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Robust Learning with Limited Labels
ERIK WALLIN

Department of Electrical Engineering
Chalmers University of Technology

Abstract

Deep learning-based classification systems commonly rely on conditions that
are difficult to satisfy for real-world applications. One such requirement is the
availability of large-scale, curated, and labeled training data. Another is the
absence of unknown classes during training and deployment. Furthermore,
many classification systems treat classes as independent, even when they form
structured relationships that are important to account for. Overcoming these
limitations is central to the practical deployment of these systems.

We address these challenges through five papers that study deep classification
under limited supervision, the presence of unknown classes, hierarchical class
structures, and combinations thereof. Paper A studies semi-supervised learning,
where labeled and unlabeled training data are combined, and proposes a self-
supervised component for better utilization of unlabeled data. Papers B and
C address unknown classes within semi-supervised learning, enabling learning
from realistic, uncurated, unlabeled data. In particular, Paper C proposes a
probabilistic method that improves accuracy and uncertainty quantification
when detecting unknown samples in this setting. Finally, Papers D and E
study hierarchical open-set classification, i.e., assigning unknown classes to
appropriate high-level categories of a hierarchy, and propose a method that
approximates the predictive distribution over both known classes and higher-
level categories. This enables more expressive predictions of unknown samples
than binary rejection.

In summary, the included papers propose methods that advance performance
on benchmarks for their respective problem settings, while providing empirical
analyses that improve understanding of the underlying challenges. Overall,
this thesis contributes to more robust and accurate deep classification systems
for real-world deployment.

Keywords: Deep learning, semi-supervised learning, open-set recognition,
hierarchical classification.
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CHAPTER 1

Introduction

In recent years, deep learning has become the dominant paradigm for automatic
classification systems, achieving remarkable performance across a wide range
of domains. Prominent examples include image recognition [1], [2], language
understanding [3], [4], and audio classification [5], |6]. This progress continues,
driven by the expansion of datasets, increased computational resources, and
the development of increasingly refined methods.

For a long time, the achievements in deep learning-based classification relied
on the framework of supervised learning. In supervised learning, a model is
trained on data where each sample is associated with a ground-truth label,
and the objective is to learn a mapping from inputs to labels by optimizing
a task-specific loss. The goal of this optimization is for the learned model to
generalize to new, unseen data, enabling its deployment in real-world scenarios.

Despite its success, the supervised learning paradigm relies on several as-
sumptions and requirements that are often violated in practical deployments.
One common requirement is access to large amounts of labeled data. In prac-
tice, labeled data are often scarce and depend upon substantial effort from
human annotators to obtain, making it challenging to create training data
that sufficiently cover all relevant deployment scenarios. Another widespread



Chapter 1 Introduction

practice is to operate under a closed-world assumption, i.e., that the model
encounters only data from known classes during both training and testing.
However, in real-world settings, it is difficult to ensure that the deployed
models are only exposed to familiar data. Moreover, many approaches assume
a flat class structure, treating all classes as independent. In many applications,
classes instead have known semantic relationships that can be leveraged during
learning to improve performance and robustness.

This thesis investigates methods for robust classification under realistic
deployment conditions in its five appended papers, where multiple idealized
assumptions may be violated simultaneously. We study methods for semi-
supervised learning to reduce the reliance on labeled data by incorporating large
amounts of unlabeled data. Furthermore, we investigate various aspects of open-
set recognition and open-set learning to effectively handle data from unknown
classes, both during model training and deployment. Finally, we consider
classification with hierarchical class structures, where semantic relationships
between classes are exploited to improve prediction quality and uncertainty
handling. In the following sections, we describe the three challenges that
motivate the work of this thesis and summarize how our appended papers
address these challenges.

1.1 Challenge I: Learning from limited labeled data

Many breakthroughs in supervised learning can be credited to the availability
of large labeled datasets. Prominent examples include, e.g., ImageNet [7],
comprising over 14 million labeled images, or the text dataset SQuAD [8] that
consists of over 100,000 question-answer pairs. Constructing such datasets
requires extensive effort from human annotators and is both expensive and time-
consuming. As a result, applying supervised learning in domains where large
labeled datasets are unavailable remains challenging, motivating alternative
approaches that reduce the reliance on labeled data.

A paradigm that addresses this challenge is semi-supervised learning (SSL)
by using both labeled and unlabeled data during training. Compared to
labeled data, unlabeled data are typically much cheaper to obtain and can
often be collected through, e.g., web scraping or from unsupervised sensor
streams. In a standard semi-supervised learning setup, a small labeled dataset
defines the target classes, while a much larger unlabeled dataset is used to
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guide learning. Many modern semi-supervised learning methods are driven by
two core techniques: pseudo-labeling and consistency regularization. Pseudo-
labeling involves letting a model trained on labeled data generate labels for
unlabeled samples, which are then incorporated into the training process in a
supervised manner. Consistency regularization, on the other hand, encourages
the model to produce consistent predictions under perturbations of the data
or model parameters. Together, these techniques have enabled impressive
performance gains, including state-of-the-art results on the image classification
benchmark ImageNet through the use of auxiliary unlabeled data [9].

However, several questions remain open. In particular, it is still unclear how
unlabeled data should be used most effectively. While pseudo-labeling and
consistency regularization have emerged as key components in semi-supervised
learning, the exact implementations of these techniques remain an ongoing
area of investigation [10]—|14]. In parallel, recent work has explored alternative
techniques from self-supervised learning (methods for learning entirely without
labels) by, for example, incorporating pretext tasks and contrastive learning as
complementary learning signals from unlabeled data [15]—[17]. In Paper A of
this thesis, we contribute to this line of work by introducing a self-supervised
auxiliary task as a form of consistency regularization, leading to improved
utilization of unlabeled data.

A key limitation of many semi-supervised learning methods is their reliance
on a closed-world assumption, where all unlabeled data are assumed to belong
to the same set of classes as the labeled data. In practical deployments,
however, unlabeled data are often uncurated and may contain samples from
unknown classes. Such unknown data can degrade performance when applying
standard methods for semi-supervised learning, naturally leading to the next
challenge we address.

1.2 Challenge Il: Recognizing unknown classes

In real-world deployments, classification models are frequently exposed to in-
puts that deviate from the training distribution. When encountering data from
unknown classes, deep learning models are known to produce highly confident
yet incorrect predictions unless explicitly designed otherwise [18]. Such fail-
ures are particularly problematic in safety-critical applications, where reliable
uncertainty estimation and recognition of unfamiliar inputs are essential.
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This problem is studied in the setting commonly referred to as open-set
recognition (OSR), which equips classifiers with mechanisms to distinguish
between in-distribution (ID) and out-of-distribution (OOD) data. A common
strategy is to define a scalar scoring function based on the model’s output or
internal representations, such that ID samples receive higher scores than OOD
samples. A long-standing baseline uses the confidence of the model’s predicted
probability distribution [18], i.e., the maximum predicted class probability.
More recent approaches have proposed more expressive scoring functions based
on learned feature representations [19] or have modified the supervised training
objective to explicitly facilitate OOD detection at inference time [20].

Open-set recognition is a central component in the practical deployment of
semi-supervised learning. Many methods for semi-supervised learning operate
under the naive assumption that the labeled set and the unlabeled set share
the same underlying distribution, in particular that they contain the same
classes. In practice, however, the appeal of unlabeled data lies precisely in
their lack of human curation, which makes it difficult to guarantee the absence
of unknown classes, corrupted samples, or other types of outliers. The presence
of such out-of-distribution data can lead to degraded performance when using
standard semi-supervised learning methods. This observation motivates the
setting of open-set semi-supervised learning (OSSL) [21]—[23], where the goal
is to leverage uncurated unlabeled data while simultaneously ensuring both
reliable classification of known classes and detection of unknown classes during
deployment. How to best approach open-set semi-supervised learning remains
an open research question and is addressed in Papers B and C of this thesis,
where we propose methods for OSSL.

Most open-set recognition methods approach the problem as a binary clas-
sification task, flagging a sample as either ID or OOD. While such decisions
are useful for rejection, they provide limited information about the nature of
the unknown inputs. In many applications, it is desirable not only to detect
unfamiliar samples but also to understand how they relate to the known classes.
This limitation leads us to our final challenge: incorporating class relationships
into classification models.
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1.3 Challenge lll: Class relations

The standard classification paradigm in deep learning typically treats all
classes as independent. In many real-world applications, however, classes have
semantic relationships that should not be ignored. For example, confusing a
wolf with a dog is typically a less severe error than confusing a wolf with a car. A
flat classification model, however, treats both errors as equally incorrect despite
their difference in severity. One common way to represent such relationships
is through hierarchical structures. For example, the classes in the ImageNet
dataset are organized within the WordNet graph [24], and biological species are
structured according to biological taxonomies [25]. Even when such structures
are available, they are often ignored in standard classification methods despite
offering opportunities to improve both model performance and robustness.

Class hierarchies can be leveraged in several ways. They can be used to
encourage predictions that respect semantic similarity, such that misclassifi-
cations remain close to the true class in the hierarchy (i.e., to “make better
mistakes”) [26]-[30]. Another advantage of class hierarchies is that they allow
models to share representations between semantically related classes, improv-
ing performance for classes that are poorly represented in the training data
through transfer from similar well-populated classes [31].

Class hierarchies are particularly valuable in the context of open-set recog-
nition, where they enable more informative predictions for unknown data.
The standard paradigm of open-set recognition typically provides a binary
decision indicating whether a sample is in-distribution or out-of-distribution
[18], [19], [32]. With knowledge of the hierarchy, we can instead predict these
unknown classes to a high-level category (i.e., an internal node of the class
hierarchy) [33]-[37]. For example, a classification model trained to classify
animals, some of which are dog breeds, can predict an unknown dog breed
as the coarse category dog, indicating that it belongs to the class of dogs
but not to any of the known breeds. This setting, referred to as hierarchical
open-set classification, is challenging, as it effectively constitutes a multi-class
classification problem over unknown classes for which no labeled training data
are available. Developing accurate and reliable methods for this setting is an
open research problem and is the focus of Papers D and E of this thesis.
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Challenge I Challenge II Challenge III
Few labels Unknown classes Class relations
Paper A: SSL with self-
DoubleMatch supervision.
Paper B: OSSL with energy-based
SeFOSS OSR and self-supervision.
Paper C: Probabilistic OSR. in OSSL.
ProSub
Paper D: Class hierarchies for probabilistic
ProHOC hierarchical open-set classification.
Paper E: Hierarchical open-set classifica-
SemiHOC tion with unlabeled training data.

Figure 1.1: Overview of how the included papers address the three introduced
challenges.

1.4 Overview of the included papers

This thesis includes five appended papers that address the challenges introduced
in Sections[T.IHT.3] both individually and in combination. Together, these works
contribute toward more reliable and robust deployment of deep classification
models in real-world scenarios.

Paper A addresses Challenge I. It introduces DoubleMatch, a method for
semi-supervised learning under the closed-world assumption. DoubleMatch
improves the utilization of unlabeled data by incorporating a self-supervised
learning objective, enabling learning from more unlabeled samples compared
to approaches relying solely on pseudo-labeling.

