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H I G H L I G H T S

• IC2ML, a unified framework jointly predicting SOH, degradation trajectory, and RUL, is proposed.
• Health indicator are extracted from both 1-D voltage time series and 2-D images of voltage-capacity data.
• Spatiotemporal interaction among SOH, degradation trajectory and RUL is implemented through attention-based methods.
• The generalizability of IC2ML is validated with batteries of 3 materials and 10 operating conditions.
• IC2ML can adapt to limited data and extend to 100-cycle trajectory prediction with 1.77 % RMSE.
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A B S T R A C T

Strategic management of lithium-ion batteries (LIBs) depends on evaluating current health status and predicting 
future degradation paths. Despite extensive research on core management tasks like state of health (SOH) 
estimation, degradation trajectory prediction, and remaining useful life (RUL) prediction, these tasks remain 
isolated without leveraging their inherent connections. This work proposes an unified framework that enables 
joint battery SOH, degradation trajectory and RUL prediction via an intra-cycle and inter-cycle enhanced ma
chine learning (IC2ML). IC2ML uses 1-D time-serials voltage data to implement SOH prediction, where inter-cycle 
embeddings are further self-attention for degradation trajectory prediction. The RUL is derived from degradation 
trajectory prediction based on anticipated SOH levels, enabled by cross attention between output embeddings 
and input inter-intra cycle embeddings. The results demonstrate that using 0.1V sampling interval data that can 
be extracted onsite, the average root mean square error for SOH, degradation trajectory, and RUL prediction is 
1.85 %, 2.36 % and 23.90 cycles, respectively, validated on 121 batteries spanning 10 operation conditions. 
Sensitivity analysis shows that IC2ML can be adapted to scenarios where a few historical data is accessible. 
Broadly, this work highlights the potential of strategical battery algorithm co-design using intra-cycle and inter- 
cycle battery degradation information for various management tasks.
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1. Introduction

Lithium-ion batteries (LIBs), leveraging their high energy density 
and long duration advantages, have been deeply integrated into core 
fields such as electric vehicles [1], consumer electronics [2], and smart 
grids [3]. However, like most electromechanical systems, LIBs inevitably 
experience performance degradation during prolonged operation [4], 
especially under dynamic temperature and load conditions typical of 
electric vehicle and energy storage system applications, which manifests 
as capacity loss, reduced charging efficiency, and increased safety con
cerns [5]. Particularly in large-scale application scenarios such as new 
energy vehicles and energy storage power stations, even slight attenu
ation of battery performance may trigger future systemic risks [6,7]. 
Therefore, how to establish the evaluation of current health status and 
the prediction of future degradation paths through non-destructive 
methods has become a key link in ensuring the reliability and safety 
of energy systems [8,9].

Capacity fading, as a core indicator for measuring battery perfor
mance degradation, has always been the focus of industrial attention 
[10]. Whether it is the pursuit of high yield by battery manufacturers 
[11], the real-time monitoring needs of on-board battery management 
systems (BMS) [12], or the evaluation of echelon utilization by battery 
recycling enterprises, all revolve around maximizing the value of the 
battery life cycle under the premise of ensuring safety. Although the 
traditional full charge-discharge capacity test can intuitively reflect the 
current maximum available capacity of the battery, it is time-consuming 
[13] and cannot effectively predict the nonlinear degradation process 
caused by complex coupling mechanisms [14–17] such as impedance 
rise (IR), lithium inventory loss (LLI), and loss of active material (LAM), 
making it difficult to predict the future battery performance [18–20]. 
The method relying on destructive disassembly for evaluation is more 
direct, but this method causes additional damage to the battery itself 
[21,22]. How to perform rapid, non-destructive, and comprehensive 
health management of batteries remains a challenge[23–25].

