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HIGHLIGHTS

o IC2ML, a unified framework jointly predicting SOH, degradation trajectory, and RUL, is proposed.

e Health indicator are extracted from both 1-D voltage time series and 2-D images of voltage-capacity data.

e Spatiotemporal interaction among SOH, degradation trajectory and RUL is implemented through attention-based methods.
o The generalizability of IG?ML is validated with batteries of 3 materials and 10 operating conditions.

o IC?ML can adapt to limited data and extend to 100-cycle trajectory prediction with 1.77 % RMSE.

ARTICLE INFO ABSTRACT
Keywords: Strategic management of lithium-ion batteries (LIBs) depends on evaluating current health status and predicting
Lithium-ion batteries future degradation paths. Despite extensive research on core management tasks like state of health (SOH)

State of health
Degradation trajectory
Remaining useful life
Machine learning

estimation, degradation trajectory prediction, and remaining useful life (RUL) prediction, these tasks remain
isolated without leveraging their inherent connections. This work proposes an unified framework that enables
joint battery SOH, degradation trajectory and RUL prediction via an intra-cycle and inter-cycle enhanced ma-
chine learning (IG?ML). IC?ML uses 1-D time-serials voltage data to implement SOH prediction, where inter-cycle
embeddings are further self-attention for degradation trajectory prediction. The RUL is derived from degradation
trajectory prediction based on anticipated SOH levels, enabled by cross attention between output embeddings
and input inter-intra cycle embeddings. The results demonstrate that using 0.1V sampling interval data that can
be extracted onsite, the average root mean square error for SOH, degradation trajectory, and RUL prediction is
1.85 %, 2.36 % and 23.90 cycles, respectively, validated on 121 batteries spanning 10 operation conditions.
Sensitivity analysis shows that IG2ML can be adapted to scenarios where a few historical data is accessible.
Broadly, this work highlights the potential of strategical battery algorithm co-design using intra-cycle and inter-
cycle battery degradation information for various management tasks.
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1. Introduction

Lithium-ion batteries (LIBs), leveraging their high energy density
and long duration advantages, have been deeply integrated into core
fields such as electric vehicles [1], consumer electronics [2], and smart
grids [3]. However, like most electromechanical systems, LIBs inevitably
experience performance degradation during prolonged operation [4],
especially under dynamic temperature and load conditions typical of
electric vehicle and energy storage system applications, which manifests
as capacity loss, reduced charging efficiency, and increased safety con-
cerns [5]. Particularly in large-scale application scenarios such as new
energy vehicles and energy storage power stations, even slight attenu-
ation of battery performance may trigger future systemic risks [6,7].
Therefore, how to establish the evaluation of current health status and
the prediction of future degradation paths through non-destructive
methods has become a key link in ensuring the reliability and safety
of energy systems [8,9].

Capacity fading, as a core indicator for measuring battery perfor-
mance degradation, has always been the focus of industrial attention
[10]. Whether it is the pursuit of high yield by battery manufacturers
[11], the real-time monitoring needs of on-board battery management
systems (BMS) [12], or the evaluation of echelon utilization by battery
recycling enterprises, all revolve around maximizing the value of the
battery life cycle under the premise of ensuring safety. Although the
traditional full charge-discharge capacity test can intuitively reflect the
current maximum available capacity of the battery, it is time-consuming
[13] and cannot effectively predict the nonlinear degradation process
caused by complex coupling mechanisms [14-17] such as impedance
rise (IR), lithium inventory loss (LLI), and loss of active material (LAM),
making it difficult to predict the future battery performance [18-20].
The method relying on destructive disassembly for evaluation is more
direct, but this method causes additional damage to the battery itself
[21,22]. How to perform rapid, non-destructive, and comprehensive
health management of batteries remains a challenge[23-25].