Papers B and C address the combination of Challenges I and II by studying
open-set semi-supervised learning, the SSL setting where unknown classes
can appear in the unlabeled training data and during deployment. Paper B
proposes SeFOSS, which applies the self-supervision proposed in Paper A to
OSSL and employs an energy-based scoring function to distinguish ID and
OOD. Paper C introduces ProSub, a framework that extends and improves upon
SeFOSS by introducing a probabilistic method that enables better accuracy
and uncertainty quantification for ID/OOD predictions.



1.5 Thesis outline

Paper D addresses Challenges II and III by considering the setting of
hierarchical open-set classification. It introduces ProHOC, a framework that
predicts unseen classes to internal nodes of the class hierarchy through depth-
specific classifiers and probabilistic modeling. Finally, Paper E introduces
SemiHOC, an extension of ProHOC to the semi-supervised setting, thereby
addressing the combination of Challenges I, II, and III. SemiHOC leverages
unlabeled data to improve performance in hierarchical open-set recognition by
introducing subtree pseudo-labels, a form of pseudo-labeling tailored to this
setting.

A brief description of each paper, along with a visualization of which chal-
lenges they address, is provided in Figure

1.5 Thesis outline

This introductory chapter provides background and introduces the three chal-
lenges in deep classification that motivate this thesis. In the following chapter,
we provide an overview of the field of semi-supervised learning for classification,
focusing on methods applied in the domain of deep learning. In the third
chapter, we cover the setting of open-set semi-supervised learning and provide
a review of existing literature. The fourth chapter discusses the use of class
hierarchies in deep learning. The fifth chapter summarizes the appended
papers. Finally, the thesis concludes with summarizing remarks and an outlook
for future work.






CHAPTER 2

Semi-supervised learning for classification

Semi-supervised learning is a paradigm that lies between supervised and
unsupervised learning. In this setting, training data consist of both labeled
data and unlabeled data. The idea is to leverage information from the unlabeled
data, together with the typically much smaller labeled set, while training a
model. Take, for example, the illustration in Figure[2.1] Given only information
from labeled data, our best guess of the decision boundary might resemble
the one shown in the left panel of the figure. However, when the unlabeled
data are taken into account, it becomes clear that a more accurate decision
boundary lies between the two half-moons. This improved boundary would be
difficult to determine using only the labeled data.

This chapter provides an overview of semi-supervised learning. While there
exist works on semi-supervised learning for regression, this chapter focuses on
the realm of classification. To establish the foundations, we start by presenting
a formal problem definition. Subsequently, we cover the necessary assumptions
that underlie methods for semi-supervised learning. We proceed to examine the
historical progression of methods in the field of semi-supervised learning. In the
latter and largest part of this chapter, we turn our attention to the application
of semi-supervised learning in deep learning: this part of the chapter explores
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Figure 2.1: Illustration of semi-supervised classification with two classes (red and
blue). With unlabeled data, we can better estimate the distributions of
the two classes and thus improve our decision boundary.

various techniques that are used for semi-supervised learning in the domain of
deep learning.

2.1 Problem definition

In semi-supervised learning, we are provided with a labeled training set of
independent and identically distributed data,

(vl (wi0) € X <D, (2.1)

where X C R” is the input space with D being the input dimension, and
Y ={1,...,C} is the label space with C' being the number of classes. These
data have an underlying distribution p(z,y). In addition to the labeled training
set, we have a set of independent and identically distributed unlabeled training
data,

(2, atex, (2.2)

where the underlying distribution p(z) is the marginal distribution of p(x,y).
The goal is to learn a mapping from the input space to the label space:

fo: X = RY, (2.3)
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2.2 Assumptions

where fy is parameterized by 6. The C scalars, generally denoted logits, are
often transformed into a distribution over ) through the softmax function as

polyla) = — @U@y (2.4)

Zy/ey exp(fg (x))

where fg/ (x) is the y'th element of fy(x). The final prediction can be obtained
by selecting the class with the highest probability. The mapping, fg, is learned
by minimizing the sum of two expected loss terms, one for labeled data and
one for unlabeled data:

arggnin (Ex,ywp(m,y) [1(fo(x),y)] + aEmNp(r) [ (x)]) ) (2.5)

where « is a scaling parameter to control the balance between the two terms.
The expectations are typically evaluated with Monte Carlo approximations
using batches of the training data. The term for fitting the labeled training
data is [ : R® x ) — R, which is generally implemented as a cross-entropy loss.
The learning from unlabeled data occurs through the regularization term

Qg: X — R, (26)

which also depends on the model parameters 6. The construction of this
regularization term is one of the key challenges in semi-supervised learning, as
it defines how we utilize the unlabeled data for improving our learned model.

2.2 Assumptions

In order to learn from unlabeled data, we need to make some assumptions
regarding the underlying structure of the data. The book Semi-Supervised
Learning by Chapelle et al. |38] suggests three main assumptions in the
form of the smoothness assumption, the cluster assumption, and the manifold
assumption.

The smoothness assumption

The smoothness assumption states that if two data points are close in the
input space, then their corresponding outputs should also be close. Intuitively,
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Figure 2.2: Under the smoothness assumption, the left-hand model may be preferred
over the right-hand model, despite its poorer fit to the training data, as
it better satisfies the belief that similar inputs should produce similar
outputs across the entire data space.

this enables us to propagate information from labeled training data to nearby
unlabeled samples. This assumption is not unique to semi-supervised learning
and is also typically enforced in supervised learning by applying regularization
techniques that help the model generalize to unseen test data.

An illustration of the smoothness assumption is given in Figure in a
fully supervised setting. The right panel shows a model that fits the labeled
training data precisely but displays sharp shifts in its predictions across the
data space. In contrast, the left panel depicts a model with a less accurate
fit to the training data but smoother variations in its outputs. Under the
smoothness assumption, we may prefer the left-hand model despite its poorer
training accuracy, as it better aligns with the expectation that similar inputs
should yield similar outputs.

A common strategy for encouraging smoothness is weight regularization :
applying penalties on the norm of the model’s weight vector, which indirectly
limits model complexity and discourages sharp changes in predictions.

A challenge for high-dimensional data is to define the closeness between
data points, as standard Euclidean distances tend to become non-expressive in
high dimensions. We will revisit the notion of closeness when discussing the
manifold assumption.

14



2.2 Assumptions

Unlabeled data in clusters

Vi

e Unlabeled data |- s 2
- - - Decision boundary LS X

N \,_ ___________________
8 ‘e & ’
- J.\- e // ° ..
H
s Q—Q . 4 -
’
S o
.é ,/ Ky - A
.&... - K o
o ® 7
- ’
Va
T

Figure 2.3: The cluster assumption tells us that decision boundaries should lie in
low-density regions, as shown in the figure.

The cluster assumption

The cluster assumption states that data points that lie in the same cluster
are likely to share class, or equivalently, that decision boundaries should lie in
low-density regions. This implies that each cluster contains points from only a
single class, but a class can be associated with many clusters. When combined
with the smoothness assumption, this encourages models to produce few and
smooth decision boundaries between clusters.

Figure [2.3] illustrates this concept for a two-dimensional unlabeled dataset.
The data form three well-separated clusters. The cluster assumption suggests
that decision boundaries should be placed between these clusters, as depicted
in the figure.

Now we have the building blocks for a simple SSL strategy:

1. Identify clusters in the combined labeled and unlabeled data.

2. Assign clusters to the corresponding class of any labeled data within
them.

3. Place smooth decision boundaries in low-density regions between the
clusters.
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Such an approach can be effective for low-dimensional problems with well-
separated clusters. However, real-world data are often in a high-dimensional
space where clusters are not easily separable. This motivates the manifold
assumption, which enables the smoothness and cluster assumptions to be
applied even in such complex settings.

The manifold assumption

The manifold assumption states that high-dimensional data lie roughly on a
low-dimensional manifold. Distances measured along this manifold can provide
a more meaningful notation of closeness and density than Euclidean distances
in the raw input space, which often become uninformative in high dimensions.
These manifold-based distances can then be used to apply the smoothness and
cluster assumptions in settings where direct input-space distances fail.
Without delving into formal definitions, a manifold can be thought of as a
low-dimensional surface embedded within a higher-dimensional space. While
the manifold may be curved globally, it resembles Euclidean space locally.
Figure illustrates this with a set of two-dimensional points on a one-
dimensional manifold in the form of a spiral. In the two-dimensional data
space, the dark-red points on the right appear closer to the central blue points

A manifold toy example

T2
o)
plojiuen o3 SUO[e UOIISO]

T
Figure 2.4: Two-dimensional points lying on a one-dimensional spiral manifold.

Distances measured along the manifold differ from Euclidean distances
in the two-dimensional data space.
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than to the red points on the left. However, when measuring distances along
the manifold, the blue and dark-red points are separated by the largest pairwise
distances.

The difference between input-space distances and manifold distances is
further illustrated with real-world image data in Figure [2.5] The query image,
taken from the ImageNet-1k dataset [7], is compared to its four nearest
neighbors according to two distance metrics: the Fuclidean distance in pixel
space and the distances in the lower-dimensional representation produced by
the DinoV2 [40] image encoder. DinoV2 is an image encoding model trained
without labels to produce semantically meaningful image representations. In
pixel space, the nearest neighbors share similar background colors but are
not semantically related to the query. In contrast, the nearest neighbors in
DinoV2’s representation space are images of the same bird species.

Note that DinoV2 does not explicitly learn the data manifold, but its learned
representations can be interpreted as an approximation of it. This represen-
tation space serves as a practical illustration of the manifold assumption, as
its distances capture semantic similarity more effectively than raw pixel-space
distances.
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Query image

== o

Figure 2.5: Comparison of nearest neighbors in pixel space and a learned
lower-dimensional representation. Pixel-space distances often reflect
superficial similarities (e.g., color or brightness), whereas distances in a
learned representation space better capture semantic similarity.
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2.8 The history of semi-supervised learning

2.3 The history of semi-supervised learning

The first instances of semi-supervised learning in the literature appeared in the
1960s and 1970s [41]-[43]. These methods employed a technique today called
self-training, which involves an iterative process where the model is initially
trained using only labeled data. In each subsequent step, model predictions on
unlabeled data are used to expand the training set, and the model is retrained
using the new training set. At this time, the methods were very general and
were often referred to as pattern recognition machines.

In the 1990s, there was growing interest in more application-focused semi-
supervised learning for text applications [44], [45]. Text is a typical domain
where a lot of unlabeled data are available, but labeled data are expensive.
For example, Yarowsky [44] used a form of self-training for semi-supervised
sense classification of words.

2.4 Semi-supervised learning in deep learning

In the deep learning paradigm, input data are typically high-dimensional, and
our learned models are neural networks with many hidden layers. Naturally,
many new techniques for semi-supervised learning have emerged to cater to
this setting. This section covers some of the most popular techniques for semi-
supervised learning in deep learning. Note that some details of the covered
methods in this section may differ from the original works. The main purpose
of this section is to give an overview of the general ideas and approaches of
this paradigm.

Pseudo-labeling

One of the dominant techniques for semi-supervised learning in deep learning is
pseudo-labeling. This essentially means using model predictions on unlabeled
training data as training labels. A simple early version of this technique was
introduced by the pseudo-label method [46]. The pseudo-label method simply
takes the class with the largest predicted probability for each unlabeled sample
and uses this as the training label. Sticking to the notation from , letting
Qg be an element-wise loss for unlabeled data, pseudo-labeling can be written
as

Qb _ ey py(ylar), (2.7)
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Chapter 2 Semi-supervised learning for classification

where pg(y|z) is the probability distribution predicted by the model and

g = argmax py(y | x) (2.8)
yey
is the most probable class, i.e., the pseudo-label, with e; € {0, 1}C denoting
its one-hot encoding. The cross-entropy between two discrete probability
distributions, p® and p®, defined over the label set Y is

== p"(y)logp’(y), (2.9)

yeY

where p®(y) denotes the probability of class y given distribution p®.

