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Thomas Eriksson , Member, IEEE, and Erik G. Ström , Fellow, IEEE

Abstract—This paper models the line-of-sight (LOS) channel
between two continuous circular antennas (CCAs) as a bounded
linear normal operator whose kernel is defined by a deployment
parameter: the product of the antenna radii divided by the
product of the wavelength and transmission distance. Eigen-
decomposition reveals that orbital angular momentum (OAM)
serves as the eigenmodes, with eigenvalues given by Bessel
functions of the first kind, evaluated at the deployment parameter.
By linking discrete circular arrays to CCAs through spatial
sampling, we derive analytical expressions for the singular values
of the LOS multiple-input multiple-output (MIMO) channel.
The analysis considers two configurations: one where receive
antennas form a single uniform circular array (UCA) with a
rotational angular offset, and one with multiple sub-UCAs having
different angular offsets, in both cases with the number of receive
antennas being an integer multiple of the transmit antennas. For
each setup, discrete Fourier transform (DFT)-based transceiver
structures are proposed to achieve channel capacity. Numerical
evaluations reveal: (i) The number of effective spatial degrees
of freedom generally increases with the deployment parameter,
but not monotonically (for fixed angular offsets); (ii) Channel
capacity does not necessarily increase with the deployment
parameter when the number of antennas is fixed; (iii) Angular
offset significantly impacts performance when the number of
antennas is small relative to the parameter; (iv) With a large
number of antennas, the singular values of both configurations
approach the CCA singular values, and the impact of angular
offsets diminishes; (v) The non-uniform configuration studied in
this paper yield small or no gains compared to the uniform
configuration when angular offsets are optimized.

Index Terms—LOS MIMO, UCA, OAM, eigenmodes, SVD.
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I. INTRODUCTION

THE demand for ever-higher data rates is driving wireless
communications into the millimeter-wave (mmWave) and

terahertz spectrum, where non-line-of-sight (NLOS) communi-
cation becomes increasingly challenging. Interestingly, spatial
multiplexing, a key method to boost spectral efficiency and
data rates, can also thrive in line-of-sight (LOS) conditions
when antennas or arrays are large enough. From a spatial
perspective, a large transmit antenna or array excites a nonzero
spatial bandwidth in the signal received, unlocking spatial
degree-of-freedom (DOF) in the LOS channel [2], [3]. This has
brought LOS multiple-input multiple-output (MIMO) commu-
nication [4], [5], [6] back into the spotlight.

LOS MIMO systems with uniform circular arrays (UCAs)
have garnered significant attention in recent literature, as
exemplified by studies such as [7], [8], [9], and [10] and others
cited therein. This interest is largely due to the capability of
UCAs to exploit orbital angular momentum (OAM) modes
[11], [12], [13] with relatively simple processing techniques.
Several experimental implementations have been reported
[14], [15], [16]. The performance of LOS MIMO systems
is generally affected by the geometry of the transmit and
receive arrays and is sensitive to variations in transmission
distance and misalignments such as tilt and rotation [6],
[17]. When UCAs are employed, these geometrical sensitiv-
ities are more pronounced and distinct compared to uniform
linear arrays (ULAs) or uniform rectangular arrays (URAs)
[18], [19]. Specifically, as UCAs experience tilt or rotational
misalignment, not only do the number of available spatial
subchannels change, but the singular values associated with
these subchannels are also affected. There has also been some
research on the design of transmit/receive schemes under
certain misalignment conditions [20], [21], as well as choosing
better parameters [22] or non-uniform antenna placement [23]
to improve robustness to misalignment. It is important to note
that while there is extensive literature on NLOS MIMO with
UCAs, this topic is beyond the scope of our paper and will
not be addressed here. In our previous conference paper [1],
we derived the singular values of the LOS UCA channel
under conditions of perfect alignment, assuming an equal
number of antenna elements on both the transmitting and
receiving sides. This derivation was based on an eigenmode
analysis of the LOS channel between two continuous circular
antennas (CCAs), confirming the role of OAM modes as the
continuous channel eigenmodes. We provided expressions for
these eigenvalues using Bessel functions of the first kind. By
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relating the UCA channel to the CCA channel through spatial
sampling, we identified that the discrete eigenvalues depend on
the continuous eigenvalues through aliasing. This perspective
not only explains the behavior of the UCA channel but also
clarifies the underlying reasons for its specific characteristics.

In this paper, we extend our study to more general scenarios
where the number of antennas in the transmitting and the
receiving UCAs may differ, the receiving array may have
an angular offset, and the receiving antenna elements may
be arranged as multiple sub-UCAs rather than a single large
UCA. We provide a tutorial-style of the singular values of
the generalized UCA channel, utilizing an analytical method
different from that in [1]. Our specific technical contributions
include:

• We establish a bounded linear normal operator repre-
senting the CCA channel. An eigendecomposition of this
operator is derived, providing a precise characterization
of the DOFs and yielding analytical expressions for the
singular value decomposition (SVD).

• We decompose the channel matrix for a general Nt ×
Nr UCA system into an infinite sum of weighted rank-
1 matrices, highlighting the multidiagonal nature of the
coupling coefficient matrix generated by discrete Fourier
transform (DFT) precoding and combining. We provide
analytical expressions for the matrix elements.

• We derive analytical expressions for the singular values
of the Nt × LNt LOS channel when the transmitter is
a UCA, and the receiver is either a UCA or comprises
L sub-UCAs offset in angle and located on the same
circle. Additionally, we propose two DFT-based, capacity-
achieving transceiver structures for these configurations.

The derived expressions for singular values lead directly to
expressions for the Shannon channel capacity, as detailed in
the paper, and can be used to validate claims in the existing
literature. They also offer guidance for the practical imple-
mentation of such systems, as demonstrated and examined
in our numerical study. These results address questions about
choosing geometrical parameters and designing array layouts
for more robust systems. Notably, the derived expressions
are verified using full-wave electromagnetic (EM) simulations
with realistic dipole antennas in our numerical analysis.

Notation: (·)T denotes the transpose, and (·)H denotes the
conjugate transpose. Z, Z+ = {1, 2, . . .}, and N = {0, 1, . . .}
represent the sets of integers, positive integers, and non-
negative integers, respectively. The set A + BZ, where A and
B are integers, is defined as {A + kB : k ∈ Z}. The greatest
common divisor of the integers a and b is denoted by gcd(a, b),
and their least common multiple is denoted by lcm(a, b).

The paper is organized into six sections and three appen-
dices. In Section II, we define and analyze the CCA channel,
focusing on its DOFs and capacity. A similar analysis for the
UCA channel is presented in Section III. Section IV introduces
and examines two optimal receiving structures. Numerical
results are provided in Section V, and the paper concludes
with Section VI. Proofs of Theorems 2 and 3, as well as
a statement regarding when the UCA channel may lose one
DOF, are provided in Appendices VI–VI.

II. THE CCA CHANNEL

We begin by examining the wireless channel between two
CCAs under free-space propagation conditions, which we refer
to as the CCA channel. Key findings on this channel were
previously presented [1]. In this paper, we adopt a func-
tional analysis-based approach, differing from [1], to derive
the eigendecomposition of the linear operator representing
the CCA channel. The outcome leads to an estimate of the
effective number of DOFs and an unsorted SVD. Finally, we
provide a capacity analysis of the CCA channel.

A. CCA Channel Formulation

The geometric arrangement of the two perfectly aligned
CCAs is illustrated in Fig. 1. We denote the source antenna
as At and the receiving antenna as Ar, with radii Rt and Rr,
respectively. We locate the origin of the coordinate system at
the center of At and let the x-y-plane contain At. The z-axis
passes through the center of Ar at (0, 0,D)T. Both antennas
are assumed to consist of Hertzian dipoles, allowing for con-
tinuous electrical current. We focus on time-harmonic current
sources using the exp( jωt) convention, with the assumptions
that (i) D � λ, where λ is the wavelength corresponding to the
angular frequency ω, and (ii) D � max(Rt,Rr). Under these
assumption, we derive an analytical description of the CCA
channel.

We denote the current density at a point s ∈ At as J (s) ∈
C3×1. The electric field at a point p ∈ Ar can be expressed as

E(p) =

Z
At

G(p − s)J (s) ds, (1)

where G : R3×1 → C3×3 is the dyadic Green’s function, given
as follows [24, Appendix I] [2]

G(r) =
− jωµ

4π
exp(− jk0r)

·

266641
r

�
I3 − r̂r̂T�„ ƒ‚ …

”radiative”

+

�
j

k0r2 −
1

k2
0r3

� �
I3 − 3r̂r̂T�„ ƒ‚ …

”non-radiative”

37775 ,
where j =

√
−1, µ is the permeability of free space, r = p− s,

r , ‖r‖, r̂ = (r̂x, r̂y, r̂z)T , r/r, and I3 is a 3×3 identity matrix.
The non-radiative term in G decays rapidly with r. Under the
assumption D � λ, it becomes negligible compared to the
radiative term, leading to the approximation

GF(r) =
− jωµ
4πr

e− j 2π
λ r �I3 − r̂r̂T� . (2)

For simplicity, we assume that the Hertzian dipoles consisting
At and Ar are oriented along the x-axis direction, allowing
J (s) to be expressed as Jx(s)êx, where êx = (1, 0, 0)T. Ar

only perceives Ex(p), the electric field component in the êx
direction1.