In recent years, research work has focused on physics-based top- 
down models (such as equivalent circuit models or electrochemical 
state-space models) to characterize battery degradation by simulating 
voltage, current, and temperature behaviors for health management. 
However, these methods face challenges in terms of changes in different 
operating parameters and calibration of batteries [26,27]. Data-driven 
methods, including deep learning algorithms, can learn complex 
degradation model patterns and relationships from the statistical char
acteristics of data or in an end-to-end manner[28–31]. For example, in 
terms of state of health (SOH) estimation, some teams have achieved 
effective estimation of SOH based on arbitrary charging segments using 
the transformer architecture [32]. However, these approaches only 
evaluate the current health status while neglecting the prediction of 
future degradation paths. In the field of life prediction and degradation 
analysis, some studies have achieved high-precision degradation tra
jectory and life prediction by building physics-informed models based 
on initial manufacturing differences in early cycles [7], but they fail to 
validate their capability in full-lifecycle management. Based on these 
limitations, comprehensive management of a battery's current health 
status and future degradation through multi-task learning is regarded as 
a promising solution for effective battery health management [8,33]. 
Some research has established transferable models to simultaneously 
predict remaining useful life (RUL) and SOH based on capacity incre
ment differences in partial cycles, but they ignore the degradation tra
jectory from the current SOH to the end of life, and treating RUL 
prediction as a downstream task of SOH prediction inherently has cu
mulative errors [34]. Some studies start from the correlation between 
RUL and SOH, and take RUL prediction as an auxiliary task for pre
dicting degradation trajectories, but the maximum capacity of historical 
cycles required is often difficult to obtain in practical applications [35]. 
Even within the promising multi-task learning frameworks, these tasks 
remain isolated and fail to fully leverage their inherent connections. 

From a physical perspective, the current SOH point is the starting pos
tion of future degradation trajectories, depending on the future opera
tion conditions; while the RUL is the anticipated remaining time or 
cycles under defined end-of-life threshold of one of the degradation 
trajectories [36]. From a data perspective, data from different sampling 
points within the same cycle exhibit short-term degradation informa
tion, while performance changes between adjacent cycles contain key 
information about long-term degradation [14]. Recent advances have 
highlighted the significance of structured temporal modeling. The Bat
teryLife demonstrated that representing each charge-discharge cycle as 
an independent "token" and sequentially modeling intra-cycle and 
inter-cycle dependencies can effectively enhance life prediction perfor
mance [37]. Meanwhile, Some studies introducing inter-cell learning, 
capturing cross-cell correlations under heterogeneous ageing conditions 
to improve robustness and early-life prediction accuracy [38]. These 
studies have collectively validated the importance of hierarchical 
time-series representation and cell heterogeneity modeling for battery 
prognostics. Nevertheless, both approaches still focus primarily on 
single-task lifetime prediction, leaving the intrinsic relations among 
SOH, degradation trajectory, and RUL unexplored. The lack of inte
grated modeling that jointly consider the current health status and 
future degradation trajectories makes it difficult for models to capture 
the synergistic evolution of multi-dimensional health patterns during 
battery degradation.

This study proposes a unified framework enabling joint prediction of 
battery SOH, degradation trajectory, and RUL via intra-cycle and inter- 
cycle enhanced machine learning (IC2ML). As shown in Fig. 1a, IC2ML 
utilizes 1-D time-series voltage data sampled from random voltage in
tervals for SOH prediction, and combines self-attention mechanisms to 
capture inter-cycle differences for future degradation trajectory pre
diction. The RUL is defined as the result derived from degradation tra
jectory prediction and anticipated SOH levels within a future time 
horizon, implemented via a cross-attention mechanism between output 
embeddings of inter-cycle and intra-cycle embeddings of 2-D image 
data. This architecture effectively breaks the bottleneck of traditional 
methods in representational capability for intra-cycle 1-D spatial data, 
achieving spatiotemporal unified modeling of three health states during 
battery aging. As shown in Fig. 1b, the trained model can realize 
comprehensive health management throughout the entire lifecycle 
using only a small amount of easily accessible random samples from 
0.1V voltage intervals. Validated on 121 batteries covering 10 operating 
conditions, the average RMSE for the SOH task is 2.08 %, with average 
RMSEs of 2.23 % and 55.69 cycles for degradation trajectory prediction 
and RUL prediction, respectively. Further sensitivity analysis demon
strates that IC2ML can adapt to scenarios with limited historical data: 
when initialized with only the first 10 cycles of data, the average RMSE 
for RUL prediction is 65 cycles. Additionally, degradation trajectory 
prediction can be extended to 100 cycles with high precision, achieving 
an average RMSE of 2.20 %. Compared with state-of-the-art data-driven 
methods for batteries, IC2ML achieves an average accuracy improve
ment of 21 % for SOH estimation tasks and 12 cycles for RUL prediction 
task. Overall, this study highlights the significant potential of strategi
cally collaborative design of battery management algorithms using 
intra-cycle and inter-cycle battery degradation information, which can 
be applied to various management tasks such as SOH, degradation tra
jectory, and RUL prediction and beyond.

2. Dateset

This work employs three batches of batteries as case studies, with the 
batteries tested under different operating conditions, each batch un
dergoing testing throughout its full service life until the end of life 
(EOL). Batch 1 consists of LiNi0.86Co0.11Al0.03O2 positive electrode (NCA 
battery) with 3500mAh nominal capacity and cutoff voltages of 
2.65–4.2 V.