It has later been found that using only pseudo-labels for data with confident
model predictions tends to yield better results. For example, FixMatch [11]
and UDA [10] assign pseudo-labels to unlabeled data that satisfy

max po (y|z) > 7, (2.10)

where 7 is the confidence threshold. This results in a loss on unlabeled data
that looks similar to

Qf xMatch ll{mya}xpg(y'|x) > T}H (e, pe(yl)), (2.11)

where 1{-} is the indicator function.

Relating the pseudo-labeling technique back to our assumptions of Sec-
tion we can interpret the pseudo-labeling technique as an application of
the clustering assumption. When we train our model to produce confident pre-
dictions in high-density regions (regions where our training data are located),
we are implicitly pushing the decision boundaries to low-density regions in
accordance with the clustering assumption.

Adaptive and dynamic thresholds

The pseudo-labeling procedure of FixMatch and UDA, as described in ,
relies on a static threshold 7. Many recent works have focused on replacing
this static threshold with dynamic and adaptive thresholds. This direction
of research is motivated by two main factors. Firstly, the varying learning
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2.4 Semi-supervised learning in deep learning

difficulties associated with different classes incentivize using class-dependent
thresholds. For example, the model may produce less confident predictions for
a particular class, causing fewer pseudo-labels and hindering learning for that
class. Secondly, neural networks tend to generate increasingly confident pre-
dictions as the training progresses, suggesting that thresholds can be modified
based on the number of completed training steps.

One example of a method that proposes a dynamic confidence schedule as a
function of the training time is Dash [12]. This work identifies that FixMatch
tends to produce very few pseudo-labels early in training, but also increasingly
many incorrect pseudo-labels in the later stages of training. To counteract
this, Dash suggests a schedule for the threshold that decreases monotonically
as training progresses. The dynamic threshold is computed as

Pt = Oy (1, (2.12)

where ¢ is the current timestep in training, C and -y are constant hyperparam-
eters, and p is the base threshold that is computed based on a pre-training
phase.

A method that instead proposes adaptive thresholds per class, e.g., is
FlexMatch [13]. FlexMatch adjusts the class-dependent thresholds depending
on how many pseudo-labels are assigned to each class: if a class is less frequent
in the pseudo-labels, its threshold is lowered to assign more pseudo-labels
corresponding to that particular class. A similar method that also uses
class-dependent adaptive thresholds is FreeMatch [14]. In FreeMatch, the class-
dependent thresholds are computed based on the average prediction confidence
for each class: classes that are less confidently predicted are assigned lower
thresholds.

Consistency regularization

Another major technique for semi-supervised learning in deep learning is
consistency regularization. The idea of consistency regularization is to minimize
the difference in predictions for similar data points. These similar data points
are often generated by applying perturbations to the training data. Given
an unlabeled training sample, x, and the corresponding perturbation, Z, the
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general structure for consistency regularization looks like
ngnsistency regularization —d (fO (IE), f9 (j’)) , (213)

where d(-,-) is some distance measure, e.g., mean squared error or KL diver-
gence. The distance may also be calculated between two different perturbations,
instead of the original data and a single perturbation.

Consistency regularization relates to both the smoothness assumption and
the cluster assumption of Section[2.2] The smoothness assumption is addressed
by manually constructing close inputs through perturbations, to then encourage
similar predictions for these nearby inputs. Additionally, the consistency
regularization is applied mainly in high-density regions due to the concentration
of training data in these regions. This implicitly enforces similar predictions
within clusters, which moves decision boundaries toward low-density regions,
in accordance with the cluster assumption.

How perturbations for consistency regularization are designed has been
an active field of research. An early version of consistency regularization in
semi-supervised learning was used in the Ladder network [47], where perturbed
data are created by adding Gaussian noise to the activations at each layer of
the network. The noisy activations are then denoised by a trainable decoder
network. The resulting loss is the sum of squared errors between the denoised
activations and the activations from a clean pass through the network for all
layers:

L
andder networks __ Z >\l||zl _ ngQ’ (214)
=1

where L is the number of layers in the network, ); is a layer-dependent scaling
factor, z; are the clean activations for an unlabeled sample x at layer [, 2; are
the corresponding denoised activations, | - || is the /2 norm.

The subsequent II-model [48] instead applies consistency regularization
directly to the predicted probability distributions obtained from two perturba-
tions of the input. These predictions are denoted pg(y|x) and pj(y|z). The
perturbations are obtained by applying two instances of some stochastic data
augmentation on z along with two different realizations of the stochastic
dropout regularization [49] in the forward pass through the neural networkﬂ

IDropout is a common regularization technique for neural networks that involves stochasti-
cally masking neurons and their connections in each forward pass during training.
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2.4 Semi-supervised learning in deep learning

The obtained loss for unlabeled data is

Qyrmedel = ||pg (ylx) — pg(yla) |1, (2.15)
where the norm is taken over the class dimension.

Many SSL methods rely on the idea of a teacher-student framework. Within
this terminology, a teacher prediction is typically treated as ground truth
for a student prediction. A common strategy for producing stable teacher
predictions is to use moving averages. The concept of using moving averages
as teacher predictions was introduced in the Temporal ensembling method [48].
Temporal ensembling uses the same perturbation strategy as the Il-model.
However, instead of using two different perturbations, the teacher prediction is
an exponential moving average of the perturbed student prediction, updated
each epockEI7 as

teacher (

Py y|x) « Bpteacher(y|x) + (1 _ ﬂ)pitudent(ylx) (2.16)

where 8 is the momentum parameter (typically close to, but smaller than 1).
The loss is then given by

QTemporal ensembling teacher( 5tudent (
6

= Il yle) — ylo))1*. (2.17)

The method Mean teacher [50] develops the idea of using moving averages
as teacher predictions by taking an exponential moving average of the model
parameters. This has the advantage that the exponential moving average can
be updated every training step instead of once every epoch. The average of
the model parameters is updated each training step as

eEMA — ﬂoEMA + (1 — 5)9 (218)

Mean teacher uses a perturbation strategy that consists of a data augmentation,
Gaussian noise on the input layer, and dropout. The perturbation is applied
both to the teacher prediction and the student prediction (in two different
realizations). The resulting loss is

Qg/lean teacher __ ||p0EMA (y|$) . ﬁ@(y‘x)HQ (219)

2An epoch in this context means the time it takes to cycle through the full training set in
the training process.
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The methods covered so far in this section rely on random perturbations for
consistency regularization, i.e., these methods smooth the prediction function
in random directions around the input. The method Virtual adversarial
training (VAT) [51] takes another approach. In VAT, the idea is to smooth the
prediction function in the least smooth direction with respect to the input, i.e.,
the adversarial direction. The adversarial direction is, in this context, defined
as the direction of the point, within a small region of the input, that gives the
largest change in prediction (relative to the unperturbed input). Formally, the
loss is written as

QVAT = dier, (po(y|2), po(ylz + Taav)) s (2.20)
where
Tady = arﬁlax dxw (pe(y]x), pe(ylz + 7)) . (2.21)
riri<e

Here, dxr,(+,) is the KL-divergence and ¢ is a small scalar that sets the size
for the region in which we look for the adversarial direction. Unfortunately,
there exists no closed-form expression for 7,4, so VAT uses a one-step power
iteration to approximate r,qy.

Data augmentation

Early implementations of consistency regularization often relied on simple
techniques for data augmentation, such as horizontal flips and translations
in the context of images. However, notable achievements were made with
the introduction of optimized domain-specific augmentations in ReMixMatch
[52], FixMatch [11], and UDA [10]. These augmentations are, e.g., Rand Aug-
ment [53] for images, which comprises a set of operations, such as shearing,
rotating, and adjusting colors or brightness. For a domain like language,
these domain-specific augmentations can be, e.g., back-translation [54] that
involves translating a sentence from language A to language B, and then
back to language A, to obtain a slightly perturbed version of the original
sentence. Notably, ReMixMatch and FixMatch pioneered a setup of using
weak augmentations for teacher predictions and strong augmentations for
student predictions in the image domain. The weak augmentation consists
of a horizontal flip and translation, and the strong augmentation consists of
Cutout |55], followed by two randomly sampled operations from RandAugment.
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Weak augmentations

Original image

Figure 2.6: The currently widely used augmentation strategies for semi-supervised
learning, consisting of weak and strong augmentations of images. Weak
augmentations are horizontal flips and stochastic translations. Strong
augmentations comprise operations such as Cutout, shearing, rotations,
and color filters.

Examples of these weak and strong augmentations can be seen in Figure [2.6)
The augmentation strategy of ReMixMatch and FixMatch has been widely

adopted by many subsequent works [12]-[14], [16], [17], [56], [57].

Interpolation consistency

Another form of data augmentation is to use interpolations of training data.
This strategy was introduced for supervised learning under the name mizup
. The idea is to create new training data by interpolating both input data
and corresponding labels using the Mix-operation, defined as

Mixy (a,b) = Aa+ (1 — A)b, (2.22)

where ) is a parameter between 0 and 1 that is sampled from a Beta distribution.
The methods Interpolation consistency training (ICT) and MixMatch
introduced the idea of using interpolations in semi-supervised learning. For
unlabeled data, we cannot interpolate ground-truth labels to form optimization
targets; instead, we can interpolate model predictions. For example, ICT uses
the exponential moving average of the model parameters to form targets for
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interpolations of unlabeled data according to

I,
(2.23)
where x, and x; are two different unlabeled samples. Training with inter-
polations can be argued to be well-aligned with the cluster assumption of
Section 2.2} If we are considering a classification problem with more than a
few classes, it is likely that that x, and x; belong to different classes, and thus
different clusters. Assuming x, and x; are not incorrectly predicted as the
same class, the interpolation loss will move the decision boundary toward the
region between these data, which is a low-density region.

QIQCT(IG’ Ib) = ||p9(y|MiX)\(Ia, xb)) - Mix)\(ngMA (y|:ra)’p0EMA (’y|1'b))

Self-supervision

A related field to semi-supervised learning is self-supervised learning. In self-
supervised learning, we are training a model using training data fully without
labels. The goal is not to learn a classifier, but to learn a useful low-dimensional
representation of the often high-dimensional data. Note how this relates to
the manifold assumption of Section Various techniques are commonly
used for self-supervised learning. One is to enforce prediction consistency
across augmentations of data (much like consistency regularization for semi-
supervised learning) [61]-[64]. Another technique involves training the model
to reconstruct masked regions of input data [4], [65]. Additionally, a common
approach is to train the model to perform a pretext task, such as predicting
the angle of a stochastic rotation applied to training images [66]—[68].

Influential works for self-supervised learning in the image domain made
use of contrastive learning [61], [62], which means not only enforcing similar
predictions for different versions of the same data, but also increasing the
disagreement of representations given different data. One argument for the
contrastive loss is that without enforcing the disagreements, the model can
converge to the collapsed solution: predicting the same representation for
all data. However, subsequent works [63], |64], [69] found that collapse can
be avoided without contrastive learning by instead using exponential moving
averages as teacher models and by the use of stop-gradient operations.

