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Abstract

Two-dimensional (2-D) incompressible, inviscid fluids produce fascinating pat-
terns of swirling motion. How and why the patterns emerge are long-standing
questions, first addressed in the 19th century by Helmholtz, Kirchhoff, and Kelvin.
Countless researchers have since contributed to innovative techniques and results.
However, the overarching problem of swirling 2-D motion and its long-time behav-
ior remains largely open. Here we shed light on this problem via a link to isospec-
tral matrix flows. The link is established through V. Zeitlin’s beautiful model for
the numerical discretization of Euler’s equations in 2-D. When considered on the
sphere, Zeitlin’s model offers deep connections between 2-D hydrodynamics and
unitary representations of the rotation group; consequently, it provides a dictio-
nary that maps hydrodynamical concepts to matrix Lie theory, which in turn gives
connections to matrix factorizations, random matrices, and integrability theory,
for example. Results about finite-dimensional matrices can then be transferred to
infinite-dimensional fluids via quantization theory, which is here used as an anal-
ysis tool (albeit traditionally describing the limit between quantum and classical
physics). We demonstrate how the dictionary is constructed and how it unveils tech-
niques for 2-D hydrodynamics. We also give accompanying convergence results
for Zeitlin’s model on the sphere.
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1. Introduction

If you stir up an incompressible, low-viscosity fluid confined to a thin (al-
most 2-D) bounded domain, then under conditions on the initial configuration and
the applied forcing, what you see is spectacular, completely different from the
situation in full 3-D. The fluid self-organizes into large, coherently swirling re-
gions called vortex condensates.! Some regions swirl counterclockwise (positive
vorticity), others clockwise (negative vorticity), with occasional merger between
equal-signed regions, and repulsion between opposite-signed regions. What is the
mechanism of vortex condensation and under which conditions does it occur? More
mathematically formulated, what is the generic long-time behavior of the 2-D Euler
equations?

In terms of moving towards an answer, a milestone was reached in 1949 when
Onsager [48] applied statistical mechanics to a large but finite number of point
vortices on a flat torus (doubly periodic square). Onsager understood that if the
energy of a configuration is large, relative to the vortex strengths, then the thermo-
dynamical temperature is negative. Point vortices of equal sign will then tend to
cluster “so as to use up excess energy at the least possible cost in terms of degrees
of freedom” [48, p. 281]. Statistical mechanics thus predicts vortex condensation.
Under the ergodicity assumption, it also predicts long-time states corresponding
to thermal equilibrium. Since then, Onsager’s ideas have fostered several rigorous
results, for example, weak convergence of the Gibbs measure, in both positive and
negative temperature regimes, as the number of point vortices increase [7,34].

However there is a problem with the point vortex approach, as Onsager himself
pointed out: “When we compare our idealized model with reality, we have to admit
one profound difference: the distribution of vorticity which occur in the actual
flow of normal liquids are continuous” [48, p. 281]. In particular, solutions to the
2-D Euler equations with continuous, bounded vorticity possess a rich geometric
structure: they make up an infinite-dimensional Lie—Poisson system, with infinitely
many conservation laws given by Casimir functions (cf. Sect. 2 below). Whereas

I The effect can be experimentally reproduced by a thin soap film flowing rapidly through
a fine comb [13], or by a conducting fluid confined to a thin layer and driven into turbulence
by a temporally varying magnetic field [51].
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(A) Initial vorticity wo (B) Mixing phase (¢) Long-time phase

Fig. 1. A numerical simulation of the vorticity field for Euler’s equations on S?. The results
are displayed using the Mollweide area preserving projection. For random smooth initial data
(a), the typical dynamical behavior is a mixing phase (b) where vorticity regions of equal
sign undergo merging, followed by a long-time phase (¢) of 3 or 4 remaining large, weakly
interacting vortex condensates whose centers of mass move along nearly quasi periodic
trajectories

point-vortices formally fit into this structure, with Casimirs corresponding to the
vortex strengths, they do itin a weak sense, which fails to capture the incompressible
nature of the fluid, for example. In addition, point vortices cannot capture relations
between the continuous Casimirs, and those relations affect the long-time behavior
(cf- Abramov and Majda [1]). Moreover, the ergodicity assumption for Onsager’s
statistical approach is invalid.> So, in summary, the point vortex model is insufficient
to describe the long-time behavior of continuous solutions.

Another established technique for 2-D hydrodynamics is non-linear PDE analy-
sis. It has led to many rigorous and deep results, but at the cost of restricted settings,
for example perturbations of steady solutions. We refer to the monograph of Mar-
chioro and Pulvirenti [42] and the lecture notes of Sverdk [53] for an overview.

The grand vision is to bridge PDE analysis results with predictions from sta-
tistical hydrodynamics. It is a notoriously difficult problem. As a flavor of the
difficulty, the two approaches seem incompatible: the statistically predicted vortex
condensation implies merging of equally signed vorticity regions. However, in the
dynamics of the 2-D Euler equations, vorticity is advected by the fluid velocity
field, so merging can only occur by trapping increasingly narrow, but deep, vortic-
ity variations in an overwhelmingly complicated stretch-and-fold process. These
variations cannot disappear in the C'-topology. Indeed, the C!-norm along regular
solutions can grow extremely fast, up to double exponential [37], and in numerical
simulations it typically does grow extremely fast.

A third tool for 2-D hydrodynamics is to carry out numerical experiments (as
illustrated in Fig. 1, where the mixing phase (B) captures a typical stretch-and-fold
process). Indeed, since the work of Lorentz [41] in the 1960s, computer simulations
have guided many analytical results in fluid dynamics; recent examples are found
in the references [9,14,20,37,50,57]. But are the numerical outcomes consistent
with the geometry known to influence the long-time behavior?

To address this question, we can ask for the finite-dimensional dynamical model
resulting from the discretization to be itself a Lie—Poisson system, whose finite-

2 This does not, however, wholly discredit the statistical theory; see the discussion in
Marchioro and Pulvirenti [42, Sec. 7.5].
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dimensional Lie—Poisson bracket approximates the infinite-dimensional one. Such a
model was given by Zeitlin [60,61], based on quantization results of Hoppe [27,28].
It is the only known Lie—Poisson discretization of the 2-D Euler equations, and
numerical simulations indicate that it captures the qualitative behavior better than
traditional discretizations (e.g., the predicted spectral scaling law, which standard
methods fail to catch even at significantly higher resolutions [10]). However, the
model is vastly underexplored.

This paper began with a simple idea: in addition to numerical advantages, matrix
hydrodynamics — the matrix flows enabled via Zeitlin’s model — brings theoretical
insights to classical 2-D hydrodynamics by providing a link to the rich and well-
developed theory of matrices. The point is to put forward matrix hydrodynamics
as a tool for 2-D turbulence, similar in spirit to the point vortex model of Onsager,
but with the benefit of capturing the Lie—Poisson geometry of continuous vorticity
fields, including conservation of continuous Casimirs.

Aside from the examples throughout the paper, a motivation and feasibility
check for our idea comes from complex geometry. Indeed, in the late 1980s, quan-
tization was promoted to address questions about Kéhler—Einstein metrics and the
Calabi conjecture. Tian [54] then gave convergence results that have since been
used regularly in theoretical contexts. Only much later did Donaldson [17] use
quantization in a numerical study of Kidhler—Einstein metrics; the antithesis to the
developments in 2-D hydrodynamics, where Zeitlin’s model has been a numerical
tool, until recently.

Our primary aim with the paper is to give basic convergence results for matrix
hydrodynamics in the spherical setting (Theorem 4, Theorem 6, Corollary 17, and
Theorem 19), and to showcase the fluid-to-matrix link in selected examples and
relate it to existing theories (Sect. 4-6). Our secondary aim, addressed in Sect. 3, is
to give a transparent derivation of Zeitlin’s model on the sphere, based on unitary
representation theory and focused on geometry rather than algebraic formulae.
First, we review in Sect. 2 the geometry of the 2-D Euler equations.

2. Background: Geometry of the 2-D Euler Equations

For an incompressible, inviscid fluid, Euler [21] showed how Newton’s second
law leads to partial differential equations (PDEs) for the velocity field v(x, ¢) of
the fluid’s motion,

v .

E—i—vvv:—Vp, divev =0, N
where p is the pressure function and V,, is the co-variant derivative (furthermore,
v is tangential to the boundary if present). Euler’s equations (1) make sense on any
Riemannian manifold, but in 2-D the geometric structure is richer than in higher
dimensions, and the dynamics is significantly different. Throughout this paper we
shall work on the sphere S?, partly because of its relevance in geophysical contexts,
but mostly because it later allows a description in terms of unitary representation
theory that renders the geometric structures in Zeitlin’s model more transparent.
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Let J: TS* — T'S? denote the bundle mapping for rotation by /2 in positive
direction. The curl operator maps the vector field v on S? to the vorticity function

w = curl v = div(Jv).

Since curl oV = 0, we obtain from Euler’s equations (1) that w fulfills the transport
equation

ow

o7 + div(wv) = 0.

Further, since the first co-homology of the sphere is trivial, it follows from Hodge
theory that the divergence free vector field v can be written v = V52 = —JVy,
where  is the stream function, unique up to a constant. Euler’s equations (1) is
then formulated entirely in terms of the vorticity and stream functions

%_‘: +div(Vty) =0, —AY = o. 2

Following Arnold [2] and Marsden and Weinstein [43], we now demonstrate
how to arrive at these equations from the point-of-view of symplectic geometry and
Hamiltonian dynamics.

The sphere is a symplectic manifold with symplectic form given by the spherical
area form p (in spherical coordinates (6, ¢) € [0, 7] x [0, 27) the area form is
pn = sinfdd A de). Given a Hamiltonian function f on S?, the corresponding
symplectic vector field X 7 is defined by

ix,p=df. (3)

If we identify 1-forms with vector fields using the Riemannian structure of S,
equation (3) becomes

JXy=Vf &< Xy=-JVf.

Thus, the fluid velocity field is the symplectic vector field for the Hamiltonian given
by the stream function: v = Xy;.

