ring (OR), an inner
ring (IR), rolling elements (REs) and a cage. In industrial applications, the OR is normally
fixed on the bearing housing, while the IR rotates synchronously along with the shaft. The
cage maintains a uniform spacing between the REs and rotates at a relative speed with
respect to the IR.

When defects occur in ball bearings, they typically generate periodic impulses that appear
at the characteristic frequencies when the REs roll over a local defect at a constant rotating
speed in every revolution. The fault frequencies associated with the OR and IR are related to
the ball-passing frequency of outer race (BPFO) and the ball-passing frequency of inner race
(BPFI), which are the target fault frequencies in this study and defined as for instance in [34]:

BPFO (Hz) = ”; <1 - %COS(&)) , (1)
BPFI (Hz) = "2f (1 + %cos(a)> : 2)

where n is the number of rolling elements, f,. is the rotational frequency of the IR and identical
to the rotational frequency of the shaft in this study, d is the diameter of the REs, D is the
pitch diameter of the bearing, and « is the contact angle, respectively.

Rolling bearing fault signals are characterized by both amplitude and frequency modula-
tion due to the nonstationarity of dynamic behavior. These signals usually interfere with
the identification of bearing fault frequencies when applying the Fourier transform to the
measurement data. Instead, signal demodulation needs to be conducted before applying
the Fast Fourier Transform (FFT) [34-36]. In the field of bearing fault detection, envelope
analysis (envelope spectrum) that uses the Hilbert transform to extract envelope signals,
followed by FFT, is widely accepted as an efficient method to demodulate vibration signals
and to identify their fault frequencies and harmonics [37]. In this study, therefore, both
simulated and experimental results are presented after the envelope spectrum has been
applied when comparing bearing fault frequencies. Since arbitrary impulse oscillations are
removed, the main frequency components in the envelope spectra from the simulated signals
are expected to closely correspond to those observed in the experimental results.

3. Experimental arrangement

In this study, ball bearing fault diagnosis was conducted using the experimental test setup
illustrated in Fig. 1. The bearings used in this study were standard SKF 6007-2Z deep-groove
ball bearings, featuring 11 REs and a bore diameter of 35 mm. The detailed specification



of the bearing type is provided in Table 1. Two ball bearings were mounted at the drive
end (DE) and non-drive end (NDE) of the shaft, with the faulty bearing placed at the NDE
for fault analysis. The shaft had a total length of 600 mm and a diameter of 12 mm. Two
discs were mounted on the shaft, each with a diameter of 150 mm, a thickness of 10 mm, and
a mass of 1.69 kg. The first disc was located at 222.5 mm from the DE, while the second
disc was located 420 mm from the same reference point, leading to a distance of 297.5 mm
between the two discs.

An AC electric motor (Thurm K21R 63 K 2 H, 0.18kW) was mounted at the DE and
connected to the shaft via a flexible coupling. The motor rotation speed was controlled by a
three-phase inverter with an operating range of 0-2765 revolutions per minute (RPM). The
shaft was monitored using four eddy current sensors (SKF-CMSS 785), arranged in horizontal
and vertical pairs near the locations of the two weight discs. A remote optical LED sensor
(ROS-W) was installed near the motor to measure the rotational speed. Additionally, a tri-
axial accelerometer (PCB 356A03) was mounted on the NDE bearing housing to capture the
vibration responses. The accelerometer was connected to a data acquisition unit (DeweSoft
SIRIUS®)), and the sampling rate was set to 10 kHz.

(a)

NDE Bearing DE Bearing Motor
NDE bearing DE bearing
housing . housing
Discs Tachometer

(b) (©)

Accelerometer

Fig. 1: The experimental setup of the test rig: (a) the arrangement of the sensors and the components (b)
the location of the accelerometer (c) the standard SKF 6007-2Z deep-groove ball bearing.



Two ball bearings with a single localized fault, outer race fault (ORF) and inner race fault
(IRF) were fabricated by laser machining as shown in Fig. 2. The machining process was
conducted under identical operating parameters and cutting angles to ensure consistency. In
both cases, the bearing faults were positioned approximately at, and oriented perpendicular
to, the centerline of their respective raceways. Each fault measured approximately 2 mm in
length, 0.5 mm in width and 0.2 mm in depth.

Four sets of vibration acceleration measurements were conducted under faulty bearing
conditions at two distinct rotational speeds, as shown in Table 2. The nominal motor speeds
were set to 600 RPM (f, = 10 Hz) and 1200 RPM (f, = 20 Hz). However, the actual
speeds of the shaft were measured as 588 RPM (f, = 9.8 Hz) and 1188 RPM (f, = 19.8 Hz),
respectively. These experimentally determined rotational speeds were subsequently adopted
in the simulations. All acceleration signals were recorded after the shaft speed stabilized at
the target rotational speeds.

Table 1: Specifications of SKF 6007-2Z deep-groove ball bearing.

Denotation Dimension Value (mm)
d Ball diameter 7.94

D, Outside diameter 62

Dy Bore diameter 35

W, Ring width 14

D Pitch diameter 48
Rout Radius of outer race way 3.99
R;, Radius of inner race way 3.99

C, Radial internal clearance 0.03

Fig. 2: The artificial ORF (left) and IRF (right) are created by laser machining.
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Fig. 3: The full-scale rigid-flexible MBD model. The Y and Z axes are the radial direction in the global
coordinate, and the X axis is the longitudinal direction in the global coordinate.

Table 2: Experimental measurement sets.

Set Condition Rotational frequency f, (Hz)

1 ORF 9.8
2 ORF 19.8
3 IRF 9.8
4 IRF 19.8

4. Development of the rigid-flexible hybrid MBD model

To replicate the experimental setup and reproduce the simulated vibration signals, a
full-scale MBD model is built using the MBD analysis software, MSC Adams/View (Adams),
with all dimensions consistent with those of the physical system. In this model, the shaft
is modelled as a flexible body, while other components are considered to be rigid bodies.
To further highlight the benefits of this MBD framework for data generation, two different
bearing models are introduced, a high-fidelity (hi-fi) bearing model and an analytical bearing
model. The hi-fi bearing model is designed to incorporate more realistic dynamic behavior
with efficient computational cost, while the analytical bearing model serves as a benchmark
for comparative analysis between two models. The development of the two bearing models is
detailed in Section 4.2 and Section 4.3.



4.1. Connections and force elements

The complete assembly includes a shaft, a motor, two bearing housings, one simplified
DE bearing, one hi-fi NDE bearing, two disks and a supporting platform. The MBD model
is developed as shown in Fig. 3. Initially, a 3D CAD geometry of the test rig is built based
on the dimensions of the physical system. This CAD file is then imported into Adams to
create the full-scale MBD model.

The model topology is presented in Fig. 4. The shaft is supported by two bearings - a DE
bearing and an NDE one. Since the NDE bearing is the primary objective in the experimental
setup, the dynamic behavior of the DE components is not discussed further here. Therefore,
the DE bearing is simplified as a bushing element, connecting to the bearing housing 1 and
the sleeve 1. It comprises three rotational and three translational spring-damper elements to
reduce the computational load. The rotational stiffness and damping values are set to zero in
all three directions. In the longitudinal direction (X axis in Fig. 3), the translational stiffness
and damping values are set to zero, thereby allowing the NDE bearing to carry the axial load.
In the radial direction (Y and Z axes in Fig. 3), the translational stiffness and the damping
values are set to 2 - 10* N/mm and 2 - 10 Ns/mm, respectively, to approximate the maximum
radial clearance in the actual bearing [28]. In terms of the NDE bearing, the OR is fixed on
the bearing housings, while the IR is fixed on the sleeve 2 and rotates about the same axis at
the same speed as the shaft.