1The electric field components in the y and z directions can be expressed
similarly, but with (1 − r̂2

x) in Gx,x replaced by (0 − r̂x r̂y) and (0 − r̂x r̂z),
respectively. As D→ ∞ for fixed Rt and Rr , r̂x → 0 and r̂y → 0, making the
y and z components negligible.
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Fig. 1. LOS channel between two perfectly aligned circular arrays.

As shown in Fig. 1, we use two angles, θt and θr, both in the
range [0, 2π), to parameterize s and p. Accordingly, we have
s(θt) = (Rt cos θt,Rt sin θt, 0)T, p(θr) = (Rr cos θr,Rr sin θr,D)T,

r(θr, θt) = D

s
1 +

R2
t + R2

r − 2RtRr cos(θr − θt)
D2 , (3)24r̂x(θr, θt)

r̂y(θr, θt)
r̂z(θr, θt)

35 =
1

r(θr, θt)

24Rr cos θr − Rt cos θt

Rr sin θr − Rt sin θt

D

35 , (4)

s′(θt) = d
dθt

s(θt) = (−Rt sin θt,Rt cos θt, 0)T, and ds =

‖s′(θt)‖ dθt = Rt dθt. We treat Jx(·) and Ex(·) as functions
mapping [0, 2π) to C. Using (1) and (2), we derive the
relationship

Ex(θr) =

Z 2π

0
Rt Gx,x(θr, θt)Jx(θt) dθt, (5)

where

Gx,x(θr, θt) =
− jωµ

4πr(θr, θt)
[1 − r̂2

x(θr, θt)]e− j 2π
λ r(θr ,θt). (6)

We observe that r(θr, θt) influences both the amplitude and
phase of Gx,x(θr, θt). Under the assumption D � max(Rt,Rr),
we can apply the first-order Taylor approximation

√
1 + x ≈

1 + x
2 for small x to (3), yielding

r(θr, θt) ≈ D +
R2

t + R2
r

2D
−

RtRr

D
cos(θr − θt). (7)

From (6) and (7), it is evident that Gx,x(θr, θt) remains approx-
imately constant if D is so large that RtRr/D � λ. In
this scenario, the electric field Ex(θr) does not vary with
θr. However, when D is not excessively large, such that
RtRr/D is at least comparable to λ (the criterion will become
clearer later), the phase change in e− j 2π

λ r(θr ,θt) within Gx,x(θr, θt)
becomes significant enough to introduce substantial variation
in Ex(θr). This result in additional spatial DOFs to be explored.
Conversely, the amplitude variation of Gx,x(θr, θt) is limited
and has relatively minimal impact on DOF. Therefore, we use
the approximations r(θr, θt) ≈ D and r̂x ≈ 0 (as r̂ ≈ êz) for
the amplitude part, while applying (7) solely to the complex
exponential term. Combined, these approximations yield

Gx,x(θr, θt) ≈ α e j2π RtRr
λD cos(θr−θt) (8)

where α is a constant given by

α ,
− jωµ
4πD

e− j 2π
λ [D+(R2

t +R2
r )/2D]. (9)

B. Linear Operator Analysis

Consider the space of square-integrable complex functions
over the interval [0, 2π), denoted by L2

�
[0, 2π)

�
. The inner

product in this space is defined as

〈u, v〉 ,
Z 2π

0
u(θ)v∗(θ) dθ, (10)

where v∗(θ) is the complex conjugate of v(θ). Accordingly,
the norm of a function u(·) ∈ L2

�
[0, 2π)

�
is defined as ‖u‖ ,

√
〈u, u〉. We will consider the linear operator A with domain
L2
�
[0, 2π)

�
and the mapping

(Ax) (φ) =

Z 2π

0
h(φ − θ)x(θ) dθ, (11)

where the kernel
h(·) , e jβ cos(·) (12)

is parameterized by a positive real number β. Note that A is a
bounded operator, as the kernel h is continuous and bounded.
If we let x(·) = Jx(·) and

β = 2π
RtRr

λD
, (13)

then Rtα · (Ax)(θr) equals the electric field described in
(5) assuming Gx,x(θr, θt) is given by (8). We refer to A as
an energy-normalized linear operator representing the CCA
channel.

As seen from (13), β depends on the geometry and wave-
length. Hence, we can view β as fixed for a given deployment
or as a parameter that can be optimized, e.g., by adjusting
the transmit and receive antenna radii (the hop distance and
wavelength are often fixed in practice). Of course, physical
constraints will limit the feasible values of β.

1) Eigendecomposition: The linear operator A is both
bounded and normal2. Therefore, A allows for eigendecom-
positions of the form

Ax =
X
n∈Z

λnψn 〈x, ψn〉. (14)

where {ψn} is the set of eigenfunctions and λn is the complex
eigenvalue associated with ψn. Note that the operator zA, for
z ∈ C, has the same eigenfunctions as A but with scaled
eigenvalues zλn. Explicit expressions of the eigenfunctions and
eigenvalues for A are provided in the following proposition.

2The operator A is bounded if there exists a constant c < ∞ such that
‖Ax‖ < c‖x‖ for all x ∈ L2([0, 2π)) [25, Sec. 6.1]. Moreover, A is normal
if it commutes with its Hermitian adjoint A†. Specifically, for any x, y ∈
L2([0, 2π)), the Hermitian adjoint operator A† is uniquely defined by the
relation 〈y,Ax〉 = 〈A†y, x〉 [25, Eq. (113)]. The Hermitian adjoint of A is
given by the mapping

(A†y)(θ) =

Z 2π

0
e− jβ cos(θ−φ)y(φ) dφ.

It is straightforward to verify that A†A = AA† (A commutes with A†). The
spectral theorem for normal operators follows from the spectral theorem for
self-adjoint operators, as both A†A and AA† are self-adjoint operators and
share the same eigendecomposition with real eigenvalues. Direct proofs of
the spectral theorem for normal operators are available in [26] and [27].
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Fig. 2. The value of Jn(β) for non-negative orders from 0 to 13. For β =
3 and β = 5.5, the orders that yield |Jn(β)| ≥ 0.1 maxn |Jn(β)| are marked
using +.

Proposition 1: With the inner product defined in (10), the
linear operator A : L2

�
[0, 2π)

�
→ L2

�
[0, 2π)

�
specified by the

mapping in (11) has orthonormal eigenfunctions given by

ψn(θ) , (2π)−
1
2 e jnθ, n ∈ Z, (15)

and eigenvalues given by

λn(β) = 2π jnJn(β), n ∈ Z, (16)

where Jn(·) represents the Bessel function of the first kind of
order n, defined as

Jn(β) ,
1

2π

Z π

−π

e j(β sin θ−nθ) dθ. (17)

Proof: The proof is based on the following key points:
1) The infinite set {ψn}n∈Z forms a complete orthonormal

system of L2
�
[0, 2π)

�
[28, Definition 8.2.1]. Orthonor-

mality means that ‖ψn‖ = 1 and 〈ψn, ψm〉 = 0 for any
n , m.

2) Due to its periodic nature with a period of 2π, h(θ) can
be expressed by Fourier series expansion [1]:

h(θ) =
X
n∈Z

jnJn(β)e jnθ, (18)

where Jn(·) is the Bessel function of the first kind of
order n.

The orthogonality of {e jnθ} ensures that {ψn(θ)} is the set
of orthonormal eigenfunctions of A, and the eigenvalues are
given by (16).�

2) Effective DOF: Proposition 1 shows that the harmonics
of θ with a fundamental frequency of 1/2π, also known as
OAM modes, form the eigenmodes of the CCA channel3. The
eigenvalues are determined by integer-order Bessel functions
of the first kind evaluated at β = 2πRtRr/λD. For any integer
n, the relation J−n(β) = (−1)nJn(β) holds. As |n| increases, the
amplitude of Jn(β) decreases rapidly and approaches zero4.

3It is also known from the literature that the radiated electric field of a UCA
with a very large number of antennas can be approximately expressed as a
superposition of OAM modes, with weights given by the Bessel functions of
the first kind [12, Eq. (8)].

4With β fixed, an asymptotic expression of Jn(β) as n → ∞ is Jn(β) ∼
1√
2πn

�
eβ
2n

�n
[29, Eq. 9.3.1].

Additionally, according to Neumann’s addition theorem [29,
Eq. 9.1.76], we have X

n∈Z

J2
n(β) = 1 (19)

for any β. These properties of Bessel functions imply that,
although the eigendecomposition of A theoretically includes
an infinite number of terms, only a finite subset is associated
with significant eigenvalues.

