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A B S T R A C T

This paper introduces the Laminated Partial-Composite Plate Theory (LPCPT), as an extension of the classical 
laminated plate theory (CLPT), incorporating the effects of partial-interaction imperfection at the constituting 
layers’ interfaces. The interlayer interaction effects are modelled through out-of-plane shear stresses based on a 
shear spring model in terms of the relative displacements/slips at the interfaces. The proposed LPCPT extends a 
recently developed model for multilayer composite beam/column elements with interlayer partial-interaction 
imperfection. The model’s governing equations, as well as the extended classical boundary conditions, are 
formulated. Analytical solution schemes are introduced for free vibrations and buckling of partial-composite 
plates. The analytical solutions can flexibly capture any number of constituent layers. The validity and high 
accuracy of the established approach are demonstrated via comparative numerical results based on 3-D finite 
element analysis (FEA). It is shown how the buckling loads and natural vibration frequencies degrade from those 
predicted based on CLPT with perfect-bonding ideal assumptions, considering different levels of interlayer 
interaction. For a special case where the interlayer interaction modulus is set to the equivalent layers’ transverse 
shear modulus, the results of the present model are shown to match those of thick integrated plates based on 
higher-order shear deformation theory (HSDT).

1. Introduction

Layered plates are key structural elements omnipresent in different 
branches of modern technology, from marine engineering [1–4] and 
automotive industries [5–7] to aviation and aerospace structures [8–11]
and advanced structural building applications [12–14]. This widespread 
application is due to their superior properties over traditional mono
lithic structures, such as high stiffness- and strength-to-weight ratios and 
flexibility in design for different applications. However, due to the 
abrupt through-thickness changes of constituent materials and mis
matches in mechanical properties at the layer interfaces, their structural 
performance may degrade from an ideally bonded and fully integrated 
structure.

Despite the existence of a wide variety of frequently-used 

conventional theories for the structural static and dynamic analyses of 
laminated plates, the vast majority rely on the key assumption of kine
matic and strain continuity conditions; i.e., the idealized perfect- 
bonding condition at the interlayers. This can be evidenced, e.g., from 
the simplest Reissner-Stavsky classical laminated plate theory [15]
based on the Kirchhoff-Love kinematics, to the extensions of Mindlin’s 
first-order shear deformable theory [16] for the laminated plates [17], 
and different refined higher-order shear deformation theories such as 
those of Levinsson [18], Librescu [19], Reddy [20] based on a parabolic 
model, Touratier [21] based on a trigonometric model, Karama et al. 
[22] and Mechab [23], based on hyperbolic models for the through- 
thickness shear strains, etc. Several refined models and modified forms 
of the conventional laminated plate theories have also been introduced 
in the past decades, mainly focusing on improvement and more 
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flexibility of the displacement field functions for easier implementation 
into the numerical approaches; e.g., the category of C⁰ higher-order 
shear deformation theories of five to seven variables, initially pre
sented by Shankara et al. [24]; also their extensions for the category of 
quasi-3D plate theories by describing the transverse displacement 
component using higher-order polynomials with respect to the thickness 
coordinate (see e.g., [25,26]).

In the standard class of zig-zag theories, formulated as a super
position of a conventional first-, second-, and/or higher-order 
displacement fields and a local zig-zag function [27–29], the draw
back associated with an imposed ideal out-of-plane shear and in-plane 
normal deformation patterns is inherently addressed, but not the ef
fects of non-perfect interactions between individual layers. Evidently, 
the mentioned theories are incapable of capturing the realistic me
chanical behaviour of the layered plates when the partial interfacial 
interaction effects cannot be dismissed, e.g., when the layered structures 
are susceptible to debonding/delamination [30,31], or the constituting 
layers are bonded through relatively soft adhesives [32,33] and/or 
connected via discrete mechanical connectors and fasteners [34–36], 
etc. The class of layerwise theories [37], including the categories of 
displacement-based and mixed displacement-and-stress variable types, 
treat each layer individually, and therefore, have been extensively uti
lized to model such non-perfect interfacial interaction behaviour 
[38–42], however, at the expense of a relatively high computational cost 
[43], particularly by increasing the number of layers, while gaining 
analytical solutions is cumbersome. Compromising between accuracy 
and efficiency, several refined and hybrid zig-zag-layerwise theories 
have been proposed [37,43–45].

Imperfections in layered composite elements may be geometrical 
(such as initial deflection and out-of-straightness [46–49], geometrical 
gaps and waviness/wrinkles in the layers [50–52], variations in layer 
thickness [53,54], and loading eccentricity and boundary condition 
imperfections/irregularities [55–57]), or of material and constructional 
type (e.g., cracks and partial delamination [58–60], interfacial bonding 
defects such as incomplete/uneven/poor bonding, or interfacial shear 
slip [61–68], etc.). The influence of interfacial bonding imperfection on 
the mechanical behaviour of layered structures has been extensively 
studied by many researchers, modelling imperfect bonding behaviour 
using linear spring-like models [69–71] or based on nonlinear elastic/ 
elastoplastic/ viscoelastic models [66,72,73] in computational 
simulations.

In some applications, various types of discrete mechanical connec
tors, such as bolts, screws, nails, dowels, or different types of adhesives, 
are used to keep the integrity of the layered composite elements (e.g., in 
laminated timber composite applications). Therefore, their structural 
behaviour and performance may deviate from those of ideal composites 
(i.e., perfectly bonded or the so-called fully-composite laminates) due to 
the relative interlayer slips [74,75]. This specific type of interfacial 
imperfection, in the form of interlayer partial-composite interaction, is 
known as the “partial-composite” behaviour. For a detailed literature 
background on the partial-composite phenomenon, readers are referred 
to [76]. The present study aims to introduce the Laminated Partial- 
Composite Plate Theory (LPCPT), focusing on this specific type of 
imperfection. Consequently, any other forms of interfacial bonding im
perfections are beyond the scope of this theory.

The present paper addresses the mentioned challenge associated 
with treating partial interlayer interaction effects through a new inno
vative approach by introducing the Laminated Partial-Composite Plate 
Theory (LPCPT) as an extension of the known classical laminated plate 
theory (CLPT), and accompanied by an exact analytical solution scheme. 
The established LPCPT-based analytical solution scheme provides reli
able and accurate results at negligible computational cost, without any 
increase in the computational burden as the number of layers increases, 
unlike other existing approaches based on, e.g., layerwise theories. The 
partial interfacial interaction effects are included in the form of out-of- 
plane shear stresses based on a shear spring model in terms of the 

relative displacements/slips at the interfaces. Similar to the broad class 
of layerwise theories [37,77], the introduced simplest Laminated 
Partial-Composite Plate Theory (LPCPT) may serve as a foundational 
framework for a potential series of refined extensions based on different 
shear deformable kinematic models (ranging from Mindlin-Reissner to 
higher-order models) for the internal shear deformations at each indi
vidual layer.

The LPCPT-based solutions in the present paper are devoted to the 
problems of stability and dynamics of elastic multilayered plates 
composed of n layers, partially connected at each layer interface, or 
equivalently connected through shear layers; also referred to as a 
connection with imperfect bonding. The earliest relevant effort can be 
attributed to Hoff [78] for the bending and buckling analyses of a 
symmetric sandwich plate. Hoff’s sandwich plate is composed of two 
identical layers for the faces, each assumed to be governed by an elastic 
extensible Kirchhoff-Love or Germain-Lagrange plate model, connected 
by a pure shear layer as the core of the sandwich plate [78]. A similar 
study was carried out by Rzhanitsyn [79] for a sandwich plate with 
unsymmetrical layers (see also the historical review of Challamel et al. 
[80]). Such a sandwich plate is equivalent to a two-layer plate connected 
by a soft shear layer of zero thickness in the asymptotic limit, which may 
be referred to as the concept of the laminated plate with partial inter
action. Recently, a number of research studies have been conducted to 
investigate the structural behaviour of two-layer plates with partial 
interlayer interaction. Andrade et al. [81] and Barroso et al. [82]
employed Hoff’s sandwich approach for the bending, buckling, and vi
bration analyses of two-layer partial composite plates, with application 
to glass structural members. Boutin [83] showed that a tri-Laplacian 
governing equation can also be derived for unsymmetrical three-layer 
sandwich plates with two homogeneous faces, or equivalently, two- 
layer composite plates with interlayer slip. Shen et al. [84] investi
gated the static bending of a multilayered plate with approximate ki
nematic fields, as a reconsideration of the study first conducted by 
Bolotin [85,86] for the bending of multilayered plates with interlayer 
slip under transversal distributed loading. Shaat et al. [87,88] developed 
an analytical model for static responses of multilayer beams and plates 
subjected to thermal and mechanical loading using a slip-interface 
model. Wu et al. [89] formulated the principle of virtual work and the 
reciprocal theorem for laminated plates accounting for interlayer slip, 
and subsequently derived the principles of minimum potential and 
complementary energy. Shen et al. [90] studied the large deflection 
bending of multilayer two-dimensional structures having interlayer 
slips. Recently, Atashipour et al. [34] developed a Timoshenko/ 
Engesser-kinematic-based model for composite beam/column elements 
with interlayer partial interaction imperfection, complemented by exact 
analytical solutions for the structural stability and dynamic analyses, 
without any limitation on the number of constituent layers. No such 
work appears to exist in the literature for flexible n-layer plates. The 
present study aims to address this apparent gap by formulating the 
Laminated Partial-Composite Plate Theory (LPCPT) and the accompa
nied exact stability and vibration solutions for the n-layer partial- 
composite plates. A unique formulation of the model is presented for 
the first time. The governing differential equations of the model, as well 
as the corresponding extended classical boundary conditions, are 
extracted and formulated using the extended Hamilton’s energy prin
ciple. The problems of free vibrations and buckling of partial composite 
plates under mono- or bi-axial compressive in-plane loads are treated 
analytically. The analytical solutions are general in nature and can 
flexibly capture any arbitrary number of identical orthotropic constit
uent layers. Furthermore, direct analytical solution alternatives for 
laminated plates with a specified number of constituent layers are pre
sented, treating laminated plates with non-identical layers. It is 
demonstrated how the buckling loads and natural vibration frequencies 
are degraded from those predicted based on CLPT with ideal bonding 
assumptions, considering different levels of interlayer interaction.
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2. Laminated partially-composite plate model

2.1. Problem description and model formulation

Assume a laminated plate consisting of n layers of uniform thickness 
(Fig. 1), in which the layers are imperfectly bonded to one another at 
their interfaces. Thus, each layer interacts partially with the adjacent 
layers at their interfaces when the laminated plate is loaded. Depending 
on the level of interlayer interaction, the structural performance of the 
laminate is expected to be degraded when compared to an ideal 
perfectly-bonded case.

For each layer, a local coordinate system (χi, υi, ζi) is defined here 
such that the planar axes (χi, υi) are coincident with the layer’s mid- 
plane, as illustrated in Fig. 1. Furthermore, the global coordinate sys
tem (x, y, z) is established where its origin is located in a specific 
transversal location to fulfil the uncoupling conditions between the 
bending and stretching effects of the laminate; e.g., for a symmetrically 
laid-up, the origin of the z− axis is located at the geometric transverse 
centroid of the laminate.

The planar components of the displacement field for the i-th layer of 
the laminated plate, ui and vi, can be expressed based on the kinematics 
of the classical plate theory, as 

ui(x, y, z, t) = u0,i(x, y, t) − ζi∂w(x, y, t)/∂x
vi(x, y, z, t) = v0,i(x, y, t) − ζi∂w(x, y, t)/∂y (1) 

where u0,i and v0,i are the displacements of the i-th layer’s mid-plane 
along x and y directions, respectively, and ζi is the local transverse co
ordinate variable (i.e., along z− axis) for the i-th layer with an origin 
located at the mid-plane. Also, w(x, y, t) is the transverse displacement/ 
deflection of the plate at the planar coordinates (x, y) and the time t.

Assuming a relative slip between the laminated plate’s layers due to 
imperfect bonding and partial interaction effects, the components of the 
displacement field for the i-th layer can also be described in terms of the 
global transverse displacement in the form: 

ui(x, y, z, t) = uSlip
0,i (x, y, t) − z∂w(x, y, t)/∂x

vi(x, y, z, t) = vSlip
0,i (x, y, t) − z∂w(x, y, t)/∂y

(2) 

The model’s kinematics of deformations and the internal load resultants 
are illustrated in Fig. 2.

In Eq. (2), uSlip
0,i and vSlip

0,i are the absolute in-plane displacements (in 
the global coordinate system) of the i-th layer, respectively, along x and 
y directions, which may be affected by the relative slips at the interfaces 
due to the partial interlayer interaction. Each layer’s mid-plane has a 
different distance from neutral plane of the entire laminate’s cross- 
section (zi = z − ζi; i.e., the difference between the vertical axes of the 
global and local coordinate system at any transverse level). Therefore, at 
a deformed state due to the dynamic motions or external loads, the 
aforementioned planar displacements at each layer may be formulated 
as the sum of the in-plane displacements of the i-th layer’s mid-plane and 
those due to the transverse displacements; i.e., 

uSlip
0,i = u0,i + (z − ζi)

∂w
∂x

= u0,i + zi
∂w
∂x

vSlip
0,i = v0,i + (z − ζi)

∂w
∂y

= v0,i + zi
∂w
∂y

(3) 

where zi is the transverse distance between the i-th layer’s mid-plane 
and the location of the origin of the global coordinate system (see 
Fig. 1). The linear strain components may be directly deduced from Eq. 
(1) for the small displacements as follows 

εx,i =
∂u0,i

∂x
− ζi

∂2w
∂x2

εy,i =
∂v0,i

∂y
− ζi

∂2w
∂y2

γxy,i =
∂u0,i

∂y
+

∂v0,i

∂x
− 2ζi

∂2w
∂x∂y

(4) 

The constitutive relations for a laminate composed of orthotropic layers, 

Fig. 1. Global and local coordinate systems, and their correlation in a laminated configuration.

S.R. Atashipour et al.                                                                                                                                                                                                                          Composite Structures 380 (2026) 119951 

3 



Fig. 2. The model’s kinematics of deformations and the internal force and stress resultant assumptions. At the i-th interface, the relative slip represents the 
displacement discontinuity between the bottom surface of the i-th layer and the top surface of the (i + 1)-th layer.
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oriented arbitrarily with respect to the layers' plane, based on the 2-D 
plane-stress Hooke’s law under the assumption of linear elastic 
behavior for small deformations, after replacing Eq. (4), are expressed as 

σx,i =
Ex,i

1 − νxy,iνyx,i
(εx,i + νyx,iεy,i) =

Ex,i

1 − νxy,iνyx,i

[(
∂u0,i

∂x
+ νyx,i

∂v0,i

∂y

)

− ζi

(
∂2w
∂x2 + νyx,i

∂2w
∂y2

)]

σy,i =
Ey,i

1 − νxy,iνyx,i
(νxy,iεx,i + εy,i) =

Ey,i

1 − νxy,iνyx,i

[(

νxy,i
∂u0,i

∂x
+

∂v0,i

∂y

)

− ζi

(

νxy,i
∂2w
∂x2 +

∂2w
∂y2

)]

τxy,i = Gxy,iγxy,i = Gxy,i

(
∂u0,i

∂y
+

∂v0,i

∂x
− 2ζi

∂2w
∂x∂y

)

(5) 

Based on the simplest Kirchhoff-Love kinematic assumptions, the out-of- 
plane strains in each layer are zero due to the shear rigidity assumptions 
in the inherence of the displacement field. Therefore, the non-zero 
transverse shear stresses based on the present model are those to be 
attributed to the interlayer slip due to a non-perfect partial interaction 
and relative shear displacements between the layers. This can be 
formulated via a linear elastic state in terms of a constant slip modulus 
kn [N/m3

] in the form: 

τxz,i = ki

(
uSlip

0,i+1 − uSlip
0,i

)

τyz,i = ki

(
vSlip

0,i+1 − vSlip
0,i

) (6) 

Replacing the slip displacement relations from Eq. (3) into Eq. (6) yields 

τxz,i = ki

(

u0,i+1 − u0,i + di
∂w
∂x

)

τyz,i = ki

(

v0,i+1 − v0,i + di
∂w
∂y

) (7) 

where 

di = zi+1 − zi =
1
2
(hi + hi+1) (8) 

The governing differential equations of the described model are devel
oped in the following.