Many works borrow techniques from self-supervised learning for semi-
supervised learning. The motivation is that the self-supervision can improve
the latent representations of data in the model, or that it can help methods
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based on confidence-based pseudo-labeling (see (2.11) to utilize all unlabeled
data, not only data that fall above the confidence threshold.

One work that incorporates techniques from self-supervised learning for
semi-supervised learning is S4L [15|. S4L employs a rotation loss to unlabeled
data, formulated as follows:

1
Q§4L = Z Z H(rtargCtv g(zr))v (224)
reER

where R = {0°,90°,180°,270°} and ryarget is the one-hot vector that denotes
the current rotation, e.g., Ttarget = (0, 1,0,0)T for r = 90°. Here, 2, is the
latent representation of the network (predicted by some backbone model fy)
for an unlabeled image = that has undergone rotation r, while g is a trainable
4-way classifier that predicts the rotation based on the latent representation.
The rotation prediction serves as a typical pretext task, since the main interest
lies in improving the latent representations. By creating latent representations
that can be used for predicting rotations, they are hopefully also more useful
for the downstream classification task.

EnAET [70] similarly employs a self-supervised pretext task for semi-super-
vised learning. However, instead of predicting rotations, the model is trained
to predict the continuous parameters of more general transformations, such as
projective and affine transformations.

In Paper A of this thesis, we introduce DoubleMatch, a method that
employs self-supervision for semi-supervised learning. The purpose of Dou-
bleMatch is to improve the utilization of unlabeled data in methods that employ
confidence-based pseudo-labeling. To enable learning from all unlabeled data,
DoubleMatch proposes an auxiliary self-supervised loss to all unlabeled data
to align the latent representations for weak and strong augmentations of a
given unlabeled image, given by

QPoubleMatch _ __FwglEs) (2.25)
[Zwll - lg(zs)

where z,, and zs are the latent representations for weak and strong augmenta-
tions of an unlabeled image x, respectively. The trainable linear mapping g(+)
is used to map the latent representations of strongly augmented data to the
latent space of weak augmentations.
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Recently, CCSSL [56], SimMatch [17], and ProtoCon [16] have used forms
of contrastive learning for latent representations where pseudo-labels are used
for determining which data to push together and pull apart.

Pure self-supervision followed by supervised adaptation

A straightforward way to incorporate self-supervision in the context of semi-
supervised learning is to adopt a two-stage training pipeline. In the first stage,
often referred to as the pretraining stage, the model is trained using a purely
self-supervised objective on all available data, i.e., fully without labels. In the
second stage, commonly called fine-tuning or adaptation, the pretrained model
is adapted to the target classification task using the available labeled data in
a standard supervised loss [71]-|73].

This approach has been shown to yield competitive performance, particularly
when the second stage is extended to also incorporate unlabeled data through
a semi-supervised fine-tuning objective [71]. A key advantage of this two-stage
paradigm is that it enables the downstream use of computationally expensive
large-scale pretrained models [4], [40]. In the less expensive second stage,
these models can be adapted to target tasks using less compute and data than
required during pretraining. In practice, this adaptation can consist of training
one or a few task-specific layers on top of a large frozen pretrained backbone.
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CHAPTER 3

Open-set semi-supervised learning

In semi-supervised learning, it is commonly assumed that labeled and unlabeled
training data follow the same distribution and that the sets of classes for
the labeled and unlabeled training data are identical. For many practical
applications, this assumption is probably not reasonable. On the contrary, it
seems natural to assume that the unlabeled set may contain outliers, unseen
classes, or corrupted data. In this case, we want to ensure that these out-
of-distribution (OOD) data do not harm the model training, and that our
model can learn to identify the OOD data at test time. Take Figure [3.1] as an
example. Here, the unlabeled data give us information about the distributions
of class A and class B, but they also indicate the existence of a third class
that is not present in our labeled training data. A well-trained model on these
data should ideally be able to classify class A and class B, but also to identify
data that likely do not belong to class A or class B.

This chapter gives an overview of the field of open-set semi-supervised
learning. We start by expanding the problem formulation from Chapter [2] to
fit the open-set problem. Next, we cover existing methods and techniques that
attempt to tackle this problem. Finally, we summarize a few related research
problems.
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Figure 3.1: Illustration of open-set semi-supervised learning. The unlabeled data
can improve our estimates of the class distributions, but they also
indicate the presence of an unknown class. A preferable decision
boundary is to classify red and blue based on the two leftmost half-
moons, but also to reject samples from the unknown class corresponding
to the rightmost half-moon.

3.1 Problem formulation

Similarly to the problem formulation presented for the closed-set setting in
Chapter [2] we have a labeled training set

{(@s,90) Hlqs (zi yi) € Xy x Y, (3.1)

where again &y C R” with D being the input dimension, and )} = {1,...,C}.
We assume our labeled samples are independent and identically distributed
from an underlying distribution p;(x,y). Additionally, we have the unlabeled
training set

i) ol e X, (3.2)

such that X, C X,; C RP , and the corresponding (unknown) labels associated
with the unlabeled samples are in V,; = {1,...,C,C+1,...,C+ K}, meaning
there are K novel classes in the unlabeled set that are not part of the labeled
set. We assume that our unlabeled samples are independent and identically
distributed with the underlying distribution p,;(z). Note that, in contrast to
Chapter [2] we no longer assume that p,;(z) is the marginal distribution of
b (LL', y)

In general, we are interested in learning the classification mapping corre-
sponding to our labeled training set:

fo: X — R, (3.3)
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8.1 Problem formulation

i.e., predicting logits over the set of known classes. However, we may also be
interested in the binary classification of in-distribution and out-of-distribution
data:

po(y € Vi|x); T € Xy, (3.4)

meaning predicting the probability that a given sample belongs to the known
classes, for an input drawn from the unlabeled data distribution. This proba-
bility is not directly modeled by the standard softmax distribution in ,
which only normalizes over known classes, and must therefore be estimated
through alternative techniques. This is one of the key challenges in open-set
semi-supervised learning.

Taking the classification of samples as ID or OOD one step further, we
can also consider unknown classes that are fully unseen during training, i.e.,
not part of the unlabeled set. These classes can be introduced by the test
set, defined on the domain X, such that X,; C Xt C RP where the
corresponding classes belong to Viest = {1,...,C + K 4+ L}, meaning that we
have a set of L new classes, not seen in the unlabeled data during training.
We are in this case interested in modeling

pG(y S yl|x)§ HARS Xtest~ (35)

Different works in open-set semi-supervised learning focus on different goals.
Some works primarily aim to achieve high closed-set accuracy, i.e., high
accuracy on the known classes. This corresponds to having a well-performing
closed-set classifier, fy, as defined in . These works argue that unknown
classes in the unlabeled training set can harm the closed-set performance of
traditional methods for semi-supervised learning. A common trend is that
works focusing on this objective use terms such as safe semi-supervised learning
or robust semi-supervised learning to describe their problem settings.

Other works place greater emphasis on open-set recognition, which involves
the ability to distinguish between known and unknown classes. The motivation
for these works is that if unknown classes appear at training, they are also
likely to appear at deployment. Open-set recognition can be either in the form
of distinguishing the known classes from the unknown classes in the unlabeled
training set, as in 7 or in the form of identifying known classes in the
presence of classes completely unseen during training, as described in . A
key difference between these two settings is that in the former, exposure to
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Chapter 8 Open-set semi-supervised learning

unknown classes through unlabeled training data can be exploited to learn a
more effective open-set detector, which makes this setting rich in opportunities.
In contrast, in the latter setting, no information about the unknown and unseen
classes is available during training, making it more challenging to leverage the
training data for improved open-set recognition.

The training objective of open-set semi-supervised learning can generally be
written as

argmin (Eaympi (o) [[(fo(2),9)] + 0B, () [Q0(@)]) (3-6)

which is similar to the objective of the closed-set case (see (2.5)), with the
difference that the unlabeled term now is an expectation over the distribution
that may contain unknown classes, py(z).

3.2 Existing techniques for open-set
semi-supervised learning

This section covers existing techniques for open-set semi-supervised learning.
We try to categorize methods based on the kind of technique they employ, in
an attempt to summarize existing approaches and research directions in this
field.

Identifying in-distribution samples in unlabeled data

A recurring theme in methods for open-set semi-supervised learning is to curate
the unlabeled data by identifying which samples belong to the known classes
and which do not. When in-distribution data are identified, these can be used
in the unsupervised loss of a traditional SSLL method. How to best identify
which data belong to the known or unknown classes is, however, still an open
question.

A popular baseline method for open-set recognition, not limited to OSSL, is
the softmax confidence score [18],

max pp (y|z), (3.7)
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which is based on the assumption that ID samples yield higher-confidence
predictions than OOD data. Different forms of the softmax confidence are also
widely used in OSSL [74]-|76]. For example, UASD [74] computes confidence
using the average prediction over the most recent training epochs for an
unlabeled sample,

t
1
c(w) = max - > po, (ylr), (3.8)
‘ i=1
where py, (y|x) for i = 1,...,t are the network predictions for sample = from

the ¢ most recent epochs during training. A sample is classified as ID if
c(x) > 7, where the threshold 7 is set as the average confidence given a labeled
ID validation set.

Beyond confidence-based criteria, several works extend their classification
models with additional prediction heads dedicated to binary ID/OOD discrim-
ination [21], |23, |77]-[80]. One prominent example is OpenMatch [21], which
identifies ID samples using one-vs-all classifiers. In this setup, each known class
is associated with a binary classifier that predicts whether a sample belongs to
that class or not. A sample is classified as OOD if none of the one-vs-all clas-
sifiers produces a high-confidence prediction. An advantage of this approach
is that each classifier has access to both positive and negative training data
from the labeled training set. Both SSB [79] and IOMatch [80] build upon
OpenMatch by employing one-vs-all classifiers for OSSL. Notably, IOMatch
proposes a method for fusing the predictions of the one-vs-all classifiers and
the closed-set classifier into a distribution over C'+1 classes, i.e., a distribution
over the known classes and an “O0D class”.

Energy-based scores [81] provide another alternative for identifying ID
samples. In Paper B, we introduce SeFOSS, which uses the free-energy score
to distinguish ID from OOD data. The free-energy score is obtained by

C
E(x) = —T-log »_exp (f§(x)/T), (3.9)

=1

where T is a scalar hyperparameter and fg(z) is the predicted logit associated
with class i. Safe-student [82] builds on the free-energy score by considering
differences between the largest logits in its energy-discrepancy score. Energy-
based methods are computationally inexpensive and have been shown to
outperform softmax confidence in open-set recognition.
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In Paper C, we introduce ProSub, which includes a new technique for
separating ID from OOD samples by measuring distances to an ID subspace
in the learned representation space. In addition, ProSub enables probabilistic
ID/OOD predictions by modeling the distributions of these distance-based
scores. This probabilistic formulation provides calibrated uncertainty estimates
for ID/OOD decisions, which can be used to reliably select ID or OOD samples
from unlabeled data.

Utilizing out-of-distribution data

In contrast to several works discussed in the previous section, which aim to
exclude out-of-distribution data from the training objective completely, other
works instead propose methods for explicitly leveraging OOD data, arguing
that such data can be used to improve model performance.