When β→ 0, J0(β) ≈ 1, and Jn(β) ≈ 0 for all n , 0, indicat-
ing that there is effectively only one DOF in the channel. For
large β, the number of effective DOFs can be estimated using
Carson’s rule: Consider h(θ) = e jβ cos(θ) as a phase-modulated
signal with sinusoidal modulation of frequency fm = 1

2π , where
β is the phase modulation index. Carson’s rule gives us a rule-
of-thumb estimation of the effective bandwidth of h(θ) [30,
Eq. (5-61)]:

W = 2(β+ 1) fm, (20)

which contains 98% the total signal power. Sampling h(θ) at
intervals of 1/W over the range [0, 2π) yields approximately
2πW = 2(β + 1) samples5. Thus, for large β, the number of
effective DOFs is approximately

Keff ≈ 2(β+ 1). (21)

In Fig. 2, the plots for Jn(β), n = 0, 1, . . . , 13 are shown
over the range β ∈ [0, 10]. For β = 3 and β = 5.5, the orders
n such that

Jn(β)| ≥ 0.1 max
k∈{0,...,13}

|Jk(β)|

are indicated by + markers. Using this criterion to determine
effective DOF (by counting the + markers and considering the
corresponding negative orders) results in 9 effective DOFs for
β = 3 and 14 effective DOFs for β = 5.5. In comparison, (21)
estimates approximately 8 and 13 effective DOFs for these β
values, respectively.

3) SVD: Proposition 1 directly leads to the unsorted SVD
of the operator A, as detailed in the following theorem.

Theorem 1: Consider the linear operator A on L2
�
[0, 2π)

�
defined by the mapping (11). An unsorted SVD of A is given
by

(Ax)(θr) =
X
n∈Z

γn(β)un(θr)〈x, vn〉, (22)

where the left singular functions un(·), right singular functions
vn(·), and singular values γn(β) are defined for n ∈ Z as

un(θr) , (2π)−
1
2 e j arg(λn(β))e jnθr , (23)

vn(θt) , (2π)−
1
2 e jnθt , (24)

γn(β) , |λn(β)| = 2π|Jn(β)|. (25)

Proof: This result follows directly from Proposition 1
by incorporating the phase of λn into the right singular
functions6.�

5See [3, Eq. (1)] and the discussion following it.
6Alternatively, the phase can be incorporated into the left singular functions,

resulting in a different form for the SVD. However, the singular values remain
the same.
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Remark 1: Since J−n(β) = (−1)nJn(β), the singular values
γn(β) appear in pairs for n , 0, meaning γn(β) = γ−n(β) for
n ∈ Z. Additionally, from (19), we known that for any β,X

n∈Z

γn(β)2 = (2π)2. (26)

Thus, β influences the distribution of singular values, determin-
ing how the total gain (2π)2 is allocated among the squared
singular values, although the overall gain remains constant
irrespective of β. An alternative derivation of (26) can be
obtained by integrating the kernel of A, as shown in [31,
Eq. 47],X

n∈Z

γn(β)2 =

Z 2π

0

Z 2π

0
|e− jβ cos(θ−φ)|2 dθ dφ = (2π)2. (27)

The oscillatory nature of Bessel functions causes the relative
magnitudes of the singular values to change with β. For any
given β, we can sort the singular values in non-increasing order
to achieve a sorted SVD. Define n(k) as a bijective mapping
from N to Z such that γn(0)(β) ≥ γn(1)(β) ≥ · · · . With this, the
sorted SVD of A is expressed as

(Ax)(θr) =
X
k∈N

γn(k)(β)un(k)(θr)〈x, vn(k)〉. (28)

As previously mentioned, γn(k)(β) rapidly decreases to zero
with increasing k due to the behavior of Jn(β) for large n.

C. Channel Capacity Analysis

The discussion thus far has centered on the energy-
normalized linear operator A, utilizing the inner product
defined in (10) for both input and output signals. To evaluate
the capacity of the CCA channel, we reintroduce the constant
Rtα to restore the channel mapping

y(θr) = Rtα (Ax)(θr). (29)

The CCA channel, assumed to be known at both ends, has
singular values γn(β)Rt |α| retains the same singular functions
as A. The singular functions from the SVD provide the
foundation for an optimal transceiver design, with data rate
maximization achieved through power allocation using the
water-filling algorithm, given a total transmit power PT watt.

A distinction must be made between the dimensionless
input/output signals of A and the practical signals interacting
with the communication system’s antenna ports. To address
this, we assume the input signal x(·) of A corresponds to a
signal with transmit power ζt‖x‖2 watt into At, and the output
signal y(·) corresponds to received signal power ζr‖y‖2 watt
from Ar. For simplicity, we define GP = R2

t |α|
2ζr/ζt such that

one watt of transmit power through a spatial subchannel of
singular value γ results in GPγ

2 watt of received signal power.
Furthermore, when resolving the data signal transmitted over
a subchannel, it is assumed that white complex Gaussian noise
with a power spectral density of N0 watt per hertz is added to
the received time-domain signal after spatial combining. The
noise affecting each subchannel is independent, and the system
is considered narrowband, with a bandwidth B hertz centered
around ω/2π (where B� ω/2π).

With these assumptions, the Shannon capacity of the CCA
channel can be expressed as follows [32, Chapter 7.1.1]

CCCA = B
X
k∈N

log2

 
1 +

PkGPγ
2
n(k)(β)

N0B

!
[bit/s] (30)

where the power allocated to the k spatial subchannel, Pk, is
determined by water-filling algorithm:

Pk = max

 
µ −

N0B
GPγ

2
n(k)(β)

, 0

!
(31)

with µ chosen to satisfy
P

k Pk = PT. This analysis highlights
an important practical insight: the number of effective spatial
subchannels is influenced not only by the singular values
γn(k)(β) but also by factors such as available transmit power,
antenna gains, and noise level. Consequently, we can define
the effective DOF of the CCA channel to be the number
of subchannels that receive nonzero transmitting power, as
determined by (31), at the reference signal-to-noise ratio
(SNR) given transmit power PT, defined as

SNR0(PT) ,
PTGP

N0B
. (32)

Note that SNR0(PT) is the received SNR for a single-input
single-output (SISO) channel with a channel gain of 1 and a
transmit power of PT.

III. THE UCA CHANNEL

We now examine the discrete MIMO channel between two
perfectly aligned UCAs with arbitrary numbers of antenna
elements (Hertizian dipoles) and angular offset under LOS
conditions. This setup is referred to as the UCA channel.
We formulate the UCA channel matrix by leveraging the
linear operator A that represents the CCA channel and analyze
the resulting coupling coefficient matrix from discrete DFT
precoding and combining, which is lossless. The channel
singular values are then derived specifically for the scenario
where the number of receive antennas is a multiple of the
number of transmit antennas.

A. UCA Channel Matrix Formulation

Consider an Nt × Nr MIMO system utilizing two perfectly
aligned UCAs composed of Hertzian dipoles oriented along
the x-axis. We assume Nt ≥ 2 and Nr ≥ Nt. The transmitting
UCA, At, has antenna elements uniformly distributed on a
circle with radius Rt at angles given by

θt,nt =
2π
Nt

nt, 0 ≤ nt ≤ Nt − 1. (33)

Similarly, the receiving UCA, Ar, has its antenna elements
uniformly placed on a circle with radius Rr at angles

θr,nr =
2π
Nr

nr + ∆θ, 0 ≤ nr ≤ Nr − 1. (34)

We refer to ∆θ as the relative angular offset of Ar, with the
assumption that ∆θ ∈ [0, 2π/Nr). Below, we formulate the Nr×
Nt UCA channel matrix H. For convenience, we use zero-
based indexing for the rows and columns of H, meaning that
the first row or column has index of 0.
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The current density at the ntth antenna element of At is
denoted by x[nt]. We can represent At as a CCA with a current
density given by

x(θt) =

Nt−1X
nt=0

x[nt]δ(θt − θt,nt ), (35)

where δ(·) is the Dirac delta function. Substituting this expres-
sion into the linear mapping defined in (11), we have

y(θr) = (Ax)(θr) =

Nt−1X
nt=0

x[nt]h(θr − θt,nt ), (36)

which represents the electric field over an imaginary CCA of
radius Rr. The electric field perceived by the nrth antenna of
Ar is the spatial sample of y(θr) at θr,nr :

y[nr] , y(θr,nr ) =

N−1X
nt=0

x[nt]h(θr,nr − θt,nt ). (37)

Based on (37), the channel matrix H is constructed by
placing the values of h(θr,nr − θt,nt ), as defined in (12), into
the matrix. Specifically, for each row nr = 0, 1, . . . ,Nr − 1 and
column nt = 0, 1, . . . ,Nt − 1,

H[nr, nt] = e jβ cos
�

2π
�

nr
Nr
−

nt
Nt

�
+∆θ

�
. (38)

Defining x , (x[0], . . ., x[Nt−1])T and y , (y[0], . . ., y[Nr−1])T,
the input-output relationship for this discrete MIMO system is
described by

y = Hx. (39)

Note that H is energy-normalized similarly to the linear
operator A. Since all entries of H has unit magnitude, it follows
that

‖H‖2F = NtNr. (40)

Moreover, as detailed in the following theorem, we can
decompose H as an infinite sum of scaled outer products of
DFT vectors.