2.2. Governing equations of the model

To formulate the governing differential equations of motion of the 
model, the extended Hamilton’s energy principle [91] is employed here 
as 

δ
∫ t2

t1
[T − (Ustr. + Uext.)]dt = 0 (9) 

where δ is the variational operator, T is the system’s kinetic energy, and 
Ustr. is the elastic strain energy. Also, Uext. represents the potential en
ergy of the external loads, including the bending and axial effects of the 
applied in-plane compressive edge forces per unit length at each indi
vidual layer: N̂x,i and N̂y,i (i = 1,2,...,n). Obviously, the total applied in- 
plane compressive forces per unit edge length acting on the entire 
laminate are N̂x,Tot. =

∑n
i=1 N̂x,i and N̂y,Tot. =

∑n
i=1 N̂y,i. The aforemen

tioned energy terms are defined as follows 

Ustr. =
1
2

∫∫∫

V

(
σxεx + σyεy + τxyγxy

)
dV +

1
2

∫∫

S*

(
τxzΔu + τyzΔv

)
dS*

(10a) 

Uext. = −

∫∫

S
q(x, y)w dS −

1
2

∫∫

S

[
N̂x,Tot.(∂w/∂x)2

+ N̂y,Tot.(∂w/∂y)2
]
dS

+
∑n

i=1

∫∫

S

[
N̂x,i
(
∂u0,i/∂x

)
+ N̂y,i

(
∂v0,i/∂y

) ]
dS

(10b) 

T =
1
2

∫∫∫

V
ρ(u̇2

+ v̇2
+ ẇ2

)dV (10c) 

in which ρ is the material density; dS is the 2-D (in-plane) differential 
element, dV is the volume element of the laminated plate, and dS* is the 
surface differential element at the layers’ interfaces. Substituting Eqs. 
(4) through (8) into Eq. (10a), and assuming the principal material co
ordinates for each layer coincide with those of the plate in the global 
system (i.e., the specially-orthotropic), the strain energy is given as 

Ustr.=
1
2
∑n

i=1

∫∫

S

[

A11,i

(
∂u0,i

∂x

)2

+A66,i

(
∂u0,i

∂y

)2

+2A12,i

(
∂u0,i

∂x

)(
∂v0,i

∂y

)

+2A66,i

(
∂u0,i

∂y

)(
∂v0,i

∂x

)

+A66,i

(
∂v0,i

∂x

)2

+A22,i

(
∂v0,i

∂y

)2
]

dS

−
1
2
∑n

i=1

∫∫

S

[

2
(

B11,i
∂u0,i

∂x
+B12,i

∂v0,i

∂y

)(
∂2w
∂x2

)

+2
(

B12,i
∂u0,i

∂x
+B22,i

∂v0,i

∂y

)(
∂2w
∂y2

)

+4B66,i

(
∂u0,i

∂y
+

∂v0,i

∂x

)(
∂2w
∂x∂y

)]

dS

+
1
2
∑n

i=1

∫∫

S

[

D11,i

(
∂2w
∂x2

)2

+2D12,i

(
∂2w
∂x2

)(
∂2w
∂y2

)

+D22,i

(
∂2w
∂y2

)2

+4D66,i

(
∂2w
∂x∂y

)2]

dS

+
1
2
∑n− 1

i=1
ki

∫∫

S

[(

u0,i+1 − u0,i+di
∂w
∂x

)2

+

(

v0,i+1 − v0,i+di
∂w
∂y

)2
]

dS

(11) 

where the coefficients Ars,i, Brs,i, and Drs,i (r, s ∈ {1, 2, 6}) are the axial 
stiffnesses per unit length, stretching-bending stiffness, and the bending 
stiffness of the i-th layer of the plate, and are determined as 

(A11,i,A12,i,A22,i,A66,i)=

∫ zi+
hi
2

zi −
hi
2

(Qxx,i,Qxy,i,Qyy,i,Gxy,i)dz

=

(
Ex,ihi

1 − νxy,iνyx,i
,

νxy,iEy,ihi

1 − νxy,iνyx,i
=

νyx,iEx,ihi

1 − νxy,iνyx,i
,

Ey,ihi

1 − νxy,iνyx,i
,Gxy,ihi

)

(B11,i,B12,i,B22,i,B66,i)=

∫ zi+
hi
2

zi −
hi
2

(Qxx,i,Qxy,i,Qyy,i,G12,i)ζndz= 0

(D11,i,D12,i,D22,i,D66,i)=

∫ zi+
hi
2

zi −
hi
2

(Qxx,i,Qxy,i,Qyy,i,Gxy,i)ζ2
i dz

=

(
Ex,ih3

i
12(1 − νxy,iνyx,i)

,
νxy,iEy,ih3

i

12(1 − νxy,iνyx,i)
=

νyx,iEx,ih3
i

12(1 − νxy,iνyx,i)
,

Ey,ih3
i

12(1 − νxy,iνyx,i)
,

1
12

Gxy,ih3
i

)

, (ζi = z − zi)

(12) 
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where 

Qxx,i =
Ex,i

1 − νxy,iνyx,i

Qyy,i =
Ey,i

1 − νxy,iνyx,i

Qxy,i =
νxy,iEy,i

1 − νxy,iνyx,i
=

νyx,iEx,i

1 − νxy,iνyx,i

(13) 

The kinetic energy of the model can be formulated by replacing Eq. (1)
into Eq. (10c) as follows 

T =
1
2
∑n

i=1
I0,i

∫∫

S

(

u̇2
0,i + v̇2

0,i + ẇ2
)

dS

−
∑n

i=1
I1,i

∫∫

S

[

u̇0,i(∂ẇ/∂x) + v̇0,i(∂ẇ/∂y)
]

dS

+
1
2
∑n

i=1
I2,i

∫∫

S

[
(∂ẇ/∂x)2

+ (∂ẇ/∂y)2
]
dS

(14) 

in which the mass and rotary inertia terms for each layer are defined as 

I0,i =

∫ zi+
hi
2

zi −
hi
2

ρidz = ρihi

I1,i =

∫ zi+
hi
2

zi −
hi
2

ρiζidz = 0

I2,i =

∫ zi+
hi
2

zi −
hi
2

ρiζ
2
i dz =

1
12

ρih3
i , (ζi = z − zi)

(15) 

It is noteworthy that since each layer is assumed to be homogeneous and 
of a rectangular section, the coupling stretching-bending term, Bi, as 
well as the coupling effects of translational-rotational inertia, I1,i, for 
each individual layer obviously vanish. Furthermore, to eliminate the 
stretching-bending coupling effects for the entire laminate, we consider 
the origin of the global coordinate axis z at a location to fulfil the 
following condition: 

∫ zN+
hN
2

z1 −
h1
2

Ei

1 − ν2
i
ζndz =

∑n

i=1

Eihi

1 − ν2
i
zi = 0 (16) 

Applying the extended Hamilton’s principle (9) to Eqs. (10b), (11)-(15) 
yields a set of 2n+1 governing differential equations of motion of the 
model as follows 

δu0,1 :
∂Nx,1

∂x
+

∂Nxy,1

∂y
+ τxz,1 = I0,1ü0,1 (17a) 

δv0,1 :
∂Nxy,1

∂x
+

∂Ny,1

∂y
+ τyz,1 = I0,1v̈0,1 (17b) 

{

δu0,i :
∂Nx,i

∂x
+

∂Nxy,i

∂y
+ τxz,i − τxz,i− 1 = I0,i ü0,i, (i = 2,3, ..., n − 1)

(17c) 
{

δv0,i :
∂Nxy,i

∂x
+

∂Ny,i

∂y
+ τyz,i − τyz,i− 1 = I0,i v̈0,i, (i = 2,3, ..., n − 1)

(17d) 

δu0,n :
∂Nx,n

∂x
+

∂Nxy,n

∂y
− τxz,n− 1 = I0,nü0,n (17e) 

δv0,n :
∂Nxy,n

∂x
+

∂Ny,n

∂y
− τyz,n− 1 = I0,nv̈0,n (17f) 

δw :
∂2M(0)

x
∂x2 + 2

∂2M(0)
xy

∂x∂y
+

∂2M(0)
y

∂y2 +
∑n− 1

i=1
di

(
∂τxz,i

∂x
+

∂τyz,i

∂y

)

− N̂x,Tot.

(
∂2w
∂x2

)

− N̂y,Tot.

(
∂2w
∂y2

)

+ q(x, y) = I0ẅ − I2,0∇
2ẅ

(17g) 

where the stress resultants Nx,i,Ny,i,Nxy,i (i = 1,2, ..., n) are the normal 
and shear forces per unit length in each layer of the plate, and are ob
tained in the form: 

Nx,i = A11,i
∂u0,i

∂x
+ A12,i

∂v0,i

∂y

Ny,i = A12,i
∂u0,i

∂x
+ A22,i

∂v0,i

∂y

Nxy,i = A66,i

(
∂u0,i

∂y
+

∂v0,i

∂x

)

, (i = 1, 2, ..., n)

(18) 

Also, the stress resultants (M(0)
x ,M(0)

y ,M(0)
xy ) are the bending and twisting 

moments per unit length of laminated plates, and are obtained as 

M(0)
x = −

∑n

i=1

(

D11,i
∂2w
∂x2 + D12,i

∂2w
∂y2

)

= − D(0)
11

∂2w
∂x2 − D(0)

12
∂2w
∂y2

M(0)
y = −

∑n

i=1

(

D12,i
∂2w
∂x2 + D22,i

∂2w
∂y2

)

= − D(0)
12

∂2w
∂x2 − D(0)

22
∂2w
∂y2

M(0)
xy = − 2

∑n

i=1
D66,i

(
∂2w
∂x∂y

)

= − 2D(0)
66

∂2w
∂x∂y

(19) 

in which 

(D(0)
11 ,D

(0)
12 ,D

(0)
22 ,D

(0)
66 ) =

∑n

i=1
(D11,i,D12,i,D22,i,D66,i) (20) 

where D(0)
rs (r, s = 1, 2,6) are different bending/twisting stiffness com

ponents of the laminated composite plate with no interlayer interaction. 
The superscript ‘(0)’ denotes the “non-composite” condition, i.e., a case 
in which the frictionless layers are laid one another with no relative 
shear interaction; in other words, zero-interaction between the layers at 
their interfaces, corresponding to a fully-debonded laminate.

Substituting the above stress resultants as well as Eq. (7) into Eqs. 
(17a)-g), the governing differential equations of the described extended 
classical plate model are obtained in the form: 

δu0,1 : A11,1
∂2u0,1

∂x2 + A66,1
∂2u0,1

∂y2 − k1u0,1 + k1u0,2 + (A12,1 + A66,1)
∂2v0,1

∂x∂y

+ k1d1
∂w
∂x

= I0,1ü0,1

(21a) 
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δv0,1 : (A12,1 + A66,1)
∂2u0,1

∂x∂y

+ A66,1
∂2v0,1

∂x2 + A22,1
∂2v0,1

∂y2 − k1v0,1 + k1v0,2 + k1d1
∂w
∂y

= I0,1v̈0,1

(21b) 

δu0,i :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

A11,i
∂2u0,i

∂x2 + A66,i
∂2u0,i

∂y2 + ki− 1u0,i− 1 − (ki− 1 + ki)u0,i + kiu0,i+1

+
(
A12,i + A66,i

) ∂2v0,i

∂x∂y
+ (kidi − ki− 1di− 1)

∂w
∂x

= I0,iü0,i,

(i = 2,3, ..., n − 1)

(21c) 

δv0,i :

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
A12,i + A66,i

) ∂2u0,i

∂x∂y
+ A66,i

∂2v0,i

∂x2 + A22,i
∂2v0,i

∂y2 + ki− 1v0,i− 1

− (ki− 1 + ki)v0,i + kiv0,i+1 + (kidi − ki− 1di− 1)
∂w
∂y

= I0,i v̈0,i,

(i = 2,3, ..., n − 1)

(21d) 

δu0,n :A11,n
∂2u0,n

∂x2 +A66,n
∂2u0,n

∂y2 +kn− 1u0,n− 1 − kn− 1u0,n +(A12,n +A66,n)
∂2v0,n

∂x∂y

− kn− 1dn− 1
∂w
∂x

= I0,nü0,n

(21e) 

δv0,n : (A12,n + A66,n)
∂2u0,n

∂x∂y
+ A66,n

∂2v0,n

∂x2 + A22,n
∂2v0,n

∂y2 + kn− 1v0,n− 1 − kn− 1v0,n

− kn− 1dn− 1
∂w
∂y

= I0,nv̈0,n

(21f) 

δw :

[

D(0)
11

∂4w
∂x4 + 2(D(0)

12 + 2D(0)
66 )

∂4w
∂x2∂y2 + D(0)

22
∂4w
∂y4

]

+ I0ẅ − I2,0∇
2ẅ

−
∑n− 1

i=1
kidi

(
∂u0,i + 1

∂x
−

∂u0,i

∂x
+ di

∂2w
∂x2

)

−
∑n− 1

i=1
kidi

(
∂v0,i + 1

∂y
−

∂v0,i

∂y
+ di

∂2w
∂y2

)

+N̂x,Tot.

(
∂2w
∂x2

)

+ N̂y,Tot.

(
∂2w
∂y2

)

= q(x, y)

(21g) 

where I2,0 is the non-composite rotary inertia of the laminate, and is 
given as 

I2,0 =
∑n

i=1
I2,i =

∑n

i=1

1
12

ρih3
i (22) 

Furthermore, I0 is the translational mass inertia of the entire laminate, 
and is expressed as 

I0 =
∑n

i=1
I0,i =

∑n

i=1
ρihi (23) 

2.3. Extended classical boundary conditions

Using the extended Hamilton’s energy principle (9) in conjunction 
with the energy terms (10), (11) and (14), the geometric/essential and 
natural boundary equations are directly deduced for the classical edges 
as follows, 

at x = 0, a :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

either δu0,1 = 0 or Nx,1 = − N̂x,1

either δv0,1 = 0 or Nxy,1 = 0

either δu0,2 = 0 or Nx,2 = − N̂x,2

either δv0,2 = 0 or Nxy,2 = 0
...

either δu0,i = 0 or Nx,i = − N̂x,i

either δv0,i = 0 or Nxy,i = 0
...

either δu0,n− 1 = 0 or Nx,n− 1 = − N̂x,n− 1

either δv0,n− 1 = 0 or Nxy,n− 1 = 0

either δu0,n = 0 or Nx,n = − N̂x,n

either δv0,n = 0 or Nxy,n = 0
either δw = 0 or V(PC)

x = 0
either δ(∂w/∂x) = 0 or M(0)

x = 0
either δ(∂w/∂y) = 0 or M(0)

xy = 0

(24a) 

and 

at y = 0, b :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

either δv0,1 = 0 or Ny,1 = − N̂y,1

either δu0,1 = 0 or Nxy,1 = 0

either δv0,2 = 0 or Ny,2 = − N̂y,2

either δu0,2 = 0 or Nxy,2 = 0
...

either δv0,i = 0 or Ny,i = − N̂y,i

either δu0,i = 0 or Nxy,i = 0
...

either δv0,n− 1 = 0 or Ny,n− 1 = − N̂y,n− 1

either δu0,n− 1 = 0 or Nxy,n− 1 = 0

either δv0,n = 0 or Ny,n = − N̂y,n

either δu0,n = 0 or Nxy,n = 0
either δw = 0 or V(PC)

y = 0

either δ(∂w/∂y) = 0 or M(0)
y = 0

either δ(∂w/∂x) = 0 or M(0)
xy = 0

(24b) 

where the stress resultants (Nx,i,Ny,i,Nxy,i) and (M(0)
x ,M(0)

y ,M(0)
xy ) (i = 1,2,

...,N) are defined by Eqs. (18) and (19), respectively. Furthermore, Q(PC)
x 

and Q(PC)
y are the transverse shear forces per unit length, corresponding 

to a laminated plate with “partial-composite” interaction at the in
terlayers, and are deduced as follows, 

Q(PC)
x = −

∂
∂x

[

D(0)
11

∂2w
∂x2 + (D(0)

12 + 2D(0)
66 )

∂2w
∂y2

]

+
∑n− 1

i=1
kidi

(

u0,i + 1 − u0,i + di
∂w
∂x

)

− N̂x,Tot.

(
∂w
∂x

)

Q(PC)
y = −

∂
∂y

[

(D(0)
12 + 2D(0)

66 )
∂2w
∂x2 + D(0)

22
∂2w
∂y2

]

+
∑n− 1

i=1
kidi

(

v0,i + 1 − v0,i + di
∂w
∂y

)

− N̂y,Tot.

(
∂w
∂y

)

(25) 

It is noteworthy that, similar to the classical laminated plate theory, only 
two conditions from the common three out-of-plane boundary condi
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tions (the three last of Eqs. (24a) and (24b)) can be satisfied at each edge 
of the plate. Thus, the twisting moment and transverse shear force 
conditions may commonly be replaced by an equivalent force as follows: 

V(PC)
x = Q(PC)

x +
∂M(0)

xy

∂y
= − D(0)

11

(
∂3w
∂x3 + α(0)

1
∂3w

∂x∂y2

)

+
∑n− 1

i=1
kidi

(

u0,i + 1 − u0,i + di
∂w
∂x

)

− N̂x,Tot.