Batch 2 contains LiNi0.83Co0.11Mn0.07O2 positive electrode (NCM 
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battery) with 3500mAh nominal capacity and cutoff voltages of 2.5–4.2 
V. Batch 3 includes 42 (3) wt.% Li(NiCoMn)O2 blended with 58 (3) wt.% 
Li(NiCoAl)O2 positive electrode (NCM + NCA battery) with 2500mAh 
nominal capacity and cutoff voltages of 2.5–4.2 V. All batteries were 
cycled in a thermal chamber under three temperatures (25 ◦C, 35 ◦C, and 
45 ◦C) with variable charging rates (from 0.25C to 1C) and variable 
discharging rates (from 1C to 4C). Each battery underwent the same 
operating conditions throughout its lifecycle until reaching EOL (see 
Supplementary Table 1 for details). These datasets do not include 
cycling data under extreme conditions and are designed to simulate the 
requirements of EV application scenarios.

The degradation trajectories in Fig. 2a demonstrate the variability 
observed in cycling tests. Fig. 2b illustrates the relationship between 
initial capacity and RUL, Even with similar initial capacities, different 
batteries exhibit noticeable variations in RUL. This significant dispersion 
indicates that the battery degradation process is influenced by multiple 
coupled factors (such as manufacturing differences, operating condi
tions, and internal chemical non-uniformities), making RUL prediction a 
highly nonlinear, complex, and individualized task. Fig. 2c visualizes the 
two-dimensional image features of input data under selected segments. 
At different sampling time steps within a single cycle, varying capacity 
increase rates are observed due to distinct chemical reactions. Notably, 
significant differences also exist at the same sampling time steps across 

different cycles, which further underscores the effectiveness of collab
orative modeling from both intra-cycle and inter-cycle perspectives. 
Fig. 2d presents the Pearson correlation between RUL and the maximum 
capacity of the current cycle across different materials and operating 
conditions, with correlations exceeding 90 % in all datasets. This in
dicates the interrelated nature of different health state characterizations.

3. Method

3.1. Intra cycle embedding and intra-inter cycle embedding

We normalize the data solely by dividing the capacity increment by 
the rated capacity to unify data dimensions, a method independent of 
sample size. Additionally, we perform intra-cycle embedding on the 
original capacity sampling sequence, treating each cycle's data as a 
token to learn the relationship between capacity increments at sampling 
points and battery aging: 

X1D− embed =EmbedIntra(X1D)= LN(W2σ(W1X1D + b1)+ b2) (1) 

where, X1D ∈ R10×cycles, W1 ∈ Rdmodel×10, W2 ∈ Rdmodel×dmodel , EmbedIntra 
represents the intra-cycle embedding. LN representation Layer nomi
nalization. cycles represents the number of cycles in historical data, and 

Fig. 1. Model architecture, deployment, and performance. (a) Data collected from multiple real-world scenarios are used for intra-cycle and inter-cycle modeling 
through 1-D time series and 2-D image features, respectively, to comprehensively manage multiple battery health tasks. (b) The trained model enables compre
hensive health management using only a small amount of easily accessible data. (c) Performance examples of the model on three tasks.
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dmodel represents the dimension of the hidden layer.
The temporal variations at each observation point exhibit two 

characteristic variation patterns: intra-cycle variations representing 
sequential changes between consecutive sampling points, and inter- 
cycle variations reflecting systematic differences at the same stage 
across different cycles. However, the original 1-D structure of the time 
series can only reflect changes between adjacent time points. We focus 
on 2D structure of time series that embodies battery aging. Such struc
tures can present intra-cycle and inter-cycle variations, offering greater 
advantages in representational capacity. We treat the charging curves of 
historical cycles as 2D images, allowing intra-cycle and inter-cycle in
formation to be extracted via 2D convolution. 

X2D− embed =Embedinter− intra(X2D)= LN(W4Inception(X2D)+ b4) (2) 

where, X2D ∈ R1×cycles×10, and for Embedinter− intra, we adopt the classic 
Inception block from the computer vision (CV) domain to demonstrate 
the universality of this approach and process the 2D tensor [39], W4 ∈

Rdmodel×128.

3.2. Inter-cycle self-attention

Battery degradation trajectories are influenced by multiple coupled 
aging modes, leading to variations both within cycles and at corre
sponding sampling time steps across cycles. After intra-cycle embed
ding, we employ an inter-cycle self-attention mechanism to capture 
aging disparities during different battery cycles. By modeling the tem
poral dependencies in the cycle sequence, this mechanism effectively 
extracts long-term degradation features and adaptively focuses on crit
ical cycles that significantly impact future battery degradation. First, 
positional encoding is applied to each embedded cycle: 

PE(pos,2i)= sin

(
pos

10000
2i

dmodel

)

(3) 

PE(pos,2i+ 1)= cos

(
pos

10000
2i

dmodel

)

(4) 

where pos is the position vector, and i is the cycle index. 