Theorem 2: The Nr × Nt channel matrix H between two
UCAs can be decomposed as an infinite sum of rank-1
matrices:

H =
X
n∈Z

CnψNr ,nψ
H
Nt ,n, (41)

where
Cn =

p
NtNr Jn(β)e jn( π

2 +∆θ), (42)

and where the N-dimensional DFT vector ψN,n is defined for
N ∈ Z+ and n ∈ Z as

ψN,n ,
1
√

N

�
1 e jn 2π

N ·1 · · · e jn 2π
N ·(N−1)

�T
. (43)

Proof: See Appendix A.�
From the decomposition in (41), we can verify (40) using

the property
P

n∈Z J2
n(β) = 1 and the fact that

ψH
N,n1

ψN,n2
=

(
1, n1 = n2 + kN, k ∈ Z
0, otherwise

. (44)

Fig. 3. Structure of the coupling coefficient matrix Z = WH
Nr

HWNt for Nt = 4,
and Nr = 4, 5, 6, and 8. Nonzero entries can occur on the mth diagonal only
if m is an integer multiple of Ngcd, as indicated by the arrows.

B. Coupling Coefficient Matrix Analysis

For an integer N ∈ Z+, the N-dimensional DFT matrix is
defined as

WN ,
�
ψN,0 ψN,1 . . . ψN,N−1

�
∈ CN×N . (45)

It is clear that WN is unitary, meaning WH
NWN = IN . Now, let

us define the Nr × Nt coupling matrix Z as

Z ,WH
Nr

HWNt . (46)

If the input vector x in (39) is generated by performing Nt-
dimensional DFT precoding on the information data symbols,
and Nr-dimensional DFT combining is applied to y, then Z
represents the mapping between the data symbols and the com-
bined receive signal. The element of Z at row 0 ≤ kt ≤ Nt − 1
and column 0 ≤ kr ≤ Nr − 1 is given by

Z[kr, kt] = Zkr ,kt = ψH
Nr ,kr

HψNt ,kt
, (47)

which constitutes the coupling coefficient between ψNt ,kt
and

ψNr ,kr
through the channel H. For this reason, Z is referred

to as the coupling coefficient matrix for DFT precoding and
combining.

In passing, we note that DFT precoding and combining are
lossless, as clarified by the following lemma.

Lemma 1: Let H ∈ CNr×Nt be an arbitrary matrix, where
Nr ≥ Nt, and let WN the N-point DFT matrix as defined in
(45). Then H and Z = WH

Nr
HWNt ∈ C

Nr×Nt share the same
singular values.

Proof: Since WN is unitary, it follows that

ZHZ = WH
Nt

HHHWNt .

Consequently, ZHZ and HHH have the same eigenvalues
[33 p. 65,(9)], which implies the lemma.�

Remark 2: In our analysis, we have assumed an ideal
reception of the electric field using Ar. In practical scenar-
ios where the received signal also contains a noise vector
n, comprising i.i.d. zero-mean complex Gaussian elements,
Lemma 1 indicates that the channel capacity is not affected
by DFT precoding and combining. This is because WH

Nr
n and

n have the same statistical distribution.
In Theorem 3, we will formally demonstrate that the cou-

pling coefficient matrix Z exhibits a multidiagonal structure.
Specifically, the mth diagonal7 of Z can contain nonzero

7The mth diagonal of Z refers to the elements Zk,l where m = l − k. Thus,
the m = 0 diagonal is the main diagonal, and the m > 0 diagonals lie above
the main diagonal. The valid range of m is from 1 − Nr to Nt − 1.
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elements only if m is a multiple of Ngcd = gcd(Nt,Nr).
Consequently, all other diagonals will consist solely of zero
elements. This pattern is illustrated in Fig. 3, which shows
four examples where Nt = 4 and Nr = 4, 5, 6, and 8, yielding
Ngcd = 4, 1, 2, and 4, respectively. In these Nr × Nt grids,
the blue cells indicate the positions of potentially nonzero
elements.

Theorem 3: Consider the coupling coefficient matrix Z for
an Nt × Nr UCA system with DFT precoding and combining,
as defined in (46), where Nr ≥ Nt. Let Ngcd = gcd(Nt,Nr) and
Nlcm = lcm(Nt,Nr). The elements along the mth diagonal of
Z are

Zkt−m,kt =8̂<̂
:
p

NtNr

X
n∈N ∗kt ,m

Jn(β)e jn( π
2 +∆θ), m ∈ NgcdZ

0, otherwise
, (48)

where Zkr ,kt is defined in (47), and

N ∗kt ,m , kt − mp1Nt/Ngcd + NlcmZ, (49)

with (p1, q1) being the solution to the Diophantine equation
pNt + qNr = Ngcd obtained by the extended Euclidean
algorithm.

Proof: See Appendix B.�
A few observation regarding the properties of the matrix Z

are as follows.
• Each column of Z contains at most Nr/Ngcd nonzero

elements, and each row contains at most Nt/Ngcd nonzero
elements.

• In cases where Nr = LNt for some L ∈ Z+, it follows that
Ngcd = Nt. This configuration results in Z being composed
of L stacked diagonal Nt × Nt matrices. Essentially, each
input mode experiences a 1 × L single-input multiple-
output (SIMO) channel to the output modes, eliminating
any crosstalk between input modes.

• The elements on the mth diagonal, where m ∈

NgcdZ, are not necessarily nonzero. Since ‖Z‖2F =

‖H‖2F = NtNr, some coupling coefficients may be very
small. As a general guideline, the parameter β should
be sufficiently large to ensure that all elements are
significant.

C. Nt × LntL UCA Channel Capacity Analysis

Theorem 3 demonstrates that DFT precoding and combining
are particularly advantageous when Nr = LNt, where L ∈ Z+.
For this specific scenario, the singular values of the UCA
channel matrix can be expressed as outlined in the following
corollary to Theorem 3.

Corollary 1: For L ∈ Z+, the unsorted singular values of
the LNt × Nt UCA channel matrix H are given by

σkt =

vuutLN2
t

L−1X
l=0

ˇ̌̌̌
ˇ X
n∈LNtZ

e jn( π
2 +∆θ)Jkt+lNt+n(β)

ˇ̌̌̌
ˇ
2

, (50)

for 0 ≤ kt ≤ Nt − 1.
Proof: According to Lemma 1, the matrices ZHZ and HHH

have the same eigenvalues. When Nr = LNt, the matrix Z

is composed of L stacked diagonal Nt × Nt matrices. As a
result, ZHZ becomes an Nt×Nt real diagonal matrix, with its
diagonal elements representing the eigenvalues of both ZHZ
and HHH. It can be readily verified that for 0 ≤ kt ≤ Nt − 1,
σ2

kt
, [ZHZ]kt ,kt is expressed as

σ2
kt

=

Nr−1X
kr=0

ˇ̌
Zkr ,kt

ˇ̌2
=

L−1X
l=0

ˇ̌
Zkt+lNt ,kt

ˇ̌2
, (51)

and applying Theorem 3 directly, we find that

Zkt+lNt ,kt =

q
LN2

t

X
n∈kt+lNt+LNtZ

Jn(β)e jn( π
2 +∆θ). (52)

We derive (50) by extracting the factor e j(kt+lNt)( π
2 +∆θ) from

the sum in (52) and then substituting the result into (51).�
The following relation is valid for any values of β and ∆θ:

Nt−1X
kt=0

σ2
kt

= ‖H‖2F = ‖Z‖2F = LN2
t . (53)

This equation indicates that the total channel gain, LN2
t , is

constant. However, the parameters β and ∆θ determine the
distribution of this total gain across the spatial subchannels
within the UCA channel, as detailed in Corollary 1. It is
noteworthy that there is an analogy between this equation and
the expression for channel gain in (26).