The space X, (S?) of smooth, symplectic vector fields on S? forms an infinite-
dimensional Lie algebra (with the vector field bracket [-, -]x). This algebra is iso-
morphic to the Poisson algebra of smooth functions modulo constants C*°(S?)/R
via the mapping v/ > Xy . Indeed,

—[Xy, Xelx = X(pey Wwhere (¥, &) = Vy - Vie

Let us now describe the connection between the infinite-dimensional Lie algebra
Xu (S?) and the vorticity equation (2).

Let g be a Lie algebra. Its dual g* is a Poisson manifold via its Lie—Poisson
bracket defined on functions F, H € C*°(g*) by

<F, H> () = (w, [dF(0), dH (w)]), w € g~ 4)



10 Page6of 39 Arch. Rational Mech. Anal. (2026) 250:10

where [-, -] denotes the Lie bracket on g and (-, -) is the pairing between g* and g.
The Lie-Poisson bracket (4) originates from the canonical symplectic structure on
the co-tangent bundle of the corresponding Lie group G, via symmetry reduction
T*G/G =~ g*. For details on this framework and its application in hydrodynamics,
we refer to Arnold and Khesin [3].

In the infinite-dimensional case of the group of symplectomorphisms on S? and
its Lie algebra of smooth Hamiltonian (or stream) functions, i.e., G = Diff (S?)
and g = C*(S?)/R, one usually restricts to the smooth dual, which is constructed
so that C®(S?)* ~ C*°(S?) via the L2-pairing (w, ) = fSZ o . As indicated,
we think of vorticity  as a dual variable to the stream function € g = C*(S?)/R.
Thus,

w € g* = (CP(SH/R)* ~ CPS*) = (f € C(S) | /S fu=0},

so the smooth dual of the Lie algebra of Hamiltonian functions (or equivalently
symplectic vector fields) is given by smooth functions with vanishing mean.

Now, the Hamiltonian system on the Lie-Poisson space g* for a Hamiltonian
function H: g* — R is formally given by

w+adjy; 0 =0, (5)

Sw

where @ denotes time differentiation and adj;/ . g* — g*isdefined by (adj;/ w, &) =

(w, {y, €}) for all & € g. In the case g = C°°(S?)/R, with smooth dual g* =
Cf)’o (S?), we obtain from the divergence theorem that

<w,{w,s}>=—/ wVy - VE u = (div(eVTY), &) = ({o, ¥}, £).
S? ———
ad*ww

Hence, ad:‘b  is minus the Poisson bracket, which reflects that the L>-pairing on

the Poisson space C %(S?) is bi-invariant.
Equation (2), for the evolution of vorticity, can now be written as a Lie—Poisson
system for the quadratic Hamiltonian

1 1
H(w) = 5[ VP = 5/ 0 (=0) "o .
s? 2 ——
v

Its variational derivative is % = 1. Consequently, the Lie—Poisson form (5) of
equation (2) is

where we think of the Laplacian as an isomorphism between g and g*, i.e.,
A: C®(SH/R = CE(SH).

Equation (6) is the starting point for Zeitlin’s model: the notion is to replace the
infinite-dimensional Lie algebra g with a finite-dimensional one and then consider
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the corresponding Lie—Poisson system. We give the details in the next section. Here,
we continue with a re-formulation of equation (6) that reveals the connection to the
Lie group of g.

From (6) it is clear that the vorticity function w is infinitesimally transported
by the time-dependent Hamiltonian vector field v = X,. Consequently, the flow
map ®: S? x R — S? obtained by integrating the vector field

% =v(D(x, 1), 1), B(x,0) =x

is a curve t — (-, ¢) in the Lie group G corresponding to the Lie algebra g.
Since the integration of a vector field yields a symplectic map if and only if
the vector field is symplectic, it follows that the Lie group consists of symplec-
tic diffeomorphisms of S?, denoted Diff “ (Sz). Since w is transported, we have that
w(x, 1) = w(® (x,1),0),orinmore compact notation w; = wgo CD,_I. The direct
implication is that w remains on the same coadjoint orbit as wq (the orbits for the
action of Diff (S%) on Cgo (S?)). Therefore, since the map P, has unitary Jacobian
determinant, any functional of the form

Cr(w) Z/SZ f(w(x,t))u(x), f:R—>R

is conserved; these are the Casimir functions.
The transport property furthermore implies weak (distributional), finite-
dimensional coadjoint orbits given by n interacting point vortices

n
w = ZFkSXk. @)
k=1

These were found by Helmholtz [25], and analyzed by Kirchhoff [35] and Kelvin
[31]. Much later, Onsager [48] used them is his theory of statistical hydrodynamics.
Let us see how they fit into the geometric framework of Lie-Poisson dynamics,
following Marsden and Weinstein [43].

In general, if G acts on a symplectic manifold (M, v) by symplectomorphisms
then there is a corresponding infinitesimal action vector field &y € X, (M) of
& € g. Suppose that &) is Hamiltonian, i.e., there is a function Hz € C§°(M) such
that tg,, v = dH. Notice that Hg must be linear in £. Suppose moreover there is a
smooth function p: M — g* such that

Hg(m) = (p(m), §).

Then p is a momentum map. Often (but not always) we can take the momentum
map to be equivariant, i.e., p(g - m) = Ad;i( p(m)). If, in addition, the action of G
on M is transitive, then the image p(M) C g* is a coadjoint orbit (generally weak).

In our specific situation, G = Diff, (Sz), we have thus far seen the tautological
example, where M is a symplectic leaf O,,, of the Poisson structure restricted to the
smooth dual g* = CSO(SZ), and the momentum map is the inclusion p: O, — g*.
ButDiff (S?) also acts symplectically on S?, by definition. Via Cartesian extension,
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there is then a symplectic action of Dift, (S?) on M = (S?)™\{diagonal} equipped
with the symplectic structure

n
Vot = 9 Dkl Ti € R\{O}
k=1

Since the action is transitive, we expect corresponding finite dimensional coadjoint
orbits. Indeed, &y (x1, ..., x,) = (§(x1), ..., E(xn)), 5O

lgyV = Z Citem = Z Crdr (x) = dZ i (xk)
k k k
= d/ (Z Fk&q) 1//M7
S? X

where § = Xy,. Thus, the associated finite dimensional (weak) coadjoint orbit is
given by the point vortices (7). These orbits and the corresponding weak solutions
show that the restriction to the smooth dual is not always legitimate.

To make the analogy with continuous vorticity functions, one should think
of phase space for point vortices as parameterized by (x1,...,x,, ['1,..., Ty).
The positions xj correspond to the level sets of a smooth vorticity function, and
the strengths I'y to the values associated with the level sets. Just like the function
values of the initial conditions wy € C*°(S?) are preserved (since wy is transported),
the strengths Iy are conserved. The dynamics for point vortices take place in the
map (x1(0), ..., x,(0)) — (x1(¢), ..., x,(¢)) which moves the strengths around.
The coordinates (xy, ..., x,,'1,..., ) for point vortices have a direct analog
for smooth coadjoint orbits. Indeed, instead of w; as dynamic variable, we can use
the map @, € Diff, (S?) together with the initial conditions wy via the equation

b =Xyo®;, —AY =wyo® . (®)

This is the transport map formulation of equation (6). It is the basis for global well-
posedness results (cf: [42,59]), which shows convergence of the fixed point iteration
obtained by leap-frogging between the equations (8) for ® (Picard iterations for
ODE) and for v (stationary PDE). Geometrically, the transport formulation captures
that the symplectic leaves are generated by the action of the Lie group.

We have thus summarized the geometric description of the 2-D Euler equa-
tions on S2. Indeed, all the structures presented — the Hamiltonian formulation, the
coadjoint orbits, the conservation of Casimirs, and the transport formulation — are
important in the various mathematical theories for long-time behavior (cf. surveys
by Drivas and Elgindi [18] and Khesin, Misiotek, and Shnirelman [32]).

Remark 1. Arnold’s [2] geometric description is valid for Euler’s equations on Rie-
mannian manifolds M of arbitrary dimension, by taking the group G to be volume
preserving diffeomorphisms Diffy, (M) with the Lie algebra g of divergence free
vector fields. However, this setting fails to capture some geometric qualities of 2-D
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Euler. In particular, the action of Diff o (M) on M is not symplectic if dim M > 2,
nor is the action on C*°(M) a Poisson map, which, for example, prevents singu-
lar and smooth coadjoint orbits to be given as point vortices and vorticity func-
tions. Instead, the geometrically natural generalization of 2-D Euler is the group
of (Hamiltonian) symplectomorphisms of a symplectic manifold equipped with a
Riemannian metric (e.g., a Kdhler manifold). This setting captures all the geometry
of the 2-D Euler equations and therefore many of the analysis results (e.g., global
solutions [19]).

ey

2

3)

“)

3. Quantization and the Euler-Zeitlin Equation

Here are the steps leading to Zeitlin’s model on the sphere:

The first ingredient is an explicit, finite-dimensional quantization of the Poisson
algebra (C®(S?), {-,-}). That is, a sequence of linear maps

Ty : C®(S?) — u(N)

such that the Poisson bracket is approximated by the matrix commutator in the
spectral norm ||-||co:

1
1Ty ({4, @}) — %[TNW, Tywllleo >0 as N — o0,

where /i ~ 1/N. Notice that the convergence cannot be uniform in ¥ and w,
since C*(S?) is infinite-dimensional.

The projection maps T should take the unit function x + 1 to the imaginary
identity matrix i/ € u(N). In particular, Ty descends to a map between the
quotient Lie algebras C*°(S?)/R and pu(N) = u(N)/iRI.3

The dual pu(N)* is naturally identified with su(N) via the pairing (W, P) =
—tr(WP) for P € pu(N) and W € su(N). The corresponding ad*-operator
on su(N) is

1
ady W = S [W. P].

The last ingredient is a “quantized” Laplace operator Ay : u(N) — su(N). It
should have the kernel iR/ and descend to a bijective map pu(N) — su(N).
Zeitlin’s model is then the Lie—Poisson system on g* = pu(N)* =~ su(N),
given by the isospectral flow

. 1
W~|—;L[W, P]1=0, —ANP =W. )

3 We refrain from identifying the Lie algebra pu(N) with su(N), since its Lie group
PU(N) is different from SU(N).
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3.1. Quantization Via Representation

To build the quantization maps 7Ty, it is natural to begin from the sphere’s
symmetry: the Lie group SO(3). The connection to the space of functions C*(S?)
is established via its Lie algebra so(3) as follows. Let xj, x2,x3 € C % (S?) be
a choice of Euclidean coordinate functions for the embedded sphere S c R3.
These functions generate so(3) as a Lie subalgebra of the Poisson algebra g =
(C*® (Sz), {-, -}). However, we should think of it differently. Namely, the basis ele-
ments ej, €2, e3 € R3 ~ 50(3) are associated with first order differential operators
X, on C*(S?) given by

Xyw = {x4, w}, fore=1,2,3.