Attention(Q,K,V)= softmax
(

QKT
̅̅̅̅̅̅̅̅̅̅̅
dmodel

√

)

V (5) 

Fig. 2. Dataset Description. (a) Capacity degradation trajectories of the selected batteries. (b) Distribution relationship between initial capacity and RUL of the 
selected batteries. (c) Intra-cycle and inter-cycle differences during battery degradation. (d) Pearson correlation coefficient between current SOH and RUL. (e) 
Visualization of capacity curves in the selected interval reflecting battery degradation from a two-dimensional image perspective.

X. Huang et al.                                                                                                                                                                                                                                  Journal of Power Sources 666 (2026) 239148 

4 



In the self attention mechanism, K,Q,V represent key(K), query(Q) and 
value(V), respectively, and dmodel denotes the input dimension  

We apply an Inter-cycle self-attention mechanism to the vectors after 
intra-cycle embedding to model relationships between cycles,. 
Following a residual network, the flattened vector of each cycle is 
mapped to the hidden dimension dmodel via a fully connected layer W3 ∈

Rcycles⋅dmodel×dmodel .

3.3. Multi-modal cross-attention

Modeling battery aging with 1-D time series and 2-D image features 
offers different dimensions and information granularity. We employ a 
cross-attention mechanism to bridge these two modalities. We enable 
interaction between the self-attention-modeled vectors of each cycle and 
the embedded image feature vectors. 

XMMA=Multi − modal Attention(X2D− embed,XIA)

=Cross Attention(X2D− embed,XIA)
(7) 

3.4. Multi-task learning for comprehensive battery health management

We model comprehensive and in-depth battery aging information 
through multi-modal intra-cycle and inter-cycle analysis.For single- 
cycle SOH estimation, we directly estimate SOH from the intra-cycle 
embedded vectors. 

YSOH =WSOHX1D− embed + bSOH (8) 

For SOH estimation, we use a linear transformation WSOH ∈ R1×dmodel . 
For future degradation trajectory prediction, we leverage the vectors 
obtained from intra-cycle embedding and inter-cycle self-attention 
applied to 1-D time series. 

YTra =WTraXIA + bTra (9) 

where WTra ∈ Rhorizon×dmodel , with "horizon" denoting the prediction 
length of the degradation trajectory. For RUL prediction, we use the 
vectors processed by combining the two modal inputs for prediction. 

YRUL =WRULXMMA + bRUL (10) 

where, WRUL ∈ R1×dmodel . During the training process, these three pre
diction subtasks are optimized simultaneously, and the loss function 
consists of the following three components: 

LossSOH =
1
N
∑N

i=1

⃦
⃦Ŷi

SOH − Yi
SOH

⃦
⃦

2
(11) 

LossTra =
1
N
∑N

i=1

⃦
⃦Ŷi

Tra − Yi
Tra

⃦
⃦

2
(12) 

LossRUL =
1
N
∑N

i=1

⃦
⃦Ŷi

RUL − Yi
RUL

⃦
⃦

2
(13) 

Loss=αLossSOH + βLossTra + γLossRUL (14) 

We set α = 1, β = 1, γ = 0.5 for experiments, though other hyper
parameter may yield better results.

4. Result and analysis

4.1. Model performance and generalization capability

This section aims to demonstrate the effectiveness of the proposed 
method from multiple dimensions. As shown in Fig. 3a, we visualize the 
results of one experiment out of ten. It can be observed that the proposed 
method exhibits superior performance in real-time SOH estimation 
across three battery materials under different operating conditions. The 
average RMSE for the three materials is 1.82 %, with a standard devi
ation of 1.69 %. Moreover, the estimation performance on the NCMNCA 
dataset is more stable, with the maximum RMSE not exceeding 6.93 %. 
This level of accuracy is achieved merely based on a 0.1V sampling 
segment. For the NCA dataset, he overall RMSE is relatively large at 
2.28 %, the RMSE of some samples reaches 8.75 %, which may be 
attributed to significant sampling errors in the data itself.