Remark 3: In the special case where Nr = Nt, a scenario
frequently explored in the literature, the square coupling
coefficient matrix Z has nonzero elements exclusively on its
main diagonal. This phenomenon arises from the fact that the
channel matrix H becomes circulant, meaning that its element
H[nr, nt] depends solely on (nr − nt) mod Nt (we refer to the
discussion around [13, Eq. (22)]). In this case, the singular
values are given by σkt = |Zkt ,kt | for kt = 0, 1, . . . ,Nt − 1, and
it follows directly from (52) that

Zkt ,kt = Nt

X
n∈kt+NtZ

e jn( π
2 +∆θ)Jn(β). (54)

We previously examined this scenario in [1] with the addi-
tional assumption that ∆θ = 0. The expression derived for
the eigenvalues in [1, Eq. (28)] coincides with (54) when
∆θ = 0. Comparing (54) with (47), it becomes evident that
(54) provides deeper insights into how the singular values are
affected by β and ∆θ. Finally, it is worth noting that if Nt = Nr

is even and ∆θ = π/Nr, then σNt/2 = |ZNt/2,Nt/2| ≡ 0 for all β.
A proof of this statement can be found in Appendix C.

The UCA channel matrix H is energy-normalized similar
to the linear operator A used for the CCA channel. For
channel capacity analysis, we encounter challenges akin to
those discussed in Section II-C. We reuse the notation GP
to denote that, when a single spatial subchannel with singu-
lar value σ is employed, one watt of transmit power will
yield a receive signal power of GPσ

2 watt. Additionally,
we assume that independent, white, complex Gaussian noise
with a power spectral density of N0 watt per hertz is added
to the received data signal post-combination. The system is
considered narrow-band, with a bandwidth B hertz centered
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Fig. 4. Illustration of (a) the common transmitting structure, (b) Receiving Structure 1, and (c) Receiving Structure 2 with Nt = 4 and L = 2 (Nr = 8). In
Receiving Structure 2, the antenna indexing is in the form of l, [kl], where 0 ≤ kl ≤ Nt − 1 indexes the antennas of the lth (0 ≤ l ≤ L − 1) virtual UCA; and
the antenna indexed by l, [kl] corresponds to the ntth row of H, where nt , (lNt + kl). Note that in Receiving Structure 2, the physical antennas with indices
nt = 0, 1, 2, . . . are not placed sequentially on the circle. In the example shown in (c), the first virtual UCA (marked using black dots) consists of physical
antennas with indices nt ∈ {0, 1, 2, 3}, while the second (marked using red dots) consists of antennas with indices nt ∈ {4, 5, 6, 7}. Each virtual UCA resolves
a copy of all four data streams.

around ω/2π (where B � ω/2π). Consequently, we arrive at
the familiar input-output relationship

y =
p

GPHx + n, (55)

where n ∼ CN (0,N0ILNt ). It is assumed that the channel state
information is available at both the transmitter and the receiver.
The Shannon channel capacity, subject to a total transmit
power constraint PT, is therefore expressed as

CUCA = B
Nt−1X
kt=0

log2

 
1 +

PktGPσ
2
kt

N0B

!
[bit/s]. (56)

where Pkt for kt = 0, 1, . . . ,Nt−1 is determined through water-
filling power allocation.

IV. OPTIMAL SPATIAL MULTIPLEXING TRANSCEIVER
STRUCTURES

Building on Section III, we explore two optimal transceiver
structures that utilize DFT precoding and combining for spatial
multiplexing in an Nt× LNt LOS MIMO system with circular
arrays, aiming to achieve high data rate radio links. Both struc-
tures share an identical transmitting design but differ in their
array configurations and combining strategies at the receiver.
The second structure incorporates a non-UCA receiving array,
resulting in a distinct channel matrix H, in contrast to the UCA
channel matrix H. When specifying the number of receive
antennas and angular offset for a UCA channel, we use the
notation (Nr,∆θ) appended to H and the coupling coefficient
matrix Z.

A. Transmitting Structure

The transmitting structure employs Nt-dimensional DFT
precoding, as illustrated in Fig. 4(a) using Nt = 4 as an
example. The transmitted signal vector x is given by

x = WNt P
1/2s, (57)

where s = (s[0], s[1], . . ., s[Nt − 1])T contains independent data
symbols with E{|s[kt]|2} = 1 for all 0 ≤ kt ≤ Nt−1. The matrix
P , diag

�
P0, P1, . . . , PNt−1

�
represents the power allocation

across the subchannels, with
PNt−1

kt=0 Pkt = PT, where PT is the
total transmit power. The setup ensures that E{‖x‖2} = PT.

The received signal vector follows the expression in (55),
with H replaced by H for the second structure. The system is
again narrow-band, with bandwidth B hertz centered around
the frequency ω/2π. In the context of LOS radio links for
high data rate transmission in high SNR regimes, we assume
the use of high-gain antennas. The transmit Gt and receive
Gr antenna gains are consolidated into GP to streamline the
analysis8. This approach enables us to focus on the reference
SNR SNR0(PT), as defined in (32), in our channel capacity
discussions.

B. Receiving Structure 1: Lnt-Element UCASingle UCA

The first receiving structure, illustrated in Fig. 4(b), com-
prises Nr = LNt antenna elements arranged in a single UCA
with an angular offset of ∆θ, see (34). The channel matrix
for this configuration is represented by H(LNt,∆θ). An LNt-
dimensional DFT combining is performed to the received
signal vector y, resulting in

ỹ = WH
LNt

y =
p

GPZ(LNt,∆θ)P1/2s + ñ (58)

where ñ = WH
LNt

n ∼ CN (0,N0ILNt ).
From the multidiagonal structure of Z(LNt,∆θ), we know

that each transmitted data symbol experiences an interference-
free 1 × L SIMO channel, with the complex channel gains
provided in (52). The L received copies are combined

8Given D � max(Rt ,Rr), the directional variation between different
transmit and receive antenna pairs can be neglected, allowing for maximum
antenna gains Gt and Gr to be achieved across all antenna pairs.



4944 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 25, 2026

according to the maximum ratio combining (MRC) policy
through the following operation:

y̌ = ZHỹ =
p

GPZHZP1/2s + ň, (59)

where ň = ZHñ ∼ CN (0,N0ZHZ). As discussed in
Section III-C, ZHZ is an Nt × Nt real diagonal matrix,
with its diagonal elements being the squares of the unsorted
singular values of H(LNt,∆θ) as given in (50). Thus, for each
transmitted data symbol

y̌[kt] =
p

GPPktσ
2
kt

s[kt] + σkt n[kt], 0 ≤ kt ≤ Nt − 1,

where n[kt] ∼ CN (0,N0). The received SNR for the ktth
symbol is therefore given by

SNRkt =
GPPkt

N0B
σ2

kt
=

Pkt

PT
SNR0(PT)σ2

kt
. (60)

It is clear the channel capacity given by (56) can be achieved.

C. Receiving Structure 2: L Virtual Nt-Element
UCAssubUCA

The second receiving structure, depicted in Fig. 4(c), orga-
nizes the LNt antenna elements into L groups, each containing
Nt antennas that form a virtual UCA with an angular offset
∆θl ∈ [0, 2π/Nt), 0 ≤ l ≤ L − 1. Specifically, the lth virtual
UCA comprises Nt receive antennas positioned at angles given
by

θl,nr =
2π
Nt

nr + ∆θl, 0 ≤ nr ≤ Nt. (61)

The LNt × Nt channel matrix, H, is constructed by vertically
stacking H(Nt,∆θl) for each group. Notably, the uniform
arrangement in Receiving Structure 1 is a special case of
this setup, occurring when ∆θl = 2lπ/Nr. In this scenario,
rearranging the rows of H yields H(LNt,∆θ0).

For simplicity, we define Hl = H(Nt,∆θl) and Zl =

Z(Nt,∆θl), where Zl have nonzero elements only on its main
diagonal (see noted in Remark 3). Since each Hl is circulant, it
follows that H is block-circulant, allowing it to be diagonalized
using DFT-matrices. It follows that

WH
Nt

HHHWNt = WH
Nt

 
L−1X
l=0

HH
l Hl

!
WNt =

L−1X
l=0

ZH
l Zl,

indicating that HHH and
PL−1

l=0 ZH
l Zl share the same eigen-

values, which are simply the diagonal elements of the latter.
We denote these eigenvalues as σ̄2

0, σ̄
2
1, . . ., σ̄

2
Nt−1. It can be

verified, using either (50) (with Nr = Nt) or (54), that

σ̄kt =

vuutN2
t

L−1X
l=0

ˇ̌̌̌
ˇX
n∈NtZ

e jn( π
2 +∆θl)Jkt+n(β)

ˇ̌̌̌
ˇ
2

, (62)

for 0 ≤ kt ≤ Nt − 1. Additionally, we have that
Nt−1X
kt=0

σ̄2
kt

= ‖H‖2F = LN2
t . (63)

The analysis above suggests the following receiving strat-
egy: Perform Nt-dimensional DFT combining to each virtual
UCA, resolving a copy for each transmitted symbol. At the lth

virtual UCA, the received signal vector is yl =
√

GPHlx + nl,
where nl ∼ N (0,N0INt ). The DFT combining results in
ỹl =

√
GPZlP1/2s + ñl, where ñl = WH

Nt
nl ∼ N (0,N0INt ). This

process yields L crosstalk-free copies for each transmitted data
symbol, each experiencing different gains as specified by the
diagonal elements of Zl. The L copies are then combined using
the MRC policy, resulting in

ȳ =

L−1X
l=0

ZH
l ỹl =

p
GP

 
L−1X
l=0

ZH
l Zl

!
P1/2s + n̄, (64)

where n̄ =
PL−1

l=0 ZH
l ñl ∼ N

�
0,N0

PL−1
l=0 ZH

l Zl

�
. Thus, each

symbol can be written as

ȳ[kt] =
p

GPPkt σ̄
2
kt

s[kt] + σ̄kt n[kt], 0 ≤ kt ≤ Nt − 1,

where n[kt] ∼ CN (0,N0). The received SNR for the ktth
symbol is

SNRkt =
GPPkt

N0B
σ̄2

kt
=

Pkt

PT
SNR0(PT)σ̄2

kt
(65)

The Shannon capacity of this channel, given by (56) with σ2
kt

replaced by σ̄2
kt

, can be achieved.