Then X;, X>, X3 provides a unitary representation of s0(3) on C*(S?) compati-
ble with the Poisson algebra structure. Indeed, the Jacobi identity yields Ay Xg —
XpXe = {{xa,xp},-} and each &, is skew self-adjoint with respect to the L?
inner product. We now apply the powerful machinery of Schur, Cartan, Weyl,
and others (cf [38]) for representations of compact groups and the connection
to harmonic analysis. First, the generators &', X;, X3 can be viewed as the first
order elements of the universal enveloping algebra U (so(3)). Higher order ele-
ments correspond to higher order differential operators. In particular, the Killing
form on s0(3) corresponds to the second order Casimir element C = — 3, X2,
which in this case is the Laplacian A on S?. The Casimir element commutes with
each X,. In particular, if V C C°°(S?) is an eigenspace of C = A with eigen-
value A, then A, &>, X3 provide a sub-representation of so0(3) on V. Indeed,
ClAy, XplV = [Ay, ABICV = Ay, Ag]V, so [Ay, Ag]V must belong to the
eigenspace of A, i.e., [Xy, Xg]V C V. One can further prove that this representa-
tion is irreducible. In fact, the eigenspaces Vy for Ay = —¢(1 4+ £),£ = 0,1, ...
correspond to all the irreducible infinitesimal representations of SO(3) (i.e., the
odd-dimensional representations of so(3)). Furthermore, V; has dimension 2¢ + 1
and comes with a canonical basis Yy, (the spherical harmonics) corresponding to
the weights m = —£, . . ., £ of the representation.

From the point of view just presented, the aim of quantization is to construct
a representation of s0(3) on the Lie algebra u(N), which should be ‘as large as
possible’: since u(N) =~ Vy- - -@® Vy_1 as vector spaces one can hope to capture all
the irreducible representations V, for¢ = 0, ..., N—1. By identifying the canonical
basis Yy, in u(N), we then obtain the projection Ty : g — u(N). Following Hoppe
and Yau [29], but focusing on geometry rather than formulae, we now give a recipe
for such a construction.

For N even or odd, corresponding to £’ = (N — 1)/2, begin with an irreducible,
unitary representation 7 : s0(3) — u(N). Let S, = m(ey), chosen so that S3 is
diagonal with sorted, equidistant eigenvalues —if’, ..., i€’ corresponding to the
weights of the representation. Since the representation is unitary, Sy, S», S3 share
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the same spectrum. Explicitly, S; and S, are the tridiagonal matrices given by
0 0

i 1

L f@w) and $ = <

Fw) 2l —rw)
0 0

5 = fw)

forw=—¢,—0'+1,....,¢ —land f(w) =/ +1) —w(w+ ).

The Casimir element restricted to the representation is just multiplication by
—'(1+4¢) and is therefore given by the diagonal matrix C = — ", S2 = —¢/(1+
£)1. We now introduce a scaled representation X, = hS, in such a way that the ma-

trix X correspond to the function x, on S2. Thus, to achieve ( Do Xg) 12 _ il , cor-

responding to (Y, xg[)l/2 = 1,wetakethath = 1//O (1 + ) =2/~/N2 -1 =:
hy.

From the representation on CN ~ Vp we obtain another on u(N): for W €
u(N), the infinitesimal action of e, on W is

1
ey W =[S, W]= ﬁ[XOta W1.

The Casimir element for this representation is the Hoppe—Yau Laplacian

Ay :u(N) - u(N)

given by
3 13
Ay =) [Se: [Sar 1= 55 D [ Xa X 11
a=1 a=1
Being the Casimir element, any eigenvalue is of the form A = —£(1 + ¢) for

some £ € N/2 and the corresponding eigenspace V, has dimension 2¢ + 1. From
the Peter—Weyl theorem, the representation on u(N) decomposes into irreducible,
orthogonal components u(N) >~ Vy, @- - -@V;,_,. However, which ¢; are included?

Since Ayil = 0and Ay X, = 2X,,wehave £y = 0and £; = 1. From general
theory, and as desired, £y = kandn = N.

Lemma 1. u(N) >~ Vo & - - - @ Vy_1 where V; decomposes orthogonally as

. 1 if m=0
Ve = @V[m, with dim Vy,, = {2 lf m #0'
m=0
The components Vi, corresponding to the weights =2m, are mapped to the mth
diagonals of the matrix in u(N).

Proof. The result is well-known and follows from general theory about multiplic-
ities in the Peter-Weyl decomposition, see for example Kirillov [36, ch. 4, particu-
larly sec. 4.9]. We give here a direct, less general proof.

Consider the space polyy = {p € C[x] | degp = N} of polynomials. A
bijection between diagonal matrices D(NV) and polyy is given by p — p(X3).
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This is an algebra isomorphism, since (pg)(X3) = p(X3)q(X3). Let p; denote
the Legendre polynomials and consider the corresponding matrices Py = p¢(X3).
One can readily check that Ay Py is diagonal and corresponds to the polynomial

d d
— (1 —xH—= )
dx( x )dxpz(X)

From Sturm-Liouville theory it then follows that Ay Pp = —£(€ + 1) Py. Thus, we
must have that the representation on u(/N) includes V, for{ =0,...,N — 1. By a
dimension count, it then follows that u(N) >~ Vo @ --- & Vy_1. To see that each
Ve decomposes as stated, one can introduce the “shift operators” X and Y obtained
as part of the standard basis H, X, Y in the complexification s[(2, C) >~ su(2)c.
Since X and Y has elements only on the first upper and lower diagonal respectively,
it follows from representation theory for s[(2, C) that P, € V, gives rise to 2¢ new
basis vectors Py, € Ve ® C form = —4£, ..., £ with Pyg = Py, each of which is
supported on the m:th diagonal. Another dimension count then concludes that this
basis spans Vy ® C, so the corresponding real basis

1 i
3 (Pem - Pz(_m)) and 7 (P@m + Pz(_m)) spans V;.

O

Remark 2. For N even, i.e.,the {’ = (N —1)/2 “half-integer spin” representation on
CN, we still obtain only “integer spin” representations on u(N). This is desirable,
since the eigenspaces of the Laplacian on S? correspond exactly to the integer spin
(odd-dimensional) representations of s0(3).

The decomposition in Lemma 1 enables explicit construction of the projection
map Ty : g — u(N). Indeed, the £mth diagonals of W € u(NN) are spanned by
Vin = Vim @ -+ ® Vin—ym = CN=™ _1n turn, V. corresponds to the span
of the spherical harmonic functions Yy, ..., Y(n—1)m. Since Ay V., € V., we
obtain the +m diagonals by identifying the eigenvector of Ay|y,, with eigenvalue
—(m + k)(1 4+ m + k) with the spherical harmonic function Y, 4k). Specifically,
Anly,,: CN-m _ CN=™ as an operator acting on the upper mth diagonal of
W, is a tridiagonal, symmetric matrix. The spectral decomposition of Ay|y,, can
hence be computed by efficient numerical methods of complexity O(N). This way,
a function w € g is projected to the matrix W = Ty from its spherical harmonics
coefficients (wgm)e<n—1 in only O(N 2y numerical operations; see Cifani et al. [11]
for details. Notice that the L? adjoint Ty : uw(N) — gisaright inverse of Ty.

We thus arrive that at the following:

Theorem 2. ( [29]) The operators Ay and Ty fulfill

o TnAw = AnTyw;
o Tyl =il;
o Ty {xa, 0} = §[Xo, Tyl
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This result achieves the steps 2—4 listed above. Moreover, (i) the approximation
Ay to the Laplacian on S? is exact on the subspace spanned by spherical harmonics
up to order £ = N — 1, and (ii) the SO(3)-symmetry of S?is preserved, since 50(3)
is represented analogously on u(N) and C*®(S?).

Remark 3. Zeitlin’s original model on the flat torus T? does not preserve the trans-
lational symmetry generated by the action of the Abelian group A = R? on
R?/Z* ~ T?. The problem is that there is no corresponding action of A on the
finite dimensional Lie algebra g = su(N). Indeed, whereas there are actions of
R on su(N) corresponding to (a;,0) € A and (0,az) € A, these actions fail to
commute. The numerical consequence is that translation-like motion in Zeitlin’s
model on T give rise to artifacts and the Gibbs phenomenon.

The remaining step (1) above, relating the Poisson bracket {-, -} to the scaled
commutator %[~, -], is at the heart of quantization theory. The following is a spe-
cialization to our setting of a result by Charles and Polterovich [8]:

Theorem 3. ( [8]) There exists « > 0 so for all w € CZ(S2)

a)Loo—Olﬁa) 2 < —_TNa) < ||w]|| L
el lolle N+1” loo < ll@llLee,
|[Wu
[u

where ||Wlloo = sup, L. Furthermore, there exists B > 0, so, for all w, ¥ €

C3(SY),

3
1
I T, Ty Y] = Tviw. Yoo < B > llollcellyllca.
k=1

Proof. The result was proved for Berezin—Toeplitz operators between holomorphic
sections of certain complex holomorphic vector bundles appearing in geometric
quantization. Up to scaling, the Berezin—Toeplitz quantization is equivalent to the
quantization T discussed here, as explained in Appendix B below. O

Viaabracket convergence result in the L? norm (see Lemma 16 of the appendix),
instead of the spectral norm as in Theorem 3, we obtain convergence of solutions.

Theorem 4. Let w(t) be a solution of (6), and W (t) the solution of (9) with W (0) =
Tnw(0). Then, fort fixed, [Ty W (t) — w(t)|l 2 — 0as N — oc.

Proof. See Appendix A, where we also give a more detailed formulation of the
theorem (see Theorem 19), including convergence rates. O

Remark 4. The result in Theorem 4 (and Theorem 19) is analogous to the L? con-
vergence result of Gallagher [23] for Zeitlin’s original model on the flat torus T?.
But there are technical differences in the proof: Gallagher’s result rely on algebraic
multiplication properties of the Fourier basis in T2, not available on S.