In recent years, research work has focused on physics-based top-
down models (such as equivalent circuit models or electrochemical
state-space models) to characterize battery degradation by simulating
voltage, current, and temperature behaviors for health management.
However, these methods face challenges in terms of changes in different
operating parameters and calibration of batteries [26,27]. Data-driven
methods, including deep learning algorithms, can learn complex
degradation model patterns and relationships from the statistical char-
acteristics of data or in an end-to-end manner[28-31]. For example, in
terms of state of health (SOH) estimation, some teams have achieved
effective estimation of SOH based on arbitrary charging segments using
the transformer architecture [32]. However, these approaches only
evaluate the current health status while neglecting the prediction of
future degradation paths. In the field of life prediction and degradation
analysis, some studies have achieved high-precision degradation tra-
jectory and life prediction by building physics-informed models based
on initial manufacturing differences in early cycles [7], but they fail to
validate their capability in full-lifecycle management. Based on these
limitations, comprehensive management of a battery's current health
status and future degradation through multi-task learning is regarded as
a promising solution for effective battery health management [8,33].
Some research has established transferable models to simultaneously
predict remaining useful life (RUL) and SOH based on capacity incre-
ment differences in partial cycles, but they ignore the degradation tra-
jectory from the current SOH to the end of life, and treating RUL
prediction as a downstream task of SOH prediction inherently has cu-
mulative errors [34]. Some studies start from the correlation between
RUL and SOH, and take RUL prediction as an auxiliary task for pre-
dicting degradation trajectories, but the maximum capacity of historical
cycles required is often difficult to obtain in practical applications [35].
Even within the promising multi-task learning frameworks, these tasks
remain isolated and fail to fully leverage their inherent connections.
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From a physical perspective, the current SOH point is the starting pos-
tion of future degradation trajectories, depending on the future opera-
tion conditions; while the RUL is the anticipated remaining time or
cycles under defined end-of-life threshold of one of the degradation
trajectories [36]. From a data perspective, data from different sampling
points within the same cycle exhibit short-term degradation informa-
tion, while performance changes between adjacent cycles contain key
information about long-term degradation [14]. Recent advances have
highlighted the significance of structured temporal modeling. The Bat-
teryLife demonstrated that representing each charge-discharge cycle as
an independent "token" and sequentially modeling intra-cycle and
inter-cycle dependencies can effectively enhance life prediction perfor-
mance [37]. Meanwhile, Some studies introducing inter-cell learning,
capturing cross-cell correlations under heterogeneous ageing conditions
to improve robustness and early-life prediction accuracy [38]. These
studies have collectively validated the importance of hierarchical
time-series representation and cell heterogeneity modeling for battery
prognostics. Nevertheless, both approaches still focus primarily on
single-task lifetime prediction, leaving the intrinsic relations among
SOH, degradation trajectory, and RUL unexplored. The lack of inte-
grated modeling that jointly consider the current health status and
future degradation trajectories makes it difficult for models to capture
the synergistic evolution of multi-dimensional health patterns during
battery degradation.

This study proposes a unified framework enabling joint prediction of
battery SOH, degradation trajectory, and RUL via intra-cycle and inter-
cycle enhanced machine learning (ICZML). As shown in Fig. 1a, IC2ML
utilizes 1-D time-series voltage data sampled from random voltage in-
tervals for SOH prediction, and combines self-attention mechanisms to
capture inter-cycle differences for future degradation trajectory pre-
diction. The RUL is defined as the result derived from degradation tra-
jectory prediction and anticipated SOH levels within a future time
horizon, implemented via a cross-attention mechanism between output
embeddings of inter-cycle and intra-cycle embeddings of 2-D image
data. This architecture effectively breaks the bottleneck of traditional
methods in representational capability for intra-cycle 1-D spatial data,
achieving spatiotemporal unified modeling of three health states during
battery aging. As shown in Fig. 1b, the trained model can realize
comprehensive health management throughout the entire lifecycle
using only a small amount of easily accessible random samples from
0.1V voltage intervals. Validated on 121 batteries covering 10 operating
conditions, the average RMSE for the SOH task is 2.08 %, with average
RMSEs of 2.23 % and 55.69 cycles for degradation trajectory prediction
and RUL prediction, respectively. Further sensitivity analysis demon-
strates that IC?ML can adapt to scenarios with limited historical data:
when initialized with only the first 10 cycles of data, the average RMSE
for RUL prediction is 65 cycles. Additionally, degradation trajectory
prediction can be extended to 100 cycles with high precision, achieving
an average RMSE of 2.20 %. Compared with state-of-the-art data-driven
methods for batteries, IC2ML achieves an average accuracy improve-
ment of 21 % for SOH estimation tasks and 12 cycles for RUL prediction
task. Overall, this study highlights the significant potential of strategi-
cally collaborative design of battery management algorithms using
intra-cycle and inter-cycle battery degradation information, which can
be applied to various management tasks such as SOH, degradation tra-
jectory, and RUL prediction and beyond.