Fig. 3b presents the RUL prediction results across different datasets. 
We randomly selected one experimental result from ten trials involving 
three materials and four operating conditions for case analysis, with the 
complete results provided in Supplementary Figs. 5–7. It is evident that 
the best performance is achieved on the NCMNCA dataset, with an 
average error of only 5 cycles. This can be attributed, on one hand, to the 
effective long-term temporal modeling of battery aging data by the 
proposed method, and on the other hand, to the more linear degradation 
trajectory of the NCMNCA dataset compared to others, which simplifies 
the prediction task. In contrast, the prediction performance on the NCA 
dataset is relatively poorer, with an average error of 60 cycles. As shown 
in Fig. 2b, cells with similar initial capacities may follow markedly 
different degradation paths, resulting in broader distribution spread and 
more pronounced nonlinearity in later stages. This increases the 
intrinsic uncertainty of long-horizon RUL prediction, especially when 
future degradation trajectories diverge significantly under similar initial 
states. Furthermore, the NCA cells demonstrate more evident inflection 
points and local fluctuations in their degradation curves, introducing 
higher temporal non-stationarity that challenges sequence-based pre
diction models.

Fig. 3c illustrates the prediction results of the three tasks during the 
early, middle, and late stages of degradation. For the RUL prediction 
task, the errors for the three materials in the early and late stages are 35, 
44, 13 and 6, 25,10 cycles respectively, with significantly higher accu
racy in the late stage than in the early stage. This indicates that batteries 
with different RULs do not exhibit substantial performance differences 
in the early manufacturing stage. Additionally, the lower prediction 
accuracy for NCM batteries highlights the challenges of prediction based 
on extremely limited historical cycles and sampling intervals. For the 
SOH prediction task, the accuracy remains stable across the early, 
middle, and late stages for all three materials, with average errors of 
2.23 %, 1.50 %, and 2.22 % respectively. Given that only a 0.1V sam
pling interval is used, this accuracy meets the requirements of most 
practical applications. For the degradation trajectory prediction task: 
For NCA batteries, larger discrepancies are observed in the early stage, 
with a RMSE of 2.27 % and a standard deviation of 1.65 %, while the 
middle stage shows higher accuracy (RMSE: 1.72 %, standard deviation: 
1.87 %), which may be related to the degradation inflection points 
focused on in many existing studies. For NCM batteries, larger errors 
appear in the early stage, with an average RMSE of 3.03 % and a stan
dard deviation of 2.60 %. For NCMNCA batteries, stable performance is 
observed in the early and middle stages (average RMSE: 1.79 % and 

XIA = Inter − cycle attention(X1D− embed)=W3 ⋅ flatten(LN(X1D− embed + Self Attention(X1D− embed +PE))) + b3 (6) 
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1.24 % respectively), while a larger error occurs in the middle-late stage 
(average RMSE: 2.45 %, standard deviation: 1.08 %).

Fig. 4a, b, and c show the results of ablating different modules of the 
proposed method to investigate their contributions to the prediction 
outcomes. Specifically, two ablation experiments were conducted: 1) 
Removing the one-dimensional time series input and using only two- 
dimensional images for multiple prediction tasks; 2) Removing the 
two-dimensional image feature input and using only one-dimensional 
time series for multiple prediction tasks. Detailed ablation experi
ments are provided in Supplementary Note 4.

In the SOH estimation task, it can be observed that in all three 
datasets, the prediction errors after removing the one-dimensional time 
series module are relatively larger, at 3.38 %, 4.82 %, and 2.87 % 
respectively. This indicates that for the capacity prediction task, intra- 
cycle modeling contains richer information compared to inter-cycle 
modeling relationships. Using only 2-D image features as input 
weakens the ability to learn intra-cycle information to some extent, 
leading to a decline in the SOH prediction performance for the current 
cycle.

For the RUL prediction task, the removal of the 2D image module in 

Fig. 3. Results and analysis. (a) SOH prediction results of the model on three datasets. (b) RUL prediction results under partial operating conditions. (c) Performance 
analysis of the three tasks at different lifecycle stages.
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the NCA dataset significantly affected the model performance. The 
average RMSE of the prediction error increased from 19.38 cycles (with 
a standard deviation of 11.60) in the original model to 21.06 cycles 
(with a standard deviation of 12.95). In contrast, an interesting phe
nomenon was observed for the NCMNCA dataset, where both ablation 
schemes led to slightly improved performance, with the average RMSEs 
of the three models being 15.28 %, 13.92 %, and 13.99 %, respectively. 
This outcome stems from the inherent linearity of the degradation tra
jectories in the NCMNCA cells, where the capacity fading follows a near- 
linear trend throughout the lifetime. In such cases, the prediction task 
becomes relatively straightforward, and introducing more complex 
spatiotemporal modules may introduce redundant representations or 
amplify minor noise components, resulting in marginally degraded 
performance. Therefore, the reduced gap between the full and ablated 
models does not indicate the insignificance of the intra- or inter-cycle 
features, but rather reflects the data distribution characteristics of 
NCMNCA batteries. Under more nonlinear degradation behaviors, as 
observed in the NCA and NCM datasets, the full IC2ML framework 
demonstrates clear advantages, confirming the necessity of jointly 
modeling intra- and inter-cycle information for comprehensive health 
management.

In the trajectory prediction task, both ablation schemes 

demonstrated significant performance degradation across the three 
datasets. In the NCA dataset, the average MAPE increased from 1.24 % 
to 1.53 % and 2.39 % respectively; in the NCM dataset, the average 
RMSE rose from 0.55 % to 1.72 % and 2.06 % respectively. This further 
validates the effectiveness of the proposed scheme.degraded after 
ablation. For the NCA dataset, the average MAPE increased from 1.21 % 
to 1.81 % and 1.79 % respectively; for the NCM dataset, the average 
RMSE increased from 0.74 % to 1.61 % and 1.60 % respectively. These 
results further demonstrate the effectiveness of the proposed scheme.

4.2. Uncertainty analysis

This section aims to investigate the uncertainty of the model and its 
sensitivity to relevant hyperparameters. As shown in Fig. 5a, we 
compared two models: CRNN [34], which had been proven to exhibit 
superior performance, and BiLSTM, a commonly used model in the field 
of temporal modeling. We used NCM batteries as a case study, and the 
results are shown in Table 2. In the capacity prediction task, the average 
MAE of the three models (including our proposed model) was 1.67 %, 
1.86 %, and 2.48 % respectively. For the BiLSTM model, some samples 
showed an estimation error exceeding 5.00 %. In the degradation tra
jectory prediction task, the average MAE of the three models was 1.53 

Fig. 4. Ablation experiments. (a) Performance analysis of SOH estimation on three datasets. (b) Performance analysis of RUL prediction on three datasets. (c) 
Performance analysis of degradation trajectory prediction on three datasets. two ablation experiments were conducted, Our-wo1D:Removing the one-dimensional 
time series input and using only two-dimensional images for multiple prediction tasks, Our-wo2D:Removing the two-dimensional image feature input and using 
only one-dimensional time series for multiple prediction tasks.
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%, 1.90 %, and 2.21 % with standard deviations of 0.44 %, 0.77 %, and 
0.68 % respectively. Our model achieved the most stable and effective 
prediction results, indicating its effectiveness in temporal modeling. For 
the RUL prediction task, there was no significant difference among the 
three models, with average MAEs of 23.50, 29.47, and 35.31 cycles 
respectively, demonstrating the effectiveness of the selected model in 
temporal modeling, but its poor performance in the other two tasks 
highlights the challenges of comprehensive health management 
throughout the entire lifecycle. Meanwhile, we employed three models 
including Transformer, CNN, and GRU for separate single-task learning. 
It was observed that Transformer exhibited a relatively large error in the 
SOH estimation task, which might be attributed to insufficient training 
data. In contrast, GRU performed relatively well in the degradation 

Fig. 5. Uncertainty analysis. (a) Performance comparison with current popular models. (b) Correlation analysis between training data volume and model perfor
mance. (c) Impact of different hyperparameters on model performance. (d) Prediction results cross-operation-condition.

Table 1 
Literature review of existing approaches.

References SOH Trajectory RUL Inter- 
intra 
cycles

inter- 
cell

Task 
collaboration

[32] ✓ ​ ​ ​ ​ ​
[7] ​ ✓ ✓ ​ ​ ​
[34] ✓ ​ ✓ ​ ​ ✓
[37] ​ ​ ✓ ✓ ​ ​
[35] ​ ✓ ✓ ​ ​ ✓
[38] ​ ​ ✓ ​ ​ ​
IC2ML ✓ ✓ ✓ ✓ ​ ✓
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trajectory prediction task, reflecting the strong temporal dependencies 
inherent in battery aging.The detailed results obtained using different 
methods are presented in Table 1.