In summary, we have a correspondence between functions and matrices that
allows transcription of ideas and results from 2-D hydrodynamics to matrix theory.
The dictionary in Table 1 contains the most direct examples.
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Table 1. Dictionary between 2-D and matrix hydrodynamics

2-D hydrodynamics matrix hydrodynamics
Lie group @ € Diff , (S?) F € PU(N)
Lie algebra Ve COO(SZ)/R, {-, "} P € pu(N), %[~, -]
Phase space w € C(C)’O(Sz) W € su(N)
Ad* wod~! FWF~!
ad* (o, ¥} FIW. P
Strong norm o]l oo = ess sup w Wlloo = SUP|y|=1 [Wo|
4
Inner product (w,w)[2 = /2 a)2pc (W, W)y = —Wﬂ tr(W2)
S
4
Casimirs Crlw) = / flw)u C}V(W) = tr(f(—iW))
’ 2 N
3 | 3
Laplacian AY =) {xa, {xa, Y1} ANP =5 ) [Xe [Xa, Pl
a=1 a=1
Hamiltonian H@w) =~ (o, A o) Hy(W) = Zu(Wway'w)

4. Coadjoint Orbits and Their Closure

For initial vorticity wg, consider the orbit {S; (wg) | t > 0}, where S; is the flow
map for the vorticity equation (6). Sverdk [53] conjectured that orbits for generic
wo € L*®(S?) are not L? precompact, which can be interpreted as a mathematical
formulation of the “forward enstrophy cascade” in 2-D turbulence (cf. Kraichnan
[39]). Of course, the orbits in Zeitlin’s model are always precompact, since they
evolve on a finite dimensional sphere. Nevertheless, simulations with increasing N
support Sverak’s conjecture.

In Arnold’s geometric viewpoint, it follows from equation (8) that smooth so-
lutions w(r) € C*°(S?) remain on the coadjoint orbit O(wy) = {wyo ® | ® €
Diff , (S?)}. A first step in understanding {S;(wo) | ¢ > 0} is thus to characterize
O(wo), a problem solved by Izosimov, Khesin, and Mousavi [30] via the Reeb
graph of wg equipped with a measure reflecting the “density” of the level sets (see
Fig. 2a).

Theorem 5. ([30]) Letw, Y € C®(S?) be simple Morse functions (distinct critical
values). Then r € O(w) if and only if w and r have the same measured Reeb graph.

However, while solutions with smooth initial data remain smooth, the C k_norms
for k > 1 grow fast as the vorticity level-curves quickly become extremely entan-
gled. This mechanism results in a Reeb graph that is well-defined but futile to
track at moderate scales. It is therefore natural to study the closure of coadjoint
orbits in a weaker topology, for instance L°° as Yudovich’s existence theory sug-
gests. But the Reeb graph is not stable in L since it is based on critical values
and Morse functions that require C? topology (see Fig. 3). Instead, what persists
is the level-set measure X, obtained by “flattening” the Reeb graph as follows.
Recall the Casimir invariants C (). The mapping C*(R) > f = Cr(w) is
a distribution with compact support, and A, is the corresponding positive Radon
measure on R (see Fig. 2b). The L* closure of a coadjoint orbit then fulfills
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w value
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(a) (b)
Fig. 2. a Measured Reeb graph for a function @ on S? with three local maxima and two
local minima. Another function v has the same measured Reeb graph if and only if there

exists ¢ € Diff M(Sz) such that = w o ® (¢f. Theorem 5). b Level-set measure A,. Itis a
flattening, via horizontal projection, of the Reeb graph. The measure A (/) of an interval /
is the area of the set {x € s? | w(x) € I}

- =9 ¢ 9

(A) wo (B) wo o <I>,:1 (€) limg—oo wo © @;1
Fig. 3. Given a vortex configuration wq with one blob, it is possible to find a sequence ®j of

area-preserving diffeomorphisms which transports it wg o d),:l such that in the limitk — oo

it is L°°-indistinguishable from a configuration with two blobs. Thus, the Reeb graph in
Theorem 5 is not stable under the L closure of O(wg)

O(wy) € {w € L®(S?) | Ay = Awp - (The latter set is characterized in Sect. 4.1
below.)

However the L topology is still too strong: it does not permit vortex mixing.
If fSZ wo = 0, one can imagine a sequence ®; of increasingly entangling diffeo-
morphisms for which lim_, o fQ wp o ®; = 0 over any open subset Q C S?. Yet,
however complicated the sequence is, we always have ||wg o @xl|lpe = |lwgllr>.
Shnirelman [49] suggested instead the L>° weak- topology, for which wgo ®y, =0
is possible. Furthermore, for a generic wy € L°(S?), the weak-# closure O(a)o)*
is convex and can be explicitly characterized [16,53]. Importantly, the Casimirs C ¢

are not weak-* continuous (except for f(z) = z), so elements in O(wo)* can have
different level-set measures, which signifies vortex mixing.

Matrix hydrodynamics offers a concrete way to address the weak-* topology
in 2-D turbulence, as now explained.

The matrix version of the level-set measure A, is the empirical spectral measure
from random matrix theory. Indeed, W = T () gives rise to the atomic measure
)le\(, = % Z,ivzl 85, on R, where iAy, ..., iAy are the eigenvalues of W.

Theorem 6. Let w € C2(S?). Then AI}’N(w) — Ay as N — oo.
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Proof. Letl = [inf w, supw]and f € C°°(I). We need to prove that C}V(TN (w)) —
C (w), which is equivalent to weak convergence of the measure.

We can restrict f to be polynomials, which are dense in C*°(I).

Since Cf(w) = ), fmCm(w) and similarly for C }V , it is enough to prove that
Ch(Tyw) — Con(w) form =0,1,.. ..

Set that Wy = Tyw. Then

1 (=™ - (=™ m—
Chwy) = 1; (W) = 2 e (Wy W) =
(=" m— m— m—

o (Wa (W™ = Tw@"™™) + Tw (") ) =

ey (WNTN(a)’"*l)) tir <WN(W]'Z,’_1 - TN(a)m*I))) .

Since the scaled Frobenius inner product on u(N) corresponds to the L inner
product, i.e., (T\ A, Ty B) 2 = — % tr(AB), we have
(=)™ 1

lim tr(Wy, Ty(@" ) = —(w, " 1) ;2 = LC m(w)
N—-oco N ’ 4 7 L 47 ¢ '

We also have

IA

N

r (WN(W;\,'H _ TN(w'”l)))’

N
1 _ _
(ﬁ Zw)nwx F— Ty (@" Dl = 0,

k=1
—
Wnih

which follows from Lemma 7 below. O
Lemma 7. Let w € C%(S?). Then || Ty (0)" — Tn (@™)|looc — 0 as N — oo.

Proof. The result is true for m = 1. Assume that it is also true for m — 1. With
Wy = Ty (w), we have

WY — TN (@)oo =

Wy Wy ™! = T (@) + Wy TV (@" 1) = Wy Ty (@” Dlloo <

Wy Wy~ = T (@" ™) oo+

1Ty (@™ ™) = Wy TN (@" Yo <

IWN I IWy ™ = Ty @™ Dlloot

1Ty (@™ ™) = W TN (@™ oo
That the first term vanishes as N — oo follows from the assumption. That the
second term vanishes follows from product estimates in Berezin-Toeplitz quantiza-

tion theory [8, prop.3.12] and its equivalence to quantization via representations,
as described in Appendix B. O
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Fig. 4. The simulation W(z) € su(512) in Fig.1 is projected to W) € su(480). The
empirical spectral measure )\‘gfg) is then displayed at the initial (left) and final (right) time.
We observe some tendency towards the Wigner semicircle distribution (dashed curve), except
the rims survive due to vortex blobs (compare Fig. 1¢)

The level-set measure A, is invariant under the Euler flow (6). Likewise, )‘]vvv
is invariant under the Euler—Zeitlin flow (9). In particular, for any f € C*(R)
the function C ;\' w) = fR f d)»lv\{, is a Casimir for su(N). A direct corollary of

Theorem 6 is that le\-’ (Tn(@)) — Cy(w) as N — oo. In this sense, the Euler—
Zeitlin equation nearly conserves all Casimirs of the vorticity equation.

Since the coadjoint action of ' € SU(N) on W € su(N) is FWF T it follows
from the spectral theorem that the coadjoint orbit ON (W) = {FWF' | F €
SU(N)} is the set of skew-Hermitian matrices with the same spectrum as W, or,
equivalently, the same empirical measure XZVVV.

Itis instructive to compare with coadjoint orbits for Diff , (S?): the finite-dimen-
sional coadjoint orbit O (W) corresponds (see Proposition 11 below) to the set

O(wp) = {® € L¥(S?) | ko = Aoy )-

This set is strictly larger than the smooth orbit O(wy) (characterized by its measured
Reeb graph), but strictly smaller than Shnirelman’s weak closure O(a)o)* (charac-
terized by convex vortex mixing, cf. [16]). For a fixed N, matrix hydrodynamics
thereby behaves as the Euler equations in the strong L°° topology: Casimirs are
exactly conserved. However, we can also regard all N simultaneously, which gives
a hierarchy of increasingly refined topologies.

Definition 1. Let B, = {w € L®(S?) | ||z~ < r}. The matrix topology on B,
is the Fréchet topology defined by the semi-norms

oIy = I Tvo|lco-

The semi-norm |-| can “see” structures down to the length scale Ay . Further-
more, each length scale iy gives an associated truncated level-set measure )\%v (@)"
To study how it varies, for fixed N as t — oo, gives information about vortex
mixing relative to the scale iy and a connection to random matrix theory (see
Fig. 4).

The following result connects matrix hydrodynamics to Shnirelman’s notion of
weak-* vortex mixing.