(
∂w
∂x

)

V(PC)
y = Q(PC)

y +
∂M(0)

xy

∂x
= − D(0)

22

(
∂3w
∂y3 + α(0)

2
∂3w

∂x2∂y

)

+
∑n− 1

i=1
kidi

(

v0,i + 1 − v0,i + di
∂w
∂y

)

− N̂y,Tot.

(
∂w
∂y

)

(26) 

where 

α(0)
1 =

1
D(0)

11

(D(0)
12 + 4D(0)

66 )

α(0)
2 =

1
D(0)

22

(D(0)
12 + 4D(0)

66 )

(27) 

3. Analytical solution approaches

3.1. Flexible n-layer laminated orthotropic plates with identical layers

In this section, analytical solutions are conducted for the problems of 
structural buckling under mono- and bi-axial compressive edge loads, as 
well as the free vibrations for flexible n-layer laminated partial com
posite plates. It should also be clarified that as the focus of the present 
study is on introducing the laminated partially-composite plate theory 
(LPCPT) based on the described model, the effect of different lay-up 
patterns stands outside the scope of the present research. Thus, first 
we conduct analytical solutions for the multilayers composed of any 
arbitrary number of constituent layers with identical orthotropic mate
rial properties to investigate the influence of the imperfect interlayer 
interaction and partial composite effects at the interfaces, only. (i.e., 
℘1 = ℘2 = ... = ℘ℓ = const., in which ℘ℓ is any of the geometric or 
material property parameters of a constituting layer, where the subscript 
ℓ then refers to the case of identical layers). Furthermore, the interlayer 
shear interaction/slip moduli are considered to be the same for all the 
interfaces (ki (i = 1, 2, ..., n − 1) = k = const.). Next, laminated plates 
with non-identical orthotropic layers are treated via direct analytical 
solution alternatives for laminated plates with a specified number of 
constituent layers.

3.1.1. Buckling of partial-composite plates under mono- or bi-axial 
compressive in-plane loads

Consider a rectangular partial composite plate of uniform thickness 
hTot., length a, and width b, consisting of n layers, each of thickness hℓ, as 
illustrated in Fig. 2. Each layer of the plate is assumed to be subjected to 
the in-plane edge load per unit length N̂x,i along the x direction, as a 
result of a global applied edge load N̂x,Tot.. The layered partial-composite 
may also be subjected to bi-axial compressive edge loads, and thus, each 
layer under an in-plane edge load per unit length N̂y,i along the y di
rection (Fig. 2). For a simply-supported laminated partial composite 
plate, under mono- or bi-axial compressive edge-load conditions, the 
following boundary conditions are deduced from Eqs. (24a),b): 

at x = 0, a :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Nx,1 = − N̂x,1

v0,1 = 0
Nx,2 = − N̂x,2

v0,2 = 0
...

Nx,i = − N̂x,i

v0,i = 0
...

Nx,n− 1 = − N̂x,n− 1

v0,n− 1 = 0
Nx,n = − N̂x,n

v0,n = 0
w = 0
M(0)

x = 0

(28a) 

at y = 0, b :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ny,1 = − N̂y,1

u0,1 = 0
Ny,2 = − N̂y,2

u0,2 = 0
...

Ny,i = − N̂y,i

u0,i = 0
...

Ny,n− 1 = − N̂y,n− 1

u0,n− 1 = 0
Ny,n = − N̂y,n

u0,n = 0
w = 0
M(0)

y = 0

(28b) 

A solution for the components of the displacement field may be proposed 
in the form (see Appendix A for details): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0,i =
1

Ex,ℓhℓ

(
N̂x,i − νxy,ℓ N̂y,i

)
(a/2 − x) + U0,icos(αm1x)sin(βm2y),

v0,i =
1

Ey,ℓhℓ

(
N̂y,i − νyx,ℓ N̂x,i

)
(b/2 − y) + V0,isin(αm1x)cos(βm2y),

i ∈ {1,2, ..., n}

w = W0sin(αm1x)sin(βm2y)
(29) 

in which the coefficients αm1 and βm2 are given by 

αm1 = m1π/a
βm2 = m2π/b (30) 

where m1 and m2 are number of buckling modes’ half-waves in the x−
and y− directions, respectively. Evidently, the proposed solution can 
exactly satisfy all the boundary conditions (28a),b) (see Appendix A).

Substituting the proposed solution (29) into Eqs. (21c),d) in the 
absence of any dynamic term yields 
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{
kU0,i− 1 −

(
α2

m1A11,ℓ + β2
m2A66,ℓ + 2k

)
U0,i + kU0,i + 1

− αm1βm2(A12,ℓ + A66,ℓ)V0,i = 0
(i = 2,3, ..., n − 1)

(31a) 

{
kV0,i− 1 −

(
α2

m1A66,ℓ + β2
m2A22,ℓ + 2k

)
V0,i + kV0,i + 1

− αm1βm2(A12,ℓ + A66,ℓ)U0,i = 0,
(i = 2,3, ..., n − 1)

(31b) 

It should be clarified that based on the present model’s fundamental 
assumptions, the distribution of the axial compressive edge loads N̂x,i 

and N̂y,i (i = 1,2, ...,n), respectively, parallel to x and y directions, are 
proportional to each layer’s relative axial stiffness along that direction, 
which is a true assumption for the linear elastic deformations (see 
[34,92] for a detailed discussion on the assumption); i.e., 

N̂x,1

A11,1
=

N̂x,2

A11,2
= ... =

N̂x,i

A11,i
= ... =

N̂x,N

A11,N
=

∑n
i=1 N̂x,i

∑n
i=1A11,i

=
N̂x,Tot.

A11,0
(32a) 

N̂y,1

A22,1
=

N̂y,2

A22,2
= ... =

N̂y,i

A22,i
= ... =

N̂y,N

A22,N
=

∑n
i=1 N̂y,i

∑n
i=1A22,i

=
N̂y,Tot.

A22,0
(32b) 

in which A11,i and A22,i are the axial stiffness of each layer along x and y 
directions, respectively, whereas A11,0 and A22,0 are those of the entire 
laminate, and are defined as 

A11,0 =
∑n

i=1
A11,i =

∑n

i=1

Ex,ihi

1 − νxy,iνyx,i

A22,0 =
∑n

i=1
A22,i =

∑n

i=1

Ey,ihi

1 − νxy,iνyx,i

(33) 

The set of coupled difference Eqs. (31a),b) can be exactly fulfilled if 
we set (see Appendix B for details on the solution): 
⎧
⎨

⎩

U0,i = χ1Ucoshiθ + χ2Usinhiθ,
V0,i = χ1Vcoshiθ + χ2Vsinhiθ,
i ∈ {1,2, 3, ..., n}

(34) 

in which θ is an unknown parameter to be determined. Substituting the 
above solution into the set of difference equations (31a),b), and applying 
the standard hyperbolic angle addition/subtraction formulae, yield: 
⎡

⎣
2k(1 − coshθ) + cm12

11,ℓ cm12
12,ℓ

cm12
12,ℓ 2k(1 − coshθ) + cm12

22,ℓ

⎤

⎦

{
U0,i
V0,i

}

= 0 (35) 

where 

cm12
11,ℓ = α2

m1A11,ℓ + β2
m2A66,ℓ

cm12
22,ℓ = α2

m1A66,ℓ + β2
m2A22,ℓ

cm12
12,ℓ = αm1βm2(A12,ℓ + A66,ℓ)

(36) 

Applying a nontrivial solution to Eqs. (35) and performing some math
ematical manipulations, the unknown parameter θ will be determined in 
the form: 

θ = cosh− 1
[

1 +
1
4k

(

cm12
11,ℓ + cm12

22,ℓ −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(cm12
11,ℓ − cm12

22,ℓ)
2
+ 4(cm12

12,ℓ)
2

√ )]

(37) 

It can be shown that Eq. (37) for a laminated plate with isotropic layers 
is simplified as 

θ = cosh− 1
[

1 +
π2hℓEℓ

2k(1 − ν2
ℓ)

(
m2

1
a2 +

m2
2

b2

)]

(38) 

Next, the remaining governing equations (21a),b) and (21e-g) are to be 
fulfilled. To this end, we substitute the proposed solution for the 
displacement field components (29) into the mentioned equations in the 
absence of the dynamic terms and the transverse distributed load, and 
obtain: 

−
(
α2

m1A11,ℓ + β2
m2A66,ℓ + k

)
U0,1 + kU0,2 − αm1βm2(A12,ℓ + A66,ℓ)V0,1

+αm1hℓkW0 = 0
(39a) 

− αm1βm2(A12,ℓ + A66,ℓ)U0,1 −
(
α2

m1A66,ℓ + β2
m2A22,ℓ + k

)
V0,1

+kV0,2 + βm2hℓkW0 = 0
(39b) 

kU0,n− 1 −
(
α2

m1A11,ℓ + β2
m2A66,ℓ + k

)
U0,n − αm1βm2(A12,ℓ + A66,ℓ)V0,n

− αm1hℓkW = 0
(39c) 

− αm1βm2(A12,ℓ + A66,ℓ)U0,n + kV0,n− 1 −
(
α2

m1A66,ℓ + β2
m2A22,ℓ + k

)
V0,n

− βm2hℓkW0 = 0
(39d) 

− αm1U0,1 + αm1U0,n − βm2V0,1 + βm2V0,n

+
1

hℓk
[
α4

m1D(0)
11 + 2α2

m1β2
m2(D

(0)
12 + 2D(0)

66 ) + β4
m2D(0)

22
]
W0

+(n − 1)γ2
m12hℓW0 −

1
hℓk

(α2
m1 N̂x,Tot. + β2

m2 N̂y,Tot.)W0 = 0

(39e) 

where 

γm12 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2
m1 + β2

m2

√

(40) 

Substituting the solution by Eq. (34) into Eqs. (39a)-e) and collecting the 
coefficients of χ1U, χ2U, χ1V , χ2V and W0 result in the following non- 
trivial solution for the critical buckling load N̂cr: 

|M5×5| = 0 :

[M5×5][ χ1U χ2U χ1V χ2V W0 ]
T
= 0

(41) 

in which the coefficient matrix M is given in Appendix C. The 
compressive load may be applied monoaxially on any pair of parallel 
edges of the plate, or biaxially with different intensity values, ξ1 and ξ2 
along the x and y directions, respectively. 

N̂x,Tot. = − ξ1 N̂cr

N̂y,Tot. = − ξ2 N̂cr
(42) 

Obviously, for a mono-axial load case, it is set ξ2 = 0 (or ξ1 = 0).

3.1.2. Free vibrations of partial composite plates
Apparently, under the assumption of small-amplitude oscillating 

vibrations and harmonic motions with an angular frequency of ω, the 
components of the displacement field (1) can be described using the 
separation of variables method for the dynamic effects as 

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u0,i(x, y, t) = ũ0,i(x, y) ejωt

v0,i(x, y, t) = ṽ0,i(x, y) ejωt

w(x, y, t) = w̃0,i(x, y) ejωt , j =
̅̅̅̅̅̅̅
− 1

√

, i ∈ {1,2, ..., n}

(43) 

Substituting Eq. (43) into the set of governing equations of motion (21a- 
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g), in the absence of any external forces and applying layers equality 
assumptions, as mentioned in the previous section, yields 

A11,ℓ
∂2ũ0,1

∂x2 + A66,ℓ
∂2ũ0,1

∂y2 +
(
ω2I0,ℓ − k

)
ũ0,1 + kũ0,2

+ (A12,ℓ + A66,ℓ)
∂2ṽ0,1

∂x∂y
+ hℓk

∂w̃
∂x

= 0

(44a) 

(A12,ℓ + A66,ℓ)
∂2ũ0,1

∂x∂y
+ A66,ℓ

∂2ṽ0,1

∂x2 + A22,ℓ
∂2ṽ0,1

∂y2 +
(
ω2I0,ℓ − k

)
ṽ0,1

+ kṽ0,2 + hℓk
∂w̃
∂y

= 0
(44b) 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A11,ℓ
∂2ũ0,i

∂x2 + A66,ℓ
∂2ũ0,i

∂y2 + kũ0,i− 1 + (ω2I0,ℓ − 2k)ũ0,i + kũ0,i + 1

+ (A12,ℓ + A66,ℓ)
∂2ṽ0,i

∂x∂y
= 0,

(i = 2,3, ..., n − 1)

(44c) 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(A12,ℓ + A66,ℓ)
∂2ũ0,i

∂x∂y
+ A66,ℓ

∂2ṽ0,i

∂x2 + A22,ℓ
∂2ṽ0,i

∂y2 + kṽ0,i− 1

+ (ω2I0,ℓ − 2k)ṽ0,i + kṽ0,i + 1 = 0,

(i = 2,3, ..., n − 1)

(44d) 

A11,ℓ
∂2ũ0,n

∂x2 + A66,ℓ
∂2ũ0,n

∂y2 + kũ0,n− 1 + (ω2I0,ℓ − k)ũ0,n

+ (A12,ℓ + A66,ℓ)
∂2ṽ0,n

∂x∂y
− hℓk

∂w̃
∂x

= 0

(44e) 

(A12,ℓ + A66,ℓ)
∂2ũ0,n

∂x∂y
+ A66,ℓ

∂2ṽ0,n

∂x2 + A22,ℓ
∂2ṽ0,n

∂y2 + kṽ0,n− 1

+ (ω2I0,ℓ − k)ṽ0,n − hℓk
∂w̃
∂y

= 0
(44f) 

1
hℓk

[

D(0)
11

∂4w̃
∂x4 + 2(D(0)

12 + 2D(0)
66 )

∂4w̃
∂x2∂y2 + D(0)

22
∂4w̃
∂y4

]

+

[
ω2I2,0

hℓk
− (n − 1)hℓ

]

∇2w −
ω2I0

hℓk
w̃

+
∂

∂x
(
u0,1 − u0,n

)
+

∂
∂y
(
v0,1 − v0,n

)
= 0

(44g) 

The components of the displacement field can be described via double 
Fourier series as 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ũ0,i =
∑∞

m1=1

∑∞

m2=1
Ũ0,im1m2 cos(αm1x)sin(βm2y),

i ∈ {1,2, ..., n}

ṽ0,i =
∑∞

m1=1

∑∞

m2=1
Ṽ0,im1m2 sin(αm1x)cos(βm2y),

i ∈ {1,2, ..., n}

w̃ =
∑∞

m1=1

∑∞

m2=1
W̃0,m1m2 sin(αm1x)sin(βm2y)

(45) 

in which αm1 = m1π/a and βm2 = m2π/b in terms of the number of vi
bration mode-shapes’ half-waves, m1 and m2, along the x− and 
y− directions, respectively. It is easy to show that the proposed solution 
(45) exactly satisfies the simply-supported boundary conditions at the 
plates’ edges.

