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ABSTRACT

This paper introduces the Laminated Partial-Composite Plate Theory (LPCPT), as an extension of the classical
laminated plate theory (CLPT), incorporating the effects of partial-interaction imperfection at the constituting
layers’ interfaces. The interlayer interaction effects are modelled through out-of-plane shear stresses based on a
shear spring model in terms of the relative displacements/slips at the interfaces. The proposed LPCPT extends a
recently developed model for multilayer composite beam/column elements with interlayer partial-interaction
imperfection. The model’s governing equations, as well as the extended classical boundary conditions, are
formulated. Analytical solution schemes are introduced for free vibrations and buckling of partial-composite
plates. The analytical solutions can flexibly capture any number of constituent layers. The validity and high
accuracy of the established approach are demonstrated via comparative numerical results based on 3-D finite
element analysis (FEA). It is shown how the buckling loads and natural vibration frequencies degrade from those
predicted based on CLPT with perfect-bonding ideal assumptions, considering different levels of interlayer
interaction. For a special case where the interlayer interaction modulus is set to the equivalent layers’ transverse
shear modulus, the results of the present model are shown to match those of thick integrated plates based on
higher-order shear deformation theory (HSDT).

1. Introduction

conventional theories for the structural static and dynamic analyses of
laminated plates, the vast majority rely on the key assumption of kine-

Layered plates are key structural elements omnipresent in different
branches of modern technology, from marine engineering [1-4] and
automotive industries [5-7] to aviation and aerospace structures [8-11]
and advanced structural building applications [12-14]. This widespread
application is due to their superior properties over traditional mono-
lithic structures, such as high stiffness- and strength-to-weight ratios and
flexibility in design for different applications. However, due to the
abrupt through-thickness changes of constituent materials and mis-
matches in mechanical properties at the layer interfaces, their structural
performance may degrade from an ideally bonded and fully integrated
structure.

Despite the existence of a wide variety of frequently-used

matic and strain continuity conditions; i.e., the idealized perfect-
bonding condition at the interlayers. This can be evidenced, e.g., from
the simplest Reissner-Stavsky classical laminated plate theory [15]
based on the Kirchhoff-Love kinematics, to the extensions of Mindlin’s
first-order shear deformable theory [16] for the laminated plates [17],
and different refined higher-order shear deformation theories such as
those of Levinsson [18], Librescu [19], Reddy [20] based on a parabolic
model, Touratier [21] based on a trigonometric model, Karama et al.
[22] and Mechab [23], based on hyperbolic models for the through-
thickness shear strains, etc. Several refined models and modified forms
of the conventional laminated plate theories have also been introduced
in the past decades, mainly focusing on improvement and more
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flexibility of the displacement field functions for easier implementation
into the numerical approaches; e.g., the category of C° higher-order
shear deformation theories of five to seven variables, initially pre-
sented by Shankara et al. [24]; also their extensions for the category of
quasi-3D plate theories by describing the transverse displacement
component using higher-order polynomials with respect to the thickness
coordinate (see e.g., [25,26]).

In the standard class of zig-zag theories, formulated as a super-
position of a conventional first-, second-, and/or higher-order
displacement fields and a local zig-zag function [27-29], the draw-
back associated with an imposed ideal out-of-plane shear and in-plane
normal deformation patterns is inherently addressed, but not the ef-
fects of non-perfect interactions between individual layers. Evidently,
the mentioned theories are incapable of capturing the realistic me-
chanical behaviour of the layered plates when the partial interfacial
interaction effects cannot be dismissed, e.g., when the layered structures
are susceptible to debonding/delamination [30,31], or the constituting
layers are bonded through relatively soft adhesives [32,33] and/or
connected via discrete mechanical connectors and fasteners [34-36],
etc. The class of layerwise theories [37], including the categories of
displacement-based and mixed displacement-and-stress variable types,
treat each layer individually, and therefore, have been extensively uti-
lized to model such non-perfect interfacial interaction behaviour
[38-42], however, at the expense of a relatively high computational cost
[43], particularly by increasing the number of layers, while gaining
analytical solutions is cumbersome. Compromising between accuracy
and efficiency, several refined and hybrid zig-zag-layerwise theories
have been proposed [37,43-45].

Imperfections in layered composite elements may be geometrical
(such as initial deflection and out-of-straightness [46-49], geometrical
gaps and waviness/wrinkles in the layers [50-52], variations in layer
thickness [53,54], and loading eccentricity and boundary condition
imperfections/irregularities [55-57]), or of material and constructional
type (e.g., cracks and partial delamination [58-60], interfacial bonding
defects such as incomplete/uneven/poor bonding, or interfacial shear
slip [61-68], etc.). The influence of interfacial bonding imperfection on
the mechanical behaviour of layered structures has been extensively
studied by many researchers, modelling imperfect bonding behaviour
using linear spring-like models [69-71] or based on nonlinear elastic/
elastoplastic/ viscoelastic models [66,72,73] in computational
simulations.

In some applications, various types of discrete mechanical connec-
tors, such as bolts, screws, nails, dowels, or different types of adhesives,
are used to keep the integrity of the layered composite elements (e.g., in
laminated timber composite applications). Therefore, their structural
behaviour and performance may deviate from those of ideal composites
(i.e., perfectly bonded or the so-called fully-composite laminates) due to
the relative interlayer slips [74,75]. This specific type of interfacial
imperfection, in the form of interlayer partial-composite interaction, is
known as the “partial-composite” behaviour. For a detailed literature
background on the partial-composite phenomenon, readers are referred
to [76]. The present study aims to introduce the Laminated Partial-
Composite Plate Theory (LPCPT), focusing on this specific type of
imperfection. Consequently, any other forms of interfacial bonding im-
perfections are beyond the scope of this theory.

The present paper addresses the mentioned challenge associated
with treating partial interlayer interaction effects through a new inno-
vative approach by introducing the Laminated Partial-Composite Plate
Theory (LPCPT) as an extension of the known classical laminated plate
theory (CLPT), and accompanied by an exact analytical solution scheme.
The established LPCPT-based analytical solution scheme provides reli-
able and accurate results at negligible computational cost, without any
increase in the computational burden as the number of layers increases,
unlike other existing approaches based on, e.g., layerwise theories. The
partial interfacial interaction effects are included in the form of out-of-
plane shear stresses based on a shear spring model in terms of the
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relative displacements/slips at the interfaces. Similar to the broad class
of layerwise theories [37,77], the introduced simplest Laminated
Partial-Composite Plate Theory (LPCPT) may serve as a foundational
framework for a potential series of refined extensions based on different
shear deformable kinematic models (ranging from Mindlin-Reissner to
higher-order models) for the internal shear deformations at each indi-
vidual layer.

The LPCPT-based solutions in the present paper are devoted to the
problems of stability and dynamics of elastic multilayered plates
composed of n layers, partially connected at each layer interface, or
equivalently connected through shear layers; also referred to as a
connection with imperfect bonding. The earliest relevant effort can be
attributed to Hoff [78] for the bending and buckling analyses of a
symmetric sandwich plate. Hoff’s sandwich plate is composed of two
identical layers for the faces, each assumed to be governed by an elastic
extensible Kirchhoff-Love or Germain-Lagrange plate model, connected
by a pure shear layer as the core of the sandwich plate [78]. A similar
study was carried out by Rzhanitsyn [79] for a sandwich plate with
unsymmetrical layers (see also the historical review of Challamel et al
[80]). Such a sandwich plate is equivalent to a two-layer plate connected
by a soft shear layer of zero thickness in the asymptotic limit, which may
be referred to as the concept of the laminated plate with partial inter-
action. Recently, a number of research studies have been conducted to
investigate the structural behaviour of two-layer plates with partial
interlayer interaction. Andrade et al. [81] and Barroso et al. [82]
employed Hoff’s sandwich approach for the bending, buckling, and vi-
bration analyses of two-layer partial composite plates, with application
to glass structural members. Boutin [83] showed that a tri-Laplacian
governing equation can also be derived for unsymmetrical three-layer
sandwich plates with two homogeneous faces, or equivalently, two-
layer composite plates with interlayer slip. Shen et al. [84] investi-
gated the static bending of a multilayered plate with approximate ki-
nematic fields, as a reconsideration of the study first conducted by
Bolotin [85,86] for the bending of multilayered plates with interlayer
slip under transversal distributed loading. Shaat et al. [87,88] developed
an analytical model for static responses of multilayer beams and plates
subjected to thermal and mechanical loading using a slip-interface
model. Wu et al. [89] formulated the principle of virtual work and the
reciprocal theorem for laminated plates accounting for interlayer slip,
and subsequently derived the principles of minimum potential and
complementary energy. Shen et al. [90] studied the large deflection
bending of multilayer two-dimensional structures having interlayer
slips. Recently, Atashipour et al. [34] developed a Timoshenko/
Engesser-kinematic-based model for composite beam/column elements
with interlayer partial interaction imperfection, complemented by exact
analytical solutions for the structural stability and dynamic analyses,
without any limitation on the number of constituent layers. No such
work appears to exist in the literature for flexible n-layer plates. The
present study aims to address this apparent gap by formulating the
Laminated Partial-Composite Plate Theory (LPCPT) and the accompa-
nied exact stability and vibration solutions for the n-layer partial-
composite plates. A unique formulation of the model is presented for
the first time. The governing differential equations of the model, as well
as the corresponding extended classical boundary conditions, are
extracted and formulated using the extended Hamilton’s energy prin-
ciple. The problems of free vibrations and buckling of partial composite
plates under mono- or bi-axial compressive in-plane loads are treated
analytically. The analytical solutions are general in nature and can
flexibly capture any arbitrary number of identical orthotropic constit-
uent layers. Furthermore, direct analytical solution alternatives for
laminated plates with a specified number of constituent layers are pre-
sented, treating laminated plates with non-identical layers. It is
demonstrated how the buckling loads and natural vibration frequencies
are degraded from those predicted based on CLPT with ideal bonding
assumptions, considering different levels of interlayer interaction.
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2. Laminated partially-composite plate model
2.1. Problem description and model formulation

Assume a laminated plate consisting of n layers of uniform thickness
(Fig. 1), in which the layers are imperfectly bonded to one another at
their interfaces. Thus, each layer interacts partially with the adjacent
layers at their interfaces when the laminated plate is loaded. Depending
on the level of interlayer interaction, the structural performance of the
laminate is expected to be degraded when compared to an ideal
perfectly-bonded case.

For each layer, a local coordinate system (y;,v;,¢;) is defined here
such that the planar axes (y;,v;) are coincident with the layer’s mid-
plane, as illustrated in Fig. 1. Furthermore, the global coordinate sys-
tem (x,y,2) is established where its origin is located in a specific
transversal location to fulfil the uncoupling conditions between the
bending and stretching effects of the laminate; e.g., for a symmetrically
laid-up, the origin of the z—axis is located at the geometric transverse
centroid of the laminate.

The planar components of the displacement field for the i-th layer of
the laminated plate, u; and v;, can be expressed based on the kinematics
of the classical plate theory, as

u;(x,y,2,t) = Ug;(x,y,t) — {;ow(x,y,t)/ox

Vi(x,,2,t) = voi(x, ¥, t) — {ow(x,y, t)/dy ()

where uy; and vy ; are the displacements of the i-th layer’s mid-plane
along x and y directions, respectively, and ; is the local transverse co-
ordinate variable (i.e., along z—axis) for the i-th layer with an origin
located at the mid-plane. Also, w(x,y, t) is the transverse displacement/
deflection of the plate at the planar coordinates (x,y) and the time t.

Assuming a relative slip between the laminated plate’s layers due to
imperfect bonding and partial interaction effects, the components of the
displacement field for the i-th layer can also be described in terms of the
global transverse displacement in the form:
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w(x,y,2,0) = Ug P (x,y, t) — z0w(x,y,t) /ox

. 2

vi(x,y,2,t) :V(S)gp(x>y! t) — zow(x,y,t)/dy @
The model’s kinematics of deformations and the internal load resultants
are illustrated in Fig. 2.

In Eq. (2), u(sfip and vgl_ip are the absolute in-plane displacements (in
the global coordinate system) of the i-th layer, respectively, along x and
y directions, which may be affected by the relative slips at the interfaces
due to the partial interlayer interaction. Each layer’s mid-plane has a
different distance from neutral plane of the entire laminate’s cross-
section (z; = z—(;; i.e., the difference between the vertical axes of the
global and local coordinate system at any transverse level). Therefore, at
a deformed state due to the dynamic motions or external loads, the
aforementioned planar displacements at each layer may be formulated
as the sum of the in-plane displacements of the i-th layer’s mid-plane and
those due to the transverse displacements; i.e.,

i ow ow
'-lg%ip =Up; + (2 — é“i)& = U, +Zi&
3
Slip ow ow ( )
Voi© =Voit+(2—&) Py =Voi+ Zi@

where z; is the transverse distance between the i-th layer’s mid-plane
and the location of the origin of the global coordinate system (see
Fig. 1). The linear strain components may be directly deduced from Eq.
(1) for the small displacements as follows

e = dto, _ (()2_14/
T ok Clox?
o i 62w
&yi = 0;' - Ciﬁ “4)
auo_i (}Vo_i 02W
e LA N Y gl
Yxyi dy + o Si X3y

The constitutive relations for a laminate composed of orthotropic layers,

Xi

i-th layer

i+2

i+1

Fig. 1. Global and local coordinate systems, and their correlation in a laminated configuration.
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Fig. 2. The model’s kinematics of deformations and the internal force and stress resultant assumptions. At the i-th interface, the relative slip represents the
displacement discontinuity between the bottom surface of the i-th layer and the top surface of the (i + 1)-th layer.
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oriented arbitrarily with respect to the layers' plane, based on the 2-D
plane-stress Hooke’s law under the assumption of linear -elastic
behavior for small deformations, after replacing Eq. (4), are expressed as

- Eyi X N Exi Uy i Vo,
xi = 1- l/xy,il/yx.i (bXJ * Vyx:lEYVI) B 1- ny.iyyx,i ox * Py a.y
*w *w
il 52 Timiga 3
Ey; Ey; Oup;  Ovo
P 4 oo N = Ot i 5
Oyi =7 Ty il/yxi (Vxyi€xi + Eyi) TR——— [(vxy,l > oy 5)

<23

duol aV()l 02 w
ay Tx éw'axay>

Txyi = ny,iyxy,i = ny.i(

Based on the simplest Kirchhoff-Love kinematic assumptions, the out-of-
plane strains in each layer are zero due to the shear rigidity assumptions
in the inherence of the displacement field. Therefore, the non-zero
transverse shear stresses based on the present model are those to be
attributed to the interlayer slip due to a non-perfect partial interaction
and relative shear displacements between the layers. This can be
formulated via a linear elastic state in terms of a constant slip modulus

k, [N/m®] in the form:
Txzi = ki (u(s)l:il - uglip)

_ Slip Slip
Tyai = ki (Vo i+1 ~ Voi )

©

Replacing the slip displacement relations from Eq. (3) into Eq. (6) yields

ow
xzi = ki i+1 — Hoi dii
Txz, (Llo_y 41 Upi + 0}()

(7)
. -sz(vo- s —vou+d Y
yz,i — M L+ L1 1
%y
where
1
d; = Ziy1 — 5 (h + hl+1) ®

The governing differential equations of the described model are devel-
oped in the following.