Lemma 8. The matrix topology is equivalent to the weak-* topology on B,.
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Proof. ThesetV = {f |3AN : f € Tysu(N)}isdensein L' (S?).Forw € L>®(S?)
and a test function f = Ty W € V we have

N 4 4
@, il = o, Ty W) = le(WIyo)| = —=loly Wi

Thus, if, for any N, |wg|y — 0ask — oo, then (wg, f) — Oforall f € V, which
implies weak-* convergence since the sequence wy in B, is bounded in L°°-norm.
On the other hand, assuming that wy —* 0, it follows that each spherical harmonic
coefficient (wg)em — 0 as k — oo. Thus, since Tyw is expanded in a finite basis
with the spherical harmonic coefficients, it follows that || Ty wi|co — 0 ask — oo.
O

Remark 5. Alternatively, one can view Lemma 8 as a special case of the general
principle that two Hausdorff topologies on a set are equivalent if the first is compact
and the second is weaker than the first.

In consequence, a plausible relaxation of Euler’s equations (6) to the
weak-* topology. topology is to consider the Euler—Zeitlin equation (9) simultane-
ously for all N > Ny. Via the mappings Ty —1 o Ty : u(N) — u(N — 1) one can
consider an inverse limit g = lim u(/V). But this construction is too rigid, since g is
not invariant under the simultaneous Euler—Zeitlin flow. A plausible direction is to
relax the inverse limit, for example based on the equivalence {W/}2 No ™ {WiI2 No
if lim; . oo [|W] — Willoo = 0, and attempt to prove that the simultaneous Euler—
Zeitlin flow is well-defined on equivalence classes. For such a construction, global
existence is built-in (albeit not uniqueness).

4.1. Schur-Horn-Kostant Convexity

In their paper on Schur-Horn-Kostant convexity for the area-preserving dif-
feomorphism group of the annulus, Bloch, Flaschka, and Ratiu [5] (BFR) write:
“Diffeomorphism groups are huge, infinite-dimensional Lie groups, but in some
respects they can be strikingly similar to finite-dimensional semisimple groups.”
Matrix hydrodynamics can be viewed as an actualization of this statement.

Consider the annulus (or cylinder),

A=S"x[=1,11={(exp(i¢),2) |0 < ¢ <27, -1 <z <1}

equipped with the area-form v = d¢ A dz. Let Diff,(A) denote the infinite-
dimensional Lie group* of area-preserving diffeomorphisms. Its Lie algebra a can
be identified with the space of smooth Hamiltonian functions on A, modulo con-
stants, that are constant on the edges z = —1 and z = 1 (corresponding to tangential
boundary conditions), equipped with the Poisson bracket induced by v. The point
of BFR is to think morally of the maps (¢, z) — (¢ + «(2), z) as the maximal

4 More precisely, Diff}, (A) is an infinite-dimensional Lie group in the category of Fréchet
manifolds (c¢f. Hamilton [24, Thm. 2.5.3]).



Arch. Rational Mech. Anal. (2026) 250:10 Page 19 of 39 10

Abelian subgroup D C Diff, (A) corresponding to diagonal matrices in the matrix
case. The “projection onto the diagonal” of a Lie algebra element is then given by
averaging

1
n:a5<p|—>/ o(@,)d¢ € 0 =T,D.
-1

The corresponding “Weyl group” WG consists of maps (¢, z) — (j(2)¢, a(z)),
where a : [—1, 1] — [—1, 1] is invertible, measure preserving, and j: [—1, 1] —
{—1, 1} is measurable. In the smooth category, WG has only two elements, with
a(z) = z and j(z) = +£1. However, the idea of BFR is to work in a weaker
topology, such that the Weyl group can “rearrange” the level-sets of functions in 0
corresponding to changing the order of elements of diagonal matrices.

Let Diff,(A) denote the semigroup of measure preserving endomorphisms,
which is the completion of Diff, (A) with respect to the strong operator topology
obtained by thinking of ® € Diff,(A) as the unitary operator on L*(A) given by
w > w o ®. Let WG denote the corresponding completion of the Weyl group,
which does allow rearranging.

The first result of BFR is the convexity theorem, which is a beautiful, infinite-
dimensional analog of Schur’s theorem for matrices.

Theorem 9. (Convexity theorem [5]) Let ¢ € L*(A) be a bounded, non-increasing,
right continuous function of z alone, and let 5(;‘ ) = ¢ o Diff,(A) be its orbit. Then
n(@({j)) C L2([—1, 1]) is a weakly compact, convex set. Furthermore, the set of
extreme points of w(O(¢)) is the orbit ¢ o WG.

The second result of BFR is the orbit theorem, which is a beautiful, infinite-
dimensional analog of Horn’s theorem for matrices and the result that two (skew-)
Hermitian matrices A and B share the same spectrum if and only if tr (A™) = tr(B™)
form=1,...,N.

Theorem 10. (Orbit theorem [5]) If o € L*°(A), there is a unique ‘bounded, non-
increasing, and right continuous function ¢ of z alone such that w € O(¢). Further-
more, the orbit O(¢) consists of all functions o € L (A) with the same Casimirs
as o, i.e.,

1
/omv:ZTr/ Mdeg, m=1,2,....
A -1

These two results are directly related to the question of completion of coadjoint
orbits, flattened Reeb graphs, and vortex mixing as discussed above. Furthermore,
the convexity theorem is directly related to mixing operators and the canonical
splitting presented in Sect. 5 below.

We now translate the results of BER to the spherical setting. Archimedes demon-
strated that the horizontal projection of the cylinder to the sphere is area-preserving
(i.e., symplectic).> Explicitly, it is the map «: A — S? given by

a: (¢,2) ~ (V1 —2z2cosp, V1 —z%sing, 7).

5 For this reason, V. Arnold called Archimedes “the first symplectic geometer”.
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It is almost everywhere invertible, with
ol (x1, x2, x3) > (arg(x) + ixg), x3).
Notice that smooth functions in a are constant exactly on the set-valued points
a~1(0,0,£1) = (S', £1).
Since it is measure preserving o™ = v, it follows that Diff, (A) and W are
isomorphic via
W =ao m oa !

Furthermore, for p € {1,...,00} any f € LP(S?) is mapped to f o € LP(A)
and vice versa. Thus, the convexity theorem and the orbit theorem translate to
the spherical setting, such that “diagonal” functions are zonal (i.e., constant along
longitudes).

The orbit theorem provides a natural closure of the smooth coadjoint orbits.

Proposition 11. Let wy € L (S?) andlet¢ € L™ (S?) be its corresponding unique
non-increasing, right continuous zonal function (obtained via the orbit theorem).
Then

O(wp) = {w € L®(S?) | Aoy = hay} = ¢ 0 Diff . (S?).

Proof. This result is essentially a reformulation of the orbit theorem. It follows
since A, = A, if and only if wg and w have the same polynomial Casimirs (as
already used in the proof of Theorem 6 above). O

The closure O(wy) in Proposition 11 is located strictly in Eetween the smooth
coadjoint orbits O(wp) and Shnirelman’s weak closure O(wy) , i.e.,

O(wo) € O(wp) C Olay) -

In a sense, 5((00) is the smallest closure that allows the matrix theory results to
remain intact. It is also compatible with Yudovich’s global well-posedness theory,
which gives a transport map ®; € Diff , (S?) for initial data wg € L®(S?).

Remark 6. Bloch, Flaschka, and Ratiu [5] made a connection between matrices and
area-preserving diffeomorphisms of the annulus via the Toda lattice model [55] and
its continuum limit (the dispersionless Toda equations, cf. [6]). However, that model
is somewhat unfulfilling, since the matrices are tridiagonal and do not “fill out” the
infinite-dimensional group as they grow in size.® Matrix hydrodynamics offers
a remedy: a model that gives a direct link between the matrix groups SU(N) and
area-preserving diffeomorphisms. In addition to Hamiltonian systems, the link also
leads to matrix flow analogs of incompressible porous medium equations [33], via
the gradient flow interpretation of the Toda lattice.

6 The authors mention this and hint at a series corresponding to Hermitian matrices that
“seem reasonable to consider’: they rediscovered quantization.
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5. Canonical Splitting and Mixing Operators

We now showcase a technique in 2-D turbulence enabled via matrix hydrody-
namics: canonical scale separation [47].

Stationary solutions of the Euler—Zeitlin equations (9) are characterized by the
relation [P, W] = 0. The stabilizer of P is the subspace stabp = {W € su(N) |
[P, W] = 0}. For a state W and P = —A;l W, the distance of W to stabp thus
measures how far from stationary the state is.

Let I1p denote the projection onto stabp with respect to the inner product
(W, U)r = %’T tr(WU) corresponding to L2. It induces a canonical splitting W =
W + W, where Wy = I1pW. Explicitly, if E € U(N) is an eigen basis for P,
then T1p(W) = E*nn (EW E*)E, where my is the orthogonal projection onto the
space of diagonal matrices (i.e., extracting the diagonal). From this formula, we
can express the Euler—Zeitlin equations in the (now time dependent) variables W
and W,:

Wy = [B, W] — T1p[B. W,] (10)
Wy = [P. W] = [B, Wyl + [p[B. W;],

where B is the unique element in the complement stab# such that
[B, Pl=THA"'[P, W].

(See Modin and Viviani [47, sect. 3.1] for a derivation of the equations (10).) By
construction, the decomposition is orthogonal in (-, -)2. Curiously, it also fulfills
a “reversed” orthogonally condition with respect to the energy norm ||W||%5 =

(W, Ay W)
Lemma 12. ( [47]) The canonical splitting fulfills
IWI3 = W3 + IWell3 and Wl = W5 + W17

Remark 7. In the special case when P is diagonal, the projection ITp W selects the
diagonal of W. From Schur’s theorem it then follows that C va (IpWwW) < C }V w)

for convex functions f, and that C }V (ImpW)=C f! (W) for all convex f if and only
if P and W are simultaneously diagonalizable. Since a general P € u(N) can be
diagonalized, and since (P, W) +— Il1pW is equivariant under the adjoint action,
we also have Cj)’(l'[pW) < CIIY(W) for generic P.

Why is the canonical splitting interesting? The theory of statistical mechanics,
applied to Euler’s equations on S?, predicts a long-time behavior of small scale
fluctuations about a large scale, steady state [26]. Thus, we expect W, = W — W;
to decrease’ with time in the energy norm, which is in-sensitive to small scales.
Indeed, in numerical simulations the component W, favors evolution into large
scales, while W, favors small scales (see Fig. 5 and [47, Fig.3b]). This canonical
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(A) component W (B) component W,

Fig. 5. Canonical splitting W = W, 4+ W, of the long-time state W from Fig. Ic . The
components capture the large and small scales. The projection W +— W; is a mixing operator

separation of scales is a perspective on Kraichnan’s [39] backward energy and
forward enstrophy cascades.