With inspiration from the introduced exact analytical solution in the 
previous section for the buckling problem, the set of Eqs. (44c) and (44d)
can be exactly fulfilled if we set: 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ũ0,im1m2 = χ̃1Um1m2 coshiθ̃ + χ̃2Um1m2 sinhiθ̃,
Ṽ0,im1m2 = χ̃1Vm1m2 coshiθ̃ + χ̃2Vm1m2 sinhiθ̃,
i ∈ {1,2,3, ..., n}

(46) 

where θ̃ is an unknown parameter in terms of the natural frequency ω to 
be determined. Upon substitution of the solution (45) in conjunction with 
the relations (46) into the set of Eqs. (44c),d), and using some standard 
hyperbolic angle addition/subtraction formulae, a set of equations in 
terms of the coefficients Ũ0,im1m2 and Ṽ0,im1m2 are deduced as follows 
⎡

⎣
2k(1 − coshθ̃)+cm12

11,ℓ − ω2I0,ℓ cm12
12,ℓ

cm12
12,ℓ 2k(1 − coshθ̃)+cm12

22,ℓ − ω2I0,ℓ

⎤

⎦

⎧
⎨

⎩

Ũ0,im1m2

Ṽ0,im1m2

⎫
⎬

⎭

=0
(47) 

in which the coefficients cm12
11,ℓ, cm12

22,ℓ and cm12
12,ℓ are given by Eq. (33). The 

unknown coefficient θ̃ will be determined via applying a non-trivial 
solution to the above set of equations, in the form: 

θ̃=cosh− 1
[

1+
1
4k

(

cm12
11,ℓ+cm12

22,ℓ −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(cm12
11,ℓ − cm12

22,ℓ)
2
+4(cm12

12,ℓ)
2

√ )

−
1
2k

ω2I0,ℓ

]

(48) 

The rest of the governing Eqs. (44a),b,e-g) are to be satisfied by replacing 
the solution (45) in conjunction with Eq. (46) and the relation (48) for θ̃, 
leading to a nonlinear characteristic equation from a non-trivial solution, 
whose roots are the natural frequencies of the partial-composite plate. The 
determinant characteristic equation from the matrix of collected co

efficients of the vector 
[

χ̃1Um1m2 χ̃2Um1m2 χ̃1Vm1m2 χ̃2Vm1m2 W̃0,m1m2

]T 

can be represented as 

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Λ̃11coshθ̃ − kcosh2θ̃ Λ̃11sinhθ̃ − ksinh2θ̃ cm12
12 coshθ̃ cm12

12 sinhθ̃ − αm1hℓk
cm12

12 coshθ̃ cm12
12 Aℓsinhθ̃ Λ̃22coshθ̃ − kcosh2θ̃ Λ̃22sinhθ̃ − ksinh2θ̃ − β2

m2hℓk
Λ̃11coshnθ̃ − kcosh[(n − 1)θ̃] Λ̃11sinhnθ̃ − ksinh[(n − 1)θ̃] cm12

12 coshnθ̃ cm12
12 sinhnθ̃ αm1hℓk

cm12
12 coshnθ̃ cm12

12 sinhnθ̃ Λ̃22coshnθ̃ − kcosh[(n − 1)θ̃] Λ̃22sinhnθ̃− ksinh[[(n − 1)θ̃] βm2hℓk

αm1

(
coshnθ̃ − coshθ̃

)
αm1

(
sinhnθ̃ − sinhθ̃

)
βm2

(
coshnθ̃ − coshθ̃

)
βm2

(
sinhnθ̃ − sinhθ̃

)
Λ̃33

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

= 0 (49) 
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in which 

Λ̃11 = α2
m1A11,ℓ + β2

m2A66,ℓ + k − I0,ℓω2

Λ̃22 = α2
m1A66,ℓ + β2

m2A22,ℓ + k − I0,ℓω2

Λ̃33 =
1

hℓk
[
α4

m1D(0)
11 + 2α2

m1β2
m2(D

(0)
12 + 2D(0)

66 ) + β4
m2D(0)

22
]

+(n − 1)γ2
m12hℓ −

1
hℓk

(
I0 + I2,0γ2

m12
)
ω2

(50) 

The roots of the characteristic equation (49) represent the natural fre
quencies of the laminated plate with interlayer partial-composite 
interaction based on the introduced model.

3.1.3. Higher-order shear deformation theory results as a special case of the 
introduced LPCPT

It can be shown that the kinematic field of the introduced LPCPT 
evolves into a hyperbolic form for the out-of-plane shear strains through 
the thickness direction as a special case of the present model, while it 
vanishes on the laminate top and bottom surfaces, similar to a higher- 
order shear deformation theory. In other words, the contribution of 
the material’s shear rigidity to the structural responses can be incor
porated based on the present model by setting the interlayer partial 
shear interaction modulus, k, to be equivalent to the fraction of the 
material shear modulus to the thickness of the lamella (see Eq. (6) for the 
definition of the interlayer shear stresses); i.e., 

k* =
Gℓ

hℓ
=

nEℓ

2(1 + νℓ)hTot
(51) 

The asymptotic results based on the present model in which the inter
layer interaction modulus k is set to be k* is, therefore, expected to 
capture those based on the hyperbolic higher-order shear deformation 
theory. This is due to the fact that based on the fundamental assumptions 
of the present model, the upper/bottom surfaces of the laminate are 
shear-stress-free while it possesses a non-zero value at the interfaces, 
and consequently, lead to non-uniform through-thickness transverse 
shear stresses. The difference between the present asymptotic model and 
the three-dimensional theory of elasticity may be negligible and only 
sensible for very thick plates. This discrepancy may be attributed to the 
non-symmetric/anti-symmetric distribution of different stress compo
nents through the thickness of a monolithic plate/shell which inherently 
increases for the thicker plates according to the elasticity theory. In 
other words, the concept of the neutral plane is not valid any longer; for 
the aforementioned extremely thick plate/shell asymmetric stress ef
fects, readers are referred to the discussions in [93]). Apparently, all 
types of plate/shell theories are incapable of incorporating the afore
mentioned asymmetry effects.

It can be shown that the asymptotic limit of the buckling load, ob
tained from the solution of the determinant equation (41), when k = k* 

and the number of constituting layers approaches infinity while their 
thicknesses approach zero for a fixed total plate thickness hTot, is derived 
in the form: 

lim
n→∞

Ncr(k = k*)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2
m1 + β2

m2

√ [
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(1 − νℓ)

√
+ hTot

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2
m1 + β2

m2

√ ]

Eℓ

2(1 + νℓ)(ξ1α2
m1 + ξ2β2

m2)

tanh

⎛

⎝hTot

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

α2
m1 + β2

m2
2(1 − ν)

√ ⎞

⎠ (52) 

which is numerically comparable—as will be demonstrated in the nu
merical comparative results—to the critical buckling load formulae 
based on Reddy’s higher-order shear deformation theory, reported in 
[94]: 

Ncr =
α12 + α11(α2

m1 + β2
m2)

(ξ1α2
m1 + ξ2β2

m2)[1 + α13(α2
m1 + β2

m2)]
(α2

m1 + β2
m2)

2 (53) 

For mathematically small total thickness, hTot, the buckling load formula 
(52) is equivalent to: 

lim
n→∞

Ncr

⃒
⃒
⃒
hTot→0

=
Eℓh3

Tot
12(1 − ν2

ℓ)

(α2
m1 + β2

m2)
2

(ξ1α2
m1 + ξ2β2

m2)
= D∞

(α2
m1 + β2

m2)
2

ξ1α2
m1 + ξ2β2

m2
(54) 

which is identical to the buckling load formula based on the classical 
plate theory (CPT). A comparison of the numerical buckling and vibra
tion results based on the described present special case and those of the 
3-D elasticity, as well as the conventional Reddy’s higher-order shear 
deformation theory (HSDT), is presented and discussed in Section 4.

3.2. Laminated orthotropic plates with non-identical layers

The developed analytical solutions in the preceding subsections for 
the structural stability and dynamic analyses of laminated partial- 
composite plates based on the introduced LPCP model for an arbitrary 
number of constituting layers (n) may not be applicable to the laminates 
with non-identical layers. To evaluate the validity and performance of 
the proposed LPCP model for such cases and to study the influence of the 
non-idealised/partial interlayer interaction, direct analytical solution 
alternatives may be conducted for laminated plates with a specified 
number of constituent layers.

Consider a simply-supported laminated composite plate composed of 
n non-identical layers of uniform thickness h. The previously defined 
displacement fields, given by Eq. (29) together with Eq. (42) for the 
buckling, and by Eqs. (43) and (45) for the vibration analysis are 
recalled in their general form, without assuming identical mechanical 
properties. Substituting the mentioned displacement fields into the 
governing equations of the LPCP model yields two systems of 2n+1 
algebraic equations (see Appendix D). The critical buckling loads and 
natural vibration frequencies of a laminated orthotropic plate having n 
non-identical layers can subsequently be extracted from the resulting 
polynomial characteristic equations by vanishing the determinant of the 
coefficient matrices; i.e., 

|M(2n+1)×(2n+1)| = 0 (55) 

in which M is the matrix of coefficients of the vectors: 

[ [U0,1 V0,1] [U0,2 V0,2] ... [U0,i V0,i] ... [U0,n V0,n] W0 ]
T
2n+1 

(for buckling) (56a) 

[ [Ũ0,1m1m2 Ṽ0,1m1m2 ] [Ũ0,2m1m2 Ṽ0,2m1m2 ] ... [Ũ0,im1m2 Ṽ0,im1m2 ] ...

[Ũ0,nm1m2 Ṽ0,nm1m2 ]W̃0,m1m2 ]
T
2n+1 (forvibration) (56b) 

3.3. A remark on methods for determining interlayer partial-interaction 
moduli

The established laminated partial-composite plate (LPCP) model and 
the presented solutions rely on the key parameter of the interlayer 
interaction modulus, k. Therefore, accurate determination of its values is 
essential to ensure reliable predictions of the structural behaviour and 
response of layered plates and panels with imperfect interlayer bonding 
in various applications, based on the LPCPT. Similar to what was 
described in [34] for the laminated beam/column elements, the inter
layer moduli for layered plates and panels can be experimentally 
determined through standard test techniques on small 1-D beam-like 
specimens, such as the three-point bending test in conjunction with 
static partial-composite beam theory [76] or the double shear joint test. 
It is noteworthy that two beam specimens, cut along orthogonal planar 
directions, should be tested if the level of interlayer interaction differs 
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between the directions due to the orthotropy in the constituent materials 
and adhesive bonding effects, different geometric patterns or non- 
identical spacing of the mechanical connectors in the two planar di
rections, etc.

Aside from the experimental approaches outlined, a number of 
simple formulae can be theoretically deduced to predict the interlayer 
modulus for different cases. The interlayer interaction moduli for the 

case of layered plates bonded through relatively soft adhesives can be 
estimated based on extending the conventional approach in [95] for 
laminated beams. Assuming pure shear deformation for relatively soft 
adhesive films at the interfaces of plate layers, the interlayer shear 
interaction modulus can be estimated, using Eq. (6), as k ≈ Gadh/hadh; in 
which Gadh and hadh are, respectively, the shear modulus of the soft 
adhesive material and the adhesive film thickness. The aforementioned 

Fig. 3. The model’s kinematics of deformations and the internal force and stress resultant assumptions.

Table 1 
Comparison of dimensionless critical buckling loads for rectangular plates under mono-axial compression based on the 3-D elasticity, Reddy’s higher-order shear 
deformation theory (HSDT), the classical plate theory (CPT), and a special case of the present LPCPT, provided for various values of the total thickness-to-length ratio, 
hTot/b, and the plate aspect ratio η = a/b. The percentage discrepancy provided in front of each value [%] is calculated with reference to the 3-D elasticity. The 
provided numerical results based on the present model are computed for the two special cases: (i) setting the interlayer modulus to be equivalent to the transverse shear 

strains k = k*, and the number of constituting layers approaches infinity, while the total thickness-to-length ratio is kept fixed (nh = const. = hTot); (ii) assuming the 
material transverse shear-rigidity via tending the interlayer interaction modulus to infinity (i.e., interfacial perfect-bonding and full-composite interaction).

hTot/b Method Ncrb2/(π2D)**

η = 0.2 η = 0.4 η = 0.8 η = 1.0 η = 1.2 η = 1.4

0.5 3-D Elasticity [97] – – – 1.6598 – –

Present (k = k*
, n→∞) 1.5088 1.4230 1.5149 1.6740 [0.8 %] 1.8970 2.1779

HSDT† [98] 1.6851 1.4455 1.5179 1.6759 [1.0 %] 1.8984 2.1791
HSDT† [94] – 1.4455 1.5179 1.6759 [1.0 %] – 2.1792

0.2 3-D Elasticity [97] – – – 3.1527 – –

Present (k = k*
, n→∞) 7.0143 4.6452 3.2626 3.2653 [3.5 %] 3.4723 3.8207

HSDT† [98] 7.0529 4.6466 3.2626 3.2653 [3.5 %] 3.4722 3.8206
HSDT† [94] – 4.6466 3.2627 3.2653 [3.5 %] – 3.8207

0.1 3-D Elasticity [97] – – – 3.7408 – –

Present (k = k*
, n→∞) 15.655 6.9853 3.9195 3.7866 [1.2 %] 3.9460 4.2877

HSDT† [98] 15.658 6.9853 3.9195 3.7865 [1.2 %] 3.9459 4.2876
HSDT† [94] – 6.9853 3.9195 3.7866 [1.2 %] – 4.2876

0.05 3-D Elasticity [97] – – – 3.928 – –

Present (k = k*
, n→∞) 22.859 8.0013 4.1279 3.9444 [0.4 %] 4.0856 4.4231

HSDT† [98] 22.859 8.0012 4.1279 3.9443 [0.4 %] 4.0856 4.4231
HSDT† [94] – 8.0012 4.1279 3.9443 [0.4 %] – 4.4231

0.02 3-D Elasticity [97] – – – – – –

Present (k = k*
, n→∞) 26.270 8.3418 4.1904 3.9910 [–] 4.1266 4.4626

HSDT† [98] 26.270 8.3417 4.1903 3.9909 [–] 4.1265 4.4625
HSDT† [94] – 8.3417 4.1903 3.9909 [–] – 4.4625

0.01 3-D Elasticity [97] – – – 3.9975 – –

Present (k = k*
, n→∞) 26.843 8.3928 4.1995 3.9977 [0.0 %] 4.1325 4.4683

HSDT† [98] 26.843 8.3928 4.1994 3.9977 [0.0 %] 4.1324 4.4682
HSDT† [94] – 8.3928 4.1994 3.9977 [0.0 %] – 4.4682

– CPT [98] 27.040 8.4100 4.202 4.0000 4.134 4.470
Present (n→∞) 27.040 8.4100 4.2025 4.0000 4.1344 4.4702

* Equivalent k value for the interlayer modulus of k* = Gℓ/hℓ.
** D is set for comparison to the compatible parameter: D∞.
† Reddy’s higher-order shear deformation theory.
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formula can be accommodated with a correction factor, taking into ac
count the effect of geometrical uncertainties and imperfections of the 
adhesive layer [34].

In the case of partial composite behaviour in laminated plates and 
panels where layers are connected via discrete mechanical connectors 
such as bolts, screws, dowels, studs, or rivets, each fastener can be 
considered as a member of a chain of bi-directional shear springs be
tween adjacent layers. Each connector from the network of connectors 
acts for the shear interaction over their spacing in each direction, as 
illustrated in Fig. 3. Referring to Eq. (6) in correlation with the definition 
of fasteners stiffness in layered elements, the interlayer interaction 
modulus can be obtained from k = Kser/s2 or k = Ku/s2 where Kser and 
Ku represent the shear stiffness of a fastener in layered elements, 
respectively, in the serviceability limit state (SLS) and the ultimate limit 
states (ULS); see e.g., [96] for the laminated timber elements according 
to the Eurocode 5. Moreover, the parameter s represents the fasteners 
spacing, as shown in Fig. 3. It should be pointed out that s2 should be 
replaced by s1s2 in case that the fasteners spacing is different in the two 
planar directions of a laminated plate.

It should also be noted that this study has focused on the developed 
imperfect partial-composite models and their exact solution techniques 
for the buckling and vibration behaviour of laminated plates. Therefore, 
any further details on the methods of determining the interlayer inter
action moduli fall beyond the scope of the present work.

4. Numerical results and discussion

In this section, numerical results and discussion are presented based 
on the introduced model and the presented exact analytical solution 
schemes for the buckling and free vibrations of n-layer laminated partial 
composite plates. A computational code is developed using Maple soft
ware to extract the numerical results. A comparative study is conducted 
to verify the validity and efficiency of the model and the associated 
solution technique. Furthermore, a comprehensive set of benchmark 
results has been presented in a generalised dimensionless format for 
both the critical buckling loads as well as the natural frequencies of 
partial-composite plates. For the sake of generality and convenience, the 
results are presented in terms of the following dimensionless 
parameters: 

Ncr = Ncra2/D∞

ω = ωa2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρℓhTot/D∞

√

k =
a2k

nEℓhTot

h = hTot/a

η = a/b

(57) 

where Ncr and ω are the dimensionless critical buckling load and fre
quency parameters, respectively, k is the dimensionless interlayer 
interaction modulus, and h and η are the total thickness-to-length ratio 
and the plate aspect ratio, respectively. For the case of the buckling 
problem, the nondimensional parameters ξ1 and ξ2 represent the 
compressive buckling load intensity factors for the applied edge loads 
along the x and y directions, respectively, taken a value between zero to 
unity; see Eq. (42).

To show the validity, high accuracy, and reliability of the presented 
analytical solution approaches for the introduced model, numerical re
sults for some special cases are compared with those reported in the 
literature.

Table 1 shows a comparison of the dimensionless critical buckling 
loads for rectangular plates under mono-axial compression based on the 
Reddy’s higher-order shear deformation theory (HSDT) from two 
different sources, and special cases of the current LPCP model, presented 
for various values of length-to-thickness ratio and the plate aspect ratio. 