2.2. Governing equations of the model

To formulate the governing differential equations of motion of the
model, the extended Hamilton’s energy principle [91] is employed here
as

5/2 [T — (Ustr. + Uey )]dt = 0 ©)

where § is the variational operator, T is the system’s kinetic energy, and
Uy is the elastic strain energy. Also, Uey. represents the potential en-
ergy of the external loads, including the bending and axial effects of the
applied in-plane compressive edge forces per unit length at each indi-
vidual layer: Nx_i and Kiy_i (i =1,2,...,n). Obviously, the total applied in-
plane compressive forces per unit edge length acting on the entire
laminate are Nytor = Z?:lﬁx,i and Ny,m, = Z?:lﬁy-,i' The aforemen-
tioned energy terms are defined as follows
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1 1 *
Uy = 5/// (axsx +oyey + Txy}'xy)dv+ 5// (‘[XZAM + TyzAV) ds
\4 s
(10a)

U = — // gcywds - % // S [Nt (0w/ 20 + Ny o (ow/)* | ds

+ ;//s [ﬁx,i(auo,i/ax) + Ny.i (dvos/dy) ]ds
(10b)

T % /// Pl i)y (100)

in which p is the material density; dS is the 2-D (in-plane) differential
element, dV is the volume element of the laminated plate, and dS” is the
surface differential element at the layers’ interfaces. Substituting Eqgs.
(4) through (8) into Eq. (10a), and assuming the principal material co-
ordinates for each layer coincide with those of the plate in the global
system (i.e., the specially-orthotropic), the strain energy is given as

oug ; dug ; oup ; 0o,
Ustrf2 // A111<g;:> +A6m<g;> +2A121<a;><a;>
1 2A g (2Hor) (Mo L g, (ot 2-s—A ovor)* ds
66,1 ay () 66,0 dx 221 ay
] (o emay) (36) (e mn ) (57)
- 11i 7. 12 5}' 12i 5 () 220 ay 0}'2
OUg; Vo,
s+ 5) (My)
1<& Pw\’
+§;// . D <ﬁ> 42Dy,
Pw\’
+4D66,i <m) :|dS

1 n-1 ()w 2 0w 2
+§;k//5 |:(Uo.i+1 —Uo.i+dia> + <V0.i+l _VO.i+diE> ] ds

where the coefficients Ay, Bysi, and Dys; (r,s € {1,2,6}) are the axial
stiffnesses per unit length, stretching-bending stiffness, and the bending
stiffness of the i-th layer of the plate, and are determined as

2

(5%) () 2= ()
\i ox2 0},2 221 0_}’2

an

h;

Zits
(All.i7A12.i,A22.i7A66.i):/ hy (Quxis Quy.i» Qpy.is Gy,i)dz

Zi—o

- ( Eyih; VwiByili vy iByih Eyh; G h)
- ) - s Ixy,ilti
1- Uxy ilyx,i 1- Vxy ilyx,i 1- Uxyilyx,i

z,+—
(B11.i,B12,B22,Bes.:) :/ (Quxi> Quyis Qpy.is G124, dz =0

t 2

I
Uxy ilyx,i 1-

hi
Zity
(D114:D12,4,D224,Des ;) =/ N (Queis Quy.is Quyiis Gryi)7dz
Zi—o
_ Ex lh I/xy.iEy,ih? _ Dyx.iEx,ih? Eylhf’
12(1 — ny.i”yxi)’ 12(1 — l/xyjl/yx,i) 12(1 — L’Xy.i”yx,i)’ 12(1 — l/xy,iyyx.iy

1
12ny lh3> (Cl :zfzi)

12)
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where
Exi
Qui=7—""
1- Uxy ilyx,i
E. .
y.i
Qyi=7—""" 13
1 — vyyilyxi
Uxy, lEy i I/yx.iEx.i
Qxy‘i = =
1- nyll/yxl 1- l/xy.iyyx.i

The kinetic energy of the model can be formulated by replacing Eq. (1)
into Eq. (10c) as follows

ZIOI// (u01+v01+w )dS

_ ; L // s {uo‘i(a»v/ax) + Vou( ) ay) } ds 14

%ZIZI// (o) ox)? aw/ay)]

in which the mass and rotary inertia terms for each layer are defined as

2
h
Zity
L :/ e pigidz =0 (15)
z,—E‘
hy
Zitg 2 3
1217/ h plC dz = 2p1h (é’izzizi)
Zi—

It is noteworthy that since each layer is assumed to be homogeneous and
of a rectangular section, the coupling stretching-bending term, B;, as
well as the coupling effects of translational-rotational inertia, I ;, for
each individual layer obviously vanish. Furthermore, to eliminate the
stretching-bending coupling effects for the entire laminate, we consider
the origin of the global coordinate axis z at a location to fulfil the
following condition:

hy
w2 E ~ Eh;
/Z b T _Dizgndb;l —a =0 (16)

-

Applying the extended Hamilton’s principle (9) to Egs. (10b), (11)-(15)
yields a set of 2n+1 governing differential equations of motion of the
model as follows

Sugy : 01;[3,;1 01\(;;,,1 +Tyz1 = Io 1o (17a)
Svon : azg;y_l 01;1;_1 (17b)
{5110‘1' : ag:l 61:)1;},1 + Tazi — Txzic1 = logllog, (i=2,3,..,n—-1)

(17¢)
{5vo,i : a];];y"i + az(;r;,i Tyt =loo;,  ((=2,3,..n—1)
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oan aNx n ..
SUop : 0x‘ ayy — Txzn-1 = lonllon (17¢)
0Ny ON, , .
5v0‘n : a)z/,n + (2)}; — Tyzn-1 = IO,nVO.n (17f)
()ZM(O) azM( 62 = 0 Xz,i ()‘[ Z,0
ow: —+2 2 + Z dl< T vz, )
ox’ dxdy % P dy
(17g)

—~ Pw ~ a°w
—Ny rot. (W) — Ny 1ot. <0y2> +q(x,y) = Iow — L VW

where the stress resultants Ny;, Ny, Nyy; (i = 1,2,...,n) are the normal
and shear forces per unit length in each layer of the plate, and are ob-
tained in the form:

dug Vo

le*Alll a +A121 a;

dug; Vo
=Avy * o+ Any 0; (18)

dug; Ovg; .
xyl_A661<—0+ 0) (i

3y ™ =1,2,...,n)

Also, the stress resultants (M&O),Mﬁ,o),l\dfg)) are the bending and twisting
moments per unit length of laminated plates, and are obtained as

n Pw ’Pw ’Pw o’ w
MO =3 <D111 + DY ) R A

X o Ox2 &y 11 Ox2 12 ayz
1 ’*w ’*w 00w 0, 0°w
ME(,O) =- Z (Dlz.iw + Dzz,iﬁ) = —Dgz)ﬁ - D(ZZ)W (19)
i1

- ’w ’w
MO = -2 Dgs; (—) = —2Dy)
Y ; oxady oxady

in which

n

(D111 D12,i, D22, Des.i) (20)

i=1

0 0) 0
(Dgl)lez D(227D( ))

where DY (r,s=1,2,6) are different bending/twisting stiffness com-

ponents of the laminated composite plate with no interlayer interaction.
The superscript ‘(0)’ denotes the “non-composite” condition, i.e., a case
in which the frictionless layers are laid one another with no relative
shear interaction; in other words, zero-interaction between the layers at
their interfaces, corresponding to a fully-debonded laminate.

Substituting the above stress resultants as well as Eq. (7) into Egs.
(17a)-g), the governing differential equations of the described extended
classical plate model are obtained in the form:

Pug1 v
Ougy = A1 duo + Ags1——=—— 0y —k1u01 +kiugz + (A121 + Ase1) GX(;;
+k dla* =Ipalio,
X
(21a)
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2

0
Vo1 ¢ (A121 +Ass1) ?Ugyl

Vo Vo1 ow "
+Ae6 11— E) +A221 3y —kivo1 +kivoa + kldlay =1Io1Voa
(21b)
0 Uo i azllo.i k k k k
A5 2 +Agsi—— a2 +ki1Uoi1 — (ki1 + Ki)uos + killo i1
5110,1 : 62 ow ..
+(A12; + Ass) 5 ox 0y + (kid; — ki—ldi—l)a = Ip;tlo 4,
(l = 2737 ey L — 1)
(210)
*u, Vo, 0*v,
(A12i + Agsy) ™ (;;/-FAGG[ St Ao 2 Ltk 1V0,i-1
oV i ow .
B — (ki1 +ki)voi +kivoirr + (kidi — ki1di ) E = Io Vo,
(l = 2*,37 s — 1)
(21d)
g Pup Von
SUop : A1 o 2 +Ason— 2 2+ Kn_1Uon-1 — Kn_1lon+ (12, +A66.n)ﬁ
7kn—1dn—laiW:IO,nii0,n
0x
(21e)
*u 62 on *Von
Von : (Arzn + Assn) ox 0y +A66n 5 tAxnn ay(; +kn-1Von-1 — kn-1Von
ow .
7kn—ldn—1@ = IO‘nVO‘n
(211)
0d*w a'w 0d'w 5.
ow: D11 ot +2( 12 +2D66)axzay2 +D22&y“ +Iow — L VW

Juo; 41 3”01 =L 01’01 +1 01’0.1‘ o’w
7Zkld ( ox 6x2> Z dy +dlﬁ
2

= ow o w
+NxTot. ((3 2) +NyTot (0y2> =q(xy)
(21g)

where I is the non-composite rotary inertia of the laminate, and is
given as

n n
1
Lo = E L= E *12Pihf’ (22)
1 =

Furthermore, I, is the translational mass inertia of the entire laminate,
and is expressed as

n n
L= ZIo.i = Zﬂihi (23)
o1 o1

2.3. Extended classical boundary conditions

Using the extended Hamilton’s energy principle (9) in conjunction
with the energy terms (10), (11) and (14), the geometric/essential and
natural boundary equations are directly deduced for the classical edges
as follows,
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either dup; =0 or Ny; = —ﬁx,l
either 6vp; =0 or Ny;=0
either dupy, =0 or Ny, = 71?],(,2
either 6o, =0 or Ny,=0
either dug; =0 or Ny; = —nyi
either 6vo; =0 or Ny;=0
atx=0,a: (24a)
either dup, 1 =0 or Ny, = 71?&,",1
either 6vp,-1 =0 or Ngyn1 =0
either up, =0 or Ny, = —Klm
either 6o, =0 or Ny,=0
either sw=0 or V9 =0
either §(dw/ox) =0 or M =0
either 5(ow/dy) =0 or MY =
and
either 6vo; =0 or Ny; = 7KIY~1
either 6up; =0 or Ny, =0
either 6o, =0 or Ny, = —Ny_z
either &upg, =0 or Ny, =0
either 6vp; =0 or Ny;= 71?1%,-
either 6up; =0 or Ny;=0
aty=0,b: R (24b)
either 6vop.1 =0 or Ny, 1 =—Nyn1
either 6upn 1 =0 or Ny, ;=0
either 6vo, =0 or Ny,= 71%.,1
either 6up, =0 or Ny,=0
either sw=0 or V;pc) =0
either 5(ow/dy) =0 or M =0
either 5(ow/dx) =0 or MY =0

where the stress resultants (Ny, Ny ;, Nyy,i) and (M)((O) , My°> , M ) (i=1,2,
N) are defined by Egs. (18) and (19), respectively. Furthermore, Q,(PC

and Q;PC) are the transverse shear forces per unit length, corresponding
to a laminated plate with “partial-composite” interaction at the in-
terlayers, and are deduced as follows,

0 P w *w
Qo = 2 DS+ 0y +20) 5]
n-1 0w N aw
+ 1; kid; (Uo.i +1— Ui+ dia) — Ny 1ot. (&)

(25)

0 oFw 0w
@Y= [(DS‘? +2D(g) 5 + D ()yz]

n-1 0W ~ 0w
+ ; k:d; (Vo.i +1—Voi+t di@) — Ny Tot. (@)

It is noteworthy that, similar to the classical laminated plate theory, only
two conditions from the common three out-of-plane boundary condi-
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tions (the three last of Egs. (24a) and (24b)) can be satisfied at each edge
of the plate. Thus, the twisting moment and transverse shear force
conditions may commonly be replaced by an equivalent force as follows:

(0) 3 3
0Mxy _ 7D(101) a_W+a(10) 7w
0x3 0x0y?

VPO — Q) |

X X

n-1 aw ~ Bw
+ l; kid; (uo.i 41— Ui+ di&) — Nxrot. <&>

2
vc) _ Awo) , MY o (W o Pw o
Vi =q Tt = D2 (W +a; 6x20y)
n-1 ow ~ ow
+ 1:21 k:d; (Vo.i +1—Voit dia) — Ny rot. (E)

where

1
@’ = 0 (D3 +4Dg)

11 @7

1
0) 0 0
ay) =— (D3 +4Dy))
DY)
22

3. Analytical solution approaches
3.1. Flexible n-layer laminated orthotropic plates with identical layers

In this section, analytical solutions are conducted for the problems of
structural buckling under mono- and bi-axial compressive edge loads, as
well as the free vibrations for flexible n-layer laminated partial com-
posite plates. It should also be clarified that as the focus of the present
study is on introducing the laminated partially-composite plate theory
(LPCPT) based on the described model, the effect of different lay-up
patterns stands outside the scope of the present research. Thus, first
we conduct analytical solutions for the multilayers composed of any
arbitrary number of constituent layers with identical orthotropic mate-
rial properties to investigate the influence of the imperfect interlayer
interaction and partial composite effects at the interfaces, only. (i.e.,
%, = @, = ... = g, = const., in which g, is any of the geometric or
material property parameters of a constituting layer, where the subscript
¢ then refers to the case of identical layers). Furthermore, the interlayer
shear interaction/slip moduli are considered to be the same for all the
interfaces (k; (i = 1,2,...,n—1) = k = const.). Next, laminated plates
with non-identical orthotropic layers are treated via direct analytical
solution alternatives for laminated plates with a specified number of
constituent layers.