The canonical splitting came naturally from matrix Lie theory via the stabilizer.
We now carry over the developments from su(N) to L%°(S?), which gives a con-
nection to mixing operators studied by Shnirelman [49]. They are the bistochastic
operators, defined in terms of kernels as

/C:{kzszxgz—wRuczo,/ k(x,-):/ k(-,y) = 1}.
S? S?

Given w, o € O(wg) N {H(w) = H(wy)}, the partial ordering @ < @ means
there exists K € K such that o' = K . Shnirelman defines w* as a minimal flow
if w < w* implies ®* < w, and he proves that such w* has the stationary property
w* = f o ¢* for a bounded, monotone function f.

2

The analog of I p is the operator Ty, for L? projection onto staby, = ker{v, ~}L ,

formally given by averaging along the level-sets of 1. For a generic ¢ € C!(S?),
it is well-defined as a norm-1 operator Iy : L? (S?) — LP(S?) [47, prop.5.4].

Remark 8. Notice that the special case Iy, is the projection & in the Convexity
theorem 9 of Bloch, Flaschka, and Ratiu [5]. If ¢ is the zonal function from the
Orbit theorem, so that v = ¢ o ®, and the measure preserving map ¥ happens
to be invertible, then we have the formula Iy (w) = 7(w o &~ 1) o ®. From this
perspective, we expect that Cy(I1y (w)) = Cy(w) for all convex functions f if
and only if v and w are “simultaneously diagonalizable”, i.e., w o ®~! is zonal.
This viewpoint is related to the work by Dolce and Drivas [16], which characterizes
Shnirelman’s minimal flows via convex Casimirs.

Proposition 13. ( [47]) 1y, is a mixing operator.

In the canonical splitting v = wy + o, the observed numerical decay of the
energy norm ||“’r||215 = (wy, A" w,) 12 1s compatible with Shnirelman’s weak-x*
convergence.

7 But due to Poincaré recurrence only in a statistical sense: see zeitlin-reversibility-blog
[44].


https://klasmodin.github.io/blog/2023/zeitlin-reversibility/
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Proposition 14. Let w (1) € L*(S?) be a global solution of (6) and consider its
canonical splitting w(t) = ws(t) + wy(t). Then ||w-(t,)||E — O if and only if

*
wr(ty) = 0ast, — oo.

Lemma 15. Let {w,} be a uniformly bounded sequence in L*°. Then, for the limit
n — 0o, the following statements are equivalent:

(1) |on —@llg — 0O,

*
(2) w, — w weakly-* in L,
(3) w, — @ weakly in L.

Proof. Weak- convergence in L> implies weak convergence in L2, since L?> C
L', for bounded domains.
On the other hand, if w, — @ weakly in L2, then being L? compactly embedded
in H~! by the Rellich—Kondrachov theorem, we have that |, — @| g — 0.
Finally, it remains to prove that convergence in H~! implies convergence in
the weak-* topology. Let ¢ € C!, then we have that

I/(wn — ®)¢dS| < |[on — | ElPllt — 0, forn — oo,

and, by hypothesis,
lon —@lleo < C,

for any n > 1. Hence, since C lisdensein L! and the sequence of linear functionals
Jn(@) = f (wn — ®)¢d S defined on L' is bounded in norm by the constant C and

. . * —_—
so they are equicontinuous on L', we get that w,, — w, forn — oo. a

Proof of Proposition 14. The thesis follows from Lemma 15 and from the uniform
bound

o (t)lloo < 2[@(0)[loos

for any n > 1. This bound is a consequence of [47, prop. 5.4], since

lor oo = lo () — @s(Dlloe = [l@(D)lloo + s @)oo < 2ll@0llco-
O

Hence, the states wy, observed in our long-time numerical simulations, are nat-
ural candidates for the weak- vorticity limits. We notice that minimal flows seem
too restrictive as candidates for long-time asymptotics on S?; essentially, they allow
only two vortex condensates, or the shape of similar signed condensates would have
to balance perfectly, which is physically unlikely and numerically unseen. Instead,
it is common to see branching in the functional dependence between vorticity and
stream function [47, fig. 7 and 8].

The canonical splitting offers a remedy: a selection criterion for a subset of
mixing operators to define less restrictive minimal flows, namely,

Kn = {Ily | Ay € O(wo) N {H(AY) = H(wo)}
N{M(AY) = M(wo)}},
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where M is the angular momentum. Minimal flow with respect to these mixing
operators might be compatible with the numerical observations (more than two
blobs and branching), contrary to the full set of mixing operators, for which minimal
flows cannot have branching and therefore generically necessitates two blobs only.

6. A Conjecture on the Long-Time Behavior and Integrability

One way to approach the asymptotic, long-time behavior is to ask what is
contained in the w-limit set

Qi (o) = [ (Si(wo) 1 =5} (1)

s>0

Shnirelman [50] conjectured that . (wg) is compact in L. This conjecture can be
understood as follows. Q24 (wp) is indeed compact in the weak L2 topology, so the
L? norm (enstrophy) attains a minimum ® on it. We observe that {S; (®) | ¢ > 0}* -
Q4 (wo) and also the L? norm is constant on {S;(®) | 1 > 0}*. Therefore, any
weakly convergent sequence in {S;(®) | t > O}* is also strongly convergent in L2.
Consequently, the conjecture of Shnirelman is that no further mixing (loss of en-
strophy) can occur for initial data in Q4 (wo).

The conjecture does not imply that steady state is reached (e.g., a minimal
flow). Indeed, unsteadiness can persist indefinitely, without further mixing. From
batches of numerical experiments [45], we conjecture that persistent unsteadiness
in Q4 (wp) is connected to integrable configuration of “vortex blob dynamics”,
where the centers of mass of n fixed-shape blobs interact (¢f. Fig.5a ). Depending
on the domain’s geometry, there is a threshold »n for which the dynamics is always
integrable [46]. The underlying mechanism is then that vortex mixing continues
until a large-scale almost integrable configuration of vortex blobs is reached. Being
quasi-periodic, it then acts as a barrier for further mixing, trapping the vorticity in
persistent unsteadiness. On S?, the thresholds are n = 3 for generic initial data, and
n = 4 for vanishing angular momentum. Long-time numerical simulations with
Zeitlin’s model align with this conjecture: for generic (smooth) initial data they
typically settle on n = 3 blobs (e.g. Fig. 1), and for vanishing momentum onn = 4
blobs; see [45, Sec. 4] for details.
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Appendix A: Proof of Theorem 4

Let Ty denotes the projection of a function from L2(S?) to su(N). In the
following calculations, we mainly follow the approach of Gallagher [23] and the
results by Flandoli, Pappalettera, and Viviani [22, Appendix A]. The basic strategy
is to show that the Zeitlin flow W (¢) € su(N) lifted to L? via wy (1) := Ty W (1)
fulfills a differential inequality of the form

d
77 lon () —o W] = ay +bnllon(®) —o@)]

such that ay — 0 and by is bounded as N — oo and 0 < ¢ < fyu < OC.
Convergence then follow from the Gronwall lemma if limy_, o ||y (0) —@ (0) ]| =
0. To achieve the differential inequality we need to understand how the matrix
commutator [-, -] interacts with the Poisson bracket {-, -}. This is done by studying
the relation between the corresponding Lie algebra structure constants relative to
the spherical harmonics basis (which is available for both functions and matrices).

We begin with the following result (with the convention that ||-||; denotes the
H*(S?) Sobolev norm, |-||lo applied to matrices is the scaled Frobenius norm, and

['7 ']N = ['7 ]/h’N)'

Lemma 16. (L2-bracket convergence) Let f € L*(S*) and g € H3>'¢(S?), we
have that for any ¢ > 0,0 < a < 2/3, and 0 < B < 2/5 there exist positive
constants C (), C(B), C(a, €), and C(B, €) such that

1T A~ . Tvgly — TnlA™ £ g} lo
C(a) CB)
= m”f”o”gﬂl + m”f”o”gﬂo

Cla, C(B,
+ min{ x‘af) 1 e C(Ot)O(l)IIfIIo} lgll + %ufuongnzﬂ,

where o(1) — 0 as N — oo.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Proof. Let Cl(le)ll’Z’;l2 and Cllf;ff Iym,, denote the structure constants of [+, -]y and

{-, -} relative to the spherical harmonics basis (see Hoppe [27] and Yoshida [58]),
and let N be an even integer. We want to estimate the difference

ITnAT f, Tngly — Tn(AT £, g)II3
min{N,[1+l—1}

Iim 2
< Z Z (Nlzmz _ ~l3m3 2, Jum
~ |Cl1m|,12m2 Cl|m1,12m2| |ll(ll +1)glzm2|
l1<N,[L<N BL=|lj—Dh|+1
—li=m<ly —lz<m3<I3
—h<my<ly
min{N,l1+Ip—1}
_ Z Z (cWms_clms 2, Suim 2
= lymy,lamy lymy,lamy 11(11—}—1)812’"2
l1<N*  B=|li—h|+1
l,<NP —l3<m3<l3
=L =m <l
—h<my<h
min{N,l{+l,—1} f
(N)lzm3 lzm3 2 lymy 2
+ Z Z |C11m1,12m2 _Cllml,lzmzl |ll(ll+])glzm2|
NY<li<N bL=|lL—-h|+1
l,<N# —I3<m3<l3
—li<m<ly
—lh<my=<l
min{N,l1+l,—1} f
(N)lzmz  ~lzm3 2 1im 2
+ Z Z |C11m1,lzm2 Cllml,lzmzl |ll(ll +1)glzm2|
[} <N* L=l —|+1
NP<l,<N —l3<m3=<l3
=L <m <l
—lh<my<ly
min{N, I+ —1} y
(N)lzmz _ ~lzm3 2 lim 2
+ Z Z |C11m1,12m2 C11m1v12m2| |l1(ll +1)g12m2| ’
N<hi <N B=|h—h|+1
NP<l,<N —l3=m3=<l3
—lh=mi =l
—hh<my<lp

where 0 < «, 8 < 1 have to be determined. Notice that the sum

min{N,l{+>—1}

l3=|l1=I2]|+1
has min{N, 2[; — 2, 2], — 2} different values of /3, which we repeatedly use in the
following steps.
Step 1. For the first term, we have to divide sum in two cases: [, < [{ AN B
and [; < I, A N¥. Using [22, prop. 14 (1)], we get
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min{N,l|+lr—1}

Z Z |C(N)l3m3 _C13m3 |2| Jiim, |2
lymy,lomy limy,lomy l(l +1) 8lamy

[} <N“ L=|l1—l|+1

la<liANP  —l3=m3=l3

—h=m<l

—h=<my<h

min{N,l{+lr—1}

¢ Ji
S m Z Z Z 18|l (1117_7:_1 1)g2m2|2

Ii<N* <l =\l - |+1

—li<=m<l} —lh<my<ly —Il3<m3<I3
¢ 442 2
< 2 2 Bl gl
ll<Na lz<l1
—l <m<ly —la<my<l
2
C 5 )
<~i| 2 Aluml] Deld
[} <N¥
—l1<mi <l
9 2
n+1 2 2
<1 2 WA el
| <N*

< CNZEDHF13 gl
Hence, choosing n = 2, we get that we can take o < 2/3 and the best bound is:
CN*C2D ) FiGlgls.