Moreover, some comparative results have been provided with the 
available data based on the 3-D elasticity as well as the classical plate 
theory (CPT). The percentage discrepancy provided in front of each 
value [%] is calculated with reference to the 3-D elasticity. The provided 
numerical results based on the present model are computed for the two 
special cases: (i) setting the interlayer modulus to be equivalent to the 
transverse shear strains, while the number of constituting layers ap
proaches infinity; (ii) assuming the material transverse-shear-rigidity via 
tending the interlayer interaction modulus to infinity (i.e., perfectly 
bonded laminate).

The effect of the material’s transverse shear stiffness in the structural 
responses has been considered by setting the interlayer shear interaction 
modulus as (see Eq. (6) for the definition of the interlayer shear stresses): 

k* =
Gℓ

hℓ
=

Eℓ

2(1 + νℓ)hℓ
(58) 

and therefore, 

k
*
=

k*a2

nEℓhTot
=

1

2(1 + νℓ)h
2 (59) 

where h is the total thickness-to-length ratio, according to Eq. (57). It 
can be seen from Table 1 that for all cases, including various values of 
plates aspect ratio as well as different values of thickness-to-length ratio, 
ranging from thin to thick plates, there is excellent agreement between 
the buckling results predicted based on a special case of the present 
LPCP model and those of HSDTs reported from different sources. The 
comparative results in Table 1 reveal that there is also an excellent 
agreement between the buckling load predictions from both special 
cases of the proposed LPCP model and those reported in the literature for 
thick plates, based on the three-dimensional elasticity, as well as the 
classical plate theory (CPT). This strong correlation is evident for all 
cases with various values of plate thickness-to-length ratio as well as a 
wide range of plate aspect ratios, confirming the high accuracy and 
validity of the developed LPCPT and the associated analytical solution 
technique. It should also be pointed out that although the HSDT-based 
results from both sources and the present LPCP model, under the 
described special case, match for all cases, their discrepancy relative to 
the 3-D elasticity is expected to increase as the plate thickness-to-length 
ratio increases. This trend is observed to hold true except for the 
extremely thick case of hTot/b = 0.5 which may be attributed to the 
convergence level associated with the employed numerical technique of 
discrete singular convolutional in obtaining the reported 3-D value in 
[97].

To show the validity and merit of the present method for dynamic 
analyses, the first five natural frequency parameters of laminated rect
angular plates based on the LPCPT are tabulated in Table 2. The results 
are presented for laminated plates having different numbers of identical 
constituting layers, ranging from unity to asymptotically an infinite 
number of extremely thin layers, while the ratio of plates’ total thickness 
to length is kept constant. The dimensionless interlayer interaction 
modulus is numerically assigned special values according to Eq. (59) for 
comparisons with the conventional theories. The obtained LPCPT-based 
vibration results are compared with the results reported in the literature 
for the vibration of thick solid plates based on the 3-D elasticity theory 
and the simplest CPT, as the lower and upper bounds of the presented 
LPCPT results, respectively. The results are provided for two different 
values of the plate's aspect ratio. It can be observed from the results of 
Table 2 that there is a strong correlation between the frequency pa
rameters based on the 3-D elasticity and those obtained based on the 
special case of LPCPT, where the number of constituting layers tends to a 
large value. An excellent agreement can also be observed from the 
comparison of the CPT results and those of the LPCPT for comparable 
single-layer plates. The percentage discrepancies as low as below 1 % for 
each comparable case, reported in brackets in Table 2 confirm the high 
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accuracy and reliability of the present approach and the proposed so
lution technique for the vibration analysis of laminated plates.

To demonstrate the validity and efficiency of the developed 
approach for laminated panels composed of multiple layers with 
different levels of interlayer interaction, a special aluminium sheet- 
based impact-resistant lightweight panel was modelled using the finite 
element analysis (FEA) for the comparative study. The panels are 
composed of thin layers of Aluminium 2024-T2 [101], with the layer 
thickness of 1 mm and an overall planar dimension of 110× 165 mm2. 

Table 2 
The first five natural frequencies of rectangular plates based on both the classical plate theory (CPT) and the 3-D elasticity, in comparison with those corresponding 
deduced from some special cases of the present LPCP model. The percentage discrepancy given for each value [%] is calculated with respect to the reference values for 
each case: (CPT as the reference for the single-layer n = 1, and 3-D elasticity for multilayers theoretically consisting of an infinite no. of extremely-thin film layers). The 
provided numerical results based on the present model are computed for a special case in which the interlayer interaction modulus is set to be equivalent to the 

transverse shear strains (k = k*), while the number of constituting layers ranges from one to large values, tending to infinity (while the total thickness, hTot = nhℓ, is 
kept constant as the number of layers n, increases). The comparative results are available for the Poisson’s ratio νℓ = 0.3 and the overall plate thickness-to-length ratio 
hTot/a = 0.1.

η Method No. of constituting Layers ωhTot
̅̅̅̅̅̅̅̅̅̅̅̅̅
ρℓ/Gℓ

√
(Mode sequence)

1st 2nd 3rd 4th 5th

1 CPT [98] – 0.0955 1,1** 0.2360 1,2 0.3732 2,2 0.4629 1,3 0.5951 2,3

Present (k = k*) n = 1 0.0955 [0.0 %]† 0.2360 [0.0 %] 0.3732 [0.0 %] 0.4629 [0.0 %] 0.5951 [0.0 %]
n = 2 0.0932 0.2232 0.3441 0.4206 0.5303
n = 5 0.0930 0.2220 0.3409 0.4155 0.5216
n = 10 0.0930 0.2220 0.3407 0.4152 0.5210
n = 20 0.0930 0.2220 0.3406 0.4151 0.5208
n→∞ 0.0930 [0.2 %]†† 0.2220 [1.7 %] 0.3406 [0.4 %] 0.4151 [0.5 %] 0.5208 [0.6 %]

3-D Elasticity [99] – 0.0932 0.2260 0.3421 0.4171 0.5239
1/

̅̅̅
2

√ CPT [98] – 0.7180 1,1* 1.4273 1,2 2.1281 2,1 2.5908 1,3 2.8207 2,2

Present (k = k*) n = 1 0.7180 [0.0 %]† 1.4273 [0.0 %] 2.1281 [0.0 %] 2.5908 [0.0 %] 2.8207 [0.0 %]
n = 2 0.7046 1.3774 2.0227 2.4396 2.6443
n = 5 0.7036 1.3732 2.0131 2.4249 2.6267
n = 10 0.7036 1.3730 2.0125 2.4240 2.6256
n = 20 0.7036 1.3730 2.0124 2.4239 2.6254
n→∞ 0.7036 [0.1 %]†† 1.3730 [0.2 %] 2.0124 [0.3 %] 2.4238 [0.3 %] 2.6254 [0.3 %]

3-D Elasticity [100] – 0.704 1.376 2.018 2.431 2.634

*Equivalent k value for the interlayer modulus of k* = Gℓ/hℓ.
**No. of vibration modes’ half-waves along x and y directions.
†Percentage discrepancy with respect to CPT.
††Percentage discrepancy with respect to the 3-D Elasticity.

Table 3 
Mechanical and physical properties of the aluminium sheets Al 2024-T2 in the 
studied multilayer panels.

Property Young’s modulus 
[GPa]

Shear modulus 
[GPa]

Poisson’s ratio 
[-]

Density 
[Kg/m3]

​ 70.15 27.6 0.33 2780

Fig. 4. Variations of the first five natural frequency parameters of the four- and six-layer Al 2024-T3 panels vs. the dimensionless interlayer interaction parameter, 
predicted based on the present LPCPT as well as the 3-D FE simulations.
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Two different multilayer aluminium samples, composed of four and six 
sheets, bonded with soft adhesive films, are modelled and studied. The 
mechanical properties of the constituting Al 2024-T3 sheets [101] are 
given in Table 3.

The finite element modelling and analysis of the mentioned multi
layer plate samples were carried out using the commercially available 
software Abaqus/CAE (Dassault Systèmes) for the free vibration anal
ysis. Each of the bonded aluminium sheets was modelled by employing 
the continuum solid shell element type CSS8, an eight-node brick 
element, to achieve sufficiently accurate results in an efficient compu
tational time frame. Each aluminium sheet was assigned an isotropic 
linear elastic section, built up with the elastic property set, as given in 
Table 3. The adhesive bonding films at the interfaces were modelled 
using the three-dimensional (3-D) solid element type C3D8R, an eight- 
node hexahedral/brick element with reduced integration and 
enhanced hourglass control, and applying quadratic geometric order to 
achieve accurate results. A relatively soft-shear isotropic material with 
flexible values of the shear modulus was assigned, corresponding to 
different values of the interlayer interaction modulus. The adhesive- 
sheet coinciding surfaces were constrained via the tie constraint of the 
elements’ nodes. A double-sided bias-pattern fine mesh distribution was 
implemented for the through-depth element sizing using the structured 
technique, to achieve a denser mesh in the vicinity of the adhesive-sheet 
interfaces. This was applied to ensure that interaction effects are prop
erly captured, gaining accurate and reliable results.

Variations of the first five natural frequency parameters versus the 
dimensionless interlayer interaction parameter based on the present 
LPCP model are depicted in Fig. 4 for the described four- and six-layer 
aluminium sheet panels, in comparison with the simulation results 
from the conducted FEA. Excellent agreement between the simulation 
results and the predictions based on the LPCP model at different levels of 
interlayer interaction is evident for both examined multilayer panels. 
Such a strong correlation across all vibration modes confirms the high 
accuracy and validity of the proposed LPCPT and its associated analyt
ical solution technique. It can also be concluded from Fig. 4 that the 
extent of interlayer interaction has a more pronounced effect on the 
frequencies of panels composed of a greater number of constituent 
layers.

To visually elucidate the influence of partial interlayer interaction on 
the vibration modes of laminates, three-dimensional contours of the first 
five vibration modes of the four-layer AL 2024-T3 panel are illustrated in 
Fig. 5. The relative interlayer slips at different locations of the edges for 
the first two modes are shown.

A comprehensive set of dimensionless buckling load parameters (Ncr) 
of laminated partial-composite plates is tabulated in Table 4. These re
sults may serve as benchmark solutions for validating new solution ap
proaches and computational techniques based on the LPCP model in the 
future. The results of Table 4 are general in nature and are provided for 
various numbers of constituting layers (n) and different levels of inter
layer interaction, formulated via the nondimensional interlayer shear 
modulus (k = (a2k)/(nEhTot)). The presented dimensionless buckling 
results are presented for three different compressive edge-load cases: (i) 
mono-axial along x-axis; (ii) mono-axial along y-axis; and (iii) bi-axial 
compression.

The results are generalised with regard to any thickness-to-length 
ratios, and are given for different aspect ratios (η). The graphical 
mode-shape contours corresponding to each buckling case, as well as 
their associated number of half-waves along the two planar directions, 
are presented in the tables.

It can be observed from the results of Table 4 that the critical 
buckling load parameters of the partial composite plates, regardless of 
the number of layers n, approach a specific value (bolded) for each case 
when the interlayer interaction parameter k approaches infinity (i.e., the 
so-called full-composite state or perfect interfacial bonding). The 
mentioned special values are identical to the critical load parameters of 
single-layer plates (n = 1 in the tables) based on the classical plate 
theory (CPT). It can also be deduced from the results of Table 4 that the 
effect of the interlayer interaction parameter, k, is more dominant when 
the number of constituting layers of a plate increases. It can also be 
observed from the results of Table 4 that, the greater extent of interlayer 
interaction obviously causes a higher critical buckling load, for all plate 
and loading cases.

The first five frequency parameters (ω = ωa2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρℓhTot/D∞

√
) of lami

nated partial-composite plates, as benchmark vibration results for the 
established LPCPT, are tabulated in Table 5 for a wide range of numbers 

Fig. 5. Three-dimensional vibration mode-shapes of the four-layer AL 2024-T3 partial composite panel. The relative interlayer slips at different locations of the edges 
for the first two modes are illustrated.
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Table 4 
Dimensionless critical buckling loads (Ncr = a2Ncr/D∞) of laminated partial-composite plates with different aspect ratios (η), for various numbers of constituting layers 
(n), and different levels of interlayer interaction, formulated via the nondimensional interlayer shear modulus (k = (a2k)/(nEhTot)). The presented dimensionless 
benchmark buckling results are general in nature and are provided for three different compressive edge-load cases: (i) mono-axial along x-axis; (ii) mono-axial along y- 
axis; and (iii) bi-axial compression. The results are generalised with regard to any thickness-to-length ratios. The numbers of layers (n) are varied, while the total 
thickness-to-length ratio is kept constant. The buckling loads, for the case k→0, is reduced by the factor of 1/n2 compared to a corresponding perfectly bonded ideal 
case, as in the beam-case shown in [34].

(ξ1, ξ2) η =
a
b

No. of  
Layers (n)

Ncr = a2Ncr/D∞

k→0 k = 10− 4 k = 10− 2 k = 10− 1 k = 1.0 k = 10 k = 102 k = 104 k = 106 k→∞

Case i: (1,0) 
Mono-axial along x-axis 

1.0(cr. buckling mode:1,1) 1 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784
2 9.8696 9.8707 9.9784 10.9228 17.8473 33.1627 38.6968 39.4704 39.4783 39.4784
5 1.5791 1.5809 1.7529 3.2352 13.2998 32.5098 38.6424 39.4699 39.4783 39.4784
10 0.3948 0.3967 0.5894 2.2105 12.7938 32.4672 38.6407 39.4699 39.4783 39.4784
20 0.0987 0.1008 0.3027 1.9667 12.6761 32.4586 38.6405 39.4699 39.4783 39.4784
50 0.0158 0.0179 0.2238 1.9000 12.6439 32.4564 38.6405 39.4699 39.4783 39.4784
100 0.0039 0.0061 0.2127 1.8906 12.6393 32.4561 38.6405 39.4699 39.4783 39.4784
1000 <0.0001 0.0022 0.2091 1.8875 12.6378 32.4560 38.6405 39.4699 39.4783 39.4784
→∞ 0 0.0022 0.2090 1.8874 12.6377 32.4560 38.6405 39.4699 39.4783 39.4784

2/3(cr. buckling mode:1,1) 1 20.5921 20.5921 20.5921 20.5921 20.5921 20.5921 20.5921 20.5921 20.5921 20.5921
2 5.1480 5.1488 5.2265 5.8984 10.3687 18.0630 20.2955 20.5891 20.5921 20.5921
5 0.8237 0.8249 0.9489 1.9973 8.3784 17.8248 20.2752 20.5889 20.5921 20.5921
10 0.2059 0.2073 0.3460 1.4859 8.1666 17.8110 20.2746 20.5889 20.5921 20.5921
20 0.0515 0.0530 0.1980 1.3647 8.1177 17.8083 20.2746 20.5889 20.5921 20.5921
50 0.0082 0.0098 0.1574 1.3316 8.1043 17.8076 20.2746 20.5889 20.5921 20.5921
100 0.0021 0.0036 0.1517 1.3269 8.1024 17.8076 20.2746 20.5889 20.5921 20.5921
1000 <0.0001 0.0016 0.1498 1.3253 8.1018 17.8075 20.2746 20.5889 20.5921 20.5921
→∞ 0 0.0016 0.1498 1.3253 8.1018 17.8075 20.2746 20.5889 20.5921 20.5921

0.5(cr. buckling mode:1,1) 1 15.4213 15.4213 15.4213 15.4213 15.4213 15.4213 15.4213 15.4213 15.4213 15.4213
2 3.8553 3.8560 3.9232 4.4998 8.1475 13.7453 15.2285 15.4193 15.4212 15.4213
5 0.6169 0.6179 0.7251 1.6220 6.7846 13.5932 15.2154 15.4192 15.4212 15.4213
10 0.1542 0.1554 0.2752 1.2479 6.6429 13.5848 15.2151 15.4192 15.4212 15.4213
20 0.0386 0.0398 0.1650 1.1594 6.6103 13.5832 15.2150 15.4192 15.4212 15.4213
50 0.0062 0.0075 0.1348 1.1351 6.6014 13.5828 15.2150 15.4192 15.4212 15.4213
100 0.0015 0.0029 0.1305 1.1317 6.6001 13.5828 15.2150 15.4192 15.4212 15.4213
1000 <0.0001 0.0014 0.1291 1.1306 6.5997 13.5828 15.2150 15.4192 15.4212 15.4213
→∞ 0 0.0014 0.1291 1.1305 6.5997 13.5828 15.2150 15.4192 15.4212 15.4213

0.4(cr. buckling mode:1,1) 1 13.2805 13.2805 13.2805 13.2805 13.2805 13.2805 13.2805 13.2805 13.2805 13.2805
2 3.3201 3.3208 3.3831 3.9156 7.1918 11.9270 13.1263 13.2790 13.2805 13.2805
5 0.5312 0.5322 0.6316 1.4586 6.0744 11.8064 13.1159 13.2789 13.2805 13.2805
10 0.1328 0.1339 0.2449 1.1406 5.9596 11.7999 13.1156 13.2789 13.2805 13.2805
20 0.0332 0.0344 0.1503 1.0653 5.9333 11.7987 13.1156 13.2789 13.2805 13.2805
50 0.0053 0.0066 0.1244 1.0448 5.9261 11.7984 13.1156 13.2789 13.2805 13.2805
100 0.0013 0.0026 0.1207 1.0418 5.9251 11.7984 13.1156 13.2789 13.2805 13.2805
1000 <0.0001 0.0013 0.1195 1.0409 5.9247 11.7984 13.1156 13.2789 13.2805 13.2805
→∞ 0 0.0013 0.1195 1.0409 5.9247 11.7984 13.1156 13.2789 13.2805 13.2805

(ξ1, ξ2) η =
a
b

No. of  
Layers (n)

Ncr = a2Ncr/D∞

k→0 k = 10− 4 k = 10− 2 k = 10− 1 k = 1.0 k = 10 k = 102 k = 104 k = 106 k→∞

Case ii: (0,1) 
Mono-axial along y-axis 

1.0(cr. buckling mode:1,1) 1 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784
2 9.8696 9.8707 9.9784 10.9228 17.8473 33.1627 38.6968 39.4704 39.4783 39.4784
5 1.5791 1.5809 1.7529 3.2352 13.2998 32.5098 38.6424 39.4699 39.4783 39.4784
10 0.3948 0.3967 0.5894 2.2105 12.7938 32.4672 38.6407 39.4699 39.4783 39.4784
20 0.0987 0.1008 0.3027 1.9667 12.6761 32.4586 38.6405 39.4699 39.4783 39.4784
50 0.0158 0.0179 0.2238 1.9000 12.6439 32.4564 38.6405 39.4699 39.4783 39.4784
100 0.0039 0.0061 0.2127 1.8906 12.6393 32.4561 38.6405 39.4699 39.4783 39.4784
1000 <0.0001 0.0022 0.2091 1.8875 12.6378 32.4560 38.6405 39.4699 39.4783 39.4784
→∞ 0 0.0022 0.2090 1.8874 12.6377 32.4560 38.6405 39.4699 39.4783 39.4784

2/3(cr. buckling mode:1,2) 1 42.8368 42.8368 42.8368 42.8368 42.8368 42.8368 42.8368 42.8368 42.8368 42.8368
2 10.7092 10.7101 10.7943 11.5403 17.4504 34.0478 41.6708 42.8247 42.8367 42.8368
5 1.7135 1.7148 1.8494 3.0259 11.7582 33.0392 41.5877 42.8239 42.8367 42.8368
10 0.4284 0.4299 0.5808 1.8743 11.1005 32.9658 41.5849 42.8239 42.8367 42.8368
20 0.1071 0.1087 0.2672 1.5990 10.9467 32.9505 41.5845 42.8239 42.8367 42.8368
50 0.0171 0.0188 0.1807 1.5238 10.9045 32.9465 41.5845 42.8239 42.8367 42.8368
100 0.0043 0.0060 0.1685 1.5132 10.8985 32.9459 41.5845 42.8239 42.8367 42.8368
1000 <0.0001 0.0017 0.1644 1.5097 10.8965 32.9457 41.5845 42.8239 42.8367 42.8368
→∞ 0 0.0017 0.1644 1.5096 10.8965 32.9457 41.5845 42.8239 42.8367 42.8368

0.5(cr. buckling mode:1,2) 1 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784
2 9.8696 9.8707 9.9784 10.9228 17.8473 33.1627 38.6968 39.4704 39.4783 39.4784
5 1.5791 1.5809 1.7529 3.2352 13.2998 32.5098 38.6424 39.4699 39.4783 39.4784
10 0.3948 0.3967 0.5894 2.2105 12.7938 32.4672 38.6407 39.4699 39.4783 39.4784
20 0.0987 0.1008 0.3027 1.9667 12.6761 32.4586 38.6405 39.4699 39.4783 39.4784
50 0.0158 0.0179 0.2238 1.9000 12.6439 32.4564 38.6405 39.4699 39.4783 39.4784
100 0.0039 0.0061 0.2127 1.8906 12.6393 32.4561 38.6405 39.4699 39.4783 39.4784
1000 <0.0001 0.0022 0.2091 1.8875 12.6378 32.4560 38.6405 39.4699 39.4783 39.4784
→∞ 0 0.0022 0.2090 1.8874 12.6377 32.4560 38.6405 39.4699 39.4783 39.4784

(continued on next page)
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of identical constituent layers in the plates, while the total thickness is 
kept constant. The results also cover a wide ranges of interlayer inter
action level, and are provided for different values of plate aspect ratio 
(η), while the total thickness-to-length ratio of hTot = 0.1 is chosen 
corresponding to moderately-thick range of plate thickness. The number 
of vibration half-waves in each direction, along with the contours of 
vibration mode-shapes, is provided in the tables for each case.

It can be concluded from Table 5 that increasing the extent of 
interlayer interaction will cause an increase in the frequency parameters 
of the layered plates. However, that influence, similar to the buckling 
problem, is more pronounced when the number of constituting layers 
increases. As a special case of the present LPCP model, the frequency 
parameters of plates with different numbers of identical constituting 
layers approach a unique value corresponding to that of a single-layer 
based on the CPT, when the interlayer interaction parameter ap
proaches infinity (bolded data in Table 5).

To evaluate the validity and performance of the proposed LPCPT for 
laminated partial composite plates with non-identical layers, the nu
merical vibration results for cross-ply laminated partial-composite 

plates with the stacking sequence (0/90/90/0) are reported in 
Table 6, based on the direct solution approach described in Subsection 
3.2. A wide range of values in logarithmic scale is considered for the 
interlayer interaction modulus in dimensionless form, covering the full 
range from the lower-bound of the non-composite case (zero shear 
interaction) to the upper-bound corresponding to the fully composite 
case (perfect-bonding). Each ply is assumed to be orthotropic with two 
different modulus ratios: E‖/E⊥ = 10 and 20 (G12 = 0.5E⊥ and 
ν12 = 0.25). All plies have equal thickness, with a total thickness-to- 
length ratio of hTot = 0.1.

The frequency results accounting for the rotary inertia effects 
(arising from the in-plane translational-inertia contributions of all layers 
in a partial interaction) are presented in the table in comparison with 
those obtained when the mentioned effects are neglected. For each re
ported frequency, the corresponding vibration mode is indicated as a 
superscript denoting the number of half-waves in each orthogonal 
planar direction. For instance, a 23-mode represents two half-waves in 
the x - and three is in the y - direction.

It can be observed from Table 6 that, in the limiting special case of 

Table 4 (continued )

(ξ1, ξ2) η =
a
b 

No. of  
Layers (n) 

Ncr = a2Ncr/D∞

k→0 k = 10− 4 k = 10− 2 k = 10− 1 k = 1.0 k = 10 k = 102 k = 104 k = 106 k→∞

0.4(cr. buckling mode:1,3) 1 40.8053 40.8053 40.8053 40.8053 40.8053 40.8053 40.8053 40.8053 40.8053 40.8053
2 10.2013 10.2023 10.2936 11.0994 17.3054 33.1981 39.8254 40.7952 40.8052 40.8053
5 1.6322 1.6337 1.7795 3.0482 12.1606 32.3613 39.7562 40.7946 40.8052 40.8053
10 0.4081 0.4097 0.5732 1.9652 11.5745 32.3029 39.7540 40.7945 40.8052 40.8053
20 0.1020 0.1038 0.2753 1.7068 11.4376 32.2909 39.7537 40.7945 40.8052 40.8053
50 0.0163 0.0181 0.1933 1.6362 11.4001 32.2877 39.7536 40.7945 40.8052 40.8053
100 0.0041 0.0059 0.1817 1.6262 11.3948 32.2873 39.7536 40.7945 40.8052 40.8053
1000 <0.0001 0.0019 0.1779 1.6229 11.3930 32.2872 39.7536 40.7945 40.8052 40.8053
→∞ 0 0.0018 0.1778 0.1628 11.3930 32.2872 39.7536 40.7945 40.8052 40.8053

(ξ1, ξ2) η =
a
b

No. of  
Layers 
(n)

Ncr = a2Ncr/D∞

k→0 k = 10− 4 k = 10− 2 k = 10− 1 k = 1.0 k = 10 k = 102 k = 104 k = 106 k→∞

Case iii: (1,1)Bi-axial 
compression 

1.0(cr. buckling 
mode:1,1) 

1 19.7392 19.7392 19.7392 19.7392 19.7392 19.7392 19.7392 19.7392 19.7392 19.7392
2 4.9348 4.9353 4.9892 5.4614 8.9237 16.5813 19.3484 19.7352 19.7392 19.7392
5 0.7896 0.7904 0.8764 1.6176 6.6499 16.2549 19.3212 19.7349 19.7392 19.7392
10 0.1974 0.1984 0.2947 1.1052 6.3969 16.2336 19.3203 19.7349 19.7392 19.7392
20 0.0493 0.0504 0.1514 0.9833 6.3381 16.2293 19.3203 19.7349 19.7392 19.7392
50 0.0079 0.0090 0.1119 0.9500 6.3219 16.2282 19.3202 19.7349 19.7392 19.7392
100 0.0020 0.0031 0.1064 0.9453 6.3196 16.2281 19.3202 19.7349 19.7392 19.7392
1000 <0.0001 0.0011 0.1045 0.9437 6.3189 16.2280 19.3202 19.7349 19.7392 19.7392
→∞ 0 0.0011 0.1045 0.9437 6.3189 16.2280 19.3202 19.7349 19.7392 19.7392

2/3(cr. buckling 
mode:1,1) 

1 14.2561 14.2561 14.2561 14.2561 14.2561 14.2561 14.2561 14.2561 14.2561 14.2561
2 3.564 3.5646 3.6183 4.0835 7.1783 12.5052 14.0507 14.254 14.2561 14.2561
5 0.5702 0.5711 0.6569 1.3827 5.8004 12.3402 14.0367 14.2539 14.2561 14.2561
10 0.1426 0.1435 0.2395 1.0287 5.6538 12.3307 14.0363 14.2539 14.2561 14.2561
20 0.0356 0.0367 0.1371 0.9448 5.6200 12.3288 14.0363 14.2539 14.2561 14.2561
50 0.0057 0.0068 0.109 0.9219 5.6107 12.3284 14.0362 14.2539 14.2561 14.2561
100 0.0014 0.0025 0.105 0.9186 5.6094 12.3283 14.0362 14.2539 14.2561 14.2561
1000 <0.0001 0.0011 0.1037 0.9175 5.6090 12.3283 14.0362 14.2539 14.2561 14.2561
→∞ 0 0.0011 0.1037 0.9175 5.6090 12.3283 14.0362 14.2539 14.2561 14.2561

0.5(cr. buckling 
mode:1,1) 

1 12.3370 12.3370 12.3370 12.3370 12.3370 12.3370 12.3370 12.3370 12.3370 12.3370
2 3.0843 3.0848 3.1385 3.5998 6.5180 10.9962 12.1828 12.3354 12.3370 12.3370
5 0.4935 0.4944 0.5800 1.2976 5.4277 10.8745 12.1724 12.3353 12.3370 12.3370
10 0.1234 0.1244 0.2201 0.9983 5.3143 10.8678 12.1720 12.3353 12.3370 12.3370
20 0.0308 0.0319 0.1320 0.9275 5.2882 10.8666 12.1720 12.3353 12.3370 12.3370
50 0.0049 0.0060 0.1078 0.9081 5.2811 10.8663 12.1720 12.3353 12.3370 12.3370
100 0.0012 0.0023 0.1044 0.9053 5.2801 10.8662 12.1720 12.3353 12.3370 12.3370
1000 <0.0001 0.0011 0.1033 0.9044 5.2797 10.8662 12.1720 12.3353 12.3370 12.3370
→∞ 0 0.0011 0.1033 0.9044 5.2797 10.8662 12.1720 12.3353 12.3370 12.3370

0.4(cr. buckling 
mode:1,1) 

1 11.4487 11.4487 11.4487 11.4487 11.4487 11.4487 11.4487 11.4487 11.4487 11.4487
2 2.8622 2.8627 2.9164 3.3755 6.1998 10.2819 11.3158 11.4474 11.4487 11.4487
5 0.4579 0.4588 0.5445 1.2574 5.2366 10.1779 11.3068 11.4473 11.4487 11.4487
10 0.1145 0.1155 0.2112 0.9833 5.1376 10.1723 11.3065 11.4473 11.4487 11.4487
20 0.0286 0.0297 0.1296 0.9184 5.1149 10.1713 11.3065 11.4473 11.4487 11.4487
50 0.0046 0.0056 0.1072 0.9007 5.1087 10.1711 11.3065 11.4473 11.4487 11.4487
100 0.0011 0.0022 0.1041 0.8981 5.1078 10.1710 11.3065 11.4473 11.4487 11.4487
1000 <0.0001 0.0011 0.1031 0.8973 5.1075 10.1710 11.3065 11.4473 11.4487 11.4487
→∞ 0 0.0011 0.1030 0.8973 5.1075 10.1710 11.3065 11.4473 11.4487 11.4487
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Table 5 
First five dimensionless frequencies (ω = ωa2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρℓhTot/D∞

√
) of laminated partial-composite plates with different aspect ratios (η), for various numbers of constituting 

layers (n) while the total thickness is kept constant. The results are presented for different levels of interlayer interaction, formulated via the nondimensional interlayer 
shear modulus (k = (a2k)/(nEhTot)). The given dimensionless benchmark vibration results are general in nature and are provided for the total thickness-to-length ratio 
hTot = 0.1. The number of half-waves along the two planar directions for each vibration mode-shape is provided. The numbers of layers (n) are varied, while the total 
thickness-to-length ratio is kept constant.

η =
a
b

Mode sequence No. of Layers (n) ω = ωa2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρℓhTot/D∞

√

k→0 k = 10− 4 k = 10− 2 k = 10− 1 k = 1.0 k = 10 k = 102 k = 104 k = 106 k→∞

1.0 1st(mode: 1,1) 1 19.5788 19.5788 19.5788 19.5788 19.5788 19.5788 19.5788 19.5788 19.5788 19.5788
2 9.8494 9.8499 9.9035 10.3615 13.2389 17.9860 19.3901 19.5769 19.5788 19.5788
5 3.9465 3.9487 4.1580 5.6487 11.4444 17.8130 19.3769 19.5768 19.5788 19.5788
10 1.9738 1.9787 2.4117 4.6703 11.2266 17.8017 19.3765 19.5768 19.5788 19.5788
100 0.1974 0.2455 1.4489 4.3195 11.1591 17.7988 19.3765 19.5768 19.5788 19.5788
1000 0.0197 0.1478 1.4364 4.3159 11.1585 17.7988 19.3765 19.5768 19.5788 19.5788
→∞ 0 0.1465 1.4363 4.3159 11.1585 17.7988 19.3765 19.5768 19.5788 19.5788

2nd(mode: 1,2) 1 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636
2 24.5481 24.5487 24.6023 25.0777 28.8894 40.7658 47.2829 48.3523 48.3635 48.3636
5 9.8615 9.8637 10.0769 11.8041 21.3011 39.5686 47.1998 48.3515 48.3635 48.3636
10 4.9338 4.9387 5.4010 8.4324 20.1710 39.4642 47.1965 48.3515 48.3635 48.3636
100 0.4935 0.5448 2.3402 7.0335 19.8084 39.4342 47.1959 48.3515 48.3635 48.3636
1000 0.0493 0.2370 2.2901 7.0185 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636
→∞ 0 0.2318 2.2896 7.0184 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636

3rd(mode: 2,1) 1 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636
2 24.5481 24.5487 24.6023 25.0777 28.8894 40.7658 47.2829 48.3523 48.3635 48.3636
5 9.8615 9.8637 10.0769 11.8041 21.3011 39.5686 47.1998 48.3515 48.3635 48.3636
10 4.9338 4.9387 5.4010 8.4324 20.1710 39.4642 47.1965 48.3515 48.3635 48.3636
100 0.4935 0.5448 2.3402 7.0335 19.8084 39.4342 47.1959 48.3515 48.3635 48.3636
1000 0.0493 0.2370 2.2901 7.0185 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636
→∞ 0 0.2318 2.2896 7.0184 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636

4th(mode: 2,2) 1 76.4808 76.4808 76.4808 76.4808 76.4808 76.4808 76.4808 76.4808 76.4808 76.4808
2 39.1577 39.1582 39.2117 39.6906 43.8289 60.8098 73.9324 76.4534 76.4805 76.4808
5 15.7706 15.7728 15.9869 17.7916 29.2547 57.7403 73.7194 76.4517 76.4805 76.4808
10 7.8931 7.8980 8.3687 11.7494 26.8192 57.4372 73.7096 76.4516 76.4805 76.4808
100 0.7896 0.8419 3.0069 8.9958 26.0167 57.3472 73.7075 76.4516 76.4805 76.4808
1000 0.0790 0.3038 2.9057 8.9649 26.0088 57.3463 73.7075 76.4516 76.4805 76.4808
→∞ 0 0.2933 2.9046 8.9646 26.0087 57.3463 73.7075 76.4516 76.4805 76.4808

5th(mode: 1,3) 1 94.8717 94.8717 94.8717 94.8717 94.8717 94.8717 94.8717 94.8717 94.8717 94.8717
2 48.8484 48.8489 48.9024 49.3819 53.6384 73.2458 91.0924 94.8305 94.8713 94.8717
5 19.7068 19.7090 19.9234 21.7560 34.1188 68.5373 90.7603 94.8279 94.8712 94.8717
10 9.8656 9.8705 10.3441 13.8714 30.6648 68.0460 90.7438 94.8278 94.8712 94.8717
100 0.9870 1.0396 3.3938 10.1051 29.5079 67.8984 90.7401 94.8278 94.8712 94.8717
1000 0.0987 0.3425 3.2527 10.0617 29.4964 67.8969 90.7401 94.8278 94.8712 94.8717
→∞ 0 0.3280 3.2513 10.0612 29.4963 67.8969 90.7401 94.8278 94.8712 94.8717

η =
a
b

Mode sequence No. of Layers (n) ω = ωa2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρℓhTot/D∞

√

k→0 k = 10− 4 k = 10− 2 k = 10− 1 k = 1.0 k = 10 k = 102 k = 104 k = 106 k→∞

2/3 1st(mode: 1,1) 1 14.1722 14.1722 14.1722 14.1722 14.1722 14.1722 14.1722 14.1722 14.1722 14.1722
2 7.0861 7.1180 7.17152 7.61847 10.0959 13.2909 14.0721 14.1711 14.1722 14.1722
5 2.8344 2.8527 3.05951 4.43868 9.0837 13.2048 14.0652 14.1711 14.1721 14.1722
10 1.4172 1.4304 1.84778 3.82921 8.9691 13.1998 14.0650 14.1711 14.1721 14.1722
100 0.1417 0.1890 1.22348 3.61865 8.9341 13.1986 14.0650 14.1711 14.1721 14.1722
1000 0.0142 0.1253 1.21585 3.61653 8.9337 13.1986 14.0650 14.1711 14.1721 14.1722
→∞ 0 0.1245 1.21577 3.61651 8.9337 13.1986 14.0650 14.1711 14.1721 14.1722

2nd(mode: 1,2) 1 27.1077 27.1077 27.1077 27.1077 27.1077 27.1077 27.1077 27.1077 27.1077 27.1077
2 13.6688 13.6693 13.7230 14.1892 17.4418 24.2629 26.7520 27.1040 27.1076 27.1077
5 5.4806 5.4828 5.6939 7.2830 14.3472 23.9138 26.7265 27.1038 27.1076 27.1077
10 2.7412 2.7462 3.1920 5.7339 13.9438 23.8883 26.7256 27.1038 27.1076 27.1077
100 0.2742 0.3237 1.7193 5.1526 13.8175 23.8814 26.7255 27.1038 27.1076 27.1077
1000 0.0274 0.1749 1.6986 5.1466 13.8162 23.8813 26.7255 27.1038 27.1076 27.1077
→∞ 0 0.1727 1.6984 5.1465 13.8162 23.8813 26.7255 27.1038 27.1076 27.1077

3rd(mode: 2,1) 1 43.0845 43.0845 43.0845 43.0845 43.0845 43.0845 43.0845 43.0845 43.0845 43.0845
2 21.8329 21.8335 21.8871 22.3611 26.0739 36.8043 42.2171 43.0755 43.0844 43.0845
5 8.7666 8.7688 8.9816 10.6850 19.6858 35.8654 42.1514 43.0749 43.0844 43.0845
10 4.3857 4.3906 4.8502 7.7871 18.7602 35.7863 42.1489 43.0749 43.0844 43.0845
100 0.4386 0.4897 2.1992 6.6107 18.7602 35.7637 42.1485 43.0749 43.0844 43.0845
1000 0.0439 0.2229 2.1573 6.5982 18.4620 35.7635 42.1485 43.0749 43.0844 43.0845
→∞ 0 0.2185 2.1569 6.5981 18.4620 35.7635 42.1485 43.0749 43.0844 43.0845

4th(mode: 1,3) 1 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636
2 24.5481 24.5487 24.6023 25.0777 28.8894 40.7658 47.2829 48.3523 48.3635 48.3636
5 9.8615 9.8637 10.077 11.8041 21.3011 39.5686 47.1998 48.3515 48.3635 48.3636
10 4.9338 4.9387 5.4010 8.4324 20.1710 39.4642 47.1965 48.3515 48.3635 48.3636
100 0.4935 0.5448 2.3402 7.0335 19.8084 39.4342 47.1959 48.3515 48.3635 48.3636
1000 0.0493 0.2370 2.2902 7.0185 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636
→∞ 0 0.2318 2.2896 7.0184 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636

(continued on next page)
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the LPCPT in which the interlayer interaction modulus approaches in
finity, and the influence of the rotary inertia is excluded, the predicted 
dimensionless frequencies show excellent agreement with those re
ported in [102] based on the classical laminated plate theory (CLPT). As 
expected, the natural frequencies of the laminated plate decrease with a 
decrease in the interlayer interaction modulus. Moreover, the influence 
of the rotary inertia becomes more pronounced as the interlayer inter
action modulus increases. It can be deduced that there is a “partial rotary 
inertia” effect arising from the in-plane translational-inertia contribu
tions of all the layers when the shear interaction at the interfaces is not 
perfect. It is also evident from Table 6 that the additional flexibility in 
the displacements of a laminate associated with the rotary motions in 
the vibration reduces the natural frequencies of the laminates.

The results of Table 6 reveal that not only variations of orthotropic 
material properties of constituting layers, but also the extent of shear 
interaction at the interfaces of a laminate can significantly affect the 
vibration mode sequence, leading to vibration mode shifting. To gain a 
clearer understanding and insight into these effects and how the inter
layer slip modulus influences the vibration mode sequences, the shifts in 
the modes due to variations in the interlayer shear interaction modulus 
are exhibited via upward and downward arrows relative to the perfectly 

bonded (full-composite) case. Each arrow indicates one instance of 
mode shifting compared with an identical laminate case but with the 
corresponding idealised case based on the classical laminated theory 
(CLPT). For instance, two arrows next to a frequency signifies that the 
associated vibration mode has shifted twice as a result of the specified 
level of interlayer interaction.

5. Conclusions

This paper has introduced a new class of layered plate theory that 
incorporates the effects of partial-interaction imperfection at the 
constituting layers’ interfaces. The proposed Laminated Partial- 
Composite Plate Theory (LPCPT), as an extension of the simplest clas
sical laminated plate theory (CLPT), includes the interlayer interaction 
effects in the form of out-of-plane shear stresses based on a shear spring 
model in terms of the relative displacements/slips at the interfaces. 
Exact analytical solution schemes were introduced for the free vibra
tions and buckling of laminated partial composite plates with identical 
orthotropic layers under different compressive in-plane loading, to show 
the merit and reliability of the proposed LPCPT. The introduced 
analytical solutions were shown to be general and flexible with regard to 

Table 5 (continued )

η =
a
b 

Mode sequence No. of Layers (n) ω = ωa2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρℓhTot/D∞

√

k→0 k = 10− 4 k = 10− 2 k = 10− 1 k = 1.0 k = 10 k = 102 k = 104 k = 106 k→∞

5th(mode: 2,2) 1 55.7159 55.7159 55.7159 55.7159 55.7159 55.7159 55.7159 55.7159 55.7159 55.7159
2 28.3443 28.3449 28.3985 28.8752 32.7989 46.1629 54.3040 55.7010 55.7158 55.7159
5 11.3941 11.3962 11.6098 13.3637 23.4705 44.5552 54.1929 55.7000 55.7158 55.7159
10 5.7011 5.7060 6.1713 9.3153 22.0323 44.4093 54.1882 55.7000 55.7158 55.7159
100 0.5702 0.6219 2.5265 7.5881 21.5676 44.3669 54.1874 55.7000 55.7158 55.7159
1000 0.0570 0.2556 2.4643 7.5694 21.5630 44.3665 54.1874 55.7000 55.7158 55.7159
→∞ 0 0.2492 2.4637 7.5692 21.5629 44.3665 54.1874 55.7000 55.7158 55.7159

η =
a
b

Mode sequence No. of Layers (n) ω = ωa2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ρℓhTot/D∞

√

k→0 k = 10− 4 k = 10− 2 k = 10− 1 k = 1.0 k = 10 k = 102 k = 104 k = 106 k→∞

0.4 1st(mode: 1,1) 1 11.3945 11.3945 11.3945 11.3945 11.3945 11.3945 11.3945 11.3945 11.3945 11.3945
2 5.7176 5.7181 5.7715 6.2091 8.4104 10.8079 11.3294 11.3939 11.3945 11.3945
5 2.2893 2.2915 2.4962 3.7933 7.7346 10.7541 11.3250 11.3938 11.3945 11.3945
10 1.1448 1.1497 1.5547 3.3549 7.6618 10.7512 11.3248 11.3938 11.3945 11.3945
100 0.1145 0.1596 1.0917 3.2065 7.6397 10.7505 11.3248 11.3938 11.3945 11.3945
1000 0.0114 0.1121 1.0862 3.2050 7.6395 10.7505 11.3248 11.3938 11.3945 11.3945
→∞ 0 0.1115 1.0861 3.2050 7.6395 10.7505 11.3248 11.3938 11.3945 11.3945

2nd(mode: 1,2) 1 16.0781 16.0781 16.0781 16.0781 16.0781 16.0781 16.0781 16.0781 16.0781 16.0781
2 8.0795 8.0800 8.1335 8.5852 11.2209 14.9658 15.9498 16.0768 16.0781 16.0781
5 3.2364 3.2385 3.4464 4.8706 9.9504 14.8528 15.9410 16.0767 16.0781 16.0781
10 1.6185 1.6234 2.0473 4.1359 9.8025 14.8459 15.9407 16.0767 16.0781 16.0781
100 0.1619 0.2090 1.3069 3.8787 9.7571 14.8442 15.9407 16.0767 16.0781 16.0781
1000 0.0162 0.1336 1.2977 3.8761 9.7567 14.8442 15.9407 16.0767 16.0781 16.0781
→∞ 0 0.1326 1.2976 3.8760 9.7567 14.8442 15.9407 16.0767 16.0781 16.0781

3rd(mode: 1,3) 1 23.8438 23.8438 23.8438 23.8438 23.8438 23.8438 23.8438 23.8438 23.8438 23.8438
2 12.0108 12.0114 12.0650 12.5282 15.6372 21.5757 23.5666 23.8409 23.8437 23.8438
5 4.8144 4.8166 5.0270 6.5791 13.1318 21.3110 23.5469 23.8407 23.8437 23.8438
10 2.4079 2.4128 2.8540 5.2842 12.8143 21.2924 23.5463 23.8407 23.8437 23.8438
100 0.2408 0.2898 1.6069 4.8073 12.7153 21.2875 23.5462 23.8407 23.8437 23.8438
1000 0.0241 0.1636 1.5900 4.8024 12.7143 21.2875 23.5462 23.8407 23.8437 23.8438
→∞ 0 0.1618 1.5898 4.8024 12.7143 21.2875 23.5462 23.8407 23.8437 23.8438

4th(mode: 1,4) 1 34.6324 34.6324 34.6324 34.6324 34.6324 34.6324 34.6324 34.6324 34.6324 34.6324
2 17.5040 17.5045 17.5582 18.0290 21.5371 30.2850 34.0615 34.6265 34.6324 34.6324
5 7.0230 7.0252 7.2373 8.8907 16.9649 29.6945 34.0195 34.6261 34.6324 34.6324
10 3.5131 3.5180 3.9717 6.7249 16.3352 29.6479 34.0180 34.6261 34.6324 34.6324
100 0.3514 0.4018 1.9573 5.8793 16.1361 29.6349 34.0177 34.6261 34.6324 34.6324
1000 0.0351 0.1987 1.9273 5.8705 16.1341 29.6348 34.0177 34.6261 34.6324 34.6324
→∞ 0 0.1956 1.9270 5.8704 16.1341 29.6348 34.0177 34.6261 34.6324 34.6324

5th(mode: 2,1) 1 40.3727 40.3727 40.3727 40.3727 40.3727 40.3727 40.3727 40.3727 40.3727 40.3727
2 20.4415 20.4421 20.4957 20.9689 24.6232 34.7379 39.6065 40.3647 40.3726 40.3727
5 8.2059 8.2081 8.4207 10.1099 18.8330 33.9196 39.5491 40.3642 40.3726 40.3727
10 4.1051 4.1100 4.5679 7.4507 18.0068 33.8519 39.5469 40.3642 40.3726 40.3727
100 0.4106 0.4615 2.1240 6.3841 17.7439 33.8327 39.5465 40.3642 40.3726 40.3727
1000 0.0411 0.2154 2.0861 6.3728 17.7413 33.8325 39.5465 40.3642 40.3726 40.3727
→∞ 0 0.2114 2.0857 6.3727 17.7413 33.8325 39.5465 40.3642 40.3726 40.3727
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Table 6 

Dimensionless frequencies (ω = ω(b2/π2)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρhTot/D(∞)

22

√

) of cross-ply laminated partial-composite plates with stacking sequence (0/90/90/0) for different levels of the interlayer partial interaction modulus. Each ply is 

orthotropic with two different modulus ratios: E‖/E⊥ = 10 and 20 (G12 = 0.5E⊥ and ν12 = 0.25). All plies are of equal thickness, with a total thickness-to-length ratio hTot = 0.1. The frequency results accounting for the 
rotary inertia effects (arising from the in-plane translational-inertia contributions of each layer) are presented in comparison with those obtained when those effects are neglected. The number of half-waves along the two 
planar directions for each vibration mode is provided. Mode shifting due to the changes in the interlayer interaction level is indicated for each case with arrows, with reference to the perfectly bonded (full-composite) 
cases.