D. Ellipticity as a Performance Metric

The two structures differ in receiver antenna placement and
subsequent combining. As (53) and (63) show, they have the
same sum of squared singular values. However, the singular
values are distributed different over the spatial channels. Since
the first structure is a special case of the second, the latter is
expected to perform as well as or better than the former when
optimized angular offsets are applied. Given our focus on high
data rate radio link applications in the high SNR regime, we
use the ellipticity statistic [34] as a proxy for channel capacity
when comparing performance, which is defined as

ζ(H) = mg(H)/ma(H), (66)

where mg(H) and ma(H) represent the geometric mean and
arithmetic mean of the squared singular values, respectively,
i.e.,

mg(H) , Nt

rYNt−1

kt=0
σ2

kt
, ma(H) ,

1
Nt

Nt−1X
kt=0

σ2
kt
. (67)

The name ‘ellipticity’ comes from the fact that ζ(H) represents
the ellipticity of the hyperellipsoid defined by the squared
singular values as its axis lengths. Clearly, ζ(H) ≤ 1, with
equality if and only if all singular values are equal. Moreover,
ζ(H) ≥ 0, with equality holding when one or several singular
values are zero, i.e., when the channel matrix is not full rank.

When SNR0(PT)σ2
kt
/Nt � 1 for all kt, i.e., when the SNR

is high and the channel matrix has full rank, equal power
allocation (EPA) is near-optimal. The channel capacity is,
under these conditions, approximately equal to

CEPA = B
Nt−1X
kt=0

log2

�
1 +

SNR0(PT)
Nt

σ2
kt

�
(68)

≈ B
Nt−1X
kt=0

log2

�
SNR0(PT)

Nt
σ2

kt

�
(69)
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Fig. 5. Ellipticity performance of the UCA channel as β vary in [1, 8] and ∆θ vary in [0, 2π/LNt) (shown in degrees). Bright areas indicate good ellipticity
performance (close to 0), while dark areas indicate poor ellipticity performance.

= BNt log2

�
SNR0(PT)

Nt
mg(H)

�
(70)

= BNt log2

�
SNR0(PT)

Nt
ma(H)

�
+ BNt log2

�
ζ(H)

�
. (71)

The first term in (71) is the maximum achievable rate in the
full-rank, high SNR regime when all singular values are equal,
i.e., when σ2

kt
= ma(H). Hence, the second term in (71), which

is always non-positive, is the penalty due to singular value
dispersion. Put differently, ζ(H), expressed in dB, quantifies
the SNR penalty per spatial subchannel due to singular value
dispersion in the high-SNR, full rank scenario. Clearly, the
penalty term is zero when all singular values are equal, since
ζ(H) = 1 in this case. A low ζ(H) indicates substantial
singular value dispersion. However, in the extreme case when
the channel matrix is not full rank, ζ(H) = 0 and the above
analysis is not valid since the approximation (69) does not
hold. Hence, ζ(H) = 0 does not imply zero channel capacity,
but only loss of one or several spatial DOFs. Nevertheless,
with this caveat in mind, ellipticity is a useful measure of
singular value dispersion penalty for the high-SNR, full rank
scenario.

V. NUMERICAL STUDY

This paper extends the findings from [1], which investigated
an Nt × Nt UCA channel with zero angular offset (∆θ = 0).
In the numerical study section of [1], we compared the
performance of the UCA channel under this condition to that
of a LOS MIMO channel using optimally designed ULAs. In
our current study, we focus on an Nt × Nr discrete channel,
where Nr = LNt, L = 1 or 2, exploring various antenna
placements and angular offsets. For convenience, we refer to
the channels associated with Receiving Structure 1 and Receiv-
ing Structure 2 as the UCA channel and nonUCA channel,
respectively.

A. Ellipticity Performance Evaluation

Fig. 5 presents color maps of ζ(H) (in dB) for the UCA
channel under various settings (4 ≤ Nt ≤ 7, L = 1, 2), over
the ranges β ∈ [1, 8] and ∆θ ∈ [0, 2π/Nr]. Dark areas indicate
low ellipticity (poor performance), while bright areas suggest
values near 0 dB (good performance). The color maps reveal
distinct patterns of ζ(H) for different settings, with a common
mirror symmetry around ∆θ = π/Nr. This mirror symmetry
arises because the ellipticity is an even function of ∆θ and is
periodic with period 2π/Nr. These two properties are easily
seen from the geometry of the antenna arrangement. A formal
proof would show that the channel matrices H(∆θ + k2π/Nr)
and H(−∆θ) can be obtained from H(∆θ) through appropriate
permutations of rows and columns, which effectively change
the indexing of the antennas, but not the singular values.
Hence, the ellipticity is the same for all three matrices, which
proves periodicity and evenness. A complete derivation is
omitted here due to lack of space. For all Nt, increasing L from
1 to 2 eliminates many dark areas. As noted in Remark 3, if
Nt = Nr is even and ∆θ = π/Nr, then σNt/2 ≡ 0 for all β),
leading to a dark horizontal line at ∆θ = π/Nr in Fig. 5(a) and
Fig. 5(c). Corollary 1 predicts dark regions around β ≈ 2.4 in
all subfigures. According to (50), σ0 depends on the phase-
shifted sums of Jn∈NtZ(β). Since J0(β) = 0 when β ≈ 2.4, and
Jn∈NtZ,n,0(β) ≈ 0 for small β and large Nt, σ0 ≈ 0 for all ∆θ
when β = 2.4. Notably, increasing β does not always enhance
ζ(H). Recall that 2(β + 1) estimates the number of effective
DOFs of the CCA channel for large β. For β ≈ βth , (Nt−1)/2,
bright regions appear for some ∆θ in all subfigures. However,
further increasing β may lead to dark regions for all ∆θ, as
seen in Fig. 5(d), where βth = 3 and a dark region emerges at
β ≈ 3.8.

Fig. 6 presents color maps of ζ(H) for the nonUCA channel
with Nt = 5, 6 and L = 2, over the ranges β ∈ [1, 8] and ∆θ0 ∈

[0, π/Nt), for five values of ∆θdiff , ∆θ1−∆θ0 within [0, π/Nt].
Choosing ∆θdiff = 0 theoretically offers twice the power gain
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Fig. 6. Ellipticity performance of the nonUCA channel (L = 2) as β vary in
[1, 8] and ∆θ0 vary in [0, 2π/LNt], with ∆θdiff , ∆θ1 −∆θ0 set to five equally
spaced values between 0 and 2π/LNt .

of an Nt × Nt UCA channel, although this is impractical due
to antenna overlap. On the other hand, setting ∆θdiff = π/Nt

results in an Nt× 2Nt UCA configuration. As ∆θdiff increases,
the ellipticity pattern transitions from an Nt×Nt to an Nt×2Nt

UCA channel, as observed in Fig. 6. The nonUCA channel can
be advantageous for Nt = 5, as certain values of ∆θdiff (e.g.,
∆θdiff = 18◦ and 27◦) reduce dark areas, indicating improved
performance. However, this advantage is not as pronounced
for Nt = 6.

Fig. 7 shows the ellipticity range over β for both UCA
and nonUCA channels, corresponding to the settings in
Fig. 5(b), (c), (f), (g) and Fig. 6(e), (h), respectively. The
light yellow region represents the ellipticity of the nonUCA
channel as (∆θ0,∆θ1) varies over all combinations in the range
[0, 2π/Nt] × [0, 2π/Nt]. The variation in UCA ellipticity, as
∆θ changes within [0, 2π/Nt], is shown in purple or brown
and is contained within the yellow nonUCA region. The

nonUCA ellipticity plotted in green, with ∆θ0 varying within
[0, 2π/Nt) and ∆θdiff held constant, is also encompassed in the
yellow region. This behavior is understood from the analysis in
Sec. IV. The results show that while adjusting ∆θ, the Nt×Nt

UCA channel does not always achieve optimal ellipticity and
can degrade to the worst performance. Conversely, the Nt×2Nt

UCA channel approaches optimal performance and avoids
severe degradation for most β values. The nonUCA channel
with fixed ∆θdiff show reduced variation across different β
ranges, as demonstrated in Fig. 7(c) and (f). For applications
such as LOS radio links, minimal variation over a wide range
centered around the designed (β,∆θ) values is desirable to
mitigate parameter drifts.