For the case /| < I A N, we proceed analogously:

min{N,l1+lr—1}

c fum
R l8 1M1
N D 2+ +1)g2’"2|

L<Nf  B=lli—h|+]

I1<lbANY  —l3<m3=l3
=l <m<l)
—h=<my=<lb
s XX R
_N4 L +1 2m3
l,<N# hi=<h 1 )
—lh<ma<l, ~li=m1=l;
2
¢ 4 2
syl X Blgeml | 112
l,<NP
—lh<my=<lp
2n+1 2 2
<3 Zl gz, /112
12<Nﬂ

IA

CNPOED= o2 112
Hence, choosing n = 4, we get that we can take 8 < 2/5 and the bound is:
CN*PVY£12 g5,
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Therefore, we have that the first term is bounded by

min{N,

I+l —1}
) Z (c Ml clsms 2 S Jum 2
limy,lomy Iimy,lomy l (l +1) 8lama

[ <N¥
L<NB 1= 12|+1
—ly<my<l; —l3=m3<l3

—lh=my=<b
C(a) C(B)
=< m”f”o”g“[ + m”f“q”é’Ho

forany o < 2/3, 8 <2/5.
Step 2. For the second term, we proceed analogously, using the result in [22,
prop. 14(2)]. Since, 8 < «, we always have [, < [y. Therefore,

min{N,
I+ —1}
Z Z |C(N)13m3 _Cl3m3 |2| fllml |2
lymy,lama lymy,lama L+ l)glz’"z
N¥<lj<N 3=
I, <N# 1=l |+1
—ly<my<l; ~3=m3<l3
—lh<my<l

min{N,l{+Ilp—1}

<c Y > > l4|l(f"_':1)g12m2|2

NY<l;j <N [2<N/3 l=|l1—|+1
—h=mi=l —lh<my<l, —13=m3=l3

< C Z Z 12|fl1m1g12m2|2

N¥<lj<N 12<Nﬁ
—li=mi <l —lh<my<lp

<C 3 fimPlgl}

N¥<l;| <N
—li=mi<l

<Cmin{ Y TTFfI L. oWIFIG ¢ llgl]

NY<l| <N
—li=mi<l

< Cmin N2 £, oI I3 g1}

for some ¢ > 0 and o(1) — 0, for N — oo. Therefore, we have that the second
term is bounded by

min{N,
I+ —1}

Z Z |C(N)I3Yn3 _Cl3m3 |2| Jiim |
limy,lomy limy,lomy l(l +1) 8lhmy

N*<l <N l3=

I, <N# 1=l |+1

i <m <l —l3<m3<l3

—lh<my<l

C ’
< min {%wn%w C(ooo(l)nfn%} eI}
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forany o < 2/3, B < 2/5 and some ¢ > 0.
Step 3. For the third term, we proceed by dividing the cases for which lp < [

and [y < I A N*. When I, < [, we can repeat the same calculations of Step 1
getting the same bound. When /1 < I, A N, we consider

min{N,l1+Ip—1}
Z Z |C(N)l3m3 _C13m3 |2| fllrm |
limy,lhomy limy,lomy l (l 4 l) 8lamy
NP <lb<N B=lli—h|+1
li<hbAN®  —l3=m3=l3
—h=<my<h
=li<=m <l
min{N,l{+l—1} f
4 lymy 2
S0 RS SR IS
NP<lh,<N  lLi<h l3=|l1—l|+1
—b<ms<l, ~hh=mi=li  —l3<m3<l3
4,2 fhml 2
<c > > BRI g, |
L +1)
NP<l,b<N  lLi<h
—ly<ma<l, —l1=mi=li
2
<C D BleamlPlIfI%
NP<lh<N
—bh=<my<b
2
2 2
<c| > Blewm! | 112
NP <lh<N
—h=<my<h
—2-2 2 2
<C D LFTEIFIR g3,
NP <lh<N
—lh<my<lp
2 2
< CNPN 12 g5
Therefore, the third term admits the bound
min{N,[1+Ip—1}
3 ) (cMWlsms _clms o, Jim E
limy,lomy limy,lomy l](l]+1)glzm2
[} <N“ l3=|l1—12]+1
NP <lb<N —l3<m3=<l3
—lh=my=<lh
—l1<mi <l
C(a) C(B,e
||f||_1||g||3+8

= mﬂf”o”gﬂl + N2Be

foraa <2/3,8 <2/5,and e > 0.
Step 4. For the fourth term, we proceed by dividing the cases for which Iy < [;

and /1 < I». In both cases, we get the same bounds as obtained in Step 2 and 3
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Therefore, the fourth term admits the bound

min{N,l{+lr—1}
Z Z |C(N)l3m3 _Cl3m3 |2| fllml |2
Lymy,lymy Limy,lymy 11(114_1)812’”2
N*<li<N B=|l—h|+1
NP<ly<N —13<m3=<l3
=l <m <l
—bh=my=<lb
.| Cle, 8)
< min {W||f||%+8, c<a)o<1>||f||3} lg I}

C(a) 2 2 C(B,¢) 2 2
+ m”f”o”ﬂh RERYSTE (V[ -4 o

foraa <2/3,8 <2/5,and e > 0.
We now obtain L? convergence of the quantized bracket as N — 0o

Corollary 17. (Spatial convergence) In the framework of Lemma 16, we have that

ITHTN AT f, Tvgln — (AT £, g}llo
C(a) C(B)
< sz 1 Mol + <5575 1./ lollglo
C(B,¢)
}||g||1+ v 1 loliglase

C )
+ min {%nﬂms, C@oflo

forsomee > 0,0 <a <2/3and0 < < 2/5.

Proof. We have that:

ITSTN AT f, Tvgly — (A7 £, g}llo
= TvA™ £, Tvgln — TNIATYf, glllo + I1(Td — THTN (A £, g}llo.

The first term has been estimate in Lemma 16, so we have to study only the residual

term
I(Id — TET{ATY £, )12
li+h—1
Sl VD DR D AP T e
frd llmls12m2 l] (l] + l)glzmz .
>N >N L=|l|—h|+1

—lhi=mi <l —h<my<l, —l3<m3<l3
Repeating the same calculations of Lemma 16, dividing in the two cases I} < I»
and l, <[y, and using the result in [22, Lemma 12], we get that

L1+ —1
Cl3m3 2 fl1m1 2
| llm1,12m2| |l](l] +1)g12mz|
>N >N L=|l|—bL|+1
—lhi<mi<li —h<my<l, —l3<m3<l3
I+l —1
2 fllml 2
Il ———~&Lm, |

C13m3

Z Z Z | lymy,lmy L+ 1)

I1>N > L=l —h|+1
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L1+ —1

I3m3 2 fllml 2
+ Z Z Z Chmy o | |ll(ll + 1)g12’”2|
I1>N N<b<ly hB=|l1—I|+1

< 1214 fllml 2
=< Z Z 1 2|—l](l] T 1)glzm2|

I1>N >l
—h<mi<li —lh,<my<lp

Jim P
l4l2 1mq
+ Z Z 1 2|ll(ll+1)glzm2|

I1>N N<l<l
—li<mi<ly —h<my<l

C(y) 2 2 2000112
=V A= gl54, + 1A IGlglz4, )
CO) 2y 12
=N I f1olgl54,

for some y > 0. Hence, the residual term ||(/d — Ty Tv){A™ £, g}llo does not
worsen the bound of Lemma 16, for y = Be. O

The last ingredient for the proof of the convergence is the following:
Proposition 18. [ Tx{A™" £, g}lo < CII -1 Vgl

Proof.
ITNIATYf g3 < AT £, )13

= / VAT f x Vg?

SfIVA_lfVIIVgII%w
< CIfI21IVglE .
O

Theorem 19. (Space-time convergence) Let v = w(t,x) and W = W (t) be the
solutions to the Euler equations (6) and Euler—Zeitlin equations (9), with initial
data (0) € H3>(S?) for some e > 0and W(0) € su(N). Let wy (1) := T3 W (2).
Then, for anyt > 0, and any ¢ > 0,0 < @ < 2/3 and 0 < B < 2/5, there exist
positive constants C(x), C(B), C(«, €), C(B, &) such that

() —on@)llo < {Ilw(o) —on(0)llo

T C() 1 C(B)
0 N2(1-3/2a) lw(s)|l1ds + me(O)”%

C(B, ¢
NFe

+ llw(llo

Cla, )

+ NO{S

t 1
/Ollw(S)I|1+s||w(S)I|1dS+ IIw(O)IIo/0 ||a)(s)||3+€ds}
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T C(a) tC(B)
'eXP{[O m”w@)”lds'f‘mﬂw(o)ﬂo

! C(B,¢)

+ | Clo@Il+ W”a)(sﬂb-i-s + IV (s) | Leds ¢
0

Proof. Following [23], we consider that

1dn ) — o=
2dp N T @l =

12)
= (N () — (1), THIAY W), WD)y — (A o(0), o0)).