2. Dateset

This work employs three batches of batteries as case studies, with the
batteries tested under different operating conditions, each batch un-
dergoing testing throughout its full service life until the end of life
(EOL). Batch 1 consists of LiNij g6 Co 11Aly 0302 positive electrode (NCA
battery) with 3500mAh nominal capacity and cutoff voltages of
2.65-4.2V.

Batch 2 contains LiNiyg3C0¢.11Mng o702 positive electrode (NCM
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Fig. 1. Model architecture, deployment, and performance. (a) Data collected from multiple real-world scenarios are used for intra-cycle and inter-cycle modeling
through 1-D time series and 2-D image features, respectively, to comprehensively manage multiple battery health tasks. (b) The trained model enables compre-
hensive health management using only a small amount of easily accessible data. (c) Performance examples of the model on three tasks.

battery) with 3500mAh nominal capacity and cutoff voltages of 2.5-4.2
V. Batch 3 includes 42 (3) wt.% Li(NiCoMn)O; blended with 58 (3) wt.%
Li(NiCoAl)O, positive electrode (NCM + NCA battery) with 2500mAh
nominal capacity and cutoff voltages of 2.5-4.2 V. All batteries were
cycled in a thermal chamber under three temperatures (25 °C, 35 °C, and
45 °C) with variable charging rates (from 0.25C to 1C) and variable
discharging rates (from 1C to 4C). Each battery underwent the same
operating conditions throughout its lifecycle until reaching EOL (see
Supplementary Table 1 for details). These datasets do not include
cycling data under extreme conditions and are designed to simulate the
requirements of EV application scenarios.

The degradation trajectories in Fig. 2a demonstrate the variability
observed in cycling tests. Fig. 2b illustrates the relationship between
initial capacity and RUL, Even with similar initial capacities, different
batteries exhibit noticeable variations in RUL. This significant dispersion
indicates that the battery degradation process is influenced by multiple
coupled factors (such as manufacturing differences, operating condi-
tions, and internal chemical non-uniformities), making RUL prediction a
highly nonlinear, complex, and individualized task. Fig. 2¢ visualizes the
two-dimensional image features of input data under selected segments.
At different sampling time steps within a single cycle, varying capacity
increase rates are observed due to distinct chemical reactions. Notably,
significant differences also exist at the same sampling time steps across

different cycles, which further underscores the effectiveness of collab-
orative modeling from both intra-cycle and inter-cycle perspectives.
Fig. 2d presents the Pearson correlation between RUL and the maximum
capacity of the current cycle across different materials and operating
conditions, with correlations exceeding 90 % in all datasets. This in-
dicates the interrelated nature of different health state characterizations.

3. Method
3.1. Intra cycle embedding and intra-inter cycle embedding

We normalize the data solely by dividing the capacity increment by
the rated capacity to unify data dimensions, a method independent of
sample size. Additionally, we perform intra-cycle embedding on the
original capacity sampling sequence, treating each cycle's data as a
token to learn the relationship between capacity increments at sampling
points and battery aging:

X1p—embed = Embedprq (X1p) = LN(W20(W1X1p + b1) +bs) (€]

where, Xip € RIOdes W, ¢ RInoax10 -y, ¢ Rdmodaxdmoae  Embedynrg

represents the intra-cycle embedding. LN representation Layer nomi-
nalization. cycles represents the number of cycles in historical data, and
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Fig. 2. Dataset Description. (a) Capacity degradation trajectories of the selected batteries. (b) Distribution relationship between initial capacity and RUL of the
selected batteries. (c) Intra-cycle and inter-cycle differences during battery degradation. (d) Pearson correlation coefficient between current SOH and RUL. (e)
Visualization of capacity curves in the selected interval reflecting battery degradation from a two-dimensional image perspective.

dmoder Tepresents the dimension of the hidden layer.

The temporal variations at each observation point exhibit two
characteristic variation patterns: intra-cycle variations representing
sequential changes between consecutive sampling points, and inter-
cycle variations reflecting systematic differences at the same stage
across different cycles. However, the original 1-D structure of the time
series can only reflect changes between adjacent time points. We focus
on 2D structure of time series that embodies battery aging. Such struc-
tures can present intra-cycle and inter-cycle variations, offering greater
advantages in representational capacity. We treat the charging curves of
historical cycles as 2D images, allowing intra-cycle and inter-cycle in-
formation to be extracted via 2D convolution.