3.1.1. Buckling of partial-composite plates under mono- or bi-axial
compressive in-plane loads

Consider a rectangular partial composite plate of uniform thickness
hrot., length a, and width b, consisting of n layers, each of thickness h,, as
illustrated in Fig. 2. Each layer of the plate is assumed to be subjected to
the in-plane edge load per unit length Nx,i along the x direction, as a

result of a global applied edge load NX,TOL. The layered partial-composite
may also be subjected to bi-axial compressive edge loads, and thus, each
layer under an in-plane edge load per unit length Klyi along the y di-
rection (Fig. 2). For a simply-supported laminated partial composite
plate, under mono- or bi-axial compressive edge-load conditions, the
following boundary conditions are deduced from Egs. (24a),b):
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Nx,l = 71?’)(‘1
Vo1 = 0
Nyz = —Ny2

Vo2 = 0

Nx,i = 7Nx.i

Voi =0

atx=0,a: (28a)

Nx,n—l = _ﬁx‘n—l
Von-1=0
Nx,n = 7Nx,n

S
Il
=}

5
Il
=}

aty=20,b: (28b)

A solution for the components of the displacement field may be proposed
in the form (see Appendix A for details):

1 - - )
Uoi = g (Nyi — tyy.eNyi) (@/2 = %) + Up icos(amx)sin(Bpzy),
x. .1
1. ~ .
Voi =5 (Ny; — vyxeNyi) (b/2 — y) + Vo sin(am x)cos(BpoY),
y, 1
ie€{1,2,..,n}
w = Wosin(m1x)sin(f,,y)
29
in which the coefficients ay,; and f,,, are given by
aAm1 = mlﬂ/a (30)

ﬂmz = m2ﬂ/b

where m; and my are number of buckling modes’ half-waves in the x—
and y—directions, respectively. Evidently, the proposed solution can
exactly satisfy all the boundary conditions (28a),b) (see Appendix A).

Substituting the proposed solution (29) into Egs. (21c),d) in the
absence of any dynamic term yields
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kUpi-1 — (a2 A11e + frAess + 2k) Uo; + kU 41

—0m1 Pz (A2, + Assr) Voi = 0 (31a)
(l = 2~,37 R 1)
kVoi1 — (Ul,znlAssf + ﬂﬁlezz,/ + Zk) Voi+kVoi 11

—0m1 Pz (Ar2.s + Age.r)Uoi = 0, (31b)

(i=2,3,.,n—1)

It should be clarified that based on the present model’s fundamental
assumptions, the distribution of the axial compressive edge loads Nx,i
and Kly,i (i =1,2,...,n), respectively, parallel to x and y directions, are
proportional to each layer’s relative axial stiffness along that direction,
which is a true assumption for the linear elastic deformations (see
[34,92] for a detailed discussion on the assumption); i.e.,

Nx.l _ Nx,2 _ _ Nx.i _ _ NX,N _ Zinzll/\\’x,i _ Nx,Tot_ (323)
Ana Anz 7 Ang T Ann YA A
Ay.l _ Ny.z - = Nyi = ﬁy,N _ Z?:lﬁy.i _ j\\ly.Tot. (32b)
Axy Axp Az Apn D L,Axn;  Axng

in which A1;; and Agy; are the axial stiffness of each layer along x and y
directions, respectively, whereas A1 and Ajs are those of the entire
laminate, and are defined as

n

Anno = ZAul => _E;‘::Vw
n

Az fZAzzl Zl

The set of coupled difference Egs. (31a),b) can be exactly fulfilled if
we set (see Appendix B for details on the solution):

(33)
Eyh

Uxy ilyx,i

Up;i = y,ycoshif + y,,sinhif,
Voi = xyvcoshif + y,,sinhi6), 34)
ie{1,2,3,...,n}

in which @ is an unknown parameter to be determined. Substituting the
above solution into the set of difference equations (31a),b), and applying
the standard hyperbolic angle addition/subtraction formulae, yield:

2k(1 — coshd) + cf}' ' { Uo, } o 35)
e’ 2k(1 — coshd) + cgy2 | | Vou

where

N2 = a2 Avis + PrnAcer

32 = a2y Acor + PagAazs (36)
Clz,f = Um1Pmz(A12.¢ + Assr)

Applying a nontrivial solution to Egs. (35) and performing some math-

ematical manipulations, the unknown parameter 6 will be determined in
the form:

_ 1
6 = cosh {1 + 2k <c‘1“11% +cmiz \/ (cm12 — cmi2y® 4 4(cmi2)? ) } 37)

It can be shown that Eq. (37) for a laminated plate with isotropic layers

is simplified as
ChE(m L, m (38)
)\a

_ -1
6 = cosh {1+72k(171/§ b2
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Next, the remaining governing equations (21a),b) and (21e-g) are to be
fulfilled. To this end, we substitute the proposed solution for the
displacement field components (29) into the mentioned equations in the
absence of the dynamic terms and the transverse distributed load, and
obtain:

— (a2 A1 + BarAcss + k) Uoa + kUoz — Qm1 Bz (Arzr + Ass.e) Vor

+Qm1 hkao =0

(39a)
—0m1 Pz (Ar2s + Ass.r)Uo1 — ((1,2,11A66,f + ﬂ,znzAzz,f + k) Voa (39b)
+kVo2 + ProhskWo = 0
kUop-1 — (021 A11,¢ + BrrAess + k) Uon — Qm1 Bz (Ar2.s + Ass.) Von
—0m1 hka =0

(39¢)

—Um1Bma(Ar2¢ + Acs.r)Uon + kVon 1 — (021 Aes.0 + BrnArze + k) Von

—PshskWo =0
(39d)
—om1Uo1 + @m1Uon — P2 Vo1 + Pz Von
h k [a D11 + zaml mZ(D12 + 2D66) +ﬂ D(z(;)} Wo (39%)
+(n— 1)y he Wo — ﬂ (@, Nx Tot. +/5§12Ny,Tot.)Wo =0
where

Ymiz =/ a2y + By (40)

Substituting the solution by Eq. (34) into Egs. (39a)-e) and collecting the
coefficients of y,y, ¥ous Y1v> Xov and Wy result in the following non-

trivial solution for the critical buckling load KIC,:
|M5X5‘ = 0 .

. (41)
Msuslxiw Xov Xiv Xav Wol =0

in which the coefficient matrix M is given in Appendix C. The
compressive load may be applied monoaxially on any pair of parallel
edges of the plate, or biaxially with different intensity values, & and &,
along the x and y directions, respectively.

j\/:’x.Tot. = _511;\\]@ (42)
Ny.Tot. = _szc

Obviously, for a mono-axial load case, it is set £&, = 0 (or &, = 0).

3.1.2. Free vibrations of partial composite plates

Apparently, under the assumption of small-amplitude oscillating
vibrations and harmonic motions with an angular frequency of w, the
components of the displacement field (1) can be described using the
separation of variables method for the dynamic effects as

Uo (X, Y, t) = Upi(xX,Y) e

Voi(%,y,t) = Voi(x,y) ?j"’t (43)
W(va-, t) - WOl(x7y) e)wt7 J=V -1
,ie{1,2,...,n}

Substituting Eq. (43) into the set of governing equations of motion (21a-
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g), in the absence of any external forces and applying layers equality
assumptions, as mentioned in the previous section, yields

%1 %1 - -
Anrr axgl + Ass.r 0y2'1 + (@’Ioe — k)Uo1 + kilp 2
(44a)
¥ o
+ (Ar2s +As6.r) =—— g &y L h/k
"V 0%V -
(Alz,f +A66./) ox 0}, +A66 Vz"l +A22_, 0;(;1 + (u}zloyf — k)V0_1
e (44b)
+ kfl\;ovz + h{ka =0
o
Anr—o p +A66/’ ()yZ L+ Kilgi 1 + (020, — 2K)tlo,; + Kilo, 1
o, (44c)
+ (A A =
+ (A1 +Aser) =—— axay
(l = 2737 = 1)
o 0, Vo~
(A12¢ + Assr) 6x00}; + Ass.c ()x(z). + Azz,ng" +kVoi1
- 44d
+ (@*Ioy — 2k)Vo; + KV +1 =0, (44
(i=2,3,..,n—1)
o n 62~ ~
Ane——— ps 2+ Agsr—— 2 2+ Kilon-1 + (0%l — k)lon
75 . (44e)
Von _
+ (A2 + Agsr) oxdy fka 0
o n 0 Von -
(A2 + Ass.r) dx%l + Ass s ax°2' +Axpy, ay‘;- + kVon_1
5 (44f)
+ 0)210,/ —k ,‘},0‘" — h/k* =0
dy
1 o'w a'w a'w
Wk {Dﬁ)ﬁ +2(DYY +2D) xZay? + D(Z%)W
(1)2120 2 w Io~
L _ohg 44
[ hok (n—1)h/ | V*w ok (44g)
d J
+ o (Uo,l - Uo,n) + @ (Vo.l - Vo.n) =0

The components of the displacement field can be described via double
Fourier series as

10
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Upi= > 3, Uo imy my COS (i1 X)SIN By ),

my=1 my=1
i€{1,2,..,n}
Voi = Z Z ’VovimlmZsin((xmlx)cos(/imz_y),
mp=1 mp=1

ie{l,2,...n}
W= Z Z Wo m;my SIN (i1 X)SIN (o)
mp=1 mp=1

(45)

in which am = myz/a and B, = men/b in terms of the number of vi-
bration mode-shapes’ half-waves, m; and mp, along the x— and
y—directions, respectively. It is easy to show that the proposed solution
(45) exactly satisfies the simply-supported boundary conditions at the
plates’ edges.

With inspiration from the introduced exact analytical solution in the
previous section for the buckling problem, the set of Egs. (44c¢) and (44d)
can be exactly fulfilled if we set:

go.imlmz = X1Umim, COShig +X2Um1mz sinhif,
= Y1Vimymy, COShi0 + Y2y, m, SiNhi6),

n}

(46)

VO.im1 my

ie{1,2,3,..,

where @ is an unknown parameter in terms of the natural frequency o to
be determined. Upon substitution of the solution (45) in conjunction with
the relations (46) into the set of Egs. (44c),d), and using some standard
hyperbolic angle addition/subtraction formulae, a set of equations in

terms of the coefficients ﬁO,imlmZ and VO,imlmz are deduced as follows

2k(1 —coshf) + M2 —w?ly » a2z Uoimym,
vy 2k(1 —cosh®) + B2 — %Iy | | Voimm,
=0
47)
in which the coefficients cf}'Z, ¢, and ¢y 7 are given by Eq. (33). The

unknown coefficient § will be determined via applying a non-trivial
solution to the above set of equations, in the form:

p: - 1 m m12)2 m 1
6=cosh {1 +@ (Cllnllﬁ +eg, ? \/(Cul% _6221}) +4(c1y?) ) _ﬂwzlo,f]
(48)

The rest of the governing Egs. (44a),b,e-g) are to be satisfied by replacing
the solution (45) in conjunction with Eq. (46) and the relation (48) for 5,
leading to a nonlinear characteristic equation from a non-trivial solution,
whose roots are the natural frequencies of the partial-composite plate. The
determinant characteristic equation from the matrix of collected co-

T
efficients of the VeCtor | 7iymm, Zovmm, Zvmms Z2vmms Womm,
can be represented as

As1coshd — kcosh26 Aq1sinhé — ksinh26 c™2coshf c™25inhg —am hek

c™2coshd c™2A ,sinhd Agzcoshd — kcosh26 Agasinhé — ksinh20 —p2,hok

Aqpcoshnf — kcosh[(n — 1)6]  Aqpsinhnd — ksinh[(n — 1)6]  c"2coshnd c™2sinhng amhsk | =0 (49)

c™2coshnd c™2sinhnf Agscoshnd — keosh[(n — 1)) Agpsinhnf—ksinh[[(n — 1)6] B,k

Om1 (coshn@ — cosh@) U1 (sinhr[é — sinh5> P (coshn@ — cosh@) Pz (sinhrfé — sinh@) /~\33
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in which

An=a% A 2 Ao+ k — o o0
11 = AppAr1e + PrpAess + 0,0

Az = 21 Ao + Pryhons +k —Ip 0

Ros = [a4,D0) + 202,42, (DY +2D2) + p,DY)] G0

1
hok

+(n—1)r2y,he — (To + Lor2y,) @

1
hok
The roots of the characteristic equation (49) represent the natural fre-
quencies of the laminated plate with interlayer partial-composite
interaction based on the introduced model.

3.1.3. Higher-order shear deformation theory results as a special case of the
introduced LPCPT

It can be shown that the kinematic field of the introduced LPCPT
evolves into a hyperbolic form for the out-of-plane shear strains through
the thickness direction as a special case of the present model, while it
vanishes on the laminate top and bottom surfaces, similar to a higher-
order shear deformation theory. In other words, the contribution of
the material’s shear rigidity to the structural responses can be incor-
porated based on the present model by setting the interlayer partial
shear interaction modulus, k, to be equivalent to the fraction of the
material shear modulus to the thickness of the lamella (see Eq. (6) for the
definition of the interlayer shear stresses); i.e.,

nE;

K =—"t—-—__""°
2(1 + l/f)hTot

(51)

The asymptotic results based on the present model in which the inter-
layer interaction modulus k is set to be k" is, therefore, expected to
capture those based on the hyperbolic higher-order shear deformation
theory. This is due to the fact that based on the fundamental assumptions
of the present model, the upper/bottom surfaces of the laminate are
shear-stress-free while it possesses a non-zero value at the interfaces,
and consequently, lead to non-uniform through-thickness transverse
shear stresses. The difference between the present asymptotic model and
the three-dimensional theory of elasticity may be negligible and only
sensible for very thick plates. This discrepancy may be attributed to the
non-symmetric/anti-symmetric distribution of different stress compo-
nents through the thickness of a monolithic plate/shell which inherently
increases for the thicker plates according to the elasticity theory. In
other words, the concept of the neutral plane is not valid any longer; for
the aforementioned extremely thick plate/shell asymmetric stress ef-
fects, readers are referred to the discussions in [93]). Apparently, all
types of plate/shell theories are incapable of incorporating the afore-
mentioned asymmetry effects.

It can be shown that the asymptotic limit of the buckling load, ob-
tained from the solution of the determinant equation (41), when k = k”
and the number of constituting layers approaches infinity while their
thicknesses approach zero for a fixed total plate thickness hrot, is derived
in the form:

limN, (k = k")

o+ B[ VET =00 + [+ g |
2(1 +ve) (102, + fzﬂiz)

oy + P,
21— v)

tanh | hro (52)

which is numerically comparable—as will be demonstrated in the nu-
merical comparative results—to the critical buckling load formulae
based on Reddy’s higher-order shear deformation theory, reported in
[94]:

11
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@z + an @k + fy)

(@2, + p2,)
Gy + )L + ans(ady 1 f) ot P2

N =

(53)
For mathematically small total thickness, hro, the buckling load formula

(52) is equivalent to:

2 2
_ E¢h3, (021 + ﬁrznz) _ (02, + ﬂfnz)
a0 12(1 —12) (103 + Ep2,) &2y + Efy

limN,,

n-oo

(54)

which is identical to the buckling load formula based on the classical
plate theory (CPT). A comparison of the numerical buckling and vibra-
tion results based on the described present special case and those of the
3-D elasticity, as well as the conventional Reddy’s higher-order shear
deformation theory (HSDT), is presented and discussed in Section 4.

3.2. Laminated orthotropic plates with non-identical layers

The developed analytical solutions in the preceding subsections for
the structural stability and dynamic analyses of laminated partial-
composite plates based on the introduced LPCP model for an arbitrary
number of constituting layers (n) may not be applicable to the laminates
with non-identical layers. To evaluate the validity and performance of
the proposed LPCP model for such cases and to study the influence of the
non-idealised/partial interlayer interaction, direct analytical solution
alternatives may be conducted for laminated plates with a specified
number of constituent layers.

Consider a simply-supported laminated composite plate composed of
n non-identical layers of uniform thickness h. The previously defined
displacement fields, given by Eq. (29) together with Eq. (42) for the
buckling, and by Egs. (43) and (45) for the vibration analysis are
recalled in their general form, without assuming identical mechanical
properties. Substituting the mentioned displacement fields into the
governing equations of the LPCP model yields two systems of 2n+1
algebraic equations (see Appendix D). The critical buckling loads and
natural vibration frequencies of a laminated orthotropic plate having n
non-identical layers can subsequently be extracted from the resulting
polynomial characteristic equations by vanishing the determinant of the
coefficient matrices; i.e.,

[M2n41)x(2ns1)| = 0 (55)
in which M is the matrix of coefficients of the vectors:
[[Uox Vo1l [Uo2 Voz] ... [Uoi Voi] ... [Uon Von) WO];H
(for buckling) (56a)
[ [ﬁo.lmlmg Vo.lmlmz] [aO.Zmlmg VO,Zmlmz] [lN]O.imlmz ’VO.imlmg]
[Uo,myms Vo.myms ) Wo mymyJan1 (for vibration) (56b)

3.3. A remark on methods for determining interlayer partial-interaction
moduli

The established laminated partial-composite plate (LPCP) model and
the presented solutions rely on the key parameter of the interlayer
interaction modulus, k. Therefore, accurate determination of its values is
essential to ensure reliable predictions of the structural behaviour and
response of layered plates and panels with imperfect interlayer bonding
in various applications, based on the LPCPT. Similar to what was
described in [34] for the laminated beam/column elements, the inter-
layer moduli for layered plates and panels can be experimentally
determined through standard test techniques on small 1-D beam-like
specimens, such as the three-point bending test in conjunction with
static partial-composite beam theory [76] or the double shear joint test.
It is noteworthy that two beam specimens, cut along orthogonal planar
directions, should be tested if the level of interlayer interaction differs
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/

Equivalent chains of bi-directional shear

springs, between each two adjacent layers

.

Fig. 3. The model’s kinematics of deformations and the internal force and stress resultant assumptions.

between the directions due to the orthotropy in the constituent materials
and adhesive bonding effects, different geometric patterns or non-
identical spacing of the mechanical connectors in the two planar di-
rections, etc.

Aside from the experimental approaches outlined, a number of
simple formulae can be theoretically deduced to predict the interlayer
modulus for different cases. The interlayer interaction moduli for the

Table 1

case of layered plates bonded through relatively soft adhesives can be
estimated based on extending the conventional approach in [95] for
laminated beams. Assuming pure shear deformation for relatively soft
adhesive films at the interfaces of plate layers, the interlayer shear
interaction modulus can be estimated, using Eq. (6), as k ~ Gqn/hadn; in
which G, and h.g, are, respectively, the shear modulus of the soft
adhesive material and the adhesive film thickness. The aforementioned

Comparison of dimensionless critical buckling loads for rectangular plates under mono-axial compression based on the 3-D elasticity, Reddy’s higher-order shear
deformation theory (HSDT), the classical plate theory (CPT), and a special case of the present LPCPT, provided for various values of the total thickness-to-length ratio,
hrot /b, and the plate aspect ratio = a/b. The percentage discrepancy provided in front of each value [%] is calculated with reference to the 3-D elasticity. The
provided numerical results based on the present model are computed for the two special cases: (i) setting the interlayer modulus to be equivalent to the transverse shear

strains k = k , and the number of constituting layers approaches infinity, while the total thickness-to-length ratio is kept fixed (nh = const. = hrq,); (ii) assuming the
material transverse shear-rigidity via tending the interlayer interaction modulus to infinity (i.e., interfacial perfect-bonding and full-composite interaction).

hrot /b Method Neb?/(s2D)"
n =02 n =04 n =038 n=10 n =12 n=14
0.5 3-D Elasticity [97] - - - 1.6598 - -
Present (k — k. nss0) 1.5088 1.4230 1.5149 1.6740 [0.8 %] 1.8970 21779
HSDT! [98] 1.6851 1.4455 1.5179 1.6759 [1.0 %] 1.8984 2.1791
HSDT' [94] - 1.4455 1.5179 1.6759 [1.0 %] - 2.1792
0.2 3-D Elasticity [97] - - - 3.1527 - -
Present (k — k. nss0) 7.0143 4.6452 3.2626 3.2653 [3.5 %] 3.4723 3.8207
HSDT! [98] 7.0529 4.6466 3.2626 3.2653 [3.5 %] 3.4722 3.8206
HSDT' [94] - 4.6466 3.2627 3.2653 [3.5 %] - 3.8207
0.1 3-D Elasticity [97] - - - 3.7408 - -
Present (8 — K . nco) 15.655 6.9853 3.9195 3.7866 [1.2 %] 3.9460 4.2877
HSDT' [98] 15.658 6.9853 3.9195 3.7865 [1.2 %] 3.9459 4.2876
HSDT' [94] - 6.9853 3.9195 3.7866 [1.2 %] - 4.2876
0.05 3-D Elasticity [97] - - - 3.928 - -
Present (& = K, nsco) 22.859 8.0013 41279 3.9444 [0.4 %] 4.0856 4.4231
HSDT' [98] 22.859 8.0012 4.1279 3.9443 [0.4 %] 4.0856 4.4231
HSDT' [94] - 8.0012 4.1279 3.9443 [0.4 %] - 4.4231
0.02 3-D Elasticity [97] - - - - - -
Present (K = k. nsc0) 26.270 8.3418 41904 3.9910 [-] 41266 4.4626
HSDT' [98] 26.270 8.3417 4.1903 3.9909 [-] 4.1265 4.4625
HSDT' [94] - 8.3417 4.1903 3.9909 [-] - 4.4625
0.01 3-D Elasticity [97] - - - 3.9975 - -
Present (k — k. nsco0) 26.843 8.3928 41995 3.9977 [0.0 %] 41325 4.4683
HSDT! [98] 26.843 8.3928 4.1994 3.9977 [0.0 %] 4.1324 4.4682
HSDT' [94] - 8.3928 4.1994 3.9977 [0.0 %] - 4.4682
- CPT [98] 27.040 8.4100 4.202 4.0000 4.134 4.470
Present (n—oo) 27.040 8.4100 4.2025 4.0000 4.1344 4.4702

* Equivalent k value for the interlayer modulus of kK = G, /hy.
** D is set for comparison to the compatible parameter: D,.
f Reddy’s higher-order shear deformation theory.
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formula can be accommodated with a correction factor, taking into ac-
count the effect of geometrical uncertainties and imperfections of the
adhesive layer [34].

In the case of partial composite behaviour in laminated plates and
panels where layers are connected via discrete mechanical connectors
such as bolts, screws, dowels, studs, or rivets, each fastener can be
considered as a member of a chain of bi-directional shear springs be-
tween adjacent layers. Each connector from the network of connectors
acts for the shear interaction over their spacing in each direction, as
illustrated in Fig. 3. Referring to Eq. (6) in correlation with the definition
of fasteners stiffness in layered elements, the interlayer interaction
modulus can be obtained from k = Ky /s? or k = K, /s> where Kg; and
K, represent the shear stiffness of a fastener in layered elements,
respectively, in the serviceability limit state (SLS) and the ultimate limit
states (ULS); see e.g., [96] for the laminated timber elements according
to the Eurocode 5. Moreover, the parameter s represents the fasteners
spacing, as shown in Fig. 3. It should be pointed out that s? should be
replaced by s;s; in case that the fasteners spacing is different in the two
planar directions of a laminated plate.

It should also be noted that this study has focused on the developed
imperfect partial-composite models and their exact solution techniques
for the buckling and vibration behaviour of laminated plates. Therefore,
any further details on the methods of determining the interlayer inter-
action moduli fall beyond the scope of the present work.

4. Numerical results and discussion

In this section, numerical results and discussion are presented based
on the introduced model and the presented exact analytical solution
schemes for the buckling and free vibrations of n-layer laminated partial
composite plates. A computational code is developed using Maple soft-
ware to extract the numerical results. A comparative study is conducted
to verify the validity and efficiency of the model and the associated
solution technique. Furthermore, a comprehensive set of benchmark
results has been presented in a generalised dimensionless format for
both the critical buckling loads as well as the natural frequencies of
partial-composite plates. For the sake of generality and convenience, the
results are presented in terms of the following dimensionless
parameters:

Ncr = craz/Doo

w = a)a2\/;m

o ak (57)
n-thTot

E = hTot/a

n=a/b

where N,; and @ are the dimensionless critical buckling load and fre-
quency parameters, respectively, k is the dimensionless interlayer
interaction modulus, and h and y are the total thickness-to-length ratio
and the plate aspect ratio, respectively. For the case of the buckling
problem, the nondimensional parameters &; and &, represent the
compressive buckling load intensity factors for the applied edge loads
along the x and y directions, respectively, taken a value between zero to
unity; see Eq. (42).

To show the validity, high accuracy, and reliability of the presented
analytical solution approaches for the introduced model, numerical re-
sults for some special cases are compared with those reported in the
literature.

Table 1 shows a comparison of the dimensionless critical buckling
loads for rectangular plates under mono-axial compression based on the
Reddy’s higher-order shear deformation theory (HSDT) from two
different sources, and special cases of the current LPCP model, presented
for various values of length-to-thickness ratio and the plate aspect ratio.
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Moreover, some comparative results have been provided with the
available data based on the 3-D elasticity as well as the classical plate
theory (CPT). The percentage discrepancy provided in front of each
value [%] is calculated with reference to the 3-D elasticity. The provided
numerical results based on the present model are computed for the two
special cases: (i) setting the interlayer modulus to be equivalent to the
transverse shear strains, while the number of constituting layers ap-
proaches infinity; (ii) assuming the material transverse-shear-rigidity via
tending the interlayer interaction modulus to infinity (i.e., perfectly
bonded laminate).

The effect of the material’s transverse shear stiffness in the structural
responses has been considered by setting the interlayer shear interaction
modulus as (see Eq. (6) for the definition of the interlayer shear stresses):

. Gy E,
k=—=——"+—~ 58
h/ 2(1 + l/f)h[ ( )
and therefore,
. * 02
X ka®> 1 (59)

B 21 4R

where h is the total thickness-to-length ratio, according to Eq. (57). It
can be seen from Table 1 that for all cases, including various values of
plates aspect ratio as well as different values of thickness-to-length ratio,
ranging from thin to thick plates, there is excellent agreement between
the buckling results predicted based on a special case of the present
LPCP model and those of HSDTs reported from different sources. The
comparative results in Table 1 reveal that there is also an excellent
agreement between the buckling load predictions from both special
cases of the proposed LPCP model and those reported in the literature for
thick plates, based on the three-dimensional elasticity, as well as the
classical plate theory (CPT). This strong correlation is evident for all
cases with various values of plate thickness-to-length ratio as well as a
wide range of plate aspect ratios, confirming the high accuracy and
validity of the developed LPCPT and the associated analytical solution
technique. It should also be pointed out that although the HSDT-based
results from both sources and the present LPCP model, under the
described special case, match for all cases, their discrepancy relative to
the 3-D elasticity is expected to increase as the plate thickness-to-length
ratio increases. This trend is observed to hold true except for the
extremely thick case of hro /b = 0.5 which may be attributed to the
convergence level associated with the employed numerical technique of
discrete singular convolutional in obtaining the reported 3-D value in
[971.

To show the validity and merit of the present method for dynamic
analyses, the first five natural frequency parameters of laminated rect-
angular plates based on the LPCPT are tabulated in Table 2. The results
are presented for laminated plates having different numbers of identical
constituting layers, ranging from unity to asymptotically an infinite
number of extremely thin layers, while the ratio of plates’ total thickness
to length is kept constant. The dimensionless interlayer interaction
modulus is numerically assigned special values according to Eq. (59) for
comparisons with the conventional theories. The obtained LPCPT-based
vibration results are compared with the results reported in the literature
for the vibration of thick solid plates based on the 3-D elasticity theory
and the simplest CPT, as the lower and upper bounds of the presented
LPCPT results, respectively. The results are provided for two different
values of the plate's aspect ratio. It can be observed from the results of
Table 2 that there is a strong correlation between the frequency pa-
rameters based on the 3-D elasticity and those obtained based on the
special case of LPCPT, where the number of constituting layers tends to a
large value. An excellent agreement can also be observed from the
comparison of the CPT results and those of the LPCPT for comparable
single-layer plates. The percentage discrepancies as low as below 1 % for
each comparable case, reported in brackets in Table 2 confirm the high
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Table 2
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The first five natural frequencies of rectangular plates based on both the classical plate theory (CPT) and the 3-D elasticity, in comparison with those corresponding
deduced from some special cases of the present LPCP model. The percentage discrepancy given for each value [%] is calculated with respect to the reference values for
each case: (CPT as the reference for the single-layer n =1, and 3-D elasticity for multilayers theoretically consisting of an infinite no. of extremely-thin film layers). The
provided numerical results based on the present model are computed for a special case in which the interlayer interaction modulus is set to be equivalent to the

transverse shear strains (k = k ), while the number of constituting layers ranges from one to large values, tending to infinity (while the total thickness, htot = nhy, is
kept constant as the number of layers n, increases). The comparative results are available for the Poisson’s ratio v, = 0.3 and the overall plate thickness-to-length ratio

hTot/a =0.1.
n Method No. of constituting Layers whtot M(Mode sequence)
Ist 2nd 3rd 4th 5th
1 CPT [98] - 0.0955 blxx 0.2360 2 0.3732 22 0.4629 3 0.5951 23
Present (k = k) n= 0.0955 [0.0 %]' 0.2360 [0.0 %] 0.3732 [0.0 %] 0.4629 [0.0 %] 0.5951 [0.0 %]
n=2 0.0932 0.2232 0.3441 0.4206 0.5303
n= 0.0930 0.2220 0.3409 0.4155 0.5216
n =10 0.0930 0.2220 0.3407 0.4152 0.5210
n =20 0.0930 0.2220 0.3406 0.4151 0.5208
n—oco 0.0930 [0.2 %]t 0.2220 [1.7 %] 0.3406 [0.4 %] 0.4151 [0.5 %] 0.5208 [0.6 %]
3-D Elasticity [99] - 0.0932 0.2260 0.3421 0.4171 0.5239
1/V/2 CPT [98] - 07180 M'x 1.4273 12 2.1281 >! 2.5908 1? 2.8207 >?
Present (k = k) n= 0.7180 [0.0 %] 1.4273 [0.0 %] 2.1281 [0.0 %] 2.5908 [0.0 %] 2.8207 [0.0 %]
n=2 0.7046 1.3774 2.0227 2.4396 2.6443
n= 0.7036 1.3732 2.0131 2.4249 2.6267
n =10 0.7036 1.3730 2.0125 2.4240 2.6256
n =20 0.7036 1.3730 2.0124 2.4239 2.6254
n—co 0.7036 [0.1 %]t 1.3730 [0.2 %] 2.0124 [0.3 %] 2.4238 [0.3 %] 2.6254 [0.3 %]
3-D Elasticity [100] - 0.704 1.376 2.018 2.431 2.634

*Equivalent k value for the interlayer modulus of k* = G, /hy.
**No. of vibration modes’ half-waves along x and y directions.
fPercentage discrepancy with respect to CPT.

ffPercentage discrepancy with respect to the 3-D Elasticity.