Torque Coupler Disk1  Disk2 1. MBD bearing model
RE

Motor
| Sleevel  Shaft  Sleeve 2 — IR —Contact—?—Contact— OR —
_ Cylindrical
o e
joint
l ‘ Revolute Cage
Aial Bushing Fixed | Yo
spring-damper joint 2. Analytical bearing model
RE
— R — contact forces — OR
Fixed Bearing housings _ Fixed |
joint joint
| |
Bushing Bushing
| | Fixed
Support platform ~ joint

Fig. 4: The MBD model topology. Blue ovals represent joint connection and green ovals represent force
elements.

The DE of the shaft is connected to the motor with a cylindrical joint and a spring-damper
element, allowing rotation about the longitudinal direction and longitudinal displacement
under preload conditions. The velocity-dependent driving torque is applied on this cylindrical
joint directly. The spring-damper element is used to control the shaft displacement and
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to reduce the additional longitudinal vibration. The stiffness and damping values of this
spring-damper element are set to 400 N/mm and 20 Ns/mm, respectively.

The NDE of the shaft is supported by the NDE bearing, which is modelled using both
the MBD bearing model and the analytical bearing model, as described in detail in Section
4.2 and 4.3. Two disks are fixed on the shaft between the two bearing housings and rotate
about the same longitudinal axis as the shaft.

To obtain the vibration responses from the bearing housings, the interfaces between the
housings and the supporting platform are modelled using undamped bushing elements. As
the actual stiffness and damping properties of these connections are not directly measurable,
the bushing parameters are systematically calibrated to match the two dominant modal
frequencies obtained from experimental modal analysis of the test rig. The modal frequencies
after calibration are presented in Table 3, where the translational stiffness values in the X,
Y and Z directions are set to 1-10* N/mm, 6 - 10> N/mm and 9 - 10> N/mm respectively,
and the corresponding rotational stiffness values are assigned as 5-10% N - mm/deg, 1 - 103
N mm/deg and 5 - 10* N - mm/deg about the X, Y and Z axes. This calibration ensures
that the simulated structural boundary conditions approximate the dynamic behavior of the
physical system.

The flexible shaft is built using ViewFlex which is an finite element analysis tool based
on MSC Nastran in Adams. The flexible shaft is modelled using 53 modes, with a damping
ratio of 0.01 assigned to all modes below 100 Hz and 0.1 assigned to modes in the frequency
range 100-1000 Hz. To solve the DAEs, the Hilber-Hughes-Taylor implicit Method (HHT-«)
[38] is used in the numerical solver with an error tolerance of 10~7, a maximum time step of
1075 and a maximum of 50 iterations for convergence.

Table 3: The modal frequencies after calibration in the simulation against the experimental modal analysis.

1% shaft vertical bending mode 1% shaft lateral bending mode
(Hz) (Hz)
Experiments 31.25 33.75
Simulations 33.82 34.93
Side View Top View

|

4.2. The high-fidelity MBD bearing model

The complete assembly of the bearing model is shown in Fig. 5. The 3D geometry of the
IR and OR are obtained from the manufacturer. The REs are modelled as rigid spheres, and
the cage is modelled as a rigid torus and is attached from its center point to the IR by a
revolute joint. Based on the investigations in [39], the contact forces between the cage pockets

9



Fig. 5: The proposed hi-fi ball bearing model.

Fig. 6: Each RE is constrained by an in-plane joint (left), which rotates along with the cage about the same
axis and eliminates the DOF about the perpendicular direction (black arrow). In each in-plane joint (right),
five red arrows depict the corresponding DOF regarding three rotations and X’-Y’ plane translations.

and the REs are neglected in this study, as they significantly increase the computational time
without substantially improving the accuracy of the simulated fault responses. To simplify
the cage structure, an in-plane joint is applied to represent the interaction between REs
and the cage following the work in [28]. Each RE is connected to the cage by an in-plane
joint, which allows for rotations about three axes and translations along two local radial
directions of the cage, as shown in Fig. 6. Each in-plane joint is attached to the cage in
its body-fixed reference frame (X’Y’Z’ reference frame in Fig. 6) at the corresponding RE
position and rotates along with the cage. In other words, the cage maintains equal angular
spacing between the REs, as each RE is constrained to remain within the same plane.

The contact force settings are defined between the IR and the REs, and the OR and the
REs. The IMPACT function in Adams is used to define the contact mechanism between two
objects, and the contact force Finpacr is defined as:
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I _J0, T > x, (3)
IMPACT Max [0, k(z1 — x)¢ — & - STEP (2,21 — dpen, Cmax, ©1,0)], @ < 271,
where
Cmax s X S Ty — dpenu
STEP({L‘7 Ty — dperu Cmax, L1, 0)) = Cmax — Crnax>\2(3 - 2)\), 1 — dpen <zr <, (4)
0, x 2> 1,

where x denotes the current distance between two objects and x7 is the nominal distance of
x. The parameters k, €, cmax, and dpen correspond to the contact stiffness, the exponent of
the force-deformation characteristic, the maximum damping coefficient, and the penetration
depth, respectively. The parameter A is defined as (z — 1 + dpen)/dpen- The IMPACT
function is activated when the distance between two objects is smaller than z, i.e, when two
objects are colliding. The contact force consists of two components: a stiffness component
and a damping component. The stiffness component is a function of the penetration of
two objects, acting to resist further penetration, as shown in Fig. 7(a). The parameter e
characterizes the non-linear stiffness behavior, representing a stiffening (e > 1) or softening
(e < 1) spring response. The damping component is a function of the relative speed of
two objects during collision, which opposes the relative motion of the objects. To avoid
discontinuities in the damping force during contact, the damping coefficient is defined as a
cubic step function (STEP) of penetration, as shown in Fig. 7(b). Once the penetration
exceeds dpen, the contact damping coeflicient remains constant at its maximum value cpax.
The parameters are discussed in Section 5.1.

The contact mechanisms of the rolling bearings are detailed in [40]. For ball bearings, the
RE-raceway contact force F' is calculated as:

F= ktotal(sl‘a (5)

where kiota 1S the total contact stiffness and ¢ is the contact deflection. The value of kiotal
takes into account the contacts between REs and both raceways, which can be expressed as
[40]:

1

[(1/kn)® 4 (1)) "

where k;, and k.. denote the contact stiffness between the RE and the inner and outer
raceways. Accordingly, in Eq. (3), the contact stiffness k is set to ki1 and the force-
deformation exponent e is taken as 1.5.

(6)

ktotal =

11
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Fig. 7: The visualization of the IMPACT function in MSC Adams.

A velocity-based friction model is applied to the ball-raceway interfaces to approximate the
lubrication effects [41]. This friction model presents a similar approach to smooth Coulomb
friction model and it requires four values to define: the static friction coefficient p,, the
dynamic friction coefficient p4, the stiction transition velocity V; and the friction transition
velocity Vy, as demonstrated in Fig. 8. The values of ps and p4 are tuned to minimize slip
in the ball-raceway contacts. The parameters V, and V, are usually set to small values to
approach to smooth Coulomb friction in simulations.

T T T
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I | |
1 1 1 1
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Fig. 8: Velocity-based friction model.
The axial preload plays a critical role in reducing the RE slip and promoting continuous ball-

raceway contacts, especially in our case with simplified lubrication conditions. Accordingly,
a constant axial load is applied at the center of mass of the IR in the simulations. In the
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physical test rig, the axial preload is only provided by the fixation screws; however, quantifying
this actual preload is challenging. Based on SKF’s documentation, the axial preload F,. is
suggested as:

Fpre = kpreDb7 (7>

where ke is a parameter tha is suggested to lie in a range of 0.005 to 0.01 kN/mm for small
electric motors, and D, is the bore diameter of the bearing. Given that D, = 35 mm, the
corresponding range of the preload force F,, can be set between 175 N and 350 N. Due to
the simplified cage constraints in the model, the REs are allowed to move more freely than
in reality, where their motions are physically restricted by the cage pockets. Consequently,
when preload is applied, the resulting relative displacement between the IR and the REs
induces an initial contact angle, which subsequently affects the cage rotational frequency
feage defined as [40]:

feage = % <1 - %cos(a)) , (8)

where an increase in the contact angle « leads to a corresponding increase in both the cage
rotational frequency and the BPFO. In addition to the axial load, the radial loads of the
simulated bearing are contributed by the gravitational force and the inertial forces.
Following the artificial defective bearings in Fig. 2, the faults are modelled by introducing
cut-off geometries to replicate the dimensions of the actual faults, as shown in Fig. 9.