Fig. 5b presents an analysis of the proposed method's robustness 
under limited training data. For the SOH estimation task, when 100 %, 
60 %, and 20 % of the training data were used, the average RMSEs were 
1.96 %, 2.12 %, and 2.96 %, respectively, with standard deviations of 
0.79 %, 1.08 %, and 1.70 %. Notably, reducing the training data did not 
always degrade estimation accuracy; in certain operating conditions, the 
model trained with 60 % of the data even outperformed the one trained 
with 100 %. This indicates that SOH estimation relies less heavily on 
large data volumes, as it depends more on local degradation represen
tations than long-term dynamics. For the degradation trajectory pre
diction task, with 100 %, 60 %, and 20 % of the training data, the 
average RMSEs were 4.56 %, 4.61 %, and 6.14 %, respectively, with 
standard deviations of 2.67 %, 2.85 %, and 3.87 %. As expected, both 
accuracy and robustness improved with more training data, and a 
notable decline occurred when the available data dropped to 20 %. For 
the RUL prediction task, the average RMSEs were 19.34, 20.19, and 
24.21 cycles, respectively, with standard deviations of 11.60, 11.46, and 
12.57 cycles. Interestingly, there was little difference in accuracy be
tween using 60 % and 100 % of the data, which diverges from the trends 
in the other tasks. This observation primarily stems from the inherent 
cell-to-cell variability of the RUL task, even under identical materials 
and operating conditions, degradation trajectories differ substantially 
across cells. When training data are reduced, the retained subset may 
occasionally share higher distributional similarity with the test set, 
resulting in comparable or slightly better performance. However, for 
large-scale battery prognostics models encompassing a broader data 
distribution, a reduction in training data is expected to lead to a clear 
and monotonic decline in prediction accuracy.

This insight highlights the need for future work to explicitly model 
inter-cell variability to enhance generalization across heterogeneous 
battery populations. Fig. 5c analyzes the impact of changes in different 
hyperparameters on model accuracy, specifically examining three as
pects: the availability of historical data, the length of predicted future 
degradation trajectories, and the influence of different sampling in
tervals. The Base model uses 10 historical cycles with voltage samples in 
the 3.6-3.7 V range, while predicting the degradation trajectory, SOH, 
and RUL for the next 50 cycles. It should be noted that only one variable 
was changed at a time to ensure the rigor of the experimental results. In 
the capacity prediction task, changing the sampling voltage interval led 
to a noticeable performance decline, with the average RMSE increasing 
from 2.00 % to 2.65 %. This may be because the 3.7-3.8 V interval is 
closer to the incremental capacity (IC) peak, and the influence of the IC 
peak on the capacity curve reduces the accuracy of SOH estimation.

Regarding the extension of the predicted degradation trajectory, no 
significant performance changes were observed, with all three tasks 
showing slight improvements. Specifically, the RUL prediction error 
decreased to 30.92 cycles, indicating the interrelatedness of health tasks, 
longer prediction lengths may enhance RUL prediction performance, 

consistent with observations from other studies.
For the availability of historical data, increasing the length of 

accessible historical data significantly improved the performance of RUL 
and degradation trajectory prediction, with average RMSEs decreasing 
to 30.95 cycles (standard deviation: 18.02) and 1.66 % (standard de
viation: 0.42 %) respectively. Conversely, reducing the length of his
torical data increased the RUL prediction error from 34.42 to 36.96 
cycles. These results confirm a positive correlation between the avail
ability of historical data, RUL prediction length, and the accuracy of 
degradation trajectory prediction. Compared to other studies with strict 
data requirements, our method achieves superior performance using 
only 5 cycles of data within a 0.1 V sampling interval.

In Fig. 5d, we analyzed the model's capability for cross-condition 
prediction. Specifically, we mixed data from different operating condi
tions of NCMNCA material batteries for simultaneous training and pre
diction. In the SOH prediction task, the average RMSE was 1.67 % with a 
standard deviation of 1.63 %. In the degradation trajectory prediction 
task, the average RMSE was 1.82 % with a standard deviation of 1.72 %, 
and the average RUL prediction was 13.26 cycles. This indicates that the 
proposed method has good generalization ability and can learn the 
charging differences caused by different operating conditions. Addi
tionally, we present the prediction results of simultaneous cross-material 
and cross-condition scenarios in Supplementary Fig. 8, further demon
strating the potential of the proposed method to become a pre-trained 
unified battery management large model in the future.

5. Discussion

Existing health management methods overlook the inherent con
nections among various battery management tasks such as SOH esti
mation, degradation trajectory prediction, and RUL prediction, thus 
treating each task isolated. The degradation trajectory is initially 
anchored at the current SOH status, and its path directly determines the 
magnitude of RUL given an end-of-life threshold. The absence of inte
grated models that simultaneously account for current health status and 
future degradation trajectories hinders the ability to capture coupled 
evolution of multi-dimensional health indicators throughout battery 
aging. This study proposes a unified framework to establish connections 
among these health management tasks, which can leverage accessible 
data from BMS to realize joint prediction of battery SOH, degradation 
trajectory, and RUL via intra-cycle and inter-cycle enhanced machine 
learning, which is named as IC2ML in this paper.

Comprehensive effectiveness evaluations were conducted on data
sets of 120 batteries with 3 different materials, including NCA, NCA, and 
NMCNCA. The proposed method achieves RMSE of 1.85 % for SOH 
estimation, 2.36 % for degradation trajectory prediction, and 23.90 
cycles for RUL prediction across the three key battery management 
tasks. Thanks to the IC2ML, the required historical data can be reduced 
to only 5 cycles to make future predictions, with the RMSE of degra
dation prediction being 1.87 %. Meanwhile, based on effective time- 
series modeling, the prediction length can be extended to a time hori
zon of 100 cycles, with a RMSE of 1.77 % and a maximum RMSE lower 
than 3.45 %. Comparisons with current experimental results of battery 
multi-health task prediction and single-task prediction models reflect 
the advantages of this hierarchical collaborative management. The 
generalization ability of the model was verified under the a simulated 
data scarcity condition where the ratio of training data to test data was 
2:3. The robustness of the model was confirmed through hyper
parameter sensitivity analysis.

The method proposed in this paper breaks the fragmented situation 
of various tasks in traditional health management and provides a more 
efficient, accurate, and comprehensive paradigm by integrating the hi
erarchical dependencies of multiple tasks. However, it should be 
acknowledged that this work only conducts health management tasks 
based on electrochemical characteristics, and domain knowledge has 
not been incorporated into the modeling. As the next step, clear physical 

Table 2 
The summary of estimation errors for the NCM dataset using various methods.

Method State of health Degradation 
trajectory

Remaining useful life

RMSE 
(%)

MAE 
(%)

MAPE MAE 
(%)

RMSE 
(cycles)

MAE 
(cycles)

Our 1.75 1.66 0.55 1.53 30 23
Our (wo1D) 4.81 4.35 1.61 4.58 29 24
Our (wo2D) 1.80 1.51 1.60 4.57 30 25
CRNN 2.38 1.86 0.67 1.90 30 22
BILSTM 3.01 2.48 0.79 2.21 35 29
Transformer 2.23 1.82 \ \ \ \
GRU \ 0.70 1.99 \
CNN \ \ \ 44 32
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knowledge can be integrated into the data-driven model to improve self- 
interpretability [40], such as dQdV peaks [41], so as to establish 
physics-informed dependencies between different health management 
tasks. Random initial SOC is an important factor to consider in relation 
to the availability of field data. Although the effectiveness of the pro
posed method has been validated under random 0.1 V voltage segments, 
different voltage intervals involve complex electrochemical reactions. In 
addition, LFP batteries exhibit a plateau effect in their charging curves. 
Future work could consider incorporating an SOC-aware mechanism 
during the feature extraction phase to better address battery degradation 
under different SOC conditions. We also acknowledge that the current 
experiments do not cover extreme temperatures or high-rate conditions. 
Future work will extend the operating range to further verify the model's 
robustness and adaptability, as well as provide deeper insights into 
temperature- and rate-dependent degradation behaviors. In addition, it 
is necessary to further analyze the uncertainty of future degradation 
trajectories under highly random and time-varying working conditions, 
especially to establish an evaluation system with statistical confidence 
intervals, and simultaneously evaluate degradation mechanisms under 
extreme or special operating conditions through physical modeling to 
ensure the safe and long-term operation [4]. Future work will focus on 
non-invasive in-situ sensing signals [42] (such as vibration sensing, 
strain sensing, ultrasonic signals, and optical fiber sensing) to enhance 
the observation of internal states. Although existing methods have 
established a connection between the current health status of individual 
cells and their future degradation trajectories, enabling comprehensive 
lifecycle management, significant variations in degradation paths can 
still be observed among batteries with identical materials and capacities 
due to initial manufacturing differences and other factors. Future work 
could incorporate contrastive learning and related techniques to 
explicitly model inter-cell [38] variability for more accurate prediction. 
Meanwhile, in practical applications, there are inconsistencies among 
individual cells in the battery pack. These differences between cells will 
intensify with the increase of cycle times, thereby affecting the health 
status and service life of the entire battery pack [36]. Future work can 
construct a health management model that collaborates between indi
vidual cells and the pack to achieve accurate evaluation and effective 
management of the overall health status of the battery pack.

In brief, this study highlights the significant potential of the strate
gical co-design of battery management algorithms using intra-cycle and 
inter-cycle battery degradation information using the proposed IC2ML 
framework, which can be applied to various battery health management 
tasks such as SOH, degradation trajectory, and RUL prediction and 
beyond.
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