Table 3
Mechanical and physical properties of the aluminium sheets Al 2024-T2 in the
studied multilayer panels.

accuracy and reliability of the present approach and the proposed so-
lution technique for the vibration analysis of laminated plates.

To demonstrate the validity and efficiency of the developed
approach for laminated panels composed of multiple layers with

Property Yg‘;“gqs modulus S(l:'l;ar modulus  Poisson’s ratio D}:“Sm; different levels of interlayer interaction, a special aluminium sheet-
(GPal [GPal t (Kg/m’] based impact-resistant lightweight panel was modelled using the finite
70.15 276 0.33 2780 element analysis (FEA) for the comparative study. The panels are

composed of thin layers of Aluminium 2024-T2 [101], with the layer
thickness of 1 mm and an overall planar dimension of 110 x 165 mm?2.
160
5th mode
4th mode
3rd mode
80 F 2nd mode
st mode
QS
\‘5 40 <«no-bonding e
H
'{ perfect-bonding
S o
= 20 F M -
3 .-
N ) SO
N
5th mode
10 - 4th mode X 3-D FEA (4-layer AL 2024-T3)
___________________ 3rd mode --------- LPCPT (4-Layer Al 2024-T3)
2nd mode o 3-DFEA (6-Layer Al 2024-T3)
Ist mode
LPCPT (6-Layer Al 2024-T3)
5 1 1 1 1 1
1.00E-03 1.00E-02 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03
a*k/(nEhy,,)

Fig. 4. Variations of the first five natural frequency parameters of the four- and six-layer Al 2024-T3 panels vs. the dimensionless interlayer interaction parameter,

predicted based on the present LPCPT as well as the 3-D FE simulations.
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Two different multilayer aluminium samples, composed of four and six
sheets, bonded with soft adhesive films, are modelled and studied. The
mechanical properties of the constituting Al 2024-T3 sheets [101] are
given in Table 3.

The finite element modelling and analysis of the mentioned multi-
layer plate samples were carried out using the commercially available
software Abaqus/CAE (Dassault Systemes) for the free vibration anal-
ysis. Each of the bonded aluminium sheets was modelled by employing
the continuum solid shell element type CSS8, an eight-node brick
element, to achieve sufficiently accurate results in an efficient compu-
tational time frame. Each aluminium sheet was assigned an isotropic
linear elastic section, built up with the elastic property set, as given in
Table 3. The adhesive bonding films at the interfaces were modelled
using the three-dimensional (3-D) solid element type C3D8R, an eight-
node hexahedral/brick element with reduced integration and
enhanced hourglass control, and applying quadratic geometric order to
achieve accurate results. A relatively soft-shear isotropic material with
flexible values of the shear modulus was assigned, corresponding to
different values of the interlayer interaction modulus. The adhesive-
sheet coinciding surfaces were constrained via the tie constraint of the
elements’ nodes. A double-sided bias-pattern fine mesh distribution was
implemented for the through-depth element sizing using the structured
technique, to achieve a denser mesh in the vicinity of the adhesive-sheet
interfaces. This was applied to ensure that interaction effects are prop-
erly captured, gaining accurate and reliable results.

Variations of the first five natural frequency parameters versus the
dimensionless interlayer interaction parameter based on the present
LPCP model are depicted in Fig. 4 for the described four- and six-layer
aluminium sheet panels, in comparison with the simulation results
from the conducted FEA. Excellent agreement between the simulation
results and the predictions based on the LPCP model at different levels of
interlayer interaction is evident for both examined multilayer panels.
Such a strong correlation across all vibration modes confirms the high
accuracy and validity of the proposed LPCPT and its associated analyt-
ical solution technique. It can also be concluded from Fig. 4 that the
extent of interlayer interaction has a more pronounced effect on the
frequencies of panels composed of a greater number of constituent
layers.

Mode: 21 .

N\

Layer edges

Relative interlayer
slips at the edges

Mode: 12
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To visually elucidate the influence of partial interlayer interaction on
the vibration modes of laminates, three-dimensional contours of the first
five vibration modes of the four-layer AL 2024-T3 panel are illustrated in
Fig. 5. The relative interlayer slips at different locations of the edges for
the first two modes are shown.

A comprehensive set of dimensionless buckling load parameters (N..)
of laminated partial-composite plates is tabulated in Table 4. These re-
sults may serve as benchmark solutions for validating new solution ap-
proaches and computational techniques based on the LPCP model in the
future. The results of Table 4 are general in nature and are provided for
various numbers of constituting layers (n) and different levels of inter-
layer interaction, formulated via the nondimensional interlayer shear
modulus (k = (a?k)/(nEhre)). The presented dimensionless buckling
results are presented for three different compressive edge-load cases: (i)
mono-axial along x-axis; (ii) mono-axial along y-axis; and (iii) bi-axial
compression.

The results are generalised with regard to any thickness-to-length
ratios, and are given for different aspect ratios (;7). The graphical
mode-shape contours corresponding to each buckling case, as well as
their associated number of half-waves along the two planar directions,
are presented in the tables.

It can be observed from the results of Table 4 that the critical
buckling load parameters of the partial composite plates, regardless of
the number of layers n, approach a specific value (bolded) for each case
when the interlayer interaction parameter k approaches infinity (i.e., the
so-called full-composite state or perfect interfacial bonding). The
mentioned special values are identical to the critical load parameters of
single-layer plates (n =1 in the tables) based on the classical plate
theory (CPT). It can also be deduced from the results of Table 4 that the
effect of the interlayer interaction parameter, k, is more dominant when
the number of constituting layers of a plate increases. It can also be
observed from the results of Table 4 that, the greater extent of interlayer
interaction obviously causes a higher critical buckling load, for all plate
and loading cases.

The first five frequency parameters (@ = wa?\/p hrot/De) of lami-
nated partial-composite plates, as benchmark vibration results for the
established LPCPT, are tabulated in Table 5 for a wide range of numbers

Mode: 31 i
ode e

Fig. 5. Three-dimensional vibration mode-shapes of the four-layer AL 2024-T3 partial composite panel. The relative interlayer slips at different locations of the edges

for the first two modes are illustrated.
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Table 4

Dimensionless critical buckling loads (N, = a®N¢;/D,) of laminated partial-composite plates with different aspect ratios (), for various numbers of constituting layers
(n), and different levels of interlayer interaction, formulated via the nondimensional interlayer shear modulus (k = (a®k)/(nEhtot)). The presented dimensionless
benchmark buckling results are general in nature and are provided for three different compressive edge-load cases: (i) mono-axial along x-axis; (ii) mono-axial along y-
axis; and (iii) bi-axial compression. The results are generalised with regard to any thickness-to-length ratios. The numbers of layers (n) are varied, while the total
thickness-to-length ratio is kept constant. The buckling loads, for the case k—0, is reduced by the factor of 1/n? compared to a corresponding perfectly bonded ideal
case, as in the beam-case shown in [34].

(&1,&2) n :g No. of Ncr = achr/Dw
b Layers (1) k0 k=10% k=102 k=10"! k=10 k=10 k=102 k=10 k =10° k-oo
Case i: (1,0) 1.0(cr. buckling mode:1,1) 1 30.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784
Mono-axial along x-axis 2 9.8696 9.8707 9.9784 10.9228 17.8473 33.1627 38.6968 39.4704 39.4783 39.4784
= = 5 15791  1.5809  1.7520  3.2352 13.2998 32.5098 38.6424 39.4699 39.4783 39.4784
= = 10 0.3948  0.3967  0.5894  2.2105 12.7938 32.4672 38.6407 39.4699 39.4783 39.4784
- = 20 0.0987  0.1008  0.3027 1.9667 12.6761 32.4586 38.6405 39.4699 39.4783 39.4784
= ES 50 0.0158  0.0179  0.2238  1.9000 12.6439 32.4564 38.6405 39.4699 39.4783 39.4784
= = 100 0.0039  0.0061  0.2127  1.8906 12.6393 32.4561 38.6405 39.4699 39.4783 39.4784
1000 <0.0001  0.0022  0.2091  1.8875 12.6378 32.4560 38.6405 39.4699 39.4783 39.4784
S0 0 0.0022  0.2090  1.8874 12.6377 32.4560 38.6405 39.4699 39.4783 39.4784
2/3(cr. buckling mode:1,1) 1 20.5921 20.5921 20.5921 20.5921 20.5921 20.5921 20.5921 20.5921 20.5921 20.5921
5.1480  5.1488 52265  5.8984 10.3687 18.0630 20.2955 20.5891 20.5921 20.5921
5 0.8237  0.8249  0.9489  1.9973  8.3784 17.8248 20.2752 20.5889 20.5921 20.5921
10 0.2059  0.2073  0.3460  1.4859  8.1666 17.8110 20.2746 20.5889 20.5921 20.5921
20 0.0515  0.0530  0.1980  1.3647  8.1177 17.8083 20.2746 20.5889 20.5921 20.5921
50 0.0082  0.0098  0.1574  1.3316  8.1043 17.8076 20.2746 20.5889 20.5921 20.5921
100 0.0021  0.0036  0.1517  1.3269  8.1024 17.8076 20.2746 20.5889 20.5921 20.5921
1000 <0.0001 0.0016  0.1498  1.3253  8.1018 17.8075 20.2746 20.5889 20.5921 20.5921
S0 0 0.0016  0.1498  1.3253  8.1018 17.8075 20.2746 20.5889 20.5921 20.5921
0.5(cr. buckling mode:1,1) 1 15.4213 15.4213 15.4213 15.4213 15.4213 15.4213 15.4213 15.4213 15.4213 15.4213
2 3.8553  3.8560  3.9232  4.4998  8.1475 13.7453 15.2285 154193 15.4212 15.4213
5 0.6169  0.6179  0.7251  1.6220  6.7846 13.5932 15.2154 154192 154212 15.4213
10 0.1542  0.1554  0.2752  1.2479  6.6429 13.5848 15.2151 154192 154212 15.4213
20 0.0386  0.0398  0.1650 1.1594  6.6103 13.5832 15.2150 15.4192 15.4212 15.4213
50 0.0062  0.0075  0.1348  1.1351  6.6014 13.5828 15.2150 15.4192 15.4212 15.4213
100 0.0015  0.0029  0.1305  1.1317  6.6001 13.5828 15.2150 154192 15.4212 15.4213
1000 <0.0001  0.0014 01291 11306 6.5997 13.5828 15.2150 15.4192 15.4212 15.4213
—o0 0 0.0014 01291 11305 6.5997 13.5828 152150 15.4192 15.4212 15.4213
0.4(cr. buckling mode:1,1) 1 13.2805 13.2805 13.2805 13.2805 13.2805 13.2805 13.2805 13.2805 13.2805 13.2805
2 3.3201 3.3208  3.3831  3.9156  7.1918 11.9270 13.1263 13.2790 13.2805 13.2805
5 0.5312 05322  0.6316  1.4586  6.0744 11.8064 13.1159 13.2789 13.2805 13.2805
10 0.1328 01339  0.2449  1.1406 509596 11.7999 13.1156 13.2789 13.2805 13.2805
20 0.0332  0.0344  0.1503  1.0653 509333 11.7987 13.1156 13.2789 13.2805 13.2805
50 0.0053  0.0066  0.1244  1.0448 509261 11.7984 13.1156 13.2789 13.2805 13.2805
100 0.0013  0.0026  0.1207  1.0418 509251 11.7984 13.1156 13.2789 13.2805 13.2805
1000 <0.0001 0.0013  0.1195  1.0409  5.9247 11.7984 13.1156 13.2789 13.2805 13.2805
S0 0 0.0013  0.1195  1.0409 59247 11.7984 13.1156 13.2789 13.2805 13.2805
(61,¢2) n _a No. of Ner = a®Ner/De
b Layers (M) k0 k=10% k=102 k=101 k=10 k=10 k=102 k=10* k =10° k—ooo
Case ii: (0,1) 1.0(cr. buckling mode:1,1) 1 39.4784 39.4784 390.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784
Mono-axial along y-axis 2 9.8696 9.8707  9.9784  10.9228 17.8473 33.1627 38.6968 39.4704 39.4783 39.4784
uuuumu 5 15791 1.5809  1.7529  3.2352  13.2998 32.5098 38.6424 39.4699 39.4783 39.4784
10 0.3948  0.3967  0.5894  2.2105  12.7938 32.4672 38.6407 39.4699 39.4783 39.4784
20 0.0987 0.1008  0.3027 1.9667  12.6761 32.4586 38.6405 39.4699 39.4783 39.4784
50 0.0158 0.0179  0.2238  1.9000  12.6439 32.4564 38.6405 39.4699 39.4783 39.4784
100 0.0039  0.0061  0.2127  1.8906  12.6393 32.4561 38.6405 39.4699 39.4783 39.4784
1000 <0.0001 0.0022  0.2091  1.8875  12.6378 32.4560 38.6405 39.4699 39.4783 39.4784
TTTTWTTTTTTTT -0 0 0.0022  0.2090  1.8874  12.6377 32.4560 38.6405 39.4699 39.4783 39.4784
2/3(cr. buckling mode:1,2) 1 42.8368 42.8368 42.8368 42.8368 42.8368 42.8368 42.8368 42.8368 42.8368 42.8368
2 10.7092 107101 10.7943 11.5403 17.4504 34.0478 41.6708 42.8247 42.8367 42.8368
5 17135 1.7148  1.8494  3.0259  11.7582 33.0392 41.5877 42.8239 42.8367 42.8368
10 0.4284  0.4299  0.5808  1.8743  11.1005 32.9658 41.5849 42.8239 42.8367 42.8368
20 0.1071  0.1087  0.2672  1.5990  10.9467 32.9505 41.5845 42.8239 42.8367 42.8368
50 0.0171  0.0188  0.1807  1.5238  10.9045 32.9465 41.5845 42.8239 42.8367 42.8368
100 0.0043 0.0060  0.1685  1.5132  10.8985 32.9459 41.5845 42.8239 42.8367 42.8368
1000 <0.0001 0.0017  0.1644  1.5097  10.8965 32.9457 41.5845 42.8239 42.8367 42.8368
- 0 0.0017  0.1644  1.5096  10.8965 32.9457 41.5845 42.8239 42.8367 42.8368
0.5(cr. buckling mode:1,2) 1 30.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784 39.4784
2 9.8696 9.8707  9.9784  10.9228 17.8473 33.1627 38.6968 39.4704 39.4783 39.4784
5 15791 1.5809 17529  3.2352  13.2998 32,5098 38.6424 39.4699 39.4783 39.4784
10 0.3948  0.3967  0.5894  2.2105  12.7938 32.4672 38.6407 39.4699 39.4783 39.4784
20 0.0987 0.1008  0.3027 1.9667  12.6761 32.4586 38.6405 39.4699 39.4783 39.4784
50 0.0158 0.0179  0.2238  1.9000  12.6439 32.4564 38.6405 39.4699 39.4783 39.4784
100 0.0039  0.0061  0.2127  1.8906  12.6393 32.4561 38.6405 39.4699 39.4783 39.4784
1000 <0.0001 0.0022  0.2091  1.8875  12.6378 32.4560 38.6405 39.4699 39.4783 39.4784
-0 0 0.0022  0.2090  1.8874  12.6377 32.4560 38.6405 39.4699 39.4783 39.4784