B. Singular Value and Channel Capacity

To gain deeper insights into channel behavior, we examine
the singular values and channel capacity performances under
various selected simulation settings.

Fig. 8 displays the best- and worst-case squared singular
values for UCA and nonUCA channels under the same six
settings as in Fig. 7, with β set to 3 and 5.5. ‘Best’ and
‘worst’ refer to scenarios maximizing or minimizing ellipticity
by adjusting ∆θ or ∆θ0. A grid search is adopted to find ∆θmax,
∆θmin, ∆θ0,max, and ∆θ0,min within their range using 0.1◦ steps.
These best or worst angular offset values, while not unique as
one can expect from the ellipticity color map symmetry, lead to
the same singular value distribution. We choose those closest
to 0 for legend display. As anticipated, ∆θmax and ∆θ0,max
result in more uniform singular values closer to the reference
line at σ2

k = Nr, while ∆θmin and ∆θ0,min yield zero or near-
zero singular values, which corresponds to very low ellipticity
values and reflects a loss of spatial DOF. Additionally, in
Fig. 8(b) and (e), similar singular value distributions occur
for the Nt × 2Nt UCA with β = 3 using both ∆θmax and
∆θmin. Fig. 7(b) and (e) show that the resulting ellipticity
values are nearly identical, indicating minimal impact from
angular misalignment under these settings. Notably, ∆θ = 0 is
sometimes the best choice for the UCA channel. This occurs
in Fig. 8(a) for β = 3 and β = 5.5, Fig. 8(b) for β = 3, and
Fig. 8(e) for β = 5.5, where ∆θmax = 0. These results are
consistent with expectations from Fig. 5.

We also verified the derived singular value expressions
through full-wave EM simulations using the same geometric
configurations with half-wave strip dipole antennas. We uti-
lized an in-house developed method of moments (MoM) code,
which employs the Galerkin method to solve the electric field
integral equation using Rao-Wilton-Glisson (RWG) basis [35].
The simulations were conducted at an operating frequency
of 70 GHz, with a communication distance D is 1 km.
The transmitter and receiver radii Rt = Rr were set to 1.43
or 1.94 meters, corresponding to β = 3 or 5.5 (calculated
using Rt = Rr =

√
Dλβ/2π). The half-wave strip dipole

antennas were orientated in the x-direction and positioned at
the specified angular offsets. The EM simulations accounted
for antenna mutual coupling and embedded element patterns,
producing the full antenna system S-matrix. Singular values
were obtained via SVD of the channel matrix and normalized
so that the sum of their squares equals LN2

t (see (53) and
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Fig. 7. Ellipticity variation ranges due to ∆θ (for the UCA channel) or ∆θ0 (for nonUCA channel) corresponding to six settings in Fig. 5 and Fig. 6. Note
that the maximum variation range does not have a lower boundary in subplots (d)-(f), because the minimum ellipticity is zero for an even Nt . For β = 3 and
β = 5.5, the maximum and minimum ellipticity are marked using red + and black ×.

Fig. 8. The best and worst sets of singular values achieved at β = 3 and β = 5.5 by ∆θmax (or ∆θ0,max) and ∆θmin (or ∆θ0,min) under the same settings of
Fig. 7. A dashed horizontal line at σ2

k = Nr is plotted for reference.

(63)). The results, indicated by circular markers in Fig. 8, show
good agreement with the analytical predictions, confirming the
validity of the analysis9.

9Note that the conditions in Section II-A must be satisfied to ensure the
analysis’s accuracy. In [1, Fig. 4], we demonstrated that discrepancies between
EM simulation and analytical results can arise if these conditions are not met.

Fig. 9 compares the channel capacity performance for
Nt = 6 and three β values. We access Nt × Nt and Nt × 2Nt

UCA channels with ∆θmax and ∆θmin, and the Nt×2Nt nonUCA
channel with the best angular offsets (∆θ0,∆θ1)max, determined
via a grid search with a 0.1◦ step to maximize ζ(H). Capacity
curves are plotted against SNR0(PT/Nt) over the range of
[−10, 40] dB, using water-filling power allocation. Singular
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Fig. 9. Capacity performance of best- and worse-case UCA and nonUCA channels for Nt = 6 and β = 3, 5.5, and 7.2, over the range SNR0(PT/Nt) ∈
[−10, 40] dB.

values for channels with 2Nt receive antennas are down-scaled
by 1/

√
2 to isolate the singular value distribution effects from

the power gain. After scaling, the worst-case capacity of the
Nt × 2Nt nonUCA channel is identical to that of the Nt × Nt

UCA channel and is thus not shown. For reference, capacity
curves for the ideal case (σk =

√
Nt for all 1 ≤ k ≤ Nt)

and for the Nt × Nt UCA channel with ∆θ = 0 are provided.
We see that the relations among these curves are different
for these three β values. Focusing on high SNR, all best-
case capacity curves run parallel to the ideal one, with small
SNR penalties due to slight singular value dispersion well-
matching the ellipticity results shown in Fig. 7 (b) and (e).
For instance, with β = 7.2, the best-case nonUCA channel
capacity practically overlaps with the ideal curve and is strictly
better than the best-case UCA channels. For the other two
β values, one of the best-case UCA channels comes close
to the best-case nonUCA channel, but a small gap to the
ideal case remains. The more significant differences appear
in the worst-case capacity curves. As noted in Remark 3, as
Nt is even, the worst-case Nt × Nt UCA channel has a zero
singular value, resulting in a slower capacity increase with
SNR. For β = 7.2, the capacity curve is notably poorer than the
others, indicating the loss of more than one DOF. (The squared
singular values in descending order for this channel are 34.933,
0.531, 0.531, 0.002, 0.002, and 0.) This scenario illustrates
that a larger β does not necessarily enhance performance,
highlighting a key characteristic of the UCA channel. We
can conclude that, if the angular offsets can be optimized,
all schemes perform close to optimal (within 0.5 dB), and the
non-UCA scheme will not be significantly better than a UCA
scheme. However, if angular offsets are not optimized, this
may result in poor ellipticity and, in extreme cases, loss of
one or several effective DOFs and thereby significant loss of
capacity.

Fig. 10 compares the channel capacity performance of an
Nt × Nt UCA channel, as Nt increases, with that of a CCA
channel. The capacities are calculated at SNR0(PT/Nt) =

30 dB, with total transmit power scaling linearly with Nt, for
a fixed β and three angular offsets: ∆θ: ∆θ = 0, π/Nt, and

Fig. 10. Capacity performance of a Nt × Nt UCA channel with fixed β and
increasing Nt , at SNR0(PT/Nt) = 30 dB.

∆θmax (determined via grid search). The CCA channel singular
values, given by (25), are scaled by Nt/2π to match the UCA
channel power gain, ensuring

P
n∈Z

� Nt
2πγn(β)

�2
= N2

t . The
CCA capacity is found by waterfilling power allocation over
all CCA channel DOFs. Hence, for small Nt, the CCA scheme
has access to more spatial multiplexing compared to the ideal
Nt × Nt MIMO scheme, which is limited to Nt DOFs. This
explains why the CCA capacity is higher than the ideal MIMO
capacity for small Nt. However, the ideal MIMO channel
capacity increases linearly with Nt and will eventually surpass
the CCA capacity. This is because of the severe decrease of
the sorted CCA channel singular values γn(Nt) for large Nt, as
discussed in Sec. II-B2 and II-B3. Initially, for small Nt, the
UCA channel capacity with optimally-adjusted ∆θmax grows at
the same rate as the ideal Nt × Nt MIMO channel. Beyond a
certain point, growth slows, and the UCA capacity converges
with the CCA capacity, indicating a lack of additional spatial
DOF gain from more antennas. The Nt value where this
slowdown begins represents the effective DOF of the CCA
channel, aligning well with estimates from (21). With fixed ∆θ,
the UCA channel capacity does not necessarily increase with
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Nt. The DOF loss caused by ∆θ = π/Nr for any even Nt leads
to noticeable capacity drops. In oversampling scenarios where
the number of antennas exceed the available effective DOFs,
angular offset no longer affects capacity: Equation (54) shows
an effective one-to-one mapping between non-zero CCA and
UCA singular values via phase-shifting by the angular offset,
which does not alter their magnitudes.