(E‖/E⊥)
* Mode sequence Rotary Inertia Effects ω = (ωa2/hTot)

̅̅̅̅̅̅̅̅̅̅̅̅̅

ρℓ/E*
⊥

√

k→0 k = 10− 4 k = 10− 2 k = 10− 1 k = 1.0 k = 10 k = 102 k = 104 k = 106 k→∞ CLPT† [102]

10 1st Included 0.629511 0.629511 0.631211 0.646111 0.770111 1.332511 2.173211 2.494711 2.498811 2.498911 –
Neglected 0.629811 0.629911 0.631511 0.646411 0.770611 1.334711 2.184911 2.515011 2.519311 2.519311 2.51911

2nd Included 1.742112 1.742112 1.743621 1.757221 1.885821 2.772721 4.437412 4.881012 4.886312 4.886412 –
Neglected 1.744312 1.744312 1.745821 1.759521 1.888321 2.778021 4.501812 4.979912 4.985812 4.985912 4.98612

3rd Included 1.742121 1.742121 1.745112 1.772112 2.002212 3.050312 5.543021 8.289621 8.344621 9.404113 –
Neglected 1.744321 1.744321 1.747412 1.774312 2.005112 3.063612 5.577321 8.454421 8.514421 9.783213 9.78313

4th Included 2.514222 2.514222 2.517522 2.547622 2.819222 4.377622 7.753622 9.391213 9.404013 8.345221 –
Neglected 2.519322 2.519422 2.522722 2.552822 2.825222 4.396722 7.881022 9.767913 9.783113 8.515021 8.51521

5th Included 3.721813 3.721913 3.726113 3.764013 4.100013 5.792313 8.392113 9.731122 9.761022 9.761322 –
Neglected 3.731413 3.731413 7.735713 3.773713 4.111213 5.836113 8.619313 10.042922 10.077022 10.07722 10.07722

20 1st Included 0.659311 0.659311 0.660311 0.669311 0.747811 1.166911 2.069811 2.608611 2.616911 2.617011 –
Neglected 0.659611 0.659611 0.660611 0.669611 0.748211 1.168711 2.079211 2.629711 2.638311 2.638411 2.63811

2nd Included 1.865812 1.865821 1.866721 1.874821 1.952221 2.547221 4.146012 4.809812 4.818912 4.819012 –
Neglected 1.868212 1.868221 1.869121 1.877221 1.954821 2.551921 4.199612 4.907112 4.917012 4.917112 4.91712

4th Included 1.865821 1.865912 1.867612 1.883612 2.024012 2.754612 4.986421 9.048221 9.166921 9.168121 –
Neglected 1.868221 1.868212 1.870012 1.886012 2.026912 2.766012 5.010121 9.224421 9.353421 9.354721 9.35421

3rd Included 2.633022 2.633022 2.635022 2.653222 2.821422 3.905122 7.108322 9.240713 9.263413 9.263613 –
Neglected 2.638422 2.638422 2.640422 2.658622 2.827522 3.921722 7.204622 9.610413 9.636813 9.637013 9.63713

5th Included 4.034413 4.034413 4.036913 4.059013 4.259413 5.375413 7.771813 10.16222 10.222022 10.22322 –
Neglected 4.044813 4.044813 4.047313 4.069513 4.271113 5.414813 7.959913 10.48522 10.552922 10.55422 10.55422

*E‖ and E⊥ are the on-axis and off-axis moduli of elasticity, respectively.
†Classical Laminated Plate Theory (CLPT).
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the number of constituting layers, unlike any other studies in the liter
ature. Laminated plates with non-identical layers were also treated via 
direct analytical solution alternatives for laminated plates with a spec
ified number of constituent layers based on the proposed LPCPT. It was 
shown that, for a special case of the present LPCP mode, there is an 
excellent agreement between the predicted critical buckling loads, as 
well as the predicted vibration frequencies, and those reported in the 
literature for thick plates based on both the three-dimensional elasticity 
and Reddy’s higher-order shear deformation theory (HSDT). It was 
demonstrated how the critical buckling loads and the natural vibration 
frequencies are degraded from those predicted based on classical plate 
theory with perfect-bonding ideal assumptions, considering different 
extents of interlayer partial interaction. It was concluded that the in
fluence of the interlayer interaction parameter on the critical buckling 
loads and the natural vibration frequencies is more pronounced when 
the number of constituting layers increases. It was also concluded that 
not only variations of orthotropic material properties of constituent 
layers, but also the extent of shear interaction at the interfaces of a 
laminate can significantly affect the vibration mode sequence, leading to 
vibration mode shifting.

The introduced Laminated Partial-Composite Plate Theory (LPCPT) 
provides a foundational framework for a potential series of refined ex
tensions based on different shear-deformable kinematic models (ranging 
from Mindlin-Reissner to higher-order models) for internal transverse 
shear deformations at each layer. Moreover, the LPCPT may provide a 

framework for future developments of laminated partial-composite shell 
theories based on different kinematic models. The class of LPCPT and its 
extensions may also be employed for other types of constituent materials 
(e.g., functionally-graded materials (FGMs)), different boundary con
ditions and loading scenarios, and applied to a wide variety of static and 
dynamic problems in the future.
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Appendix A 

Details on the proposed solution (29) for the displacement components for the buckling of laminated composite plates based on the established 
LPCP model are presented here.

To exactly satisfy the boundary conditions (28a),b) with regard to the applied compressive edge load terms, while having it mathematically 
possible to fulfil the set of governing equations (21a)-g), the first few terms of a truncated polynomial series with unknown coefficients may be 
superimposed to the standard Navier-type solution. We examine a possible solution where the highest order of the mentioned truncated polynomial 
series is lower than the highest order of the partial derivatives of the in-plane displacement components (i.e., 2nd order), as follows 
⎧
⎪⎪⎨

⎪⎪⎩

u0,i = C(u)
0,i + C(u)

1,i x + U0,icos(αm1x)sin(βm2y), i ∈ {1,2, ..., n}

v0,i = C(v)
0,i + C(v)

1,i y + V0,isin(αm1x)cos(βm2y), i ∈ {1,2, ..., n}
w = W0sin(αm1x)sin(βm2y)

(A-1) 

where C(u)
0,i , C

(u)
1,i , C

(v)
0,i , and C(v)

1,i are some unknown coefficients to be determined. It can be demonstrated that all terms related to the considered 
truncated polynomials vanish upon substitution of Eq. (A-1) into the set of governing equations (21a)-g) under the assumption of identical constituting 
layers of a laminate. Using the definition of the stress resultants by Eqs. (18) and (19), and the in-plane load distribution assumption (32a,b), the 
boundary conditions (28a),b) can be rewritten as,at x = 0,a :
{

w = 0
∂2w/∂x2 = 0 

⎧
⎪⎨

⎪⎩

A11,i
∂u0,i

∂x
+ A12,i

∂v0,i

∂y
= − N̂x,i, i ∈ {1,2, ..., n}

v0,i = 0, i ∈ {1,2, ..., n}

and at y = 0,b :
{

w = 0
∂2w/∂y2 = 0 

⎧
⎪⎨

⎪⎩

A12,i
∂u0,i

∂x
+ A22,i

∂v0,i

∂y
= − N̂y,i, i ∈ {1,2, ..., n}

u0,i = 0, i ∈ {1,2, ..., n}

The displacement components expressed by Eq. (A-1) inherently satisfy the boundary conditions defined by Eqs. (A-2a) and (A-3a). Upon 
substituting Eq. (A-1) into the first of the boundary equations (A-2b) and (A-3b), it follows that these conditions hold if: 

A11,iC(u)
1,i + A12,iC(v)

1,i = − N̂x,i

A12,iC(u)
1,i + A22,iC(v)

1,i = − N̂y,i
(A-4) 
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Solving the above set of algebraic equations and replacing the definition of the axial stiffnesses Ars,i (r, s ∈ {1,2}) from Eq. (12) yields: 

C(u)
1,i =

A12,ℓ N̂y,i − A22,ℓ N̂x,i

A11,ℓA22,ℓ − A2
12,ℓ

= −
1

Ex,ihi

(
N̂x,i − νxy,i N̂y,i

)

C(v)
1,i =

A12,ℓ N̂x,i − A11,ℓ N̂y,i

A11,ℓA22,ℓ − A2
12,ℓ

= −
1

Ey,ihi

(
N̂y,i − νyx,i N̂x,i

)
(A-5) 

For a plate subjected to axial compressive loading on a pair of parallel edges, the displacement conditions by the second of Eqs. (A-2b) and (A-3b) will 
be fulfilled at the middle of the plates’ loaded parallel edges; i.e., 

at x = a/2 :
{
u0,i = 0, i ∈ {1,2, ..., n} (A-6a) 

at y = b/2 :
{
v0,i = 0, i ∈ {1,2, ..., n} (A-6b) 

Applying the conditions (A-6a,b) using Eqs. (A-1) and (A-5), the remaining unknown coefficients are determined as follows, 

C(u)
0,i = − C(u)

1,i a/2

C(v)
0,i = − C(v)

1,i b/2
(A-7) 

and consequently, 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u0,i =
1

Ex,ℓhℓ

(
N̂x,i − νxy,ℓ N̂y,i

)
(a/2 − x) + U0,icos(αm1x)sin(βm2y), i ∈ {1,2, ..., n}

v0,i =
1

Ey,ℓhℓ

(
N̂y,i − νyx,ℓ N̂x,i

)
(b/2 − y) + V0,isin(αm1x)cos(βm2y), i ∈ {1,2, ..., n}

w = W0sin(αm1x)sin(βm2y)

(A-8) 

Appendix B 

Details on the solution for the set of difference equations (31a),b) are presented here. We apply a change of variable for the coefficients of the set of 
in-plane displacement components U0,i and V0,i, i ∈ {1,2, ...,N} in Eqs. (31a),b) in the form: 
{

U0,i = cuλi,

V0,i = cvλi, i ∈ {1,2, ...,N}
(B-1) 

Substituting Eq. (B-1) into the set of difference Eqs. (31a),b), they can be expressed as 
⎡

⎢
⎣

λ2 −
(

cm12
11,ℓ/k + 2

)
λ + 1 −

(
cm12

12,ℓ/k
)

λ

−
(

cm12
12,ℓ/k

)
λ λ2 −

(
cm12

22,ℓ/k + 2
)

λ + 1

⎤

⎥
⎦

{
cu
cv

}

=

{
0
0

}

(B-2) 

in which 

cm12
11,ℓ = α2

m1A11,ℓ + β2
m2A66,ℓ

cm12
22,ℓ = α2

m1A66,ℓ + β2
m2A22,ℓ

cm12
12,ℓ = αm1βm2(A12,ℓ + A66,ℓ)

(B-3) 

The unknown parameter λ in Eqs. (B-1) can be determined as roots of a characteristic equations, obtained from applying a non-trivial solution to Eq. 
(B-2). Consequently, the characteristic equation can be expressed as 

λ4 −
1
k

(
cm12

11,ℓ + cm12
22,ℓ + 4k

)
λ3 +

1
k2

[

cm12
11,ℓcm12

22,ℓ + 2k
(

cm12
11,ℓ + cm12

22,ℓ

)
−
(

cm12
12,ℓ

)2
+ 4k2

]

λ2 −
1
k

(
cm12

11,ℓ + cm12
22,ℓ + 4k

)
λ+1 = 0 (B-4) 

The polynomial Eq. (B-4), upon factorization, may be represented in the following form 
(
λ2 − 2Υ1λ + 1

)(
λ2 − 2Υ2λ + 1

)
= 0 (B-5) 

where 
{

Υ1
Υ2

}

= 1+
1
4k

(

cm12
11,ℓ + cm12

22,ℓ ∓

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(cm12
11,ℓ − cm12

22,ℓ)
2
+ 4(cm12

12,ℓ)
2

√ )

(B-6) 
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Assuming any of the Υ coefficients in Eq. (B-5) in a change of variables to be equivalent to coshθ, the following polynomial equation can be deduced: 

λ2 − 2(coshθ)λ+1 = 0 (B-7) 

which yields 

λ1,2 = coshθ ±
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
cosh2θ − 1

√
= coshθ ± sinhθ (B-8) 

Substituting Eq. (B-8) into Eq. (B-1) yields 
{

U0,i = c1Ueiθ + c2Uλ− iθ,

V0,i = c1Veiθ + c1Vλ− iθ, i ∈ {1,2, ...,N}
(B-9) 

or equivalently: 
{

U0,i = χ1Ucoshiθ + χ2Usinhiθ,
V0,i = χ1Vcoshiθ + χ2Vsinhiθ, i ∈ {1,2, 3, ..., n} (B-10) 

Appendix C 

The critical buckling loads of the laminated partial-composite plate are extracted from the following determinant equations: 
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

(
cm12

11 +k
)
coshθ− kcosh2θ

(
cm12

11 +k
)
sinhθ− ksinh2θ cm12

12 coshθ cm12
12 sinhθ − αm1hℓk

cm12
12 coshθ cm12

12 sinhθ
(
cm12

22 +k
)
coshθ− kcosh2θ

(
cm12

22 +k
)
sinhθ− ksinh2θ − βm2hℓk

(
cm12

11 +k
)
coshnθ

− kcosh[(n− 1)θ]
(
cm12

11 +k
)
sinhnθ− ksinh[(n− 1)θ] cm12

12 coshnθ cm12
12 sinhnθ αm1hℓk

cm12
12 coshnθ cm12

12 sinhnθ
(
cm12

22 +k
)
coshnθ− kcosh[(n− 1)θ]

(
cm12

22 +k
)
sinhnθ− ksinh[(n− 1)θ] βm2hℓk

αm1(coshnθ− coshθ) αm1(sinhnθ− sinhθ) βm2(coshnθ− coshθ) βm2(sinhnθ− sinhθ) cm12
33 −

α2
m1ξ1+β2

m2ξ2

hℓk
N̂cr

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

=0

(C-1) 

in which ξ1 and ξ2 are the critical load coefficients, applied in x- and y-directions, respectively, corresponding to bi-directional compressive edge 
loads; i.e., 

N̂x,Tot. = ξ1 N̂cr

N̂y,Tot. = ξ2 N̂cr
(C-2) 

Obviously, for a mono-axial load case, it is set ξ1 = 0 or ξ2 = 0. Also, the coefficient c33mn in Eq. (C-1) is defined as 

c33 =
1

hℓk
[
α4

m1D(0)
11 + 2α2

m1β2
m2(D

(0)
12 + 2D(0)

66 ) + β4
m2D(0)

22
]
+(n − 1)γ2

m12hℓ (C-3) 

Appendix D 

The systems of equations for simply-supported laminated orthotropic plates composed of n non-identical layers are expressed as follows,
– For the buckling of laminated partial composite plates: 

(α2
m1A11,1 + β2

m2A66,1 + k)U0,1 − kU0,2 +αm1βm2(A12,1 + A66,1)V0,1 − αm1hkW = 0 

αm1βm2(A12,1 + A66,1)U0,1 +(α2
m1A66,1 + β2

m2A22,1 + k)V0,1 − kV0,2 − βm2hkW = 0 
{
− kU0,i− 1 + (α2

m1A11,i + β2
m2A66,i + 2k)U0,i − kU0,i + 1 + αm1βm2(A12,i + A66,i)V0,i = 0,

(i = 2,3, ..., n − 1)

{
αm1βm2(A12,i + A66,i)U0,i − kV0,i− 1 + (α2

m1A66,i + β2
m2A22,i + 2k)V0,i − kV0,i + 1 = 0,

(i = 2,3, ..., n − 1)

− kU0,n− 1 +(α2
m1A11,n + β2

m2A66,n + k)U0,n + αm1βm2(A12,n + A66,n)V0,n +αm1hkW = 0 

αm1βm2(A12,n + A66,n)U0,n − kV0,n− 1 +(α2
m1A66,n + β2

m2A22,n + k)V0,n + βm2hkW = 0 
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[
α4

m1D(0)
11 + 2α2

m1β2
m2(D

(0)
12 + 2D(0)

66 ) + β4
m2D(0)

22 + (n − 1)(α2
m1 + β2

m2)h
2k + (α2

m1ξ1 + β2
m2ξ2)N̂cr

]
W

+αm1hk
(
U0,n − U0,1

)
+ βm2hk

(
V0,n − V0,1

)
= 0 

– For the vibration of laminated partial composite plates: 
(
α2

m1A11,1 + β2
m2A66,1 + k − ω2I0,1

)
Ũ0,1m1m2 − kŨ0,2m1m2 +αm1βm2(A12,1 + A66,1)Ṽ0,1m1m2 − αm1hkW̃0,m1m2 = 0 

αm1βm2(A12,1 + A66,1)Ũ0,1m1m2 +(α2
m1A66,1 + β2

m2A22,1 + k − ω2I0,1)Ṽ0,1m1m2 − kṼ0,2m1m2 − βm2hkW̃0,m1m2 = 0 
⎧
⎨

⎩

− kŨ0,(i− 1)m1m2 + (α2
m1A11,i + β2

m2A66,i + 2k − ω2I0,i)Ũ0,im1m2 − kŨ0,(i+1)m1m2 + αm1βm2(A12,i + A66,i)Ṽ0,im1m2 = 0,
(i = 2,3, ..., n − 1)

⎧
⎨

⎩

αm1βm2(A12,i + A66,i)Ũ0,im1m2 − kṼ0,(i− 1)m1m2 + (α2
m1A66,i + β2

m2A22,i + 2k − ω2I0,i)Ṽ0,im1m2 − kṼ0,(i+1)m1m2 = 0,
(i = 2,3, ..., n − 1)

− kŨ0,(n− 1)m1m2 +(α2
m1A11,n + β2

m2A66,n + k − ω2I0,n)Ũ0,nm1m2 +αm1βm2(A12,n + A66,n)Ṽ0,nm1m2 +αm1hkW̃0,m1m2 = 0 

αm1βm2(A12,n + A66,n)Ũ0,nm1m2 − kṼ0,(n− 1)m1m2 +(α2
m1A66,n + β2

m2A22,n + k − ω2I0,n)Ṽ0,nm1m2 + βm2hkW̃0,m1m2 = 0 

{
α4

m1D(0)
11 + 2α2

m1β2
m2(D

(0)
12 + 2D(0)

66 ) + β4
m2D(0)

22 + (n − 1)(α2
m1 + β2

m2)h
2k − ω2[I0 + (α2

m1 + β2
m2)I2,0

] }
W̃0,m1m2

+αm1hk
(

Ũ0,nm1m2 − Ũ0,1m1m2

)

+ βm2hk
(

Ṽ0,nm1m2 − Ṽ0,1m1m2

)

= 0 

Data availability

Data will be made available from the corresponding author on 
reasonable request.
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