(continued on next page)
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(&1,62) n= a No. of Ner = a*Ner/De
b Layers (n) k0 k=10% k=102 k=101 k=10 k=10 k=102 k=10* k =10° koo
0.4(cr. buckling mode:1,3) 1 40.8053 40.8053 40.8053 40.8053 40.8053 40.8053 40.8053 40.8053 40.8053 40.8053
2 10.2013 102023 10.2936 11.0994 17.3054 33.1981 30.8254 40.7952 40.8052 40.8053
5 1.6322  1.6337 17795  3.0482  12.1606 32.3613 30.7562 40.7946 40.8052 40.8053
10 04081 0.4097 05732 19652 11.5745 32.3029 39.7540 40.7945 40.8052 40.8053
20 01020 0.1038 02753 17068  11.4376 32.2909 39.7537 40.7945 40.8052 40.8053
50 00163 00181 01933 1.6362 11.4001 32.2877 30.7536 40.7945 40.8052 40.8053
100 0.0041 0.0059 01817  1.6262 11.3948 32.2873 30.7536 40.7945 40.8052 40.8053
1000 <0.0001 0.0019 01779  1.6229  11.3930 32.2872 39.7536 40.7945 40.8052 40.8053
o0 0 0.0018  0.1778 01628  11.3930 32.2872 30.7536 40.7945 40.8052 40.8053
(61,¢2) n= a No. of Ne = 6®N /Do
b Layers k-0 k=10% k=102 k=10 k=10 k=10 k=102 k=10* k =10° k—oo
n)
Case iii: (1,1)Bi-axial 1.0Ccr. buckling 1 19.7392 19.7392 19.7392 19.7392 19.7392 19.7392 19.7392 19.7392 19.7392 19.7392
compression mode:1,1) 2 49348 49353  4.9892 54614 89237 16.5813 10.3484 19.7352 19.7392 19.7392
T 5 07896 07904  0.8764 1.6176 6.6499 16.2549 19.3212 19.7349 19.7392 19.7392
= - 10 01974 0.1984 0.2947 11052 6.3969 16.2336 19.3203 19.7349 19.7392 19.7392
= = 20 0.0493 00504 0.1514 09833 6.3381 16.2293 19.3203 19.7349 19.7392 19.7392
= = 50 0.0079 00090 01119 09500 6.3219 16.2282 19.3202 19.7349 19.7392 19.7392
= ES 100 0.0020 0.0031 0.1064 09453 6.3196 16.2281 19.3202 19.7349 19.7392 19.7392
= = 1000 <0.0001 0.0011 0.1045 0.9437 63189 16.2280 19.3202 19.7349 19.7392 19.7392
il Soo 0 00011 01045 09437 63189 16.2280 19.3202 19.7349 19.7392 19.7392
2/3(cr. buckling 1 14.2561 14.2561 14.2561 14.2561 14.2561 14.2561 14.2561 14.2561 14.2561 14.2561
mode:1,1) 2 3.564  3.5646  3.6183  4.0835 7.1783 125052 14.0507 14.254 14.2561 14.2561
5 05702 05711 0.6569 1.3827  5.8004 12.3402 14.0367 14.2539 14.2561 14.2561
10 0.1426 0.1435 02395 1.0287 5.6538 12.3307 14.0363 14.25390 14.2561 14.2561
20 0.0356 0.0367 0.1371 09448 5.6200 12.3288 14.0363 14.2539 14.2561 14.2561
50 0.0057 0.0068 0.109 09219 5.6107 12.3284 14.0362 14.2539 14.2561 14.2561
100 0.0014 00025 0105 09186 5.6094 12.3283 14.0362 14.25390 14.2561 14.2561
1000 <0.0001 0.0011 01037 09175 5.6090 123283 14.0362 14.2539 14.2561 14.2561
oo 0 00011 01037 09175 56090 12.3283 14.0362 14.2539 14.2561 14.2561
0.5(cr. buckling 1 12.3370 12.3370 12.3370 12.3370 12.3370 12.3370 12.3370 12.3370 12.3370 12.3370
mode:1,1) 2 3.0843 3.0848 3.1385 3.5998  6.5180 10.9962 12.1828 12.3354 12.3370 12.3370
04935 0.4944 05800 1.2076 54277 10.8745 121724 12.3353 12.3370 12.3370
10 01234 01244 02201 09983 53143 10.8678 12.1720 12.3353 12.3370 12.3370
20 0.0308 00319 01320 09275 52882 10.8666 12.1720 12.3353 12.3370 12.3370
50 0.0049 0.0060 0.1078 09081 5.2811 10.8663 121720 12.3353 12.3370 12.3370
100 0.0012 00023 01044 09053 52801 10.8662 12.1720 12.3353 12.3370 12.3370
1000 <0.0001 0.0011 01033 0.9044 52797 10.8662 12.1720 12.3353 12.3370 12.3370
oo 0 00011 01033 09044 52797 10.8662 121720 12.3353 12.3370 12.3370
0.4(cr. buckling 1 11.4487 11.4487 11.4487 11.4487 11.4487 11.4487 11.4487 11.4487 11.4487 11.4487
mode:1,1) 2 2.8622 2.8627 29164 3.3755 6.1998 10.2819 11.3158 11.4474 11.4487 11.4487
5 04579 0.4588  0.5445 1.2574 52366 10.1779 11.3068 11.4473 11.4487 11.4487
10 0.1145 0.1155 0.2112 09833 51376 10.1723 11.3065 11.4473 11.4487 11.4487
20 0.0286 00207 01296 09184 51149 10.1713 11.3065 11.4473 11.4487 11.4487
50 0.0046 0.0056 0.1072  0.9007 51087 10.1711 11.3065 11.4473 11.4487 11.4487
100 0.0011 0.0022 0.1041 0.8981 51078 10.1710 11.3065 11.4473 11.4487 11.4487
1000 <0.0001 0.0011 01031 0.8973 51075 10.1710 11.3065 11.4473 11.4487 11.4487
o0 0 0.0011 01030 0.8973 51075 10.1710 11.3065 11.4473 11.4487 11.4487

of identical constituent layers in the plates, while the total thickness is
kept constant. The results also cover a wide ranges of interlayer inter-
action level, and are provided for different values of plate aspect ratio
(1), while the total thickness-to-length ratio of hr, = 0.1 is chosen
corresponding to moderately-thick range of plate thickness. The number
of vibration half-waves in each direction, along with the contours of
vibration mode-shapes, is provided in the tables for each case.

It can be concluded from Table 5 that increasing the extent of
interlayer interaction will cause an increase in the frequency parameters
of the layered plates. However, that influence, similar to the buckling
problem, is more pronounced when the number of constituting layers
increases. As a special case of the present LPCP model, the frequency
parameters of plates with different numbers of identical constituting
layers approach a unique value corresponding to that of a single-layer
based on the CPT, when the interlayer interaction parameter ap-
proaches infinity (bolded data in Table 5).

To evaluate the validity and performance of the proposed LPCPT for
laminated partial composite plates with non-identical layers, the nu-
merical vibration results for cross-ply laminated partial-composite
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plates with the stacking sequence (0/90/90/0) are reported in
Table 6, based on the direct solution approach described in Subsection
3.2. A wide range of values in logarithmic scale is considered for the
interlayer interaction modulus in dimensionless form, covering the full
range from the lower-bound of the non-composite case (zero shear
interaction) to the upper-bound corresponding to the fully composite
case (perfect-bonding). Each ply is assumed to be orthotropic with two
different modulus ratios: Ej/E; = 10 and 20 (G2 = 0.5E; and
v12 = 0.25). All plies have equal thickness, with a total thickness-to-
length ratio of hro; = 0.1.

The frequency results accounting for the rotary inertia effects
(arising from the in-plane translational-inertia contributions of all layers
in a partial interaction) are presented in the table in comparison with
those obtained when the mentioned effects are neglected. For each re-
ported frequency, the corresponding vibration mode is indicated as a
superscript denoting the number of half-waves in each orthogonal
planar direction. For instance, a 23-mode represents two half-waves in
the x - and three is in the y - direction.

It can be observed from Table 6 that, in the limiting special case of
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Table 5

First five dimensionless frequencies (@ = wa? m) of laminated partial-composite plates with different aspect ratios (), for various numbers of constituting
layers (n) while the total thickness is kept constant. The results are presented for different levels of interlayer interaction, formulated via the nondimensional interlayer
shear modulus (k = (a2k)/(nEhro)). The given dimensionless benchmark vibration results are general in nature and are provided for the total thickness-to-length ratio
hrot = 0.1. The number of half-waves along the two planar directions for each vibration mode-shape is provided. The numbers of layers (n) are varied, while the total
thickness-to-length ratio is kept constant.

n= Mode sequence No. of Layers (n) @ = 0a*\/p;hrot/Dec
% k-0 k=10"*% k=102 k=10"' k=10 k=10 k=102 k=10 k=10° k-
1.0 1st(mode: 1,1) 1 19.5788 19.5788 19.5788 19.5788 19.5788 19.5788 19.5788 19.5788 19.5788 19.5788
2 9.8494 9.8499 9.9035 10.3615 13.2389 17.9860 19.3901 19.5769 19.5788 19.5788
5 3.9465 3.9487 4.1580 5.6487 11.4444 17.8130 19.3769 19.5768 19.5788 19.5788
10 1.9738 1.9787 2.4117 4.6703 11.2266 17.8017 19.3765 19.5768 19.5788 19.5788
100 0.1974 0.2455 1.4489 4.3195 11.1591 17.7988 19.3765 19.5768 19.5788 19.5788
1000 0.0197 0.1478 1.4364 4.3159 11.1585 17.7988 19.3765 19.5768 19.5788 19.5788
-0 0 0.1465 1.4363 4.3159 11.1585 17.7988 19.3765 19.5768 19.5788 19.5788
2nd(mode: 1,2) 1 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636
24.5481 24.5487 24.6023 25.0777 28.8894 40.7658 47.2829 48.3523 48.3635 48.3636
5 9.8615 9.8637 10.0769 11.8041 21.3011 39.5686 47.1998 48.3515 48.3635 48.3636
10 4.9338 4.9387 5.4010 8.4324 20.1710 39.4642 47.1965 48.3515 48.3635 48.3636
100 0.4935 0.5448 2.3402 7.0335 19.8084 39.4342 47.1959 48.3515 48.3635 48.3636
1000 0.0493 0.2370 2.2901 7.0185 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636
-0 0 0.2318 2.2896 7.0184 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636
3rd(mode: 2,1) 1 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636
2 24.5481 24.5487 24.6023 25.0777 28.8894 40.7658 47.2829 48.3523 48.3635 48.3636
5 9.8615 9.8637 10.0769 11.8041 21.3011 39.5686 47.1998 48.3515 48.3635 48.3636
10 4.9338 4.9387 5.4010 8.4324 20.1710 39.4642 47.1965 48.3515 48.3635 48.3636
100 0.4935 0.5448 2.3402 7.0335 19.8084 39.4342 47.1959 48.3515 48.3635 48.3636
1000 0.0493 0.2370 2.2901 7.0185 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636
—00 0 0.2318 2.2896 7.0184 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636
4th(mode: 2,2) 1 76.4808 76.4808 76.4808 76.4808 76.4808 76.4808 76.4808 76.4808 76.4808 76.4808
2 39.1577 39.1582 39.2117 39.6906 43.8289 60.8098 73.9324 76.4534 76.4805 76.4808
5 15.7706 15.7728 15.9869 17.7916 29.2547 57.7403 73.7194 76.4517 76.4805 76.4808
10 7.8931 7.8980 8.3687 11.7494 26.8192 57.4372 73.7096 76.4516 76.4805 76.4808
100 0.7896 0.8419 3.0069 8.9958 26.0167 57.3472 73.7075 76.4516 76.4805 76.4808
1000 0.0790 0.3038 2.9057 8.9649 26.0088 57.3463 73.7075 76.4516 76.4805 76.4808
—00 0 0.2933 2.9046 8.9646 26.0087 57.3463 73.7075 76.4516 76.4805 76.4808
5th(mode: 1,3) 1 94.8717 94.8717 94.8717 94.8717 94.8717 94.8717 94.8717 94.8717 94.8717 94.8717
48.8484 48.8489 48.9024 49.3819 53.6384 73.2458 91.0924 94.8305 94.8713 94.8717
5 19.7068 19.7090 19.9234 21.7560 34.1188 68.5373 90.7603 94.8279 94.8712 94.8717
10 9.8656 9.8705 10.3441 13.8714 30.6648 68.0460 90.7438 94.8278 94.8712 94.8717
100 0.9870 1.0396 3.3938 10.1051 29.5079 67.8984 90.7401 94.8278 94.8712 94.8717
1000 0.0987 0.3425 3.2527 10.0617 29.4964 67.8969 90.7401 94.8278 94.8712 94.8717
—0o0 0 0.3280 3.2513 10.0612 29.4963 67.8969 90.7401 94.8278 94.8712 94.8717
n= Mode sequence No. of Layers (n) ® = 0a*\/pshror/Dec
% k-0 k=10* k=102 k=10"%' k=10 k=10 k=102 k=10" k=10° k-
2/3 1st(mode: 1,1) 1 14.1722 14.1722 14.1722 14.1722 14.1722 14.1722 14.1722 14.1722 14.1722 14.1722
2 7.0861 7.1180 7.17152 7.61847 10.0959 13.2909 14.0721 14.1711 14.1722 14.1722
5 2.8344 2.8527 3.05951 4.43868 9.0837 13.2048 14.0652 14.1711 14.1721 14.1722
10 1.4172 1.4304 1.84778 3.82921 8.9691 13.1998 14.0650 14.1711 14.1721 14.1722
100 0.1417 0.1890 1.22348 3.61865 8.9341 13.1986 14.0650 14.1711 14.1721 14.1722
1000 0.0142 0.1253 1.21585 3.61653 8.9337 13.1986 14.0650 14.1711 14.1721 14.1722
—00 0 0.1245 1.21577 3.61651 8.9337 13.1986 14.0650 14.1711 14.1721 14.1722
2nd(mode: 1,2) 1 27.1077 27.1077 27.1077 27.1077 27.1077 27.1077 27.1077 27.1077 27.1077 27.1077
2 13.6688 13.6693 13.7230 14.1892 17.4418 24.2629 26.7520 27.1040 27.1076 27.1077
5 5.4806 5.4828 5.6939 7.2830 14.3472 23.9138 26.7265 27.1038 27.1076 27.1077
10 2.7412 2.7462 3.1920 5.7339 13.9438 23.8883 26.7256 27.1038 27.1076 27.1077
100 0.2742 0.3237 1.7193 5.1526 13.8175 23.8814 26.7255 27.1038 27.1076 27.1077
1000 0.0274 0.1749 1.6986 5.1466 13.8162 23.8813 26.7255 27.1038 27.1076 27.1077
—0o0 0 0.1727 1.6984 5.1465 13.8162 23.8813 26.7255 27.1038 27.1076 27.1077
3rd(mode: 2,1) 1 43.0845 43.0845 43.0845 43.0845 43.0845 43.0845 43.0845 43.0845 43.0845 43.0845
2 21.8329 21.8335 21.8871 22.3611 26.0739 36.8043 42.2171 43.0755 43.0844 43.0845
5 8.7666 8.7688 8.9816 10.6850 19.6858 35.8654 42.1514 43.0749 43.0844 43.0845
10 4.3857 4.3906 4.8502 7.7871 18.7602 35.7863 42.1489 43.0749 43.0844 43.0845
100 0.4386 0.4897 2.1992 6.6107 18.7602 35.7637 42.1485 43.0749 43.0844 43.0845
1000 0.0439 0.2229 2.1573 6.5982 18.4620 35.7635 42.1485 43.0749 43.0844 43.0845
—0o0 0 0.2185 2.1569 6.5981 18.4620 35.7635 42.1485 43.0749 43.0844 43.0845
4th(mode: 1,3) 1 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636 48.3636
2 24.5481 24.5487 24.6023 25.0777 28.8894 40.7658 47.2829 48.3523 48.3635 48.3636
5 9.8615 9.8637 10.077 11.8041 21.3011 39.5686 47.1998 48.3515 48.3635 48.3636
10 4.9338 4.9387 5.4010 8.4324 20.1710 39.4642 47.1965 48.3515 48.3635 48.3636
100 0.4935 0.5448 2.3402 7.0335 19.8084 39.4342 47.1959 48.3515 48.3635 48.3636
1000 0.0493 0.2370 2.2902 7.0185 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636
—00 0 0.2318 2.2896 7.0184 19.8048 39.4339 47.1959 48.3515 48.3635 48.3636