From the bi-invariance of the (scaled) Frobenius inner product on u(N), we get
0 =(W () — Tvw (), [Ay' W©), W(t) — Tyo()]y)
=(Tn(on (1) — @), [AY W (), W) — Tyo()]y)
=(on (1) — o), T{IAY W@, W) — Tvo()]n).

Therefore, equation (12) can be written as

S lev @ —o®ly =

= (N (1) — 0 @), THAY W), Tvo )y — (A w (1), (1))
= (N (1) — 0 @), THAN Tvo @), Tvo )y — (A (1), w(0)))
+ (N (1) — (0), THIAN (W) — Tyvo (1)), Tvo(t)]y).

The second term of the right-hand side can be written as

(N (1) — (1), THAY (W) — Tno @), Tvo(t)]y) =
= (N (1) — (1), THIAY (W) — Tyo 1)), Tyo(t)]y
— TuTNAA (N (1) — Ty Tvo (1), Ty Tvw(1)})
+ (N (1) — w@), TR TN{A (0N (1) — T Tvo (1), T Ty ()})

From Lemma 16, Corollary 17 and Proposition 18, we can then deduce that

1d )
s llon @) — 0@l < llon @) —w@)lo

2dt
C C
' (Nz(l(—ogza) lo@lolle@l + %meﬂoﬂwmﬂo
C(a, C (B,
+ S8 D o liselo i+ Do mloloiss)
2 C(a)
+ oy (@) — 0@l - <m|lw(0|l1
C C(B,
+ ﬁllw(ﬂllo + C@)o® | + ](Vﬂﬁj) lo@®)l3+e + ||Vw||L°°> .

The thesis then follows from Gronwall’s lemma. O
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Appendix B: Relation to Berezin-Toeplitz Quantization

Since Dirac [15] outlined quantization theory it has ramified in different math-
ematical directions. In this paper, we obtain quantization via unitary representation
theory, which perhaps is the most direct route when applicable. Non-commutative
geometry (cf. [12]) offers a broader viewpoint, and geometric quantization (cf. [52])
yet another. The various frameworks are in general non-equivalent and applicable
under different conditions. But for the sphere they coincide; it is somehow the
archetype of quantization (in non-commutative geometry the “fuzzy sphere”, and
in geometric quantization the tautological complex line bundle over the Riemann
sphere CP!, as we shall see).

Theorem 3 above was stated and proved by Charles and Polterovich [8] in the
framework of Berezin-Toeplitz quantization (which is a type of geometric quanti-
zation, cf. [4,40]). The purpose of this section is to show how quantization of the
sphere via representations, as in Sect. 3.1 above, corresponds to Berezin-Toeplitz
quantization of the Riemann sphere. This result is essentially contained in the orig-
inal work of Berezin [4], and fully explained in the monograph by Le Floch [40],
to which we refer for details.

Let M be a compact Kihler manifold. The objective is to construct a map-
ping (the Berezin-Toeplitz quantization) between the space of smooth functions
C° (M, C) and a space of operators on a finite dimensional quantum state space
(i.e., the Hilbert space of “wave-functions”). State space is constructed as holomor-
phic sections of a tensor power of a Hermitian line bundle over M. The construction
may appear abstruse at first, but is straightforward in the simplest setting M = CP!.
As we shall see, this corresponds to quantization on S? as presented in Sect. 3.1.

Recall that the Riemann sphere CP! is the manifold of one-dimensional com-
plex subspaces of C2. It can be thought of as the quotient (C*\{0})/C, ~ S*/S! ~
S? equipped with the complex structure inherited from C?. Since C? admits a large
space of holomorphic functions (e.g., any polynomial in z = (z1, z2)), it is natural
to suggest as state space the holomorphic functions descending to CP'!. However,
the only such functions are the constants (since non-constant polynomials p(z1, z2)
cannot be invariant under the action of C,). The remedy is to construct a complex
vector bundle over CP! and consider its holomorphic sections.

There is a natural vector bundle associated with the Riemann sphere: the fiber
above [z] € CP! is a vector v € [z] of the co-set. This is the tautological line
bundle, denoted O(—1) and illustrated in Fig. 6. Since it is a sub-bundle of the
trivial vector bundle CP! x C?2, it inherits the Hermitian inner product of C2.
Furthermore, it is a holomorphic line bundle in the sense that it is a holomorphic
manifold and the projection O(—1) — CP! is a holomorphic mapping.

Consider now an element p € ((CZ)*, i.e., a linear function p: C?2 = C. As
illustrated in Fig. 6, there is a natural bundle pairing between p and a smooth section
s € C®(CP!, O(-1)), namely,

s([z]) = p(s((z]).

Thus, we can think of p as a section of the dual bundle O(1) = O(—1)*. Like-
wise, any section s* of (1) gives rise to a function on C?\{0} given by p(z) =
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Fig. 6. Illustration of the tautological line bundle O(—1). An element ([z], v) € O(—1)
consist of a one-dimensional complex linear subspace [z] € cp! together with a vector in
that subspace v € [z]. Thus, a linear form ¢ € ((Cz)* naturally pairs with elements of O(—1)

\/

21

(s*([z]), Z)[z)- The dual bundle O(1) is also a holomorphic line bundle, and if s*
is a holomorphic section then p(z(,z2) = azi + bzy for a,b € C. (One can
verify this by first observing that if s* is holomorphic, then p(z) is holomorphic.
Since p is also 1-homogenous it must be a linear holomorphic function.) On the
other hand, the space of all smooth sections C>°(C P!, O(1)) is, of course, infinite-
dimensional and can act as the quantum state space via the Kostant-Souriau op-
erator, which associates a smooth function f € C®(CP!, R) with the operator
KSi(f): C®(CP!, O(1)) = C®(CP', O(1)) defined by

KSi(f) = f —iVy;,,

where f acts by multiplication, V is the connection associated with the Hermitian
structure of the line bundle O(1) (i.e., the Chern connection), and X  is the Hamil-
tonian vector field for f. The Kostant-Souriau operators fulfill the quantization
condition®

[KS1(f),KSi(e)] = —iKSi({ /., g})-

However, the space C °°((CP1, (9(1)) is inadequate as quantum state space: it
is infinite-dimensional and admits far too many self-adjoint operators. In contrast,
the space of holomorphic sections of O(1) is too small (as it is given by (C?)*). We
need something in-between. The solution is to consider the tensor product O(—k) =
O(—1)®k and then take holomorphic sections of its dual bundle O(k) = O(—k)*.
Notice that O (k) is still a line bundle (since the fiber of O(—1) is one-dimensional),
so this construction might appear fruitless. But the point is that it admits more

8 The Hermitian structure is scaled so the associated symplectic structure 2 fulfills
f(C pl Q=2r.
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holomorphic sections. Indeed, every homogenous polynomial p € Cg[z1, z2] of
degree k gives rise to a k-linear form on O(—1) via

[zl 5 Mz, ..., Az) > Ap - A p(2).

Due to the homogeneity of p, this definition is independent of the representative

z € [z]. It defines a holomorphic section of O(k) (using that k-linear forms on

O(—1) are naturally identified with sections of (O(—1)®%)* = O(k)). Moreover,

all holomorphic sections of O(k) are of this form, so the space of homogenous

polynomials Cg[z1, z2] is isomorphic to the space of holomorphic sections of O (k).
With this identification, consider the L? projection

M: L>(CP', O(k)) — Cilz1,72] (the Szegd projector.)
The Berezin-Toeplitz operator for f € C*(CP!, C) is

BTi(f): Cilz1, 22] = Cilz1,z2], BTi(f) =1Ilo f,

where f acts by multiplication. If f is real-valued, then BTy (f) is self-adjoint.
Let KS;(f) denote the generalization of KS(f) to the operator

KSk(f) = f— ,’(—%: C®(CP', O(k) — C®(CP', Ok)),
where V¥ is the connection on O(k). Notice that the operator BTy (f) is dif-
ferent from “standard” geometric quantization, which is IT o KS; as an opera-
tor Crlz1,z2] — Cglz1, z2]. Via Tuynman’s [56] formula IT o 2iV§f oIl =

IT o (Af) o IT one concludes the relation IT o KS; (f) = BTx(f) — 21—kBTk(Af).

To obtain the connection to quantization via representation as described above,
consider the Berezin-Toeplitz operators associated with the coordinates functions
X1, X2, x3 of the sphere (again identified with CPY). In the coordinate chart where
p € Cilz1, z2] is identified with the one-variable polynomial z; — p(zy, 1), they
are given by

BT (x1) ! a1 -2z% d +k
X = — —_ _ N
K= Wiy T

i d
BT =— (0 +H)— —kz1 ),
k(x2) k+2<( +z1)dZl 21>

1 d
BT, = —|(2z1— — k) .
©(x3) 12 ( del )

These operators provide a scaled representation of so(3), namely,

2i
BTy (x1), BTi(x2)] = ——=BTk(x3), 13
[BTk (x1), BTk (x2)] ) k(x3) (13)
with cyclic permutations. This reflects the well-known irreducible representation
of s0(3) on C[z1, z2], corresponding to the SU(2) group representation where the
action of A € SU(2) is (A - p)(z) = p(A~'z). In his original publication, Berezin
[4] proves that any quantization on the sphere that is equivariant under the SO(3)
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action is unique up to scaling (it is essentially a consequence of the uniqueness of
irreducible representations). Thus, we get the connection to the quantization matrix
operators Ty (f) constructed in Sect. 3.1 above by identifying Cy[z1, z2] >~ Ck+,
First, the relation between N and kK must be N = k + 1. Second, it is a matter of
getting the scaling right. Recall from Sect. 3.1 that (}_, Ty (xa)?) Y2 _iI.Onthe
other hand, the operators BTy (x,,) fulfill that

> k
BTy (x0)* = ——.
Z K (Xa) k+2
a=1
Thus, we arrive at the following:

Lemma 20. For f € C*®(S?), let Ty (f) denote the matrix quantization operator
constructed in sect. 3.1 above. Then, under the identification Cy_1[z1, z2] =~ CN,

N +1
Tv(f) = i 5 BTw-1 (),

From (13), the scaling in Lemma 20 recovers that {-, -} is approximated, via Ty,

by %L[~, -] with A as in Sect. 3.1. In particular, since ,/]/:',—'_F} = 0O{)as N — oo,

Theorem 3 above, by Charles and Polterovich [8], is valid for Ty, although it was
formulated for BT}.
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