A representative example is SSB [79], which allows the model to assign
pseudo-labels (for inlier classes) to OOD samples. The motivation is that
learning from visually similar OOD classes can increase data diversity and
thereby improve the learned representations of the known classes. This aligns
well with our findings in Paper B, which show that naive pseudo-labeling
in OSSL does not necessarily harm closed-set classification performance. A
drawback of assigning OOD data to known classes, however, is that the
model’s ability to discriminate between ID and OOD samples is weakened.
SSB addresses this issue by learning a separate feature space, decoupled from
the closed-set classification task, that is optimized specifically for open-set
recognition. In this space, it applies the one-vs-all classifiers introduced in
OpenMatch.

TOOR [76] aims to utilize OOD data by reducing the distribution gap
between ID and OOD feature representations, a process referred to by the
authors as “recycling of OOD data”. This is achieved through adversarial
training of a feature extractor F(-), parameterized by 0p, together with a
discriminator D(-), parameterized by 6p. The feature extractor produces
representations of input samples, while the discriminator is trained to classify
these representations as originating from ID or OOD data. The adversarial
objective is

i 0% [y, 108 D(F(2)) + Egepyy (o) log(1 = DIF@))] . (3.10)
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where piq(z) and pood () are the distributions of ID and OOD data, respec-
tively. With this objective, the discriminator is trained to correctly distinguish
ID from OOD samples, while the feature extractor is trained to fool the dis-
criminator by making OOD features indistinguishable from ID features. The
resulting alignment encourages OOD samples to lie closer to the ID feature
distribution, allowing them to be incorporated into downstream objectives such
as consistency regularization or pseudo-labeling to learn the ID classification
task.

OSP [23]| uses OOD samples to identify specific features that are present in
OOD data. They then encourage the model to suppress these feature compo-
nents when learning ID representations. Intuitively, this can be understood
through examples where ID and OOD classes share spurious visual features.
For instance, if the ID class is butterfly and the OOD class is beetle, both
may appear on leafy backgrounds. By identifying such background features as
prevalent in OOD data, the model can be encouraged to focus on class-relevant
features rather than context.

Self-supervision

Another approach to utilizing OOD data in OSSL is to employ self-supervision
over the entire unlabeled dataset, regardless of whether samples are ID or
OOD. This enables the model to learn from all available data, without the
need to confidently identify them as either ID or OOD.

Several works use auxiliary self-supervised tasks applied uniformly to all
unlabeled data. Examples include T2T [78], OSP [23], and [83] that employ the
rotation loss in . Other examples are SeFOSS and ProSub in Papers B and
C of this thesis, which apply the self-supervision proposed for DoubleMatch in
Paper A to open-set semi-supervised learning. Notably, Paper C demonstrates
that this form of self-supervision can yield substantial improvements in open-
set recognition when combined with a scoring function that synergizes with
the learned representations.

A related but distinct strategy is proposed in OpenCOS [84], which performs
self-supervised contrastive pretraining on all training data. The resulting
model is used to separate ID and OOD samples within the unlabeled set. The
labeled data, together with the detected ID samples, are subsequently used to
fine-tune the model using a standard SSL method.
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Finally, [83] and the Y-model [75] employ self-supervision in a clustering-
based sense. In [83], the authors learn a feature space cousisting of C' + 1
clusters: one cluster per ID class and an additional cluster that captures all
OOD data. By identifying these clusters, the original C-way classification
problem is transformed into a C' + 1-way problem that includes an OOD class.
In contrast, the T-model clusters the unlabeled data into C'+ K clusters (one
per ID class and one per unknown OOD class) and argues that ID classification
can be improved by jointly learning to classify the OOD classes. This is
achieved using deep clustering [85]. A practical limitation of this approach is
that the number of unknown classes, K, must be specified as a hyperparameter.

Robust optimization

Another line of research for open-set semi-supervised learning attempts to
adjust the optimization steps so that parameter updates never harm perfor-
mance on ID data. Some of these methods resort to bi-level optimization.
For example, DS3L [86] and WRSSL [87] use bi-level optimization to weight
unlabeled data such that the resulting updates minimize a supervised loss
on a labeled training set. For example, DS3L learns a weighting function
wq(+), parameterized by «, that is used to weight each unlabeled sample in a
traditional SSL loss. The bi-level optimization objective can be written as

min By yp (a) (250 17), )] (3.11)
such that

é = arg;nin (]E:c,ywpl(a:,y) [l(pg(y/|1')7 y)} + EJJNPul(:L‘) [wa(I)QB(x)]) ’ (312)

where [(-,-) and Qg(-) are the loss functions for labeled and unlabeled data,
respectively. The intuition behind this objective is that the model parameters
are learned by the inner weighted SSL-objective, but the weighting function,
learned through the outer objective, makes sure that the weighting of the
unlabeled data causes the inner objective to be aligned with performance on
ID data.

SPL [88] similarly uses bi-level optimization for robust optimization. How-
ever, instead of learning a weighting function for unlabeled data, it optimizes
a mask for the model parameters. The idea is to find the parameters that are
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associated with features corresponding to ID data to restrict negative effects
from OOD data.

A different approach for robust optimization is proposed in Fix-a-Step [89).
The idea of Fix-a-Step is to ignore the gradient from unlabeled data if it
does not point in a similar direction as the gradient for labeled data. Given
the gradient associated with the labeled loss, g = Vyl, and the gradients
associated with the unlabeled loss, gV = V{2, the parameter update in each
training step is

g {G—e(gL—FagU), if g - gV >0 (3.13)
0 — eg” otherwise,

where € is the learning rate and « is a scaling for the unlabeled loss. The
intuition behind this procedure is that if the inner product between the
gradients is positive, g~ - gV > 0, the angle between the gradients is less
than 90°, and we thus assume that the unlabeled loss is somewhat aligned
with the labeled loss. However, if the inner product is negative, the gradients
are pointing in different directions, so the gradients from unlabeled data can
potentially harm performance on labeled data. In this case, we ignore the
gradient from unlabeled data.

3.3 Related research problems

Deep learning for classification is a highly active research area, with several
subdomains that leverage unlabeled training data and address the detection
of unknown classes. These settings share similarities with open-set semi-
supervised learning but differ in their assumptions and objectives.

Open-world semi-supervised learning and novel class discovery

A closely related problem is open-world semi-supervised learning (OwSSL)
[90]-[94]. Like OSSL, OwSSL assumes access to an unlabeled dataset that
contains both known and unknown classes. However, rather than simply
detecting unknown samples, the goal is to assign them to new, distinct classes.
A common limitation of existing approaches is that they require the number of
unknown classes to be specified in advance. Knowing the number of unknown
classes can be difficult in practice.
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Another domain with strong similarities to OwSSL is novel class discovery
(NCD) [95]-]97]. NCD also assumes an unlabeled dataset composed of unknown
classes, but with the stricter condition that the classes in the unlabeled data are
entirely disjoint from those in the labeled set. Consequently, at the test time,
the task is to classify the novel classes without the presence of the originally
labeled classes.

An additional distinction is that OwSSL and NCD are typically formulated
as transductive problems: evaluation is performed on the same unlabeled
samples provided during training. In contrast, SSL and OSSL are generally
defined in the inductive setting, where evaluation is carried out on separate,
unseen test data.

Long-tailed semi-supervised learning

Another line of work that, like open-set semi-supervised learning, aims to relax
the overly idealized assumptions of standard SSL is long-tailed semi-supervised
learning (also referred to as class-imbalanced semi-supervised learning) [98]—
[101]. Rather than assuming the presence of unknown classes, these methods
address scenarios where the class distribution is imbalanced, i.e., a few classes
are dominant in the training data, whereas some are underrepresented. This
imbalance can cause standard SSL approaches to neglect the underrepresented
classes.

Unsupervised domain adaptation

Unsupervised domain adaptation (UDA[) [102], [L03] closely resembles semi-
supervised learning in that it relies on both a labeled and an unlabeled dataset.
The key distinction is that the labeled data are drawn from a source domain,
while the unlabeled data come from a target domain. Both domains share the
same label space, but differ in their input distributions due to a covariate shift.
In the image domain, e.g., the source may consist of photographs while the
target consists of sketches. The goal of UDA is to learn a classifier with high
classification accuracy in the target domain. Methodologically, multiple UDA
approaches employ techniques commonly used in SSL, such as pseudo-labeling
and consistency regularization.

IHere, UDA refers to unsupervised domain adaptation, not to the SSL method UDA |10],
where it denotes unsupervised data augmentation.
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A variant of this setting, analogous to OSSL, is open-set unsupervised domain
adaptation [104], [105], where the target domain additionally contains unknown
classes not present in the source. The objective is to classify samples from
known classes while also detecting those from unknown classes.

Finally, a practical difference from SSL is that UDA does not necessarily
assume the labeled source set is small. Instead, the label scarcity lies in the
target domain where only unlabeled data are available.

Open-set recognition

Because OSSL addresses the detection of unknown classes, there is a natural
connection to the broader field of open-set recognition 18|, [32], [81], [106]—
[111]. In the standard formulation, a model is trained for classification on a
fully labeled training set, and at test time the task is to classify samples from
the known classes while detecting those from unknown classes. This problem
is also referred to as OOD detection, novelty detection, or anomaly detection,
although the boundaries between these terms are not fully established in the
literature.

Many of the detection techniques used in OSSL are inspired by methods
from the open-set recognition domain. For instance, both the confidence score
baseline of [18] and the energy score of [81] are used in OSSL methods.

A subdomain with close similarity to OSSL is semantically coherent OOD
detection (SC-OOD detection) [112], [113]. In SC-OOD detection, training
involves both a labeled dataset and an unlabeled set. The unlabeled set
contains a mix of 1) unknown classes that should be recognized as OOD and
2) samples from the known classes but with a domain shift. The objective
is to classify the known classes, including the domain-shifted data from the
unlabeled set, and to detect OOD classes.

In Table 3] we summarize the main differences between the subproblems
discussed in this section. The assumptions and specifications for the datasets
and tasks are indicated by the symbols defined in the table caption. Although
the table is a simplification, it provides an overview of the differences and
similarities within this family of research domains.
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Table 3.1: Research domains related to open-set semi-supervised learning summa-
rized by training data attributes and target task.
Legend:
%= imbalanced
& contains unknown classes
% domain shift
P small set
% labeled classes not present
9 source domain not present

present /required.
Labeled Unlabeled — 12%%

Domain train train Classify Detect Key works
Standard SSL r |11]f60]|14]
Robust SSL P o R2/[R9]
Open-set SSL r < < [77]121)
Open-world SSL r < < 191]192]
Novel class discovery (kL J (kL J [95]196]
Long-tailed SSL N <+ 198]]100]
UDA %9 %9 {102][103)
Open-set UDA S £ D)) |104]|114]
Open-set recognition < |18]32]
SC-OOD detection Sk * o [112)]113]
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CHAPTER 4

Hierarchical classification

In many real-world domains, classes are not independent but instead form
structured relationships that can be organized into a hierarchy. Canonical
examples include the Linnaean taxonomy in biology [25], the lexical database
WordNet [24], the Enzyme Commission [115], and the Gene Ontology [116].
Beyond such foundational examples, hierarchical structures also arise in nu-
merous application-specific settings, for example in traffic scene understanding,
where classes can be organized from wehicle type to vehicle model, or in docu-
ment classification for news articles, in which documents can be marked, e.g.,
by sport at a coarse level and league at a finer level. A subset of Linnaean
taxonomy is depicted in Figure

These hierarchies can be used in many ways. They enable evaluation metrics
that account for the semantic severity of classification errors |26], [27], allow
the prediction of high-level categories for when the model is uncertain or
encounters unknown classes [33], [117], and facilitate improved learning in
long-tailed regimes by allowing sparsely represented classes to benefit from
hierarchically close, well-sampled categories [31].