(continued on next page)
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n= Mode sequence No. of Layers (n) @ = wa® \/m
g k-0 k=10* k=102 k=10"' k=10 k=10 k=102 k=10 k=10° k-oo
5th(mode: 2,2) 1 55.7159  55.7159 55.7159 55.7159 55.7159 55.7159  55.7159 55.7159  55.7159 55.7159
2 28.3443 28.3449 28.3985 28.8752 32.7989 46.1629 54.3040 55.7010 55.7158 55.7159
5 11.3941 11.3962 11.6098 13.3637 23.4705 44.5552 54.1929 55.7000 55.7158 55.7159
10 5.7011 5.7060 6.1713 9.3153 22.0323 44.4093 54.1882 55.7000 55.7158 55.7159
100 0.5702 0.6219 2.5265 7.5881 21.5676 44.3669 54.1874 55.7000 55.7158 55.7159
1000 0.0570 0.2556 2.4643 7.5694 21.5630 44.3665 54.1874 55.7000 55.7158 55.7159
—00 0 0.2492 2.4637 7.5692 21.5629 44.3665 54.1874 55.7000 55.7158 55.7159
n = Mode sequence No. of Layers (n) » = wad® \/m
% k-0 k=10* k=102 k=10"' k=10 k=10 k=102 k=10* k=10° k—oo
0.4 1st(mode: 1,1) 1 11.3945 11.3945 11.3945 11.3945 11.3945 11.3945 11.3945 11.3945 11.3945 11.3945
2 5.7176 5.7181 5.7715 6.2091 8.4104 10.8079 11.3294 11.3939 11.3945 11.3945
5 2.2893 2.2915 2.4962 3.7933 7.7346 10.7541 11.3250 11.3938 11.3945 11.3945
10 1.1448 1.1497 1.5547 3.3549 7.6618 10.7512 11.3248 11.3938 11.3945 11.3945
100 0.1145 0.1596 1.0917 3.2065 7.6397 10.7505 11.3248 11.3938 11.3945 11.3945
1000 0.0114 0.1121 1.0862 3.2050 7.6395 10.7505 11.3248 11.3938 11.3945 11.3945
—00 0 0.1115 1.0861 3.2050 7.6395 10.7505 11.3248 11.3938 11.3945 11.3945
2nd(mode: 1,2) 1 16.0781 16.0781 16.0781 16.0781 16.0781 16.0781 16.0781 16.0781 16.0781 16.0781
8.0795 8.0800 8.1335 8.5852 11.2209 14.9658 15.9498 16.0768 16.0781 16.0781
5 3.2364 3.2385 3.4464 4.8706 9.9504 14.8528 15.9410 16.0767 16.0781 16.0781
10 1.6185 1.6234 2.0473 4.1359 9.8025 14.8459 15.9407 16.0767 16.0781 16.0781
100 0.1619 0.2090 1.3069 3.8787 9.7571 14.8442 15.9407 16.0767 16.0781 16.0781
1000 0.0162 0.1336 1.2977 3.8761 9.7567 14.8442 15.9407 16.0767 16.0781 16.0781
—0c0 0 0.1326 1.2976 3.8760 9.7567 14.8442 15.9407 16.0767 16.0781 16.0781
3rd(mode: 1,3) 1 23.8438 23.8438 23.8438 23.8438 23.8438 23.8438 23.8438 23.8438 23.8438 23.8438
2 12.0108 12.0114 12.0650 12.5282 15.6372 21.5757 23.5666 23.8409 23.8437 23.8438
5 4.8144 4.8166 5.0270 6.5791 13.1318 21.3110 23.5469 23.8407 23.8437 23.8438
10 2.4079 2.4128 2.8540 5.2842 12.8143 21.2924 23.5463 23.8407 23.8437 23.8438
100 0.2408 0.2898 1.6069 4.8073 12.7153 21.2875 23.5462 23.8407 23.8437 23.8438
1000 0.0241 0.1636 1.5900 4.8024 12.7143 21.2875 23.5462 23.8407 23.8437 23.8438
—0c0 0 0.1618 1.5898 4.8024 12.7143 21.2875 23.5462 23.8407 23.8437 23.8438
4th(mode: 1,4) 1 34.6324 34.6324 34.6324 34.6324 34.6324 34.6324 34.6324 34.6324 34.6324 34.6324
2 17.5040 17.5045 17.5582 18.0290 21.5371 30.2850 34.0615 34.6265 34.6324 34.6324
5 7.0230 7.0252 7.2373 8.8907 16.9649 29.6945 34.0195 34.6261 34.6324 34.6324
10 3.5131 3.5180 3.9717 6.7249 16.3352 29.6479 34.0180 34.6261 34.6324 34.6324
100 0.3514 0.4018 1.9573 5.8793 16.1361 29.6349 34.0177 34.6261 34.6324 34.6324
1000 0.0351 0.1987 1.9273 5.8705 16.1341 29.6348 34.0177 34.6261 34.6324 34.6324
—c0 0 0.1956 1.9270 5.8704 16.1341 29.6348 34.0177 34.6261 34.6324 34.6324
5th(mode: 2,1) 1 40.3727 40.3727 40.3727 40.3727 40.3727 40.3727  40.3727  40.3727  40.3727  40.3727
2 20.4415 20.4421 20.4957 20.9689 24.6232 34.7379 39.6065 40.3647 40.3726 40.3727
5 8.2059 8.2081 8.4207 10.1099 18.8330 33.9196 39.5491 40.3642 40.3726 40.3727
10 4.1051 4.1100 4.5679 7.4507 18.0068 33.8519 39.5469 40.3642 40.3726 40.3727
100 0.4106 0.4615 2.1240 6.3841 17.7439 33.8327 39.5465 40.3642 40.3726 40.3727
1000 0.0411 0.2154 2.0861 6.3728 17.7413 33.8325 39.5465 40.3642 40.3726 40.3727
-0 0 0.2114 2.0857 6.3727 17.7413 33.8325 39.5465 40.3642 40.3726 40.3727

the LPCPT in which the interlayer interaction modulus approaches in-
finity, and the influence of the rotary inertia is excluded, the predicted
dimensionless frequencies show excellent agreement with those re-
ported in [102] based on the classical laminated plate theory (CLPT). As
expected, the natural frequencies of the laminated plate decrease with a
decrease in the interlayer interaction modulus. Moreover, the influence
of the rotary inertia becomes more pronounced as the interlayer inter-
action modulus increases. It can be deduced that there is a “partial rotary
inertia” effect arising from the in-plane translational-inertia contribu-
tions of all the layers when the shear interaction at the interfaces is not
perfect. It is also evident from Table 6 that the additional flexibility in
the displacements of a laminate associated with the rotary motions in
the vibration reduces the natural frequencies of the laminates.

The results of Table 6 reveal that not only variations of orthotropic
material properties of constituting layers, but also the extent of shear
interaction at the interfaces of a laminate can significantly affect the
vibration mode sequence, leading to vibration mode shifting. To gain a
clearer understanding and insight into these effects and how the inter-
layer slip modulus influences the vibration mode sequences, the shifts in
the modes due to variations in the interlayer shear interaction modulus
are exhibited via upward and downward arrows relative to the perfectly
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bonded (full-composite) case. Each arrow indicates one instance of
mode shifting compared with an identical laminate case but with the
corresponding idealised case based on the classical laminated theory
(CLPT). For instance, two arrows next to a frequency signifies that the
associated vibration mode has shifted twice as a result of the specified
level of interlayer interaction.

5. Conclusions

This paper has introduced a new class of layered plate theory that
incorporates the effects of partial-interaction imperfection at the
constituting layers’ interfaces. The proposed Laminated Partial-
Composite Plate Theory (LPCPT), as an extension of the simplest clas-
sical laminated plate theory (CLPT), includes the interlayer interaction
effects in the form of out-of-plane shear stresses based on a shear spring
model in terms of the relative displacements/slips at the interfaces.
Exact analytical solution schemes were introduced for the free vibra-
tions and buckling of laminated partial composite plates with identical
orthotropic layers under different compressive in-plane loading, to show
the merit and reliability of the proposed LPCPT. The introduced
analytical solutions were shown to be general and flexible with regard to
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Table 6

Dimensionless frequencies (@ = w(b?/7%)\/ phrot /D(2°2°)) of cross-ply laminated partial-composite plates with stacking sequence (0/90/90/0) for different levels of the interlayer partial interaction modulus. Each ply is

orthotropic with two different modulus ratios: E /E1 =10and 20 (G12 = 0.5E; andv12 = 0.25). All plies are of equal thickness, with a total thickness-to-length ratio hrot =0.1. The frequency results accounting for the
rotary inertia effects (arising from the in-plane translational-inertia contributions of each layer) are presented in comparison with those obtained when those effects are neglected. The number of half-waves along the two
planar directions for each vibration mode is provided. Mode shifting due to the changes in the interlayer interaction level is indicated for each case with arrows, with reference to the perfectly bonded (full-composite)

cases.

(E|/EL) * Mode sequence

Rotary Inertia Effects

@ = (0a®/hro)\/ps/E

k-0 k=10" k=1072 k=101 k=10 k=10 k=10% k =10* k =10° k—o0 CLPT' [102]
10 1st Included 0.6295'1 0.6295' 0.6312!1 0.6461'! 0.770111 1.3325"! 2.17321 2.494711 2.4988!1 2.4989!! -
Neglected 0.6298'! 0.6299'! 0.6315'! 0.6464'! 0.7706'! 1.334711 2.18491! 2.5150"! 2.5193"! 2.5193'! 2,519
2nd Included 1.74212 1.7421'2 1.7436%'11 1.7572%11 1.8858%111 2.7727%11 4.437412 4.8810'2 4.886312 4.886412 -
Neglected 1.7443'2 1.7443'2 1.7458%111 1.7595%111 1.8883%111 2.7780%111 450182 4.979912 4.985812 4,985912 4.986'2
3rd Included 1.7421%1 ¢ 1.7421%' 1 1.7451'2 | 1.7721'2 | 2.0022'2 | 3.0503% | 5.543021 ¢ 8.28962! 1 8.344621 ¢ 9.404113 -
Neglected 1.7443%1 ¢ 1.7443%1 1 1.747412 | 1.7743'2 | 2.0051'2 | 3.0636'2 | 5.5773%1 ¢ 8.4544%1 ¢ 8.5144% ¢ 9.78321% 9.78313
4th Included 2.5142%2 1 2.514222¢ 2.5175%2 ¢ 2.5476%2 1 2.8192%2 1 4.3776%21 7.7536%2 1 9.39121% | 9.4040'3 | 8.34522! -
Neglected 2.5193%2 1 2.5194%% ¢ 2.5227%%1 2.5528%2 1 2.8252%2 1 4.3967%%1 7.8810%% 1 9.7679'% | 9.78311% | 8.51502! 8.515%!
5th Included 3.7218"3|| 3.7219'3| | 3.7261'3| | 3.7640"3| | 4.1000"3| | 5.7923'3| | 8.3921'3| | 9.7311%2 9.7610%2 9.7613%2 -
Neglected 3.7314%3|| 3.7314%]| 7.735713| | 3.773713|| 4111213 5.83611%] | 8.6193'3]| 10.0429%2 10.0770%2 10.077%2 10.077%2
20 1st Included 0.6593'1 0.6593!1 0.6603! 0.6693!! 0.74781 1.1669'! 2.0698! 2.6086'! 2.6169'1 2.6170" -
Neglected 0.6596'! 0.6596'! 0.6606'! 0.6696'! 0.74821! 1.1687"! 2.0792'! 2.6297'! 2.6383'! 2.63841! 2.638!!
2nd Included 1.8658'2 1.86582! 1 1.86672! 1 1.8748%! 1 1.9522% ¢ 2.5472% ¢ 4.1460"2 4.8098'2 4.8189'2 4.8190"2 -
Neglected 1.8682!2 1.8682%1 1 1.8691% 1 1.8772% ¢ 1.9548%1 1 2.5519%1 ¢ 4.1996'2 4.907112 4.9170'2 4.917112 4.91712
4th Included 1.8658%! 1.8659'2 | 1.8676'2 | 1.8836!2 | 2.0240'2 | 2.7546'% | 4.98642! 9.04822 9.16692! 9.16812! -
Neglected 1.8682% 1.8682'% | 1.8700'% | 1.8860'% | 2.0269'% | 2.7660'2 | 5.0101% 9.2244% 9.3534%! 9.3547% 9.354%!
3rd Included 2.6330%2 1 2.6330%21 2.6350%2 1 2.6532%2 1 2.8214%2 1 3.9051%2¢ 7.1083%2 ¢ 9.240713 9.263413 9.2636'3 -
Neglected 2.6384%2 1 2.6384%% 1 2.6404%% ¢ 2.6586%% 1 2.8275%2 1 3.9217%%1 7.2046%% ¢ 9.6104'% 9.6368"% 9.63701% 9.63713
5th Included 4.03441% | 4.0344'% | 4.0369'% | 4.0590'% | 4.25941% | 5.37541% | 7.7718'% | 10.162%2 10.2220%2 10.223%2 -
Neglected 4.0448'3 | 4.0448'3 | 4.047313% | 4.0695'3 | 4271113 | 5.4148'3 | 7.959913 | 10.485%2 10.5529%2 10.554%2 10.554%2