X2Dfembed = Embedinterfintra (XZD) = LN( W4Incepﬁon(X2D) + b4) (2)

where, Xop € RVYsx10 and for Embediyer_inra, We adopt the classic
Inception block from the computer vision (CV) domain to demonstrate
the universality of this approach and process the 2D tensor [39], W, €
R0 <128

3.2. Inter-cycle self-attention

Battery degradation trajectories are influenced by multiple coupled
aging modes, leading to variations both within cycles and at corre-
sponding sampling time steps across cycles. After intra-cycle embed-
ding, we employ an inter-cycle self-attention mechanism to capture
aging disparities during different battery cycles. By modeling the tem-
poral dependencies in the cycle sequence, this mechanism effectively
extracts long-term degradation features and adaptively focuses on crit-
ical cycles that significantly impact future battery degradation. First,
positional encoding is applied to each embedded cycle:

PE(pos, 2i) = sin (%) 3)
100009model
. pos
PE(pos, 2i+1) = cos (L) @
10000%modet

where pos is the position vector, and i is the cycle index.

T
QK )V

5
V dmodel ( )

Attention(Q, K, V) = softmax (
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In the self attention mechanism, K, Q, V represent key(K), query(Q) and
value(V), respectively, and dp,oq. denotes the input dimension
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4. Result and analysis

4.1. Model performance and generalization capability

Xia = Inter — cycle attention(X1p_embed) = W3 - flatten(LN(X1p—emped + Self Attention(Xip_emped + PE))) + bs 6)

We apply an Inter-cycle self-attention mechanism to the vectors after
intra-cycle embedding to model relationships between cycles,.
Following a residual network, the flattened vector of each cycle is
mapped to the hidden dimension d,4. via a fully connected layer Ws €

[REY<lesdmodet % dmodel _

3.3. Multi-modal cross-attention

Modeling battery aging with 1-D time series and 2-D image features
offers different dimensions and information granularity. We employ a
cross-attention mechanism to bridge these two modalities. We enable
interaction between the self-attention-modeled vectors of each cycle and
the embedded image feature vectors.

Xuma = Multi —modal Attention(Xop _emped, Xia )
= Cross Attention(Xop _embed, X1 )

()

3.4. Multi-task learning for comprehensive battery health management

We model comprehensive and in-depth battery aging information
through multi-modal intra-cycle and inter-cycle analysis.For single-
cycle SOH estimation, we directly estimate SOH from the intra-cycle
embedded vectors.

Ysor = WsouX10-embed + bson ®

For SOH estimation, we use a linear transformation Woy € R!*%modl
For future degradation trajectory prediction, we leverage the vectors
obtained from intra-cycle embedding and inter-cycle self-attention
applied to 1-D time series.

Yira = WreXia + bTm (9)
where Wryq € RPO#0m%dnoae  with "horizon" denoting the prediction
length of the degradation trajectory. For RUL prediction, we use the
vectors processed by combining the two modal inputs for prediction.

Yror = WrurXmma + bruw 10)
where, Wry, € R o During the training process, these three pre-

diction subtasks are optimized simultaneously, and the loss function
consists of the following three components:

1N 2
LosssoH:N Z [ Yion — Yol an
i1
1M 2
LOSSTm :N Z H YITm - YleH (12)
i=1
1 T vi )P
LOSSRUL :N H Y}{UL - Y}IQULH (13)
i1
Loss = aLossgon + BLOSS1rq + yLOSSRyL as

We seta =1, f = 1, y = 0.5 for experiments, though other hyper-
parameter may yield better results.

This section aims to demonstrate the effectiveness of the proposed
method from multiple dimensions. As shown in Fig. 3a, we visualize the
results of one experiment out of ten. It can be observed that the proposed
method exhibits superior performance in real-time SOH estimation
across three battery materials under different operating conditions. The
average RMSE for the three materials is 1.82 %, with a standard devi-
ation of 1.69 %. Moreover, the estimation performance on the NCMNCA
dataset is more stable, with the maximum RMSE not exceeding 6.93 %.
This level of accuracy is achieved merely based on a 0.1V sampling
segment. For the NCA dataset, he overall RMSE is relatively large at
2.28 %, the RMSE of some samples reaches 8.75 %, which may be
attributed to significant sampling errors in the data itself.

Fig. 3b presents the RUL prediction results across different datasets.
We randomly selected one experimental result from ten trials involving
three materials and four operating conditions for case analysis, with the
complete results provided in Supplementary Figs. 5-7. It is evident that
the best performance is achieved on the NCMNCA dataset, with an
average error of only 5 cycles. This can be attributed, on one hand, to the
effective long-term temporal modeling of battery aging data by the
proposed method, and on the other hand, to the more linear degradation
trajectory of the NCMNCA dataset compared to others, which simplifies
the prediction task. In contrast, the prediction performance on the NCA
dataset is relatively poorer, with an average error of 60 cycles. As shown
in Fig. 2b, cells with similar initial capacities may follow markedly
different degradation paths, resulting in broader distribution spread and
more pronounced nonlinearity in later stages. This increases the
intrinsic uncertainty of long-horizon RUL prediction, especially when
future degradation trajectories diverge significantly under similar initial
states. Furthermore, the NCA cells demonstrate more evident inflection
points and local fluctuations in their degradation curves, introducing
higher temporal non-stationarity that challenges sequence-based pre-
diction models.

Fig. 3c illustrates the prediction results of the three tasks during the
early, middle, and late stages of degradation. For the RUL prediction
task, the errors for the three materials in the early and late stages are 35,
44, 13 and 6, 25,10 cycles respectively, with significantly higher accu-
racy in the late stage than in the early stage. This indicates that batteries
with different RULs do not exhibit substantial performance differences
in the early manufacturing stage. Additionally, the lower prediction
accuracy for NCM batteries highlights the challenges of prediction based
on extremely limited historical cycles and sampling intervals. For the
SOH prediction task, the accuracy remains stable across the early,
middle, and late stages for all three materials, with average errors of
2.23 %, 1.50 %, and 2.22 % respectively. Given that only a 0.1V sam-
pling interval is used, this accuracy meets the requirements of most
practical applications. For the degradation trajectory prediction task:
For NCA batteries, larger discrepancies are observed in the early stage,
with a RMSE of 2.27 % and a standard deviation of 1.65 %, while the
middle stage shows higher accuracy (RMSE: 1.72 %, standard deviation:
1.87 %), which may be related to the degradation inflection points
focused on in many existing studies. For NCM batteries, larger errors
appear in the early stage, with an average RMSE of 3.03 % and a stan-
dard deviation of 2.60 %. For NCMNCA batteries, stable performance is
observed in the early and middle stages (average RMSE: 1.79 % and
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Fig. 3. Results and analysis. (a) SOH prediction results of the model on three datasets. (b) RUL prediction results under partial operating conditions. (c¢) Performance

analysis of the three tasks at different lifecycle stages.

1.24 % respectively), while a larger error occurs in the middle-late stage
(average RMSE: 2.45 %, standard deviation: 1.08 %).

Fig. 4a, b, and c show the results of ablating different modules of the
proposed method to investigate their contributions to the prediction
outcomes. Specifically, two ablation experiments were conducted: 1)
Removing the one-dimensional time series input and using only two-
dimensional images for multiple prediction tasks; 2) Removing the
two-dimensional image feature input and using only one-dimensional
time series for multiple prediction tasks. Detailed ablation experi-
ments are provided in Supplementary Note 4.

In the SOH estimation task, it can be observed that in all three
datasets, the prediction errors after removing the one-dimensional time
series module are relatively larger, at 3.38 %, 4.82 %, and 2.87 %
respectively. This indicates that for the capacity prediction task, intra-
cycle modeling contains richer information compared to inter-cycle
modeling relationships. Using only 2-D image features as input
weakens the ability to learn intra-cycle information to some extent,
leading to a decline in the SOH prediction performance for the current
cycle.

For the RUL prediction task, the removal of the 2D image module in
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Fig. 4. Ablation experiments. (a) Performance analysis of SOH estimation on three datasets. (b) Performance analysis of RUL prediction on three datasets. (c)
Performance analysis of degradation trajectory prediction on three datasets. two ablation experiments were conducted, Our-wolD:Removing the one-dimensional
time series input and using only two-dimensional images for multiple prediction tasks, Our-wo2D:Removing the two-dimensional image feature input and using

only one-dimensional time series for multiple prediction tasks.

the NCA dataset significantly affected the model performance. The
average RMSE of the prediction error increased from 19.38 cycles (with
a standard deviation of 11.60) in the original model to 21.06 cycles
(with a standard deviation of 12.95). In contrast, an interesting phe-
nomenon was observed for the NCMNCA dataset, where both ablation
schemes led to slightly improved performance, with the average RMSEs
of the three models being 15.28 %, 13.92 %, and 13.99 %, respectively.
This outcome stems from the inherent linearity of the degradation tra-
jectories in the NCMNCA cells, where the capacity fading follows a near-
linear trend throughout the lifetime. In such cases, the prediction task
becomes relatively straightforward, and introducing more complex
spatiotemporal modules may introduce redundant representations or
amplify minor noise components, resulting in marginally degraded
performance. Therefore, the reduced gap between the full and ablated
models does not indicate the insignificance of the intra- or inter-cycle
features, but rather reflects the data distribution characteristics of
NCMNCA batteries. Under more nonlinear degradation behaviors, as
observed in the NCA and NCM datasets, the full IC2ML framework
demonstrates clear advantages, confirming the necessity of jointly
modeling intra- and inter-cycle information for comprehensive health
management.

In the ablation schemes

trajectory prediction task, both

demonstrated significant performance degradation across the three
datasets. In the NCA dataset, the average MAPE increased from 1.24 %
to 1.53 % and 2.39 % respectively; in the NCM dataset, the average
RMSE rose from 0.55 % to 1.72 % and 2.06 % respectively. This further
validates the effectiveness of the proposed scheme.degraded after
ablation. For the NCA dataset, the average MAPE increased from 1.21 %
to 1.81 % and 1.79 % respectively; for the NCM dataset, the average
RMSE increased from 0.74 % to 1.61 % and 1.60 % respectively. These
results further demonstrate the effectiveness of the proposed scheme.

4.2. Uncertainty analysis

This section aims to investigate the uncertainty of the model and its
sensitivity to relevant hyperparameters. As shown in Fig. 5a, we
compared two models: CRNN [34], which had been proven to exhibit
superior performance, and BiLSTM, a commonly used model in the field
of temporal modeling. We used NCM batteries as a case study, and the
results are shown in Table 2. In the capacity prediction task, the average
MAE of the three models (including our proposed model) was 1.67 %,
1.86 %, and 2.48 % respectively. For the BILSTM model, some samples
showed an estimation error exceeding 5.00 %. In the degradation tra-
jectory prediction task, the average MAE of the three models was 1.53
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Fig. 5. Uncertainty analysis. (a) Performance comparison with current popular models. (b) Correlation analysis between training data volume and model perfor-
mance. (c¢) Impact of different hyperparameters on model performance. (d) Prediction results cross-operation-condition.

%, 1.90 %, and 2.21 % with standard deviations of 0.44 %, 0.77 %, and
0.68 % respectively. Our model achieved the most stable and effective
prediction results, indicating its effectiveness in temporal modeling. For
the RUL prediction task, there was no significant difference among the
three models, with average MAEs of 23.50, 29.47, and 35.31 cycles
respectively, demonstrating the effectiveness of the selected model in
temporal modeling, but its poor performance in the other two tasks
highlights the challenges of comprehensive health management
throughout the entire lifecycle. Meanwhile, we employed three models
including Transformer, CNN, and GRU for separate single-task learning.
It was observed that Transformer exhibited a relatively large error in the
SOH estimation task, which might be attributed to insufficient training
data. In contrast, GRU performed relatively well in the degradation

Table 1
Literature review of existing approaches.

References SOH  Trajectory RUL  Inter- inter- Task
intra cell collaboration
cycles

[32] v

[71 v v

[34] v v v

[37] 4 v

[35] v v v

[38] v

IC?ML v v v v v
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Table 2
The summary of estimation errors for the NCM dataset using various methods.

Method State of health Degradation Remaining useful life
trajectory
RMSE MAE MAPE MAE RMSE MAE
(%) (%) (%) (cycles) (cycles)
Our 1.75 1.66 0.55 1.53 30 23
Our (wolD) 4.81 4.35 1.61 4.58 29 24
Our (wo2D) 1.80 1.51 1.60 4.57 30 25
CRNN 2.38 1.86 0.67 1.90 30 22
BILSTM 3.01 2.48 0.79 2.21 35 29
Transformer  2.23 1.82 \ \ \ \
GRU \ 0.70 1.99 \
CNN \ \ \ 44 32

trajectory prediction task, reflecting the strong temporal dependencies
inherent in battery aging.The detailed results obtained using different
methods are presented in Table 1.