< 2
« m
0.2 mm
8%; 0.2 mm

Fig. 9: Simulated faults in the hi-fi bearing model: ORF (left) and IRF (right).

4.8. The 6 DOF analytical model of ball bearing

To further validate the hi-fi bearing model and examine the corresponding fault charac-
teristics, an analytical bearing model is introduced in this study. The analytical ball bearing
model incorporates both an elastohydrodynamic film and non-Hertzian contact deformations,
as detailed in [20, 42]. In Fig. 10, the 6 DOF bearing model considered three bearing force
components along the X, Y and Z axes, torques about the Y and Z axes, as well as the
bearing friction torque around the X axis. Moreover, it captures the effects of the fault length
and depth on the additional displacement excitation induced by the localized defects. A
step-function model is developed to describe the additional displacement excitation, and an
example of an IRF is shown in Fig. 11, where hgefect Tepresents the depth of the fault, a,
and ao are the angles calculated by
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Ldefect /51
“= Rin <1 ein) ’ (9)
1
Qg = 50[17 (10)
where Lgefeet 18 the length of defect, Ry, is the radius of inner raceway, §; is the azimuth
angle of ball ¢ and 6;, is the rotation angle of the IR.

In the comparative analysis, the hi-fi bearing model is replaced with this bearing model
at the same location, with the IR fixed on sleeve 2 and the OR fixed on the NDE housing. In
addition, unlike the hi-fi bearing model where the DOF of REs are explicitly considered, this
analytical model does not consider preload effects. Instead, the RE-raceway interactions are
represented using theoretical contact forces that follow the predicted rotational frequencies.

Y

Fig. 10: Axial (left) and lateral (right) cross-section of the 6 DOF analytical model [20].
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Fig. 11: Shape of the defect in IR as a function of the angle of rotation of IR [20].

5. Results

First, the contact parameters of the hi-fi bearing model, introduced in Section 4.2, are
validated, and the influence of axial preload is also examined. Subsequently, the full-scale
MBD model is validated against the experimental measurements by comparing the dominant
bearing fault frequencies, BPFO and BPFI, using the envelope spectra described in Section 2.
For both experiments and simulations, acceleration responses are obtained from the same
measurement location at given driving speeds to ensure consistency. Similarly, the 6 DOF
analytical bearing model is integrated into the same MBD framework to further validate the
hi-fi bearing model and to compare the relative computational costs. Finally, the advantages
and limitations of both bearing models are evaluated.

5.1. Validating the contact parameters of the hi-fi bearing model

Based on the model development in Section 4.2, all contact parameters have been calculated
and are summarized in Table 4. According to the geometry of the SKF 6007-2Z ball bearing,
the contact stiffness between the RE and the inner race, ki,, and that between the RE and
the outer race, kou, are calculated to be 8.184 - 105 N/mm and 8.526 - 10> N /mm, respectively
[40]. From Eq. (6), the total contact stiffness kiota is calculated to be 2.953-10° N/mm, which
is used for the contact stiffness &k in Eq. (3). Moreover, based on the recommendations in
[40], the penetration depth dpen is set to 0.01 mm, and the exponent of the force-deformation
characteristic e is set to 1.5 from Eq. (5). However, determining the exact value of contact
damping remains challenging. Based on the sensitivity analysis performed in [43], the
maximum contact damping coefficient ¢y, can be a proportion of the value of total contact
stiffness kiora1. The findings indicated that setting the ¢pay to 1/1000 of the contact stiffness
kiotal Tesulted in more stable vibration responses. Therefore, in this study, the maximum
contact damping coefficient ¢yax is set to 1/1000 of contact stiffness, resulting in ¢pay = 295.3
Ns/mm for the hi-fi bearing model. Furthermore, the static and dynamic friction coefficients
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(mus = 0.05 and mug = 0.03) are tuned to minimize slip of the REs. The transition velocities
(Vs = 0.1 mm/s and V; = 1 mm/s) are set to maintain a consistent dynamic friction regime.

Table 4: Contact parameters used in this study.

Contact parameters Denotation Values
Contact stiffness Eiotal 2.953 - 105 N/mm
Contact damping coefficient  ¢pax 295.3 Ns/mm
Force exponent e 1.5
Penetration depth dpen 0.01 mm
Static friction coefficient Ihs 0.05
Dynamic friction coefficient g4 0.03
Stiction transition velocity — Vj 0.1 mm/s
Friction transition velocity — Vj 1 mm/s

Due to the simplified cage constraints, the relationship between the contact angle and
the axial preload is investigated. To evaluate the influence of the axial preloads, the contact
angles are calculated using the vertical and lateral contact forces in the local X’-Y’ plane, as
presented in Fig. 6. The cage rotational frequencies are extracted from its center of mass.
The resulting contact angles of one RE under different preloads are shown in Fig. 12(a) and
(b). First, the contact angle decreases as the RE enters the loaded zone, where the RE
is subjected to the shaft load. This additional vertical load increases the vertical contact
force and consequently reduces the contact angle. Conversely, when the RE is rolling into
the unloaded zone, the contact angle increases. Second, the fluctuation in contact angle is
more pronounced under lower preload, since a larger preload suppresses the REs’ transverse
motion and leads to a more stable contact behavior. This result is also reflected in Fig. 12(c)
and (d), where the cage rotational frequency fluctuates less when Fj. = 350 N. Third,
comparing Fig. 12(a) and (b), the variation of the IR rotational frequency f, has a negligible
influence on the contact angle.

Theoretical cage rotational frequencies are calculated by using the average contact angles
from Fig. 12(a) and (b) as a input for the o in Eq. (8), while simulated cage rotational
frequencies are extracted from Fig. 12(c) and (d). A comparison of the simulated cage
frequencies and the theoretical predictions is presented in Table 5, demonstrating strong
agreement and validating the accuracy of the MBD model in representing REs and cage
dynamics.

Based on this investigation, a preload of 350 N is selected for all subsequent bearing fault
analysis, as it ensures more stable contact dynamics and consistent cage rotational behavior.
In addition, reducing contact angle fluctuations ensures that the REs are able to consistently
hit both the ORF and the IRF during each revolution.

To verify that all contact parameters are appropriately defined and that fault signals can
be accurately reproduced, the contact forces between each RE and the raceway are examined.
As an example, the vertical contact forces during two revolutions for a single RE under the
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axial preload Fj. = 350 N and IR rotational frequency f. = 9.8 Hz in both faulty cases,
as shown in Fig. 13. In the ORF case, the vertical contact force varies as the RE orbits
within the bearing, with peaks occurring when it passes over the fault located in the loaded
zone. The time interval between two peaks is 0.238 s, matching the simulated cage frequency
of 4.2 Hz from Table 5 which corresponds to a revolution period of 0.238 s. In the IRF
case, the time interval between two peaks is 0.179 s, corresponding to a frequency of 5.6 Hz.
This matches the theoretical BPFI from Eq (2), calculated using n = 1 and o = 28.87 deg,
confirming the accuracy of the fault signal representation.

@) . f=98Hz (0 . f.=19.8 Hz
Average of =28.38 deg - Fype= 175N Average of =28.30 deg — Fp= 175N
40 Average of — =28.81 deg — Fpe=350N 20! Average of — =28.87 deg —— Fpre= 350 N|
35 3B5r
=) =)
() (<)
T 30 T 30r
3 S]
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0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Time (s) Time (s)
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Fig. 12: Influence of two different axial preloads on the contact angles and the cage rotational frequency at
different f,: (a) the contact angles of one RE in the local X’-Y’ plane under different preloads when f, = 9.8
Hz (b) the contact angles of one RE in the local X’-Y’ plane under different preloads when f, = 19.8 Hz (c)
the cage rotational frequencies under different preloads when f, = 9.8 Hz (d) the cage rotational frequencies
under different preloads when f, = 19.8 Hz.
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Table 5: Comparison between simulated and theoretical cage speed.

fr (Hz) F,e (N) Average contact angle Simulated cage frequency  feage (Hz)  feage (Hz)

Qavg (Deg) (Hz) O = Qayg a=0
9.8 175 28.38 4.20 4.20 4.10
350 28.81 4.21 4.20 4.10
19.8 175 28.30 8.47 8.48 8.28
350 28.87 8.52 8.49 8.28
-10
=3
o 15
=
=]
g
E 20
O
0.238s
25 . D . il R
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
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Fig. 13: Vertical RE-raceway contact forces in the local X’-Y’ plane for the ORF bearing (left) and the IRF
bearing (right), at Fpe=350 N and f, = 9.8 Hz.

5.2. Model validation of faulty bearings using experimental data

A comparison between experimental results and the MBD faulty bearing models at 588
RPM (f, = 9.8 Hz) and 1188 RPM (f, = 19.8 Hz) are presented in Fig. 14 and 15. To simplify
the data analysis, the envelope spectra are calculated using only the vertical acceleration (Y
axis) measured at the NDE bearing housing. To highlight the key features, the rotational
frequencies, BPFOs, BPFIs, and their respective harmonics are marked in the envelope
spectra. Both simulated and experimental data are sampled at 10 kHz for 40 seconds during
a b-second time window corresponding to the steady rotational speed. The ORF is located in
the loaded zone in both simulations and experiments.

The results for the ORF case are presented in Fig. 14. It is worth highlighting that both
the experimental and simulated results demonstrate similar characteristics, with dominant
frequency components corresponding to the BPFO across different rotational speeds. However,
in Fig. 14 (b1) and (b2), the second BPFO amplitude exceeds the first BPFO, which contrasts
with the experimental results. This discrepancy can be attributed to the simplified geometry
of the simulated ORF, which produces two impacts when each RE roll in and out the defect,
thereby amplifying the second BPFO. Another possible explanation is a mismatch between
the damping characteristics of the model and those of the physical test rig. It is likely that
the model underestimates damping effects at 2BPFO, resulting in the overestimation of
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Fig. 14: Comparison between the experimental and the simulated data with the ORF: (al) the envelope
spectrum of the experimental data when f,. = 9.8 Hz, (a2) the envelope spectrum of the experimental data
when f, = 19.8 Hz, (b1) the envelope spectrum of the simulated data when f, = 9.8 Hz, (b2) the envelope
spectrum of the simulated data when f, = 19.8 Hz.

harmonic amplitudes in the simulated spectra. In contrast, the real ORF may contain small
irregularities, which produces an impact profile closer to a half-sine pulse, thereby leading to
a different harmonic distribution.

Additionally, the simulated amplitude in Fig. 14 (bl) and (b2) are higher than the
experimental measurements in Fig. 14 (al) and (a2). This discrepancy can be attributed to
the difficulty in replicating the exact RE-raceway contact forces and the actual spring-damper
properties in simulations. Although notable differences in signal amplitude can be observed
in both experimental and simulated signals, they are not expected to adversely affect the
performance of TL in the future, as the presence and accuracy of fault frequency components
are more critical than matching matching absolute amplitude [12]. Overall, the proposed
MBD models successfully reproduce the BPFO features despite these differences.
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Fig. 15: Comparison between the experimental and the simulated data with the IRF: (al) the envelope
spectrum of the experimental data when f, = 9.8 Hz, (a2) the envelope spectrum of the experimental data
when f, = 19.8 Hz, (b1) the envelope spectrum of the simulated data when f, = 9.8 Hz, (b2) the envelope
spectrum of the simulated data when f, = 19.8 Hz.

The results for the IRF case are presented in Fig. 15. In both the experimental and
simulated envelope spectra, the characteristic of BPFI signature is clearly visible, together
with its harmonics and sidebands. Notably, in Fig. 15 (al) and (a2), all sidebands of the
BPFTI are more pronounced than those observed in the BPFO case. This behavior reflects the
stronger modulation of the BPFI by the shaft rotational frequency, which is attributed to the
varying contact forces between the REs and the IRF during the rotations. One sideband of
the 2BPFI component in Fig. 15 (b1) exhibits a relatively higher amplitude than the others,
as it coincides with the natural frequency of the housing in the vertical direction, resulting
in resonance amplification. As observed in Fig. 15 (bl) and (b2), the relative amplitudes
of BPFIs (BPFI-3BPFI) in the simulation do not perfectly match the experimental results,
primarily due to simplifications in the defect geometry and contact modeling. Nevertheless, the
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MBD model successfully reproduces the BPFI and the corresponding modulation sidebands,
demonstrating its capability to capture the essential dynamic characteristics associated with
IRFs.

Table 6 summarizes the characteristic frequencies obtained from the theoretical predic-
tions (Eq. (1) and (2)), the experimental measurements, and the simulation results. The
experimental results closely match the theoretical predictions, confirming that the contact
angle of the deep-groove ball bearing in this study is approximately zero. Based on the
discussion in Section 5.1, as expected, the simulated BPFOs are higher than the experimental
results while the BPFIs are slighly lower than the experimental results, with approximately
2% error in both cases. However, when the simulated contact angle is incorporated into Eq. (1)
and Eq. (2), the simulated results show strong agreement with the theoretical predictions,
validating the proposed MBD model in reproducing faulty bearing behavior.

Table 6: Characteristic frequencies of experimental and simulated results at different rotating speeds.

fr (Hz) Cases BPFO (Hz) 2BPFO (Hz) 3BPFO (Hz) BPFI (Hz) 2BPFI (Hz) 3BPFI (Hz)
9.8 Theoretical values (a = 0) 45.08 90.16 135.24 62.72 125.44 188.16
Experiments 45.30 90.60 135.80 62.40 124.6 187.4
Theoretical values (o = 28.3 deg) 46.13 92.26 1384 61.67 123.34 185.01
MBD model 46.40 92.60 139.00 61.40 122.8 184.40
19.8 Theoretical values (a = 0) 91.08 182.16 273.24 126.72 253.44
Experiments 90.80 181.70 272.5 126.2 252.2
Theoretical values (a — 28.87 deg) 93.30 186.6 279.9 124.50 249.00
MBD model 93.00 186.00 276.00 124.2 248.4

5.8. Comparative analysis between two different bearing models

After validating the MBD model against the experimental measurements, the next step is
to investigate the differences between the hi-fi bearing model and the analytical 6 DOF bearing
dynamic model, with particular emphasis on bearing fault characteristics and computational
efficiency. For this comparison, a 6 DOF analytical bearing model represents the NDE
bearing, while all other parameters are kept consistent with the analysis described in Section
5.2. Here, to reflect the dimensions of the actual fault, Lgefect, which is the defect width of
the real fault, and hgefeer are set to 0.5 mm and 0.2 mm, respectively. For clarity, the MBD
model incorporating a hi-fi bearing model is hereafter referred to as hi-fi BM, which has a 6
DOF dynamic bearing model as 6DOF-BM.

The comparisons between the two bearing models with an ORF at given rotational
frequencies are presented in Fig. 16. The hi-fi BM exhibits fault characteristics similar to
those of the 6DOF-BM, with the dominant frequency components corresponding to the BPFO.
These feature patterns indicate that the detailed bearing model is capable of reproducing
similar fault-related features. However, the noise level in the hi-fi BM is noticeably higher
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than in the 6DOF-BM. Most of this noise originates from the ball-raceway interactions, which
generates additional small vibrations that are not fully damped in simulations. In contrast, the
6DOF-BM represents ball-raceway contacts as idealized impacts with an elastohydrodynamic
film, resulting in a lower noise level and clearer BPFI harmonics observed in Fig. 16(a)
compared to Fig. 16(b).

For the IRF case as shown in Fig. 17(al) and (a2), the 6DOF-BM successfully reproduces
the BPFI harmonics and sidebands, and their distribution is consistent with the experimental
data. Likewise, the simulated fault frequency patterns in Fig. 17(b1) and (b2) still show
the comparable results from the hi-fi BM. The BPFIs are more pronounced due to the
applied preload, as the increased contact forces between the REs and the IRF enhance the
fault-induced impacts.

Table 7 summarizes the fault frequencies extracted from both bearing models. The
6DOF-BM generates exact fault frequencies, since it relies directly on theoretical impact
calculations while simplifying the complex contact mechanism between REs and raceways.
In contrast, the proposed MBD model captures the fault frequencies with an offset of 2%
compared to the experimental measurements.

To compare the computational time, three cases are run using a desktop equipped with
an Intel i9-13900 processor, 64 GB RAM, and an NVIDIA GeForce RTX 3070 GPU. Table 8
demonstrates the efficient computational cost of the proposed MBD framework, highlighting
its suitability for large-scale fault simulation studies. The simulation time of the hi-fi BM is
only 1.13 times compared to the 6DOF-BM, it is acceptable for generating massive simulated
data and is capable of accommodating more complex fault conditions, such as RE faults and
multi-fault scenarios.

Table 7: Characteristic frequencies of both bearing models at different rotating speeds.

fr (Hz) Cases BPFO (Hz) 2BPFO (Hz) 3BPFO (Hz) BPFI (Hz) 2BPFI (Hz) 3BPFI (Hz)
9.8 Hz  Theoretical values (o = 0 deg) 45.08 90.16 135.24 62.72 125.44 188.16
6DOF-BM 45.00 90.20 135.20 62.80 125.40 188.20
Theoretical values (o = 28.3 deg) 46.13 92.26 138.4 61.67 123.34 185.01
Hi-fi BM 46.40 92.60 139.00 61.40 123.4 186.00
19.8 Hz  Theoretical values (o = 0 deg) 91.08 182.16 273.24 126.72 253.44
6DOF-BM 91.00 182.20 273.20 126.80 253.40
Theoretical values (o = 28.87 deg) 93.30 186.6 279.9 124.50 249.00
Hi-fi BM 93.00 186.00 276.00 125.2 250.4
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Fig. 16: Comparison between two bearing models with the ORF: (al) the envelope spectrum of the 6DOF-BM
when f, = 9.8 Hz, (a2) the envelope spectrum of the 6DOF-BM when f, = 19.8 Hz, (bl) the envelope
spectrum of the hi-fi BM when f, = 9.8 Hz, (b2) the envelope spectrum of the hi-fi BM when f, = 19.8 Hz.

Table 8: Simulation time of three scenarios. The simplified bearing is modelled by a bushing element.

Cases fr (Hz) Duration of the simulated period (s) Step size (s) Elapsed time (s)

1 simplified bearing + Hi-fi BM 9.8 10 1076 6924.68
19.8 10 1076 8251.25

1 simplified bearing + 6DOF-BM 9.8 10 1076 6110.64
19.8 10 1076 7255.17

2 simplified bearings 9.8 10 1076 3106.29
19.8 10 1076 5408.75
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Fig. 17: Comparison between two bearing models with the IRF: (al) the envelope spectrum of the 6DOF-BM
when f, = 9.8 Hz, (a2) the envelope spectrum of the 6DOF-BM when f, = 19.8 Hz, (bl) the envelope
spectrum of the hi-fi BM when f, = 9.8 Hz, (b2) the envelope spectrum of the hi-fi BM when f, = 19.8 Hz.

5.4. Discussion

The proposed MBD framework integrating a hi-fi BM effectively reproduces the dominant
bearing fault frequencies while maintaining a manageable computational cost. However, one
of the primary challenges associated with the MBD model is accurately representing the
external loading conditions on bearings and the resulting RE-raceway contact forces. First,
the MBD simulations reveal that preload significantly affects the rolling trajectory of the REs.
In certain cases, it may reduce the possibility of striking the bearing faults, which may also
occur in real systems. Second, to simplify RE—cage interactions and improve computational
efficiency, a 5-DOF in-plane joint is used. Consequently, the absence of ball-cage pocket
contacts leads to an initial contact angle induced by the preload, leading to an 2% error of
BPFI and BPFO in hi-fi BM. Despite this trade-off, the benefits of reduced computational
cost remain significant.
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Another challenge for the full-scale model is that the acceleration responses are highly
sensitive to the assumed stiffness and damping properties of the structural components.
This leads to the differences between experimental and simulated responses. Future work
may incorporate parameter-optimization strategies to further refine the model behavior and
enhance fidelity without compromising computational efficiency.

Implementation of the two different bearing models highlights the modularity of the
proposed MBD framework, enabling fault data generation across different operating conditions
and modeling objectives. The comparative analysis between the hi-fi BM and the 6DOF-BM
demonstrates their advantages and limitations. The 6DOF-BM shows the results that closely
align with the experimental setup used in this study and is particularly suitable for scenarios
approximating ideal operating conditions. On the other hand, the hi-fi BM offers greater
tunable configurations, allowing more detailed representation of bearing mechanics and
providing valuable insights for experimental design and system-level studies. This flexibility
highlights the fidelity in capturing complex dynamics, especially in cases where full-scale
interactions and parameter variability play a significant role.

To summarize, in the future TL application, the hi-fi BM can be used to generate
data in various bearing fault scenarios, such as RE and cage defects, while the 6DOF-BM
can be utilized for data augmentation to emphasize idealized bearing fault characteristics.
Collectively, these two models can complement each other in training a more comprehensive
and robust diagnostic model.

6. Conclusions

This study details the development of a full-scale MBD model that incorporates a hi-fi ball
bearing representation, designed to replicate a physical test rig for the purpose of generating
bearing fault data. Unlike previous studies that focus solely on a single bearing, the proposed
MBD model is designed to align closely with the configuration of the physical test rig and
provides more simulation scenarios for developing fault diagnosis methods in future works.
The MBD model is first validated against the experimental measurements, demonstrating
that the MBD model successfully reproduces the fault characteristics of the BPFO, BPFI,
and the corresponding harmonics at two rotational speeds. In addition, the investigation for
the effects of the applied preloads demonstrates that the potentials of the proposed work in
replicating more complex operating conditions, such as different contact angles or different
location of the faults.

To further highlight the advantages of the proposed MBD framework, a comparative
analysis is conducted between the proposed hi-fi BM and a conventional 6DOF-BM. The
analytical bearing model accurately reproduces the exact fault features, while the detailed
hi-fi model offers greater fidelity for simulating more complex fault scenarios. Overall, the
findings demonstrate that the proposed framework not only captures the comparable fault
characteristics with a balanced trade-off between accuracy and computational efficiency,
but also provides a versatile foundation for simulation-driven diagnostic methods in future
applications.

Future work will focus on training diagnostic models using the fault data generated by
the proposed MBD framework. In addition to single-fault detection, the model is also capable
of generating multi-fault signals, enabling the study of more complex fault scenarios.
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Abstract. Fault diagnosis is a pivotal aspect of condition monitoring
in rotating machinery. Although fault diagnosis methods that use deep-
learning approaches have achieved significant success, they require mas-
sive, labelled datasets from operating machines, which is often imprac-
tical and expensive for industrial applications. To overcome this chal-
lenge, simulation-driven fault diagnosis provides a scalable alternative
by generating simulated data for training diagnostic models. This study
presents a simulation-driven diagnostic framework for a physical test rig,
where fault characteristics are learned via a multibody dynamics (MBD)
model capable of incorporating more complex fault conditions in rotat-
ing machinery. The MBD model is first validated against experimental
measurements from the physical test rig, demonstrating its capability
to accurately replicate realistic fault signatures. The simulated dataset
generated by the MBD model is then used to train a diagnostic model,
which is further adapted to the physical test rig through transfer-learning
methods. By capturing the realistic operating defect responses, this study
demonstrates the potential of simulation-driven fault diagnosis and pro-
vides a promising foundation for future industrial integration.

Keywords: Transfer learning, multibody dynamics simulation, bearing
modelling, fault diagnosis.
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1 Introduction

Condition monitoring (CM) for rotordynamic systems has become more feasible and
increasingly desirable for industries aiming to optimize maintenance efficiency. For
rotordynamic systems, fault diagnosis of rolling bearing plays a pivotal role, given
that such faults are responsible for 30% to 50% of all machine failures [8]. However, a
major challenge in the development of machine learning models for rotating machines
is the insufficiency of fault data [2]. Since most rotating machines operate under
normal conditions for most of their lifespan, it is challenging to obtain sufficient
fault data from operating systems. To overcome this, simulation-driven methods
provide an efficient way to construct diagnostic models.

Simulation-driven methods, combined with transfer learning (TL) techniques, en-
able diagnostics models to leverage knowledge acquired from one or multiple source
domains and apply them to relevant target domains [13]. To generate bearing fault
signals, several analytical bearing models have been developed [1, 9, 11], and suc-
cessfully implemented into diagnostic model training [5, 10]. However, relying only
on single-bearing model limits the diversity of training dataset, thereby constraining
the development of diagnostic models. To construct more comprehensive diagnostic
models, multibody dynamics (MBD) simulations offer higher physical fidelity and
ability to generate a broader range of fault scenarios. Recent studies have demon-
strated the effectiveness of simulation-driven approaches via MBD models in fault
diagnosis, highlighting their potential for broader applications [3, 4].

This work aims to develop a simulation-driven diagnostic model that leverages
MBD simulation to address the scarcity of fault data in CM of rotordynamic sys-
tems. First, experimental vibration data are obtained under both healthy and faulty
bearing conditions at two rotational speeds using a dedicated test rig. Second, a full-
scale MBD model, incorporating an analytical bearing representation, is developed
to generate simulated data with identical localized faults, while capturing realistic
operating conditions. Finally, a TL framework is established to train a diagnos-
tic model using the simulated data and subsequently adapt it to the experimental
dataset. By integrating simulated and experimental data, the TL approach bridges
the gap between virtual and physical systems. The proposed framework enables the
construction of a pre-trained diagnostic model using simulated data and requires
only a small subset of real data for fine-tuning. This framework lays a solid founda-
tion for future development of simulation-driven fault diagnosis.

2 Experimental arrangement

To construct the target domain for TL approach, a dedicated test rig was designed
to acquire bearing vibration data, as shown in Fig. 1(a). The rig was composed of a
600 mm long and 12 mm diameter shaft, two steel discs with a diameter of 150 mm,
a thickness of 10 mm, and a mass of 1.69 kg, one AC electric motor, two bearings
housings, and two deep-groove ball bearings. The bearings used were standard SKF
6007-2Z deep-groove ball bearing, featuring 11 REs of 7.94 mm diameter, and a
pitch diameter of 48 mm. The bearings were mounted at the drive end (DE) and
the non-drive end (NDE) of the shaft, with the inner rings (IRs) rotating together
with the shaft while the outer rings (ORs) were fixed to the housings.
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Fig. 1. The experimental setup of the test rig: (a) the arrangement of the sensors
and the components (b) the tested bearing with ORF (c) the tested bearing with
IRF.

Two ball bearings with a single localized fault, one with an outer race fault
(ORF) and the other with inner race fault (IRF), were fabricated by laser machining
as shown in Fig. 1(b) and (c¢). Each defect measured approximately 2 mm in length,
0.5 mm in width and 0.2 mm in depth. Vibration responses were recorded using a
tri-axial accelerometer (PCB 356A03) mounted on the NDE bearing housing, where
the faulty bearings were installed. The accelerometer signals were acquired through
a data acquisition system (DeweSoft SIRIUS®)) at a sampling rate of 10 kHz.

Six scenarios of vibration acceleration measurements were conducted with healthy
and two faulty bearings at two rotational frequencies (f, = 9.8 Hz and f, = 19.8 Hz).
The experimentally determined rotational speeds were subsequently adopted in the
simulations. All acceleration signals were recorded after the shaft speed stabilized
at the target rotational speeds.

3 Multibody dynamics model

To replicate the experimental setup, a full-scale MBD model is built using the MBD
analysis software MSC Adams [7], with all dimensions consistent with those of the
physical system. The complete assembly includes a shaft, a motor, two bearing
housings, one simplified DE bearing, one analytical NDE bearing, two disks and a
supporting platform. In this model, the shaft is modelled as a flexible body, while
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other components are considered to be rigid bodies. The Hilber-Hughes-Taylor im-
plicit Method (HHT-«) is used in the numerical solver with an error tolerance of
1077, a maximum time step of 107, a maximum of 50 iterations for convergence,
and a sampling rate of 10 kHz.

The model topology is presented in Fig. 2. Because the diagnostic focus is on
the NDE bearing, the DE bearing is simplified as a bushing element composed
of three rotational and three translational spring-damper elements to reduce the
computational load. The rotational stiffness and damping values are set to zero in
all three directions. In the longitudinal direction (X axis), the translational stiffness
and damping values are set to zero. In the radial direction (Y and Z axis), the
translational stiffness and damping values are set to 2-10* N/mm and 2-10 Ns/mm,
respectively, to approximate the maximum radial clearance in the actual bearing [12].
In contrast, the NDE bearing is modelled using an six-degree-of-freedom analytical
bearing, where the IRF and ORF are considered as the additional displacement
excitation based on the defect length and depth [11]. The OR is fixed to the NDE
bearing housing, while the IR is fixed on sleeve 2 and rotates about the same shaft
axis at the given rotational frequency.

To obtain the vibration responses from the bearing housings, the connections be-
tween the housings and the supporting platform are modelled as zero-damping bush-
ing elements. As the actual stiffness and damping properties of these connections
are not directly measurable, the bushing parameters are systematically calibrated
to match the two dominant modal frequencies obtained from experimental modal
analysis of the test rig. Therefore, The translational stiffness values in the X, Y and
Z directions are set to 1-10* N/mm, 6 - 103> N/mm and 9 - 10> N/mm, respectively,
and the corresponding rotational stiffness values are assigned as 5 - 10° N-mm/deg,
1-10% N-mm/deg and 5-10* N-mm/deg about the X, Y and Z axes, respectively. This
calibration ensures that the simulated structural boundary conditions approximate
the dynamic behavior of the physical system.

Fig. 2. Topology of the proposed MBD model.
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4 Transfer learning framework

The TL framework proposed in this study is depicted in Fig. 3. The source do-
main is composed of bearing vibration data generated by the proposed MBD model,
whereas the target domain contains experimental bearing vibration data measured
from the physical test rig. Initially, feature extraction techniques are applied to
the source domain to capture fault-related features while preserving their physical
interpretations. The extracted features are then used to construct a pre-trained di-
agnostic model. The diagnostic model consists of using three fully-connected layers
with ReLU activation function, followed by an output layer with Softmax classifi-
cation. Subsequently, the parameters of the feature extraction stage are frozen, and
only the parameters of the diagnostic model are fine-tuned using the target domain
dataset. This fine-tuning process allows the model to effectively adapt to real data
and improves its classification performance.

Fig. 3. The proposed TL framework.

In feature extraction procedure, a low-pass filter with a 4000 Hz cut-off frequency
is first applied to suppress aliasing and high-frequency noise. Since bearing fault sig-
nals are usually modulated by low-frequency waveforms, signal demodulation needs
to be conducted prior to the Fast Fourier Transform (FFT). The Hilbert transform
is therefore applied to extract envelope signals, allowing clear identification of fault
frequencies and their harmonics. Finally, to ensure consistency across different rota-
tional speeds, the envelope spectra are converted into envelope order spectra using
order tracking, where features are represented by multiples of rotational order rather
than absolute frequencies.

5 Results

First, the simulated results for both faulty bearing conditions at two different rota-
tional frequencies are validated against the experimental measurements. Only the
vertical vibration responses are considered in this work. The corresponding enve-
lope spectra are presented in Figs. 4 and 5. In Figs. 4(bl) and (b2), the MBD
model successfully reproduces the BPFIs and their modulation sidebands at both
rotational speeds, closely matching the fault characteristics observed in Figs. 4(al)
and (a2). Similarly, the simulated BPFOs in Figs. 5(bl) and (b2) exhibits strong
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Fig. 4. Comparison between the experimental and the simulated data with the IRF:
(al) the envelope spectrum of the experimental data when f, = 9.8 Hz, (a2) the
envelope spectrum of the experimental data when f, = 19.8 Hz, (bl) the envelope
spectrum of the simulated data when f,. = 9.8 Hz, (b2) the envelope spectrum of
the simulated data when f, = 19.8 Hz.

agreement with the experimental results in Figs. 5(al) and (a2). A summary of the
fault-frequency comparisons is provided in 1.

Following model validation, simulation datasets are generated according to the
experimental scenarios. The arrangement of the datasets is shown in Fig. 2. Scenario
1-4 are simulated for 67 s with data sampled every 1 s, while Scenario 5 and 6 are
simulated for 55 s at the same sampling interval, leading to a total of 378 simulated
samples. In contrast, each experimental scenario is measured for 30 s, with data
sampled every 1 s, resulting in 180 experimental samples in total.

After converting all samples into envelope order spectra, the first 50 orders are
selected. To verify that feature extraction process preserves the critical fault-related
information, t-distributed Stochastic Neighbor Embedding (t-SNE) is applied to
visualize the high-dimensional data. By projecting the data onto two t-SNE compo-
nents, as shown in Fig. 6, the three different conditions are well separated in both
the source and target domains, confirming that the envelope order spectra effectively
capture the bearing fault signatures at different rotational speed.

After constructing the pre-trained diagnostic model using 90% of the simulated
data for training and 10% for validation, the model is first evaluated on the ex-
perimental dataset. The corresponding diagnosis result is shown in Fig. 7. The pre-
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Table 1. Comparison of the fault frequencies.

fr Cases BPFO (Hz) BPFI (Hz)

9.8  Theoretical values [6] 45.08 62.72
MBD model 45.00 62.80
Experiments 45.30 62.40

19.8  Theoretical values [6] 91.08 126.72
MBD model 91.00 126.80
Experiments 90.80 126.20

Fig. 5. Comparison between the experimental and the simulated data with the ORF":
(al) the envelope spectrum of the experimental data when f, = 9.8 Hz, (a2) the
envelope spectrum of the experimental data when f, = 19.8 Hz, (bl) the envelope
spectrum of the simulated data when f. = 9.8 Hz, (b2) the envelope spectrum of
the simulated data when f, = 19.8 Hz.

trained model is able to distinguish between the BPFI and BPFO samples; however,
it performs poorly on healthy data, achieving an overall accuracy of only 65%, as
shown in Fig. 7(a). This is because of the discrepancy between the simulated and
experimental healthy data, highlighting the necessity of applying a TL method to
adapt the pre-trained model to real data.

As shown in Fig. 7(b) and (c), after fine tuning the diagnostic model using 10%
of the experimental data, the classification accuracy increases to 94.4%. Increasing
the fine tuning dataset to 20% further improves the accuracy to 97.2%. To ensure
that the model does not overfit the experimental data, the updated diagnostic model
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Table 2. Dataset arrangement for TL framework.

Scenarios Faulty Simulated Experimental
condition  samples samples
1 IRF 67 30
2 IRF 67 30
3 ORF 67 30
4 ORF 67 30
5 Healthy 55 30
6 Healhty 55 30

Fig. 6. Group scatter after feature extraction: the source domain data (left) and
(right) the target domain data.

is re-evaluated on the simulated dataset, where it achieves 100% accuracy, as shown
in 7(d).

6 Conclusions

This work proposes a simulation-driven TL framework that integrates an MBD-
based bearing fault diagnosis method across different rotational speeds. The MBD
model successfully reproduces the fault characteristics, showing strong agreement
with the experimental measurements. The bearing fault frequencies extracted from
both simulated and experimental data closely match the theoretical predictions,
confirming the physical validity of the generated data. After applying the pro-
posed TL framework, the diagnostic accuracy significantly improves from 65% to
97.2%, demonstrating its effectiveness in bridging the gap between simulated and
real data. Overall, this study provides a promising direction for future development
of simulation-driven bearing fault diagnosis methods.
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ABSTRACT

Machine-learning based fault diagnosis plays an important role in condition moni-
toring for rotating machinery to prevent systems from catastrophic faults. It is important
to note that the performance of data-driven methods relies highly on a large quantity of
training fault data. Since rotating machinery operates under normal condition most of
the time, collecting sufficient fault data from experiments takes a huge amount of time
and expense, and under various operating conditions. To overcome the fault data insuffi-
ciency, building a virtual testbed for generating fault data is a promising way in bridging
the gap between data requirement and prediction accuracy.

Many simplified dynamic models have been proposed to generate a single fault on
some rotordynamic systems. These methods, however, cannot reflect complex operation
conditions such as variant rotation speed or multi-faults. To better reveal vibration re-
sponses of local defects, this research aims to establish a multibody dynamics (MBD)
model that can simultaneously analyze complete dynamic behavior and simulate a wider
range of fault scenarios.

In this research, a simulation-driven fault diagnosis method is proposed to generate
the simulation fault data. Firstly, a rigid-flexible hybrid model of a single-rotor-bearing
system is established using MSC ADAMS, which is based on MBD and finite element
analysis. Different fault conditions are simulated including outer race bearing faults,
inner race bearing faults, and rolling element faults. After generating fault data, a time-
frequency feature extraction method is developed based on Hilbert envelope and wavelet
packet decomposition, extracting a large amount of features from the original signals. In
addition, an autoencoder model is built to highlight the critical features, enhancing the
performance of the classifier. This feature extraction is made to obtain fault-related fea-
tures, which train the machine learning classifiers for discriminating the fault categories.
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To validate the simulation results, the Case Western Reserve University (CWRU)
bearing dataset that has been widely accepted as a standard reference is introduced. A
comparison of bearing fault frequencies between simulations and the CWRU dataset is
then conducted. Meanwhile, a transfer learning method is applied using the CWRU
dataset to fine tune the fault diagnosis classifier. This research lays a solid foundation
for future development of a digital twin and simulation-driven transfer learning for fault
diagnosis of rotating machines.

INTRODUCTION

Rotordynamic system, a key component in most industrial sectors, is prone to various
defects during operations such as bearing faults, misalignment and unbalance. When a
local fault grows to a critical level, it often leads to a long downtime, and in severe cases
causing damage to the entire machine. Therefore, accurately diagnosing faults at an
early stage is necessary for rotating machines.

Machine-learning-based fault diagnosis integrating traditional signal processing and
machine learning methods serves as a predictive maintenance technique to identify the
anomalies from monitoring data. However, a major obstacle in developing machine-
learning models for rotating machines is the insufficiency of fault data [1]. Since most
rotating machines operate under normal conditions for most of their lifespan, it is chal-
lenging to obtain sufficient fault data from physical systems. To solve the problem with
missing fault samples, building a virtual counterpart of a rotating machinery plays an
important role to generate various simulated fault data.

To generate fault signals, many simplified bearing models have been proposed [2]
[3]. However, these models often fail to reflect the complete dynamic behavior of the
rotating system and are limited in replicating certain fault types-particularly faults on
rolling elements, which have been rarely discussed in the previous research. To over-
come these limitations, multi-body dynamics (MBD) simulations are used in this work
to reveal the realistic operating conditions and to model a wider range of fault scenarios
in rotating machines. Recent work by [4] has demonstrated the effectiveness of opti-
mal MBD simulations in condition monitoring, highlighting their potential for broader
applications.

This work aims to develop a simulation-data-driven method to tackle the insuffi-
ciency of fault data in condition monitoring of rotordynamic system. First, a tunable
simulation for the rotor-bearing system is developed to generate different bearing fault
data. Second, several feature extraction techniques is presented to capture the fault-
related features, which are used to build the fault diagnosis classifier. Third, the ex-
perimental datasets is used to validate the MBD model and fine tune the classifier. By
combining simulation data and experimental data, the transfer-learning method bridges
the gap between a virtual system and a real machine.

The proposed framework allows simulation data to build a fault diagnosis pre-trained
classifier and only require a small portion of real data to fine tune the classifier, reinforc-
ing the performance and increasing robustness of condition monitoring systems.



FRAMEWORK OF TRANSFER LEARNING METHOD

The typical transfer learning approach involves initially constructing a pre-trained
model using data from a source domain, followed by refining this model with data from
a target domain. The framework in this study is depicted in the Figure 1. Here, the
source domain comprises simulated bearing fault data from the multibody dynamics
(MBD) model, whereas the target domain contains experimental bearing data from the
Case Western Reserve University (CWRU) dataset [5]. Initially, feature extraction tech-
niques are applied to the source domain to effectively capture fault-related features while
preserving their physical interpretations. After implementing signal processing methods
and an autoencoder neural network to highlight these fault-related features, a pre-trained
classifier is established based on the extracted source domain features. Subsequently,
the parameters of the feature extraction process are frozen, and the classifier parameters
are fine-tuned using the target domain dataset, allowing the model to adapt effectively to
real data and improving its classification accuracy.

Figure 1. Framework of the proposed fault diagnosis method.

MULTIBODY DYNAMICS SIMULATION

In this work, the single-rotor-bearing model is built using the MBD analysis software,
MSC ADAMS [6]. For a rigid-flexible hybrid MBD system, the equations of motion is
described in the following general form [4]:

M+ TN+ Fy = Q(q) 0
®(g,t) =0

where M is the system mass matrix, ®, is the derivative matrix of constraint equations
with respect to the system generalized coordinates ¢, A is the vector of Lagrangian multi-
pliers associated with the constraints, F'(¢) is the system elastic force vector, Q(q) is the
system external generalized forces, ®(g, t) is the vector containing the system constraint
equations and ¢ is the time. The dynamic behaviors of each component can be calculated
at each moment under the forces and torques applied.
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Figure 2. The single-rotor-bearing MBD model.

Figure 3. (left) Fault on the outer ring; (middle) fault on the inner ring and (right) fault
on the ball.

This model comprises a motor, a shaft, a ball bearing, a bearing housing and a disk as
shown in Figure 2. The shaft is modelled as a flexible body, while other components are
simulated as rigid bodies. Initially, allowing the simulation to be validated by the CWRU
dataset, the SKF 6205-2RS deep groove ball bearing is chosen. The bearing faults are
shown in Figure 3. In this bearing model, the 3D CAD geometry of the bearing is
obtained from the SKF official website [7]. Since the roller elements from the CAD
file are unified as one rigid body, they are replaced with the sphere bodies in MSC
ADAMS that can be tuned separately. The bearing model contains 18 contacts, 9 of
which are defined between the roller elements and the inner race and 9 of which are
defined between the roller elements and the outer race. The parameters of the contacts
are demonstrated in [8]. All the intervals of adjacent rolling elements are confined, and
the rolling elements can only rotate along with the longitudinal axis during rotation.
Subsequently, the shaft is connected to the motor, the inner race of the bearing and
the disk, allowing the rotation around the longitudinal axis and the radial translation
confined by the bearing. The outer race of the bearing is fixed on the bearing housing,
and the constrains between the housing and the ground are 3 rotational and 3 translational
springs. Vertical acceleration responses are measured from the bearing housing to enable
comparison with the CWRU dataset.

METHODS OF FAULT DIAGNOSIS

Based on the geometry parameters and rotating speed of the bearing, the bearing
fault frequencies associated with the inner race, outer race and rolling element are ball
passing frequency of inner race (BPFI), ball passing frequency of outer race (BPFO),
and ball spin frequency (BSF). The theoretical fault frequencies are defined as follows:

nfr
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where n is the number of the rolling elements, f,. is the rotating speed of the inner ring,
d is the diameter of the rolling elements, D is the pitch diameter of the bearing and « is
the contact angle.

The procedure for feature extraction is illustrated in Figure 4, which aims to identify
and isolate fault-related characteristics within various frequency bands. Both bearing-
fault and healthy data are generated from MBD model. Ensemble Empirical Mode De-
composition (EEMD) is applied for signal denoising, with the first intrinsic mode func-
tion (IMF) being selected for further analysis [9]. Subsequently, the Hilbert envelope
method is used to demodulate the signals and to extract the fault frequencies and their
harmonics. Even though the simulated acceleration signals do not perfectly replicate the
CWRU dataset, their envelope spectrums consistently exhibit similar patterns of fault
frequencies [1]. Next, wavelet packet decomposition (WPD) decomposes the envelope
signals into different frequency bands, allowing computation of the energy distribution
and root means square values across all bands [10]. These extracted features indicate that
notably higher energy responses in frequency bands associate with fault frequencies. Fi-
nally, the extracted features are processed through an autoencoder neural network to
identify critical features, which are then used to train a classifier capable of effectively
distinguishing among various fault conditions.

Figure 4. Procedure of feature extraction.

DISCUSSION AND COMPARISON

The rotating speed and sampling rate in the MBD model are set to 1797 rpm and
12000 Hz respectively, which are identical to the CWRU setup. Each case is simulated
for 19 s, with data sampled every 0.5 s, leading to 152 (38 - 4) samples in total. In
contrast, each case in the CWRU dataset spans 10 s and is sampled at the same 0.5 s,
resulting in 80 (20 - 4) samples in total. Figure 5 presents a comparison of the enve-
lope spectrums between the simulated data and the CWRU data for different bearing
faults. Although the numerical model introduces additional noise, the MBD model still
successfully captures the characteristic fault frequencies. TABLE I demonstrates that



Figure 5. (left (a)(c)(e)) Envelope spectrums from simulated dataset and (right (b)(d)(f))
envelope spectrums from CWRU dataset.

TABLE 1. Comparison of the fault frequencies

MBD model (Hz) | CWRU dataset (Hz) | Theoretical frequency (Hz)
BPFI 166 162 162.18
BPFO 105 108 107.36
BSF 138 140 141.17

the errors between the MBD model and the theoretical frequencies are all within 2.3%,
highlighting the accuracy of the proposed MBD model.

In the transfer learning part, the simulated dataset is divided into two datasets, 50%
for training and 50% for testing to develop the initial pre-trained classifier. Similarly, the
CWRU dataset is divided into two datasets, 33% for classifier fine-tuning and 67% for
testing the fine-tuned classifier. Figure 6 (left) shows that the classifier cannot distinguish
between BPFO and BSF and also misidentifies a part of healthy samples as fault samples,
leading to a relatively low classification accuracy of 74.26 %. This result indicates that
the gap between the simulated data and the experimental data is still large. However,
after the fine-tuning process using the CWRU data, the results demonstrate a substantial
improvement in fault diagnosis, achieving an accuracy up to 98.15%, as shown in Figure
6 (right). This significant change clearly shows the classifier successfully adapts to the
experimental dataset.

CONCLUDING REMARKS

This work aims to enrich the field of study for condition monitoring using MBD
simulation as the source of training data for fault diagnosis. A MBD model is first built
and validated by the CWRU bearing dataset, successfully capturing the bearing fault
frequencies. The flexibility of the MBD model in simulating diverse conditions and



Figure 6. (left) Classification results before transfer learning and (right) classification
results after transfer learning.

capturing realistic dynamic responses makes it a promising tool for advancing multi-
fault diagnosis in future research.

To overcome the challenge of limited fault training data, a transfer learning strat-
egy is presented, indicating a strong potential for enhancing model generalization. By
fine-tuning the pre-trained classifier with a small portion of real data, the classifica-
tion accuracy is significantly improved from 74.26% to 98.15%. This work lays a solid
foundation for the integration of digital twin systems and transfer learning methods in
advanced condition monitoring and structural health monitoring applications.
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