*E| and E, are the on-axis and off-axis moduli of elasticity, respectively.

fClassical Laminated Plate Theory (CLPT).
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the number of constituting layers, unlike any other studies in the liter-
ature. Laminated plates with non-identical layers were also treated via
direct analytical solution alternatives for laminated plates with a spec-
ified number of constituent layers based on the proposed LPCPT. It was
shown that, for a special case of the present LPCP mode, there is an
excellent agreement between the predicted critical buckling loads, as
well as the predicted vibration frequencies, and those reported in the
literature for thick plates based on both the three-dimensional elasticity
and Reddy’s higher-order shear deformation theory (HSDT). It was
demonstrated how the critical buckling loads and the natural vibration
frequencies are degraded from those predicted based on classical plate
theory with perfect-bonding ideal assumptions, considering different
extents of interlayer partial interaction. It was concluded that the in-
fluence of the interlayer interaction parameter on the critical buckling
loads and the natural vibration frequencies is more pronounced when
the number of constituting layers increases. It was also concluded that
not only variations of orthotropic material properties of constituent
layers, but also the extent of shear interaction at the interfaces of a
laminate can significantly affect the vibration mode sequence, leading to
vibration mode shifting.

The introduced Laminated Partial-Composite Plate Theory (LPCPT)
provides a foundational framework for a potential series of refined ex-
tensions based on different shear-deformable kinematic models (ranging
from Mindlin-Reissner to higher-order models) for internal transverse
shear deformations at each layer. Moreover, the LPCPT may provide a

Appendix A

Composite Structures 380 (2026) 119951

framework for future developments of laminated partial-composite shell
theories based on different kinematic models. The class of LPCPT and its
extensions may also be employed for other types of constituent materials
(e.g., functionally-graded materials (FGMs)), different boundary con-
ditions and loading scenarios, and applied to a wide variety of static and
dynamic problems in the future.
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Details on the proposed solution (29) for the displacement components for the buckling of laminated composite plates based on the established

LPCP model are presented here.

To exactly satisfy the boundary conditions (28a),b) with regard to the applied compressive edge load terms, while having it mathematically
possible to fulfil the set of governing equations (21a)-g), the first few terms of a truncated polynomial series with unknown coefficients may be
superimposed to the standard Navier-type solution. We examine a possible solution where the highest order of the mentioned truncated polynomial
series is lower than the highest order of the partial derivatives of the in-plane displacement components (i.e., 2nd order), as follows

Ug; = CE,"l) + C<1’fi>x + Upicos(amx)sin(Bny), i€{1,2,..,n}

Voi = E)VZ + C(l‘fzy + Vosin(amx)cos(B,y), 1€{1,2,..,n}

w = Wosin(am1x)sin(f,,y)

where Cgf, C<1,i’ o

(A-1)

), cl), and Cgvl) are some unknown coefficients to be determined. It can be demonstrated that all terms related to the considered

truncated polynomials vanish upon substitution of Eq. (A-1) into the set of governing equations (21a)-g) under the assumption of identical constituting
layers of a laminate. Using the definition of the stress resultants by Eqgs. (18) and (19), and the in-plane load distribution assumption (32a,b), the

boundary conditions (28a),b) can be rewritten as,at x = 0,a:

w=0
Pw/ox? =0

oug; oo ~ .
All‘igm'i‘Alz,i% =—Ny, i€{1,2,..,n}
voi =0, i€ {1,2,..,n}

andaty =0,b:
w=0
Pw/dy* =0

ouy; oo =~ .
A12.i%+A22,i§ =—Ny;, i€{1,2,..,n}
up; =0, i€{1727"'7n}

The displacement components expressed by Eq. (A-1) inherently satisfy the boundary conditions defined by Egs. (A-2a) and (A-3a). Upon
substituting Eq. (A-1) into the first of the boundary equations (A-2b) and (A-3b), it follows that these conditions hold if:

All,icﬁ +A12.iC§‘2 = —K’x.i
Alz,icﬁ +AniCY] = —Ny;

(A-4)
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Solving the above set of algebraic equations and replacing the definition of the axial stiffnesses A; (r,s € {1,2}) from Eq. (12) yields:

A1z Nyi = App Ny 1o <
C(u? _ 12, yi " i N, — N
u A Any —A3,, Eyih; (Nxi = vy iNyi)
~ ~ (A-5)
A1psNyi —A11¢Ny; 1 ~ ~
C(lvz _ 12,74V xi 11,7y _ (Ny,i _ l/yx,ile)

Aq1pAzp — A%zf Eyih; !

For a plate subjected to axial compressive loading on a pair of parallel edges, the displacement conditions by the second of Egs. (A-2b) and (A-3b) will
be fulfilled at the middle of the plates’ loaded parallel edges; i.e.,

atx=a/2: {u; =0, ie{1,2,.,n} (A-6a)
aty=>b/2:{vo; =0, i€ {1,2,..,n} (A-6b)

Applying the conditions (A-6a,b) using Egs. (A-1) and (A-5), the remaining unknown coefficients are determined as follows,

Coi = —Ciia/2
) = ~C)b/2 (A7)
0,i 1i
and consequently,
1 ~ ~
Uoi =5~ (Nyi — iy.eNyi) (@/2 = X) + Upgcos(amx)sin(Bzy), i€ {1,2,..,n}
x0T
1 ~ ~ . . A-
Voi =g (Ny; — vyxeNyi) (0/2 — y) + Vosin(amx)cos(Byoy), i€ {1,2,...,n} (A-8)
y 1t

w = Wosin(am1x)sin(f,,,Y)

Appendix B

Details on the solution for the set of difference equations (31a),b) are presented here. We apply a change of variable for the coefficients of the set of
in-plane displacement components Uy; and Vy;, i € {1,2,...,N} in Egs. (31a),b) in the form:

Up; = ¢, }
{ Voi—cd,  i€{1,2,...N} (B-1)

Substituting Eq. (B-1) into the set of difference Egs. (31a),b), they can be expressed as

72— (en2/k+2)2+1 —(em2/k)2 {C} {0} -
— (e /i) 72— (emr2)an | Led 10
in which
N2 = a2 Aviy + BroAcer
Coor = OpyAsss + oAz (B-3)

12
Claz = OmPma(Ar2r + Assr)

The unknown parameter 1 in Egs. (B-1) can be determined as roots of a characteristic equations, obtained from applying a non-trivial solution to Eq.
(B-2). Consequently, the characteristic equation can be expressed as

1 1 2 1
1 e e+ aK) P [c;q1§c;n;; k(e o) - ()’ 4 4k } 2 (e 4 e+ 4K)2 41 =0 (B-4)

The polynomial Eq. (B-4), upon factorization, may be represented in the following form

(2 =2Y14+1)(* - 2Y24+1) =0 (B-5)
where

Y 1 2 2
(T} =1 e (s eemzs ez -y’ + aemy’) ®6)

22
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Assuming any of the Y coefficients in Eq. (B-5) in a change of variables to be equivalent to coshd, the following polynomial equation can be deduced:

22 —2(cosh®)1+1=0 (B-7)

which yields

212 = cosh® + V/cosh?0 — 1 = coshd + sinhd (B-8)

Substituting Eq. (B-8) into Eq. (B-1) yields

Uo; = ciye” + copd ™, .
{VO,i = cve” +cvd™, ic{1,2,..,N} B9
or equivalently:

Uy = y1ycoshif + y,,sinhif), (B-10)

Voi = x1vcoshif + y,,sinhif, ie{1,2,3,...,n}

Appendix C
The critical buckling loads of the laminated partial-composite plate are extracted from the following determinant equations:
(T +k)coshd—keosh20 (]} +k)sinhd—ksinh2¢ c2coshd c?%sinhg —amhsk
c™2coshd c™2sinhg (c5y%+k)coshd—kcosh2¢ (¢35 +k)sinhd—ksinh26 —Pmahek
(c?+k)coshno
—kcosh[(n—1)6) (% +k)sinhnd—ksinh|[(n—1)6)] iy >coshng c7'*sinhnd amhok =0
c*coshnd c*sinhnd (c59?+k)coshng—kceosh[(n—1)6] (cyy > +k)sinhng—ksinh[(n—1)6] B, hek
) ) . . mi2_ Omé Himabans
Qm1(coshnf—coshd) Qm1 (sinhnf—sinho) Pz (coshnd—coshd) Pz (sinhnd—sinho) C33 7h7kN P
¢

(C-1

in which &; and ¢, are the critical load coefficients, applied in x- and y-directions, respectively, corresponding to bi-directional compressive edge
loads; i.e.,

I:Vx.Tot. = 51 Ij\{cr (C-Z)
NvaOL = gchr

Obviously, for a mono-axial load case, it is set £&; = 0 or £, = 0. Also, the coefficient ¢33, in Eq. (C-1) is defined as

1
Cs3 = hok [a:ﬂDﬂ) + 205, r2n2 (D(l(;) + 2D(6(¢)5)) + ﬂ;‘nzD(z(?} +(n—1)r2;,hy (&)
Appendix D

The systems of equations for simply-supported laminated orthotropic plates composed of n non-identical layers are expressed as follows,
— For the buckling of laminated partial composite plates:

(a2, A111 + B2 Ass1 +K)Uo1 —kUp s + ttm s (Ar21 + Ass1) Vo1 — mi kW = 0
1Pz (Ar21 +Ags1)Uo1 + (0214661 + ParAoat + k) Vo1 —kVoz — BrhkW =0

—kUgj 1 + (a2 Arni + BrrAssi + 2k)Uo; — kU 4 1 + @1 Bz (A2 + Ass.i) Voi = 0,
(i=23,..n—1)

U1 Pz (A2 + Agsi)Uos — kVo i1 + (02, Assi + BRyAni + 2k)Vo; —kVo; 41 =0,
(i=2,3,..,n—1)

—kUpp1 + (021 A110 + fAoAs6n + K)Uon + tm Prs(Ar2n + Assn) Von + dmhkW = 0

01 Bz (A12n + Ason)Uon — kVon-1 + (@h1Assn + BagAzzn + k) Von + froahk W = 0

23
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[ 4 D(O) +2 2 2 D(O) 2D(0) ﬂ4 D(O) -1 2 2 \h2k 2 2 1’\\[ w
EASERt U1 Pz (D12 + 2Dgg)) + oDy + (n— 1) (g + o)k + (@i &1 + Prga) Ne]
+omihk(Uon — Uo1) + Bruahk(Von — Vo) =0
— For the vibration of laminated partial composite plates:

(0 A111 + B2Assn +k — w’Io1) Uo 1mymy — kUo 2mymy + Gt Brna (Ar21 + Ae61) Vo 1mymy — Am1 FKWo gy, = O

Om1Pma(A121 +A66,1)a0,1m1m2 + (@2 Ass1 + BroAz21 +E — 60210,1)90,1;1117112 - kVO.Zmlmz _ﬂmzthO,mlnu =0

_kﬁo,(i—l)mlmg + (a2, A11 + B2oAesi + 2k — (UZIO.i)aO,imlmz - kao,(m)m]mz + Um1Bma(Ar2i +A66,i)VO.imlm2 =0,
(l = 27 37 ey — 1)

Om1 Pz (Ar2 +A66,i)60,imlm; - kVO,(i—l)mlmg + (a2 Assi + PryAoni + 2k — szO,i)VO,imlmg - kVO,(Hl)mlmz =0,
(i=23,..n—1)

- kﬁo,(n—l)mlmz + (alznlAll,n + ﬂ;znzA66,n + k- wzl().n)ﬁo,nml my + amlﬂm2 (A12.n + A66,n)vo,nm1m2 +am thVO.ml my — 0
U1 Bz (120 + Ass.0)Uopummy — kVo (n-1ymymy + (02 Assn + BrpAzzn +k — 0*Io,0) Vo umymy + Pk Wo mym, = 0
{ 4 D(O)_,’_z 2 2 D(0)+2D(0) 4 D(O) N 2 Vh2k — 21, 2 2 V] W

a1 Prq 1 Bz (D1 66 )t PmaDay + (M — 1) (e + frn) @ [ o+ (a1 + Fm2) 2,0} } 0,mymy

+am1hk(ﬁo,nm1m2 - f]O,l"umz) +ﬂm2hk(90ﬂmlm2 - V0,1m1m2> =0

Data availability [14] Yu J, Zhao C, Zhong W, Pan Z, Zhang P. Study on elastic buckling and seismic
behavior of two-side connected stiffened shear wall with FRP-laminated steel
X X X composite plate. Constr Build Mater 2025;481:141560.
Data will be made available from the corresponding author on [15] Reissner E, Stavsky Y. Bending and stretching of certain types of heterogeneous
reasonable request. aeolotropic elastic plates. J Appl Mech 1961;28:402-8.
[16] Mindlin R. Influence of rotatory inertia and shear on flexural motions of isotropic,
elastic plates. J Appl Mech 1951;18:31-8.
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