Fig. 5b presents an analysis of the proposed method's robustness
under limited training data. For the SOH estimation task, when 100 %,
60 %, and 20 % of the training data were used, the average RMSEs were
1.96 %, 2.12 %, and 2.96 %, respectively, with standard deviations of
0.79 %, 1.08 %, and 1.70 %. Notably, reducing the training data did not
always degrade estimation accuracy; in certain operating conditions, the
model trained with 60 % of the data even outperformed the one trained
with 100 %. This indicates that SOH estimation relies less heavily on
large data volumes, as it depends more on local degradation represen-
tations than long-term dynamics. For the degradation trajectory pre-
diction task, with 100 %, 60 %, and 20 % of the training data, the
average RMSEs were 4.56 %, 4.61 %, and 6.14 %, respectively, with
standard deviations of 2.67 %, 2.85 %, and 3.87 %. As expected, both
accuracy and robustness improved with more training data, and a
notable decline occurred when the available data dropped to 20 %. For
the RUL prediction task, the average RMSEs were 19.34, 20.19, and
24.21 cycles, respectively, with standard deviations of 11.60, 11.46, and
12.57 cycles. Interestingly, there was little difference in accuracy be-
tween using 60 % and 100 % of the data, which diverges from the trends
in the other tasks. This observation primarily stems from the inherent
cell-to-cell variability of the RUL task, even under identical materials
and operating conditions, degradation trajectories differ substantially
across cells. When training data are reduced, the retained subset may
occasionally share higher distributional similarity with the test set,
resulting in comparable or slightly better performance. However, for
large-scale battery prognostics models encompassing a broader data
distribution, a reduction in training data is expected to lead to a clear
and monotonic decline in prediction accuracy.

This insight highlights the need for future work to explicitly model
inter-cell variability to enhance generalization across heterogeneous
battery populations. Fig. 5c analyzes the impact of changes in different
hyperparameters on model accuracy, specifically examining three as-
pects: the availability of historical data, the length of predicted future
degradation trajectories, and the influence of different sampling in-
tervals. The Base model uses 10 historical cycles with voltage samples in
the 3.6-3.7 V range, while predicting the degradation trajectory, SOH,
and RUL for the next 50 cycles. It should be noted that only one variable
was changed at a time to ensure the rigor of the experimental results. In
the capacity prediction task, changing the sampling voltage interval led
to a noticeable performance decline, with the average RMSE increasing
from 2.00 % to 2.65 %. This may be because the 3.7-3.8 V interval is
closer to the incremental capacity (IC) peak, and the influence of the IC
peak on the capacity curve reduces the accuracy of SOH estimation.

Regarding the extension of the predicted degradation trajectory, no
significant performance changes were observed, with all three tasks
showing slight improvements. Specifically, the RUL prediction error
decreased to 30.92 cycles, indicating the interrelatedness of health tasks,
longer prediction lengths may enhance RUL prediction performance,
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consistent with observations from other studies.

For the availability of historical data, increasing the length of
accessible historical data significantly improved the performance of RUL
and degradation trajectory prediction, with average RMSEs decreasing
to 30.95 cycles (standard deviation: 18.02) and 1.66 % (standard de-
viation: 0.42 %) respectively. Conversely, reducing the length of his-
torical data increased the RUL prediction error from 34.42 to 36.96
cycles. These results confirm a positive correlation between the avail-
ability of historical data, RUL prediction length, and the accuracy of
degradation trajectory prediction. Compared to other studies with strict
data requirements, our method achieves superior performance using
only 5 cycles of data within a 0.1 V sampling interval.

In Fig. 5d, we analyzed the model's capability for cross-condition
prediction. Specifically, we mixed data from different operating condi-
tions of NCMNCA material batteries for simultaneous training and pre-
diction. In the SOH prediction task, the average RMSE was 1.67 % with a
standard deviation of 1.63 %. In the degradation trajectory prediction
task, the average RMSE was 1.82 % with a standard deviation of 1.72 %,
and the average RUL prediction was 13.26 cycles. This indicates that the
proposed method has good generalization ability and can learn the
charging differences caused by different operating conditions. Addi-
tionally, we present the prediction results of simultaneous cross-material
and cross-condition scenarios in Supplementary Fig. 8, further demon-
strating the potential of the proposed method to become a pre-trained
unified battery management large model in the future.