VI. CONCLUSION

When the communication distance D � max(Rt,Rr), the
narrowband CCA channel behaves as a bounded linear normal
operator characterized by β = 2πRtRr/λD. Spectral analysis
shows an infinite number of OAM eigenmodes with eigen-
values determined by first-kind Bessel functions evaluated
at β. On this basis, we derived exact analytical expressions
for the singular values of LOS MIMO channels with dis-
crete circular antenna arrays in two configurations: one with
Nr = LNt receive antennas arranged in a UCA, and another
with antennas forming L sub-UCAs, each with Nt elements.
These expressions provide an accurate characterization of
the channel behavior by accounting for the dependence of
the discrete singular values on β, the number of antennas,
and the angular offset of the receiving UCA or sub-UCA
via a sum of phase-shifted Bessel functions. DFT precod-
ing and combining are shown to be optimal for achieving
capacity in both setups, and specific transceiver structures are
provided.

Numerical evaluations revealed several interesting insights
in the high-SNR regime:
• Non-Monotonic CCA DOFs: The number of available

DOFs, i.e., the number of significant singular values in
the CCA channel generally increase with β, but not in a
monotonic fashion. Hence, the estimated number of DOFs
given by (21) should be used with care.

• Intricate MIMO Capacity Behavior: Discrete LOS
MIMO channel capacity does not necessarily increase
with β or with the the number of antennas. Capacity
can sometimes be improved by reducing β, e.g., by
reducing the array radii. Moreover, even before the num-
ber of antennas exceeds the number of available DOFs,
increasing the number of antennas does not necessar-
ily lead to higher capacity if power gain effects are
excluded.

• High Sensitivity to Angular Offsets: Channel capacity
is highly sensitive to angular offsets, especially in Nt×Nt

systems, where loss of one or more effective DOFs can
occur in the worst case.

• Limited Sub-UCA Benefits: After optimizing the angu-
lar offsets, the multiple sub-UCA design perform as well
as or better than the single UCA design for Nt × LNt

systems, but the performance improvement is minimal
except for certain deployments.

It is worth emphasizing that the communication distance,
array radii, number of antennas, antenna arrangement, and
angular offsets can either be fixed or adjustable in different
scenarios, and it is important to consider these nuances when
interpreting numerical results.

This study analyzes a monochromatic, single-polarization
LOS link under ideal conditions. Several key extensions
remain open: (i) Wideband operation: Because β varies
with wavelength, both eigenmodes and capacity-achieving
transceivers are inherently frequency-dependent. Quantifying
performance over realistic wideband channels is crucial for
high-data-rate deployments [36]. (ii) Misalignment tolerance:
In addition to the lateral offset (communication range) and
rotational misalignment (angular offset) discussed in this
paper, real links also experience tilt and axial offsets. A unified
analytical framework that captures these factors and their
impact on capacity is lacking. (iii) High-dimensional offset
optimization: Extending the L-sub-UCA receiver structure to
L > 2 is straightforward but leads to a high-dimensional search
over angular offset; efficient, near-optimal algorithms remain
an open challenge. (iv) Polarization and array variants: Dual-
polarized elements could potentially double the number of
available DOFs, and multiple concentric CCAs/UCAs may
further enrich the eigenstructure. Both avenues deserve sys-
tematic study.

APPENDIX A
PROOF OF THEOREM 2

To prove Theorem 2, we use the eigendecomposition of the
linear operator A in the form of (14), where the expressions
of the eigenfunctions {ψn(·)} and eigenvalues {λn} are given by
(15) and (16) in Proposition 1. Substituting (35) into (14), we
obtain the electric field over the imaginary CCA as

y(θr) =
X
n∈Z

λnψn(θr)

*
Nt−1X
nt=0

x[nt]δ
�
θt −

2π
Nt

nt

�
, ψn

+

=
X
n∈Z

λnψn(θr)

0@Nt−1X
nt=0

x[nt]ψ∗n

�
2π
Nt

nt

�1A
=
X
n∈Z

√
Nt
√

2π
λnψn(θr)

�
ψH

Nt ,nx
�
, (72)

where x = (x[0], . . ., x[Nt − 1])T. Recall that the inner product
is defined by (10). Sampling y(θr) at θr,nr , we obtain

y[nr] =
X
n∈Z

√
Nt
√

2π
λnψn

�
2π
Nr

nr + ∆θ

� �
ψH

Nt ,nx
�

=
X
n∈Z

√
Nt

2π
λne jn∆θe jn 2π

Nr
nr
�
ψH

Nt ,nx
�
, (73)

which allow us the write y = (y[0], . . ., y[Nr − 1])T as

y =
X
n∈Z

√
NtNr

2π
λne jn∆θψNr ,n

�
ψH

Nt ,nx
�

(74)

Accordingly, we can write the channel matrix as

H =
X
n∈Z

CnψNr ,nψ
H
Nt ,n, (75)

where

Cn =

√
NtNr

2π
λne jn∆θ =

p
NtNr Jn(β)e jn( π

2 +∆θ). (76)
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APPENDIX B
PROOF OF THEOREM 3

From (47), (41), and (18), it follows that

Zkt ,kr = ψH
Nr ,kr

 X
n∈Z

CnψNr ,nψ
H
Nt ,n

!
ψNt ,kt

=
X
n∈Z

Cn(ψH
Nr ,kr

ψNr ,n)(ψH
Nt ,nψNt ,kt

) (77)

It follows from the remarks under (43) that the nth term in
(77) equals to Cn if and only if kt − n ∈ NtZ and n − kr ∈ NrZ
and is zero otherwise. Phrased differently, if n satisfies the
system of equations

kt−n = pNt (78a)
n − kr = qNr (78b)

for some p, q ∈ Z, then Zkt ,kr can be nonzero. Conversely, if
(78) has no solution, then Zkt ,kr = 0.

From the generalization of the Chinese remainder theorem
proven in [37, Theorem 1.7], we know that (78) has a solution
if and only if m = kt − kr ∈ NgcdZ. Moreover, if n = n0 is a
particular solution to (78), then the complete solution set is
n0 + NlcmZ.

Hence, if m < NgcdZ, (78) has no solution, which implies
that Zkt ,kr = 0, and the lower case in (48) is proven.

Now suppose m = rNgcd for an r ∈ Z, which implies that
m ∈ NgcdZ. We proceed to find a particular solution n = n0 to
(78). Adding (78a) and (78b) yields

m = kt − kr = pNt + qNr. (79)

From Bézout’s identity [37, Theorem 1.7], we have

Ngcd = p1Nt + q1Nr (80)

where p1, q1 are found from the extended Euclidean algo-
rithm10. Multiplying both sides of (80) with r yields

m = rNgcd = rp1Nt + rq1Nr, (81)

and we identify (p, q) = (rp1, r q1) as a solution to (79). Hence,
a particular solution to (78) is found by substituting p = rp1
into (78a) and solving for n:

n = n0 = kt − pNt = kt −
m

Ngcd
p1Nt. (82)

(It is easily checked that n = n0 also satisfies (78b).) Hence,
all solutions to (78) lies in the set

N ∗kt ,m = n0 + NlcmZ =

�
kt − mp1

Nt

Ngcd

�
+ NlcmZ (83)

which proves the upper case in (48) and completes the proof
of the theorem.

10In MATLAB, we can compute Ngcd, p1, and q1 as [Ngcd, p1, q1]
= gcd(Nt, Nr).

APPENDIX C
PROOF OF THE EXISTENCE OF THE ZERO SINGULAR
VALUE IN THE SPECIAL CASE STATED IN REMARK 3

We prove that for a UCA channel, if Nt = Nr is an even
number and ∆θ = π

Nr
, then σNt/2 = |ZNt/2,Nt/2| ≡ 0 for all β. To

simplify notation, we let η(Nt,m,∆θ) ,
�Nt

2 + mNt
� �

π
2 + ∆θ

�
and drop the arguments when there is no risk of confusion.
Based on (54), we can rewrite ZNt/2,Nt/2 as

ZNt/2,Nt/2 =

Nt

X
m∈N

�
e jηJNt/2+mNt (β) + e− jηJ−(Nt/2+mNt)(β)

�
. (84)

Since J−n(β) = (−1)nJn(β) for nonzero n and mNt is even,

ZNt/2,Nt/2

= Nt

X
m∈N

h
e jηJNt/2+mNt (β)+(−1)

Nt
2 e− jηJNt/2+mNt (β)

i

=

8̂̂<̂
:̂

2 Nt cos η
X
m∈N

JNt/2+mNt (β), Nt
2 is even,

2 jNt sin η
X
m∈N

JNt/2+mNt (β), Nt
2 is odd.

(85)

Substituting ∆θ = π
Nr

= π
Nt

into η(Nt,m,∆θ), we have

η(Nt,m,∆θ) =

�
Nt

2
+ 1

�
π

2
+

�
mNt

2
+ m

�
π (86)

where
�mNt

2 + m
�

is an integer since Nt is even. Therefore, if
Nt/2 is even, cos η = 0, and if Nt/2 is odd, sin η = 0. As a
result, ZNt/2,Nt/2 = 0 for all β.
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