Hierarchical classification is commonly defined as the task of associating
data samples with nodes in a class hierarchy. The hierarchy may take the
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Figure 4.1: The figure shows a small subset of the Linnaean taxonomy, where entities

42

such as lion, tiger, and human are organized from the finest semantic
level (species) through intermediate taxonomic ranks to the coarsest
level (kingdom). Dashed arrows indicate the presence of additional
nodes and branches not shown.



form of a directed acyclic graph (DAG), as in WordNet, or a directed rooted
tree, as in the Linnaean taxonomy. The key distinction is that DAGs permit
categories to have multiple parents, whereas trees require a unique parent for
each non-root node. In general, these hierarchies encode is-a relationships.
Consequently, predicting a category also implies predicting all of its ancestor
nodes. Figure shows an example illustrating the distinction between trees
and DAGs.

Hierarchical classification problems can be categorized along two dimensions
[118]. The first concerns whether (the deepest) predictions are restricted to
leaf nodes (mandatory leaf-node prediction) or may terminate at internal nodes
of the hierarchy (non-mandatory leaf-node prediction). The second distinction
is between single-path and multi-path prediction. In the single-path setting,
the model predicts at most one node per depth level, forming a single path
from the most specific predicted node to the root. By contrast, multi-path
prediction permits multiple such paths, allowing several branches or leaves to
be predicted simultaneously. This categorization is illustrated in Figure

Papers D and E of this thesis fall within the domain of hierarchical clas-
sification and more specifically address hierarchical open-set classification.
Hierarchical open-set classification is the hierarchical classification setting in
which we predict classes not seen during training as the most appropriate
internal nodes of the class hierarchy. Using the terminology introduced above,
these papers consider tree-structured hierarchies, use non-mandatory leaf-node
predictions, and adopt a single-path prediction setting. To place these con-
tributions in a broader context, this chapter first reviews prior work on deep
learning methods that leverage class hierarchies, and then moves on to describe
the subdomain of hierarchical open-set classification in more detail.
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Biological taxonomy (tree)
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Figure 4.2: The biological taxonomy of the top panel forms a tree, where each
category has exactly one parent. For example, a species belongs to
exactly one genus. The bottom panel shows a part of the WordNet noun
hierarchy, which categorizes synsets (sets of synonymous words that
represent a single concept). The WordNet graph is formed by hypernym
relations, where a synset A is a hypernym of B if every instance of B is
a kind of A. In contrast to biological taxonomies, a synset may have
multiple hypernyms. For example, letter is both a kind of tezt and a

kind of document.
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Mandatory leaf Mandatory leaf
Single-path Multi-path

Non-mandatory leaf Non-mandatory leaf
Single-path Multi-path

Figure 4.3: Examples of predictions under different hierarchical classification
paradigms. In mandatory leaf-node prediction, the most specific node
of each predicted path is a leaf, whereas in non-mandatory leaf-node
prediction, a predicted path may terminate at an internal node of the
hierarchy. In single-path prediction, the model predicts at most one
node per depth level, forming a single path, while multi-path prediction
allows multiple nodes to be predicted at the same depth.
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4.1 Class hierarchies in deep learning

The idea of organizing classes into hierarchical structures predates deep learning
[24], [25]. In this section, however, we restrict our attention to the use of
hierarchies within deep learning. We further focus on works that treat the
hierarchy as a given and fixed part of the problem formulation. There exist
works that aim to learn class hierarchies from data [119]-[121], but such
approaches are considered outside of the scope of this review.

We organize the literature by categorizing works based on the type of
method they employ to utilize the hierarchy. For this purpose, we propose the
categories hierarchical losses, hierarchical inference, hierarchical architectures,
hierarchy-aware representation learning, and label granularity. Moreover, as
mentioned above, these works can exploit the hierarchy for different objectives.
We return to discuss tasks and evaluation at the end of this section.

Hierarchical losses

One line of work incorporates the class hierarchy into the loss function [26],
[122]-[127]. An influential example of this is [26], which proposes two hierarchy-
aware loss formulations: hierarchical cross entropy (HXE) and soft labels.

Hierarchical cross-entropy is based on factorizing the probability of a leaf
class ¢ into a product of conditional probabilities, corresponding to the path
from the root to node c¢ in the hierarchy:

c) = Hp(c’|Par(c’)), (4.1)

¢’ €Anct(e)\R

where Anc™ (¢) denotes the set of ancestors of ¢, including c itself, Par(c’) is
the parent node of ¢/, and R is the root of the hierarchy. The root node is
excluded from the product since p(R) = 1.

The factorization enables errors at higher levels of the hierarchy to be penal-
ized more heavily than errors close to the leaves. Specifically, the hierarchical
cross-entropy is defined as

luxi(p, ) = — Y M) log(p( [Par(c'))) (4.2)
c'€Anct(¢)\R
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where p is the predicted distribution, ¢ is the ground-truth class, and A(¢') is a
scaling function that decays with the depth of ¢/, consequently assigning larger
weights to loss terms corresponding to higher levels of the hierarchy than those
near the leaves. In [26], they use A(¢') = exp(—aD(¢’)), where D(c) is the
depth of node ¢’ and « is a hyperparameter. When A(¢') = 1 for all ¢/, the
hierarchical cross-entropy reduces to the standard cross-entropy.

The second approach proposed in [26] replaces the one-hot target vector
in the standard cross-entropy with a hierarchy-aware soft target distribution.
The underlying idea is that the target representation for a class ¢ should
allocate non-zero probability mass to classes that are close in the hierarchy,
thus encouraging hierarchy-aware predictions. This soft labels loss is defined as

gsoft pa Z ySOft log p ) (43)

¢’ E€Cleaves

where p is the predicted distribution, ¢ is the ground-truth class, and Cicaves
is the set of leaf classes. The hierarchy-aware label embedding y”ft( ) is
computed as

exp(—pd(c, c))
Y 6€Ciunes XP(=B(E, €))
where d(-,-) denotes the distance between two nodes in the hierarchy. The

parameter S controls the sharpness of the label embedding. In the limit 8 — oo,
the soft labels loss converges to the standard one-hot cross-entropy.

Y (c) = (4.4)

Hierarchical inference

Another family of methods focuses on hierarchy-aware inference procedures
rather than modifying the training objective [27], [30], [31], [117], [123], [12§],
[129]. These works replace the standard inference method, selecting the class
with maximum probability as predicted by the model, with alternatives that
account for the hierarchical structure.

One example is conditional risk minimization (CRM) [27], which operates on
predictions from any off-the-shelf model that outputs a probability distribution
over the leaf classes of the hierarchy. Instead of predicting the class with
the highest probability, CRM selects the class that minimizes the expected
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conditional risk based on the hierarchy:

argmingce, Y _d(c,c)p(c), (4.5)

/
c'€Cleaves

where p(c¢’) is the predicted probability for leaf class ¢/, and d(c/,c) is a
hierarchy-induced distance between classes. In [27], this distance is defined as
the height of the lowest common ancestor (LCA) of ¢’ and c.

Conceptually, CRM trades class accuracy for semantic accuracy by favoring
predictions that are, on average, closer to the true class in the hierarchy.
Importantly, this procedure is applied entirely at test time and does not
require retraining the underlying model.

The CRM method proposed in [27] is closely related to the inference approach
proposed in Paper D. However, while [27] restricts the decision space to leaf
nodes, Paper D allows predictions at arbitrary hierarchy nodes. Moreover,
while [27] measures distances via LCA height, Paper D uses the number of edges
along the shortest path between two nodes as the distance d(-,-). In addition
to the decision rule, Paper D proposes a test-time method for computing
a predictive distribution over the full hierarchy based on a set of per-level
predictions, which can be categorized as a method for hierarchical inference.

Hierarchical architectures

A third approach incorporates the hierarchy by making architectural changes
to the classification model [31], [130]-[138]. In contrast to hierarchy-aware
losses or inference rules, which often use standard model architectures, these
methods modify the network structure to reflect the hierarchy.

One example is proposed in [132], which suggests placing classification heads
at multiple depths of a convolutional neural-network (CNN) architecture [139].
The shallow heads are trained to predict coarse categories, whereas deeper
classification heads are trained to predict more fine-grained categories. At the
end of training, all classification heads except the final one are discarded. The
authors report that hierarchy-aware training improves the final flat classification
performance.

Another architectural approach is introduced in [130], which combines a CNN
and a recurrent neural network (RNN) |140] to model hierarchical prediction
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as a top-down process. The CNN extracts image features, which are then used
by an RNN to generate sequential, top-down predictions.

Hierarchy-aware representation learning

Other methods use class hierarchies to learn data representations that reflect
the hierarchical structure [28], [29], [141]-[146]. For example, [143] constructs
a set of class prototypes, one for each class, in a representation space, such
that pairwise distances between prototypes in this space reflect distances in
the class hierarchy. The model is then trained to map data samples close to
their corresponding class prototypes. The main task in this work is image
retrieval.

A notable subcategory of these works is those that employ hyperbolic rep-
resentations [147]. Hyperbolic geometry has been shown to be particularly
well-suited for representing hierarchical structures [148]. In hyperbolic space,
the volume of a ball grows exponentially with its radius, mirroring the ex-
ponential growth in the number of nodes with tree depth. In contrast, the
volume of a ball in Euclidean space grows only polynomially with its radius.
Motivated by this property, several works use hyperbolic representations across
various tasks with class hierarchies [141], [142], [144], [146].

Label granularity

An alternative approach is to exploit the fact that class labels can be represented
at different granularity levels within a hierarchy [138], [149]-[152]. For example,
the fine-grained label dog can be mapped to the coarser categories mammal or
animal, depending on the chosen granularity level.

In [149)], they find that varying the label granularity at which a model is
trained causes the model to focus on different data features. For instance,
models trained to classify fine-grained bird species emphasize discriminative
details such as color patterns or beak shapes, whereas models trained to classify
the coarser category bird focus on more generic features common to all birds,
such as wings and feathers. They further show that training at a coarser label
granularity can improve performance in weakly supervised object detection.

In semi-supervised learning, several works leverage label granularity by as-
signing pseudo-labels at coarser hierarchy levels when the model lacks sufficient
confidence to assign pseudo-labels at the most fine-grained level [150]-[152].
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This strategy can allow a larger set of unlabeled samples to contribute to the
loss without the risk of incorrect fine-grained pseudo-labels.

In Papers D and E, we use approaches related to label granularity by training
separate models at different depths of the hierarchy, with each model responsible
for predicting classes at that depth. This design encourages depth-specific
representations that capture complementary semantic information.

Tasks and evaluation

In the literature, class hierarchies are employed to facilitate a wide range of
objectives. Some works leverage hierarchies for non-hierarchical tasks, for
example, long-tailed recognition [31], weakly supervised object localization
[138], object detection [127], and flat classification [132]. In these settings,
the hierarchy is used as an inductive bias during training or inference, while
evaluation is typically performed using non-hierarchical metrics.

A group of works that treats hierarchical consistency as an explicit objective
focuses on mistake severity |26]-|30]. These works aim to minimize the average
height of the lowest common ancestor (LCA) between the ground-truth and
the prediction, motivated by the intuition that confusing semantically similar
classes (e.g., ribbon snake vs. whipsnake) is less severe than confusing seman-
tically distant ones (e.g., ribbon snake vs. steamroller). In fact, this type of
metric was recommended by the creators of ImageNet for evaluations on that
dataset |7], [153], but has since been largely overshadowed by the standard
top-k accuracy.

The height of the LCA is not the only way to quantify hierarchical error. A
closely related alternative is to measure the number of edges along the shortest
path between the prediction and the ground-truth in the hierarchy. Another
family of metrics consists of hierarchical precision, recall, and F1 scores [154],
defined as

> 1PN
Py =2t "t 4.6
"= TSR (4.6)
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4.2 Hierarchical open-set classification

where P; denotes the set of predicted nodes for sample 4, T; the corresponding
ground-truth nodes, and | - | the set cardinality. Both P; and T; include the
most specific nodes and all ancestors. These metrics are originally defined
as micro-averages, as given by the equations above, but can alternatively be
computed as macro-averages by computing class-wise scores and averaging
these.

Each evaluation metric has its own advantages and limitations. The LCA
height is well-suited for mandatory leaf-node prediction with single-path out-
puts and applies to both trees and DAGs. However, in non-mandatory leaf-node
settings, it becomes less informative; for example, predicting the parent of the
ground truth yields the same error as predicting a sibling. For that reason,
in Papers D and E, where we consider a non-mandatory leaf-node setting, we
instead use the number of edges in the shortest path between the prediction
and the ground-truth. This provides an intuitive and interpretable notion of
error severity for single-path predictions in non-mandatory leaf-node settings.
A limitation of both LCA height and path-length metrics is that they are not
well-defined for multi-path prediction settings.

Hierarchical precision, recall, and F1 scores are more general: they apply
to mandatory and non-mandatory leaf-node settings, single- and multi-path
predictions, and both trees and DAGs. However, these metrics are less directly
interpretable than distance-based measures. Moreover, Py and Ry are strongly
influenced by the depth of the hierarchy. For example, predicting a sibling to
the ground-truth at a large depth yields a smaller error than predicting a sibling
to the ground-truth near the root. This effect can be problematic in unbalanced
hierarchies, where the depths of leaves vary, making error comparisons across
branches less straightforward.

4.2 Hierarchical open-set classification

Papers D and E study hierarchical open-set classification, a subdomain of
hierarchical classification that considers the classification of unknown classes
not present in the labeled training set. Unlike standard closed-set hierarchical
classification, the goal is not only to predict among known classes, but also
to produce semantically meaningful predictions for samples originating from
unseen classes.

51



Chapter 4 Hierarchical classification

A previously unseen bird type
(here: an owl) should be classified
to the nearest known ancestor: Bird.

Figure 4.4: Illustration of hierarchical open-set classification. A model is trained
using data from the leaf nodes of a known class hierarchy. At inference
time, samples from previously unseen classes should be assigned to
the most appropriate internal nodes of the hierarchy. In this example,
an owl (unseen during training) should be classified as bird, without
committing to any of the known bird subclasses.

The core idea is that samples from unseen classes should be assigned to an
appropriate internal node in the class hierarchy, rather than receiving a binary
OOD flag. For example, if the training data contains a set of animal classes,
including multiple dog breeds, samples of unseen dogs should be classified
as the coarser category dog. This contrasts with the large body of work on
OOD detection, which focuses on the binary rejection of such samples, without
producing a semantically informative prediction , , . Figure
illustrates the idea of hierarchical open-set classification.

Beyond Papers D and E, hierarchical open-set classification has been stud-
ied in a limited number of works [33]-[37] and has appeared under various
names, including hierarchical novelty detection, hierarchical OOD classifica-
tion, hierarchical OOD detection, and fine-grained OOD detection. From a
structural perspective, hierarchical open-set classification corresponds to a
non-mandatory leaf-node setting: known classes should be predicted to leaf
nodes, whereas unknown classes should be predicted to internal nodes. Ex-
isting approaches further consider the single-path prediction setting, where
each sample is associated with a single ground-truth node. The problem could,
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4.2 Hierarchical open-set classification

however, be extended to the multi-path setting. Moreover, while the problem
naturally applies to DAGs, the current literature predominantly focuses on
tree-structured hierarchies.

Top-down methods

The first work to study this setting [33] proposed the top-down method as
one of two baseline approaches for hierarchical open-set classification. In this
approach, conditional classifiers are associated with each internal node of
the hierarchy. During inference, predictions proceed top-down from the root,
stopping at the first internal node where the local classifier’s confidence falls
below a predefined threshold, or when a leaf node is reached. According to
the method categorization introduced in Section the top-down method is
best described as a hierarchical inference approach.

Linderman et al. [37] follow a top-down strategy and assign node-specific
thresholds by evaluating local true negative rates on in-distribution training
data. Furthermore, they incorporate a hierarchical loss by training separate
softmax classifiers at each internal node. To encourage uncertainty, the local
classifiers are trained to produce uniform predictions for samples whose ground-
truth labels do not lie within the descendant subtree of the corresponding
node.

Flattening methods

The second baseline approach proposed in [33] is the flattening method. In
this approach, a single model is trained to jointly predict both leaf classes and
internal hierarchy nodes. Since labeled data for unknown classes corresponding
to internal nodes are unavailable, training data for these nodes are typically
constructed using samples from their known descendant leaf classes. This
flattening method can be categorized as a label granularity approach. Figure[L.5]
illustrates a comparison between the top-down and flattening approaches.
An example of a flattening-based method is proposed by Ruiz et al. [34], who
learn a feature space in which prototypes represent the nodes of the hierarchy.
The model and prototypes are optimized using a set of triplet losses [155].
Following the flattening strategy of [33], internal nodes are represented using
data from their known descendant leaves. At inference time, predictions are
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Class hierarchy
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Figure 4.5: Comparison of top-down and flattening approaches for hierarchical open-
set classification. In the top-down approach, we use local classifiers for
internal nodes of the hierarchy, each predicting among its child nodes
and a local OOD option. In contrast, the flattening approach uses a
single classifier that predicts directly over all nodes in the hierarchy.
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4.2 Hierarchical open-set classification

made by measuring distances between test samples and node prototypes in the
learned feature space and selecting the closest node, whether leaf or internal.

Pyakurel et al. [35] use the flattening method but employ evidential deep
learning [156] to capture model uncertainty. Evidential deep learning involves
predicting the parameters of a Dirichlet distribution over the class probabilities,
rather than directly producing a predictive distribution. This approach can
be considered a more principled way of representing uncertainty in neural
networks. The method [35] adapts evidential deep learning to hierarchical
open-set classification in combination with the flattening approach.

Beyond baseline approaches

In [36], Pyakurel et al. move beyond the baseline approaches by extending
the flattening paradigm. They train a neural network similarly to the other
methods in the flattening category. However, instead of using these logits
directly for predicting among the known and open-set categories, they introduce
state representations. The logits corresponding to a valid state, i.e., paths in
the hierarchy, are multiplied to produce scores for each category. These are
normalized to obtain the final predictive distribution.

In Paper D, we introduce ProHOC. ProHOC approaches hierarchical open-set
classification from a label granularity perspective, similarly to flattening-based
methods. Specifically, we exploit the training data by utilizing labels at all
available granularity levels, i.e., at all hierarchy depths. To this end, we train
separate classification networks for each hierarchy depth, using all training data
remapped to the corresponding granularity level, with each network responsible
for classifying the classes within that depth. We further propose a method
for approximating the local conditional distributions (.e., the probabilities
over child nodes and the local OOD prediction) based on the predictions from
the depth-specific networks. These conditional distributions are combined
to evaluate the full predictive distribution over the hierarchy. Following our
categorization in Section [I.1} ProHOC combines label granularity through the
multi-depth formulation with hierarchical inference via probabilistic modeling.

Evaluation

As discussed in Section [£:1] there are multiple ways to evaluate hierarchical
classification, and the same holds for hierarchical open-set classification. A
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recurring observation in the works on hierarchical open-set classification is that
closed-set performance (accuracy on ID data) and OOD performance (accuracy
on OOD data) are often in a trade-off relationship. In particular, OOD
performance can be improved by discouraging leaf-node predictions, whereas
closed-set performance can be improved by encouraging leaf predictions.

Several works [33]—[35] explicitly explore this trade-off by controlling the
bias between leaf and internal node predictions. This is commonly achieved
by scaling the scores of internal nodes using a bias parameter. By evaluating
performance across a range of bias values, a curve describing ID accuracy versus
OOD accuracy can be obtained. The overall performance is then summarized
by reporting the area under this curve. However, selecting an operating point
(i.e., a specific value of the bias parameter) is not straightforward in practice,
since OOD data are not available during training, and therefore the operating
point cannot be tuned according to OOD performance.

In contrast, the ProHOC method introduced in Paper D yields a default
operating point by design. Consequently, we report performance only at this
operating point. As discussed in Section [{.I] we primarily evaluate hierarchical
distance in Papers D and E. We compute separate metrics for ID and OOD
data, and define the overall performance as the mean of these two.

Semi-supervised hierarchical open-set classification

The works on hierarchical open-set classification discussed above treat open-set
prediction as a purely test-time problem: models are trained on labeled 1D
data and are required to predict OOD data only at inference time. However,
as shown in the literature on open-set semi-supervised learning (Chapter [3)),
exposure to unlabeled real-world data, containing both ID and OOD samples,
can improve open-set performance.

Motivated by this observation, Paper E introduces the problem setting
of semi-supervised hierarchical open-set classification. The overall objective
remains the same as in the supervised case, but the training data now consists
of a labeled ID set and an unlabeled set that may contain both ID and OOD
samples. The unlabeled OOD samples belong somewhere in the hierarchy, but
not at the leaf nodes.

In addition to introducing this problem setting, Paper E proposes SemiHOC,
a method that builds upon ProHOC and introduces a pseudo-labeling strategy
within a teacher-student framework, specifically adapted for the semi-supervised

56



4.2 Hierarchical open-set classification

hierarchical open-set setting. We show that incorporating the unlabeled data,
containing both ID and OOD samples, leads to improved open-set performance
compared to the supervised alternative.
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CHAPTER b

Summary of included papers

This chapter provides a summary of the included papers.

5.1 Paper A

Erik Wallin, Lennart Svensson, Fredrik Kahl, Lars Hammarstrand
DoubleMatch: Improving Semi-Supervised Learning with Self-Supervision
Published in the proceedings of the 2022 26th International Conference
on Pattern Recognition

pp. 28712877

DOI: 10.1109/ICPR56361.2022.9956182

©2022 TEEE.

This paper proposes DoubleMatch, a method for (closed-set) semi-supervised
learning. A common technique for existing methods for semi-supervised
learning is to employ confidence-based pseudo-labeling on unlabeled data.
This process assigns artificial labels to unlabeled data for which the model’s
predictions exceed a confidence threshold. Unlabeled data for which the model
produces less confident predictions are disregarded from the training objective.
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Consequently, these methods may ignore large parts of unlabeled data, in
particular for more challenging classification problems. For better utilization of
unlabeled data, this paper proposes the inclusion of a self-supervised component
to enable learning from all unlabeled data. This additional self-supervision
involves aligning feature predictions across weak and strong augmentations
of each sample. More specifically, we implement this self-supervision as an
extension of the widely adopted SSL baseline FixMatch. Our proposed method
is evaluated on benchmark datasets CIFAR-10, CIFAR-100, SVHN, and STL-10.
DoubleMatch demonstrates particularly strong results on CIFAR-100 and STL-
10, with improved accuracies and training speed when compared to FixMatch.
However, on the relatively simpler classification tasks of CIFAR-10 and SVHN,
our proposed method is not equally effective. A possible explanation could be
the model’s ability to generate sufficiently many correct pseudo-labels when
the classification problem is relatively straightforward, diminishing the benefits
introduced by the additional self-supervision.

Contributions: I designed the method, implemented the code base, ran the
experiments, and wrote all sections of the paper. Lennart Svensson, Fredrik
Kahl, and Lars Hammarstrand contributed through discussion and feedback.
Lars Hammarstrand created Figure 1 and Figure 2.

5.2 Paper B

Erik Wallin, Lennart Svensson, Fredrik Kahl, Lars Hammarstrand
Improving Open-Set Semi-Supervised Learning with Self-Supervision
Published in the proceedings of the 2024 IEEE/CVF Winter Conference
on Applications of Computer Vision

pp. 2345-2354

DOI: 10.1109/WACV57701.2024.00235

©2024 TEEE.

This paper studies open-set semi-supervised learning (OSSL), a more realistic
scenario where we assume that the unlabeled data may contain unknown classes
not present in the labeled data. Many existing works for OSSL use methods
that involve detecting ID data in unlabeled data for inclusion in a traditional
SSL loss. The method proposed in this paper, SeFOSS, instead follows the
philosophy of DoubleMatch from Paper A, aiming to learn from all unlabeled
data, regardless of whether they are ID or OOD. To achieve this, SeFOSS
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5.3 Paper C

incorporates the self-supervision proposed by DoubleMatch on all unlabeled
data. Additionally, SeFOSS applies a pseudo-labeling loss on unlabeled data
that confidently belong to the known classes. To confidently identify ID samples
among the unlabeled data, SeFOSS employs an energy-based score for ID/OOD
discrimination, together with an adaptive thresholding procedure based on the
energy distribution of labeled data. SeFOSS is evaluated and compared with
existing methods for OSSL on open-set scenarios involving datasets CIFAR-10,
CIFAR-100, SVHN, ImageNet, and noise. The experimental results show that
SeFOSS exhibits an unmatched overall performance in terms of both closed-
accuracy and OOD detection across the range of studied scenarios. While other
methods perform well on a few scenarios, they fail to consistently and robustly
perform on all scenarios. Moreover, this paper shows that methods for closed-
set semi-supervised learning may perform better in terms of closed-set accuracy
than previously reported by existing works. In fact, FixMatch outperforms all
OSSL methods on closed-set accuracy in the experiments conducted in this
paper. However, FixMatch performs poorly in terms of OOD detection, which
is of significant importance for real-world applications.

Contributions: I designed the method, implemented the code base, ran the
experiments, and wrote all sections of the paper. Lennart Svensson, Fredrik
Kahl, and Lars Hammarstrand contributed through discussion and feedback.

5.3 Paper C

Erik Wallin, Lennart Svensson, Fredrik Kahl, Lars Hammarstrand
ProSub: Probabilistic Open-Set Semi-supervised Learning with Subspace-
Based Out-of-Distribution Detection

Published in the proceedings of the 2024 European

Conference on Computer Vision

Lecture Notes in Computer Science, vol. 15119, Springer, 2025

DOI: 10.1007/978-3-031-73030-6_8

©The Author(s), under exclusive license to Springer Nature Switzerland

AG.

In this paper, we continue the study of open-set semi-supervised learning
and improve upon the SeFOSS framework. We introduce a new score for
distinguishing in-distribution from out-of-distribution samples, and we propose
a model for probabilistic predictions of whether samples are ID or OOD. The
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score is based on the observation that ID features tend to lie close to a subspace
in representation space; we approximate this subspace and compute the ID
score using the cosine of the angle between features and this subspace. We
find that the strong performance of this subspace score emerges as a conse-
quence of using cosine-similarities for self-supervision. To obtain probabilistic
ID/OOD predictions, we model the distributions of these scores for ID and
OOD data using beta distributions, with parameters estimated via a variant of
the expectation-maximization algorithm tailored to the OSSL setting. These
components are incorporated into our ProSub framework, which achieves state-
of-the-art results on several OSSL benchmarks and improves upon the results
of SeFOSS.

Contributions: The ideas for the subspace score and the probabilistic
modeling were developed primarily by Lars Hammarstrand and me. I imple-
mented the code base, ran the experiments, and wrote all sections of the paper.
Lennart Svensson, Fredrik Kahl, and Lars Hammarstrand contributed through
discussion and feedback. Lars Hammarstrand did the main work in creating
Figure 1 and Figure 2.

5.4 Paper D

Erik Wallin, Fredrik Kahl, Lars Hammarstrand

ProHOC: Probabilistic Hierarchical Out-of-Distribution Classification
via Multi-Depth Networks

Published in the proceedings of the 2025 IEEE/CVFE Conference on
Computer Vision and Pattern Recognition

pp. 20612-20621

DOI: 10.1109/CVPR52734.2025.01919

©2025 TEEE.

The two previous papers on open-set semi-supervised learning focus on
binary OOD detection, where samples are predicted as either in-distribution
or out-of-distribution, which is standard in the literature. In this paper, we
move beyond the binary setting and address hierarchical open-set classification,
where the goal is to predict OOD samples as the most appropriate internal
category of a known class hierarchy. A sample may thus be assigned to one of
the leaf categories (the ID classes) or to any internal node of the hierarchy,
representing a fine-grained OOD category. In our framework, ProHOC, we
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5.5 Paper E

model the predictive distribution over the full hierarchy, corresponding to a
distribution over all ID classes and fine-grained OOD categories. This distri-
bution is approximated using classification networks trained at each depth of
the hierarchy. The intuition is that fine-grained OOD samples are confidently
predicted by higher-level models that generalize over broad categories, while
deeper, more specialized models express higher uncertainty. We show that
ProHOC achieves strong performance on hierarchical benchmarks and argue
that it provides an extensible and scalable foundation for further work on
hierarchical open-set classification.

Contributions: Lars Hammarstrand and I developed the idea of proba-
bilistic modeling by estimating the conditionals. I developed the other parts
of the method, implemented the code base, ran the experiments, and wrote
all sections of the paper. Fredrik Kahl and Lars Hammarstrand contributed
through discussion and feedback.

5.5 Paper E

Erik Wallin, Fredrik Kahl, Lars Hammarstrand

Semi-Supervised Hierarchical Open-Set Classification

To be published in the proceedings of the 2026 IEEE/CVF Winter Con-
ference on Applications of Computer Vision.

In this final paper of the thesis, we combine the fields of open-set semi-
supervised learning and hierarchical open-set classification by introducing
semi-supervised hierarchical open-set classification. This setting follows the
open-set semi-supervised learning paradigm, but instead of binary ID/OOD
predictions, the goal is to assign OOD samples to the most appropriate internal
node of a class hierarchy, as in the ProHOC paper. Building on the ProHOC
framework, we extend hierarchical open-set classification to the semi-supervised
setting. We identify two key challenges: 1) standard confidence-based pseudo-
labeling is unreliable for OOD data, and 2) models tend to become overconfident
during training, pushing OOD samples toward overly specific categories. We
address these issues through two contributions, subtree pseudo-labels and age-
gating, which we integrate into SemiHOC, a teacher—student framework that
enables ProHOC to learn from unlabeled data. Our results show that SemiHOC
outperforms self-supervised pretraining followed by supervised adaptation and
even matches the fully supervised counterpart (using all available labels) with
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only 20 labels per class on the iNaturalist19 benchmark, demonstrating that
unlabeled open-set data can be effectively leveraged in this setting.

Contributions: I developed the method, implemented the code base, ran
the experiments, and wrote all sections of the paper. Fredrik Kahl and Lars
Hammarstrand contributed through discussion and feedback.

64



CHAPTER O

Concluding remarks and future work

This thesis has studied deep learning-based classification under conditions
common in real-world applications, which remain insufficiently addressed in
much of the existing literature. In particular, we have focused on limited
supervision through semi-supervised learning, the presence of unknown classes
via open-set recognition, and structured semantic relationships between classes
in the form of class hierarchies. The appended papers contribute with methods
and empirical insights that improve robustness and reliability across these
settings.

During the course of this work, the field of deep learning has undergone
rapid development. In particular, there has been a shift towards large-scale
foundation models, i.e., models that are pretrained on large and diverse
datasets, which can be adapted to downstream tasks. Examples of these
include large language models such as Llama [157] and DeepSeek [158], vision
models such as CLIP [159] and DINOv2 [40|, and generative models such as
Stable Diffusion [160]. As training such models is often infeasible for individual
practitioners or academic groups, much of the community’s focus has shifted
toward adapting and applying these pretrained models rather than training
models from scratch. The works in this thesis partly followed this shift by
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using the vision foundation model DINOv2 as a backbone in Papers D and
E. While these foundation models are useful in many tasks, we argue that
there remains an important role for smaller-scale models trained from scratch,
particularly in domains where foundation models do not exist or where data
are not publicly available.

Future work

In Chapter |1} we motivated this thesis by introducing three challenges for
deploying deep classification systems in real-world settings: limited labeled
data, unknown classes, and class relations. This is not an exhaustive list. Other
important issues that are not addressed in this thesis include, for example,
class imbalances, 7.e., when the classes are unevenly represented in the data,
and covariate shifts, 7.e., when the data distribution for a class differs between
training and deployment. A natural continuation of this thesis is to extend
the proposed methods to account for such scenarios.

One concrete example is the combination of open-set semi-supervised learn-
ing with long-tailed semi-supervised learning. While both settings aim to
capture realistic aspects of semi-supervised learning, the first by accounting
for unknown classes and the second by considering class-imbalanced scenarios,
they have, to the best of our knowledge, so far only been studied separately.
A valuable direction for future work is to consider both unknown classes and
class imbalances simultaneously within a unified framework.

Another open research question relates to uncertainty in classification models.
In particular, we have noticed in our work that it is challenging to distinguish
between uncertainty arising from ambiguity among known classes and uncer-
tainty caused by unseen classes. While these two types of uncertainty are often
studied separately, they are related and frequently addressed using similar
techniques (it is, e.g., common to model both types of uncertainties using the
maximum predicted probability). Methods for disentangling these sources of
uncertainty could lead to more reliable and robust deep learning models.

Finally, research in deep learning-based classification is often conducted in
the domain of computer vision, largely due to the availability of well-established
benchmark datasets that enable evaluation and comparison. For this reason,
the methods developed in this thesis are evaluated on image classification
benchmarks, facilitating comparison with existing work. However, while the
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experimental focus is on computer vision, the underlying ideas are not domain-
specific. Extending these methods to other domains (e.g., non-visual sensor
data such as radar, sonar, lidar, and biomedical data) presents both oppor-
tunities and challenges. In particular, techniques such as data augmentation,
which play a central role in semi-supervised learning, are domain-dependent
and require adaptation to new domains. Moreover, the (in comparison) limited
availability of public datasets and benchmarks outside computer vision remains
an obstacle for method development and evaluation. Addressing these chal-
lenges is an important step toward the broader applicability of the methods
studied in this thesis.
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