5. Discussion

Existing health management methods overlook the inherent con-
nections among various battery management tasks such as SOH esti-
mation, degradation trajectory prediction, and RUL prediction, thus
treating each task isolated. The degradation trajectory is initially
anchored at the current SOH status, and its path directly determines the
magnitude of RUL given an end-of-life threshold. The absence of inte-
grated models that simultaneously account for current health status and
future degradation trajectories hinders the ability to capture coupled
evolution of multi-dimensional health indicators throughout battery
aging. This study proposes a unified framework to establish connections
among these health management tasks, which can leverage accessible
data from BMS to realize joint prediction of battery SOH, degradation
trajectory, and RUL via intra-cycle and inter-cycle enhanced machine
learning, which is named as IC?ML in this paper.

Comprehensive effectiveness evaluations were conducted on data-
sets of 120 batteries with 3 different materials, including NCA, NCA, and
NMCNCA. The proposed method achieves RMSE of 1.85 % for SOH
estimation, 2.36 % for degradation trajectory prediction, and 23.90
cycles for RUL prediction across the three key battery management
tasks. Thanks to the IC?ML, the required historical data can be reduced
to only 5 cycles to make future predictions, with the RMSE of degra-
dation prediction being 1.87 %. Meanwhile, based on effective time-
series modeling, the prediction length can be extended to a time hori-
zon of 100 cycles, with a RMSE of 1.77 % and a maximum RMSE lower
than 3.45 %. Comparisons with current experimental results of battery
multi-health task prediction and single-task prediction models reflect
the advantages of this hierarchical collaborative management. The
generalization ability of the model was verified under the a simulated
data scarcity condition where the ratio of training data to test data was
2:3. The robustness of the model was confirmed through hyper-
parameter sensitivity analysis.

The method proposed in this paper breaks the fragmented situation
of various tasks in traditional health management and provides a more
efficient, accurate, and comprehensive paradigm by integrating the hi-
erarchical dependencies of multiple tasks. However, it should be
acknowledged that this work only conducts health management tasks
based on electrochemical characteristics, and domain knowledge has
not been incorporated into the modeling. As the next step, clear physical



X. Huang et al.

knowledge can be integrated into the data-driven model to improve self-
interpretability [40], such as dQdV peaks [41], so as to establish
physics-informed dependencies between different health management
tasks. Random initial SOC is an important factor to consider in relation
to the availability of field data. Although the effectiveness of the pro-
posed method has been validated under random 0.1 V voltage segments,
different voltage intervals involve complex electrochemical reactions. In
addition, LFP batteries exhibit a plateau effect in their charging curves.
Future work could consider incorporating an SOC-aware mechanism
during the feature extraction phase to better address battery degradation
under different SOC conditions. We also acknowledge that the current
experiments do not cover extreme temperatures or high-rate conditions.
Future work will extend the operating range to further verify the model's
robustness and adaptability, as well as provide deeper insights into
temperature- and rate-dependent degradation behaviors. In addition, it
is necessary to further analyze the uncertainty of future degradation
trajectories under highly random and time-varying working conditions,
especially to establish an evaluation system with statistical confidence
intervals, and simultaneously evaluate degradation mechanisms under
extreme or special operating conditions through physical modeling to
ensure the safe and long-term operation [4]. Future work will focus on
non-invasive in-situ sensing signals [42] (such as vibration sensing,
strain sensing, ultrasonic signals, and optical fiber sensing) to enhance
the observation of internal states. Although existing methods have
established a connection between the current health status of individual
cells and their future degradation trajectories, enabling comprehensive
lifecycle management, significant variations in degradation paths can
still be observed among batteries with identical materials and capacities
due to initial manufacturing differences and other factors. Future work
could incorporate contrastive learning and related techniques to
explicitly model inter-cell [38] variability for more accurate prediction.
Meanwhile, in practical applications, there are inconsistencies among
individual cells in the battery pack. These differences between cells will
intensify with the increase of cycle times, thereby affecting the health
status and service life of the entire battery pack [36]. Future work can
construct a health management model that collaborates between indi-
vidual cells and the pack to achieve accurate evaluation and effective
management of the overall health status of the battery pack.

In brief, this study highlights the significant potential of the strate-
gical co-design of battery management algorithms using intra-cycle and
inter-cycle battery degradation information using the proposed IC2ML
framework, which can be applied to various battery health management
tasks such as SOH, degradation trajectory, and RUL prediction and
beyond.
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