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Generative molecular dynamics

Simon Olsson

Understanding biomolecular function depends on bridging
experimental observables with models that capture structural,
stationary, and dynamical properties. Molecular dynamics (MD)
simulations, in principle provide a bridge, but the sampling
problem remains a fundamental roadblock toward this goal. In
this mini-review, | outline recent progress in the area of
Generative MD (GenMD)—an approach where generative Al
(GenAl) is used to mimic the statistical distributions resulting
from MD simulations, which are inaccessible using current nu-
merical algorithms. Here, | highlight a few exemplars of
GenMD and then outline open problems and current limitations.
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Introduction

Understanding how proteins function requires charac-
terizing not only their structures but also their dy-
namics. Advances in data acquisition and data analysis
now let us extract flexibility from X-ray crystallography,
nuclear magnetic resonance (NMR), and cryo-electron
microscopy data, usually through structural models with
multiple conformations—ensembles [1—4]. Complemen-
tary techniques, including NMR relaxation [5] and
single-molecule Forster resonance energy transfer
(smFRET) [6], further probe conformational exchange
and its associated timescales. Yet, experimental ob-
servables remain incomplete and indirect, reflecting
low-dimensional projections or ensemble averages such
as distances or chemical shifts. Interpreting these data
in structural and dynamical terms therefore requires
some degree of modeling.
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Molecular dynamics (MD) simulations provide a
powerful complement, vyielding atomically detailed
models of structure and motion. In principle, MD grants
access to both the configurational ensemble and its ki-
netics, linking microscopic mechanisms to experimental
observables [7]. In practice, however, MD is limited by
the accuracy of force fields and the finite timescales
accessible through current computational techniques.
Even with modern hardware and enhanced sampling
algorithms [8], exhaustive exploration of conformational
space remains challenging, especially complex systems
involving multiple slow processes [9,10].

Many of the enhanced sampling techniques—along with
techniques to learn collective variables [11,12]—are
effective in certain situations where low-dimensional
representations of the configurational space can be
found. Yet, fairly limiting assumptions are required to
close the picture and extract dynamics [68]. This cre-
ates an opportunity for generative models—machine
learning frameworks that can efficiently learn and
sample complex, high-dimensional distribution-
s—without necessarily relying on dimension reduction.

Finally, artificial intelligence (AI) models such as
AlphaFold [13] have revolutionized sequence-to-
structure prediction and are being engineered to also
predict flexibility [14—17].

In this review, we discuss a new frontier: Generative
Molecular Dynamics (GenMD), the use of generative Al to
emulate or replace costly numerical simulations at a
fraction of the computational cost. This direction com-
plements ongoing advances in machine-learned inter-
atomic potentials, and enhanced sampling techniques,
and by directly mimicking the statistical behavior of MD
simulations, it has the potential to bridge the gap be-
tween accurate physical models and complex biophysi-
cal experiments.

Molecular dynamics—an informal overview

MD simulations of biomolecular systems involve the
numerical integration of the Langevin equation [18],
which describes the time evolution of all-atomic posi-
tions and their velocities in a potential U(+) and at a
fixed thermodynamic state. The potential, or force field,
is derived under the Born—Oppenheimer approximation
and thereby describes the effective microscopic in-
teractions between atomic nuclei. The thermodynamic
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state specifies the macroscopic control parameters,
typically particle number &V, temperature 7; and volume
V (or pressure p). In other words, MD simulations are a
physical model of the time-dependent behavior of
molecules, including proteins and other biomolecules.

Each realization of the Langevin equation corresponds to
a trajectory in phase space (Figure 1). However, experi-
mental observables rarely correspond to single trajector-
ies—they represent ensemble averages over all possible
realizations of molecular motion. To connect simulations
to measurable quantities, we thus move from the sto-
chastic dynamics of individual trajectories to the evolu-
tion of the probability distribution p,(x, ¢) over positions,
x, and momenta, ¢. This evolution is governed by the
Fokker— Planck equation, which describes how an ensemble
of trajectories evolve from an initial condition pg(x, ¢)
through phase space under the combined effects of
deterministic forces and stochastic thermal noise. For
simplicity, we ignore the momenta ¢ in the remainder of
this mini-review.

For long times, # — o, p,(x) approaches the Boltzmann
distribution, w(x), ensuring that long-time averages
along trajectory reproduce ensemble averages. This
connection—between the stochastic dynamics of atoms
and the statistical properties of ensembles—is what
makes MD such a powerful bridge between microscopic
physics and macroscopic observables (Figure 1).

The bridge to experiments comes directly from sampling
these statistical distribution: given a forward model f, the
stationary ensemble-averaged observable, such as NMR
scalar couplings or free energies, can be computed as
averages Oy = [ f(x)u(x) dx. Similarly, in spectroscopies,

Figure 1

such as NMR and smFRET, we can measure dynamic
observables which directly probe evolution of ensembles
of trajectories, through an observable probe such as dis-
tances or chemical shifts. We can express these experi-
ments as time-correlations between forward model(s) f
andg: O, = [[ps(x0)u(x0)f (x0)g(xs) dxod;. In practice,
these averages are calculated using statistical samples
from equilibrium and the trajectory distributions—thus,
generating independent statistical samples from these
distributions is how MD is connected to experiments.

In practice, however, the gap between the microsecond
to second timescales we probe in experiments, and the
femtosecond scale time steps in MD simulations, make
direct, quantitative comparisons elusive. This limitation
known as the sampling problem—and as the name implies,
is fundamentally one of probability: drawing, or rather,
generating samples from a probability distribution, and
using these to compute averages.

The challenge motivates a complementary perspective:
instead of relying on explicit time integration, we can
attempt to model the underlying statistical structure of
molecular motion directly, with deep generative models.
Broadly, generative approaches to molecular simulation
can be organized around two goals. The first is to learn to
generate from the Boltzmann distribution itself—that is,
the equilibrium probability density over molecular
configurations—enabling efficient sampling of unbiased
ensembles without explicit trajectories. With equilibrium
samples, we can calculate stationary observables such as
free energies, including protein stability and binding af-
finities. The second approach is to learn the time-dependent
evolution of the system, capturing the dynamical transi-
tions between states approximating the transition
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Connections among structural biology, molecular dynamics (MD), and generative molecular dynamics (GenMD). Left: The Boltzmann distri-
bution, w(x), represents the target equilibrium ensemble, with experimental structures (blue cross) and ensemble models (teal triangles) superimposed.
Center: The time-dependent density, p¢(x) (ignoring momenta), illustrates the ensemble of possible MD trajectories evolving through a configuration
space. Right: An empirical sample from stationary distribution, p(x) = u(x). The probability densities illustrated in the center and right panels are what
GenMD aims to target. Below: Representative methods spanning the dynamic-to-stationary spectrum of GenMD.

Current Opinion in Structural Biology 2026, 96:103213

www.sciencedirect.com



probability function p(x;|xp) = p,(x) with the point-mass
initial condition po(x) = 0(xo — x) and a large time, 2.
Sampling from the transition probability function, cor-
responds to generating long timescale solutions to the
Langevin or Fokker—Planck equation. This perspective
allows us to compute dynamic observables, such as
binding and unbinding rates. Consequently, these two
viewpoints—modeling equilibrium structure versus
dynamical evolution—offer complementary routes
toward bridging the microscopic realism of molecular
dynamics with the data-driven, statistical efficiency and
scalability of modern machine learning (ML).

Generative molecular dynamics

The philosophy of generative molecular dynamics
(GenMD) is to acknowledge the limitations of numer-
ical simulation schemes and instead learn surrogate models
that reproduce the statistics needed to compute quan-
tities of interest. As such, these models are not exactly
faithful to the physical model they approximate—-
whether it be the potential energy surface or the un-
derlying stochastic dynamics, e.g. Langevin dynamics.
Consequently, GenMD offers at best a dramatic
speedup in the quantitative computation of ensemble
averages, and at worst, becomes a computationally heavy
nonsense generator.

GenMD methods are implemented using a growing
family of deep generative architectures, which train
neural networks to transform samples from an easy-to-
sample reference distribution (e.g. a high-dimensional
normal) into samples from a difficult target distribu-
tion (e.g. a Boltzmann distribution) [19]. These models
are typically trained either from data, obtained through
simulations, or by interacting directly with a potential
energy function.

Modeling the Boltzmann distribution
Boltzmann generators (BGs) [20] are an early and
influential class of GenMD. In this approach, a model
distribution p(x) is trained to approximate f(x) using
samples obtained either from molecular simulations or
directly from the potential energy function. A key
advantage of BGs is that they enable the exacz compu-
tation of ensemble averages through importance sam-
pling. Specifically, any observable ensemble average
(A(x))u can be evaluated as a weighted average over
model-generated samples, with weights

B(-BU) 400y Saw ()

p(x) SN o(x) 1)

w(x) o

This reweighting procedure systematically corrects for
modeling errors in the surrogate p(x), ensuring unbiased
estimates of observables corresponding to the Boltzmann
distribution specified by a potential energy model, U(-),
and the thermodynamic state, 3.
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The efficiency and practical usefulness of BGs ulti-
mately depend on how much they reduce the cost of
generating a sample from u compared to state-of-the-art
MD [21]. If this cost is low, the up-front expense of
training and generating data can quickly be recovered.
In practice, efficiency is governed by three factors:
the cost of sampling, the computation of p(x), and
how well a neural network can approximate w(x) for
diverse molecular systems. Finding generative archi-
tectures that satisfy these criteria has proven chal-
lenging. Recent work improves generalization across
related chemistries, though BGs remain limited to
small peptides [22,23,69].

Can we be more pragmatic?

If we regard BGs as an ideal to aspire to, we may ask
which corners can be cut while still making meaningful
progress. Recognizing that most classical potential energy
models are themselves approximate, we might accept
that perfect faithfulness to these models is
unnecessary and that it may suffice to sample from a
distribution that merely approximates their Boltzmann
statistics. Viewed this way, we can exploit highly scalable
generative architectures while freeing ourselves from the
costly computation of p(x) and the subsequent
reweighting step. Models that follow this more pragmatic
strategy are termed Boltzmann Emulators (BEs) [24].

Unsurprisingly, BEs have attracted considerable
attention and achieved notable success within only a
few years. One prominent example is Microsoft’s
BioEmu model [25], which adopts an AlphaFold2-
inspired architecture to parameterize a diffusion-
based generative model. BioEmu generates coarse-
grained, approximately Boltzmann-weighted samples
across a broad range of globular proteins, capturing
multiple conformational states. Coupled with a fine-
tuning strategy against large-scale experimental data
on protein thermal stability, BloEmu can be calibrated
to predict the destabilizing impact of mutations with
remarkable accuracy. Nevertheless, there are several
cases where prediction accuracies drop dramatically,
such as detection of cryptic pockets, suggesting that
these models still have a far way to go.

BioEmu is not alone: a large number of BEs are
continuously presented in the literature, differing in
both their scope and their representation of molecular
configurations within the neural architecture [26,27].
One promising strategy that we have been exploring
adopts a divide-and-conquer approach [28,29]. First, a
BE generates an ensemble of configurations that spans
the metastable states of a molecule; second, an
ensemble of short MD simulations is launched from
these configurations, combining the best of both para-
digms, and offers a pragmatic path forward for scalable
molecular simulation, possibly combined with new
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reweighing and guiding strategies inspired by the
Markov state modeling community [30—38].

Beyond the methods discussed here, there are
numerous other Al- and ML-based methods to target
this problem, recently reviewed more comprehensively
by Rotskoff [39]; Aranganathan et al. [40]; Zhu et al.
[41]; and Janson and Feig [42]—for machine-learned
interatomic potentials, several excellent reviews are
available [43,44].

Modeling the dynamics

The immediate impulse when modeling molecular dy-
namics with generative models might be to take inspi-
ration from video and text generative models and to
model entire trajectories. Indeed, several works have
taken this approach [45—47]. However, we know the
generative process of MD is Markovian and therefore,
the joint distribution of a trajectory is specified by an
initial condition, xg, and the transition probability den-

sity p(x, |x0).

Consequently an alternative perspective is to model the
transition probability density p(x/|xg), directly. This
object encodes the probabilistic evolution, and corre-
sponds to solutions to the Langevin equations at long
time horizons. This approach enables prediction of dy-
namic and stationary observables, including binding and
unbinding rates and free energies, and can unravel mo-
lecular mechanisms of action with speedups of several
orders of magnitude [48—54]. Further, in contrast to
BGs and BEs, this approach can be trained directly on
MD simulation data using arbitrary time strides.
Because it does not rely on an independent and iden-
tically distributed (i.i.d.) Boltzmann sampling assump-
tion, this can be done without introducing statistical
bias. A related idea is flatent space simulation, which
simultaneously learns a latent space and a propagator on
that space [55—57].

One interesting strategy is to investigate the mathe-
matical structures of the solutions to the Langevin and
Fokker—Planck equations, and come up with training
strategies and architectures that exploit these struc-
tures. Implicit Transfer Operators (I'TOs) do this [48].
I'TO uses the Markovian operator—the Transfer Oper-
ator—of equilibrium MD that encodes the solutions to
the Fokker—Planck equation. In this context, the
operator eigenfunctions are independent of 7, and are
linearly combined with their corresponding #-dependent
cigenvalues to encode the solutions. This simple
mathematical structure tells us that we should be able
to learn a single model to predict the probability of x,
given xg for any 2. We have shown that this approach can
both work on coarse-grained protein representations
[48], and can be combined with BEs to boost data ef-
ficiency [50]. More recently, we also show that these

models can generalize across different chemical systems
[49] with all-atom resolutions. Remarkably, these
models can faithfully predict microsecond dynamics on
unseen molecules even if the model only ever saw
nanosecond-scale dynamics during training. Related
methods can also be used as Boltzmann generators,
when combined with a Monte Carlo accept and reject
scheme as explored in TimeWarp Klein et al. [51].

What do we sacrifice?

In moving toward data-driven surrogates of molecular
dynamics, we inevitably step away from the explicit
physical models that have anchored molecular simula-
tion for decades. Classical molecular dynamics is
grounded in equations of motion derived from a po-
tential energy function: forces following from gradients,
kinetic, and potential energies are clearly defined, and
the integration scheme ensures approximate conserva-
tion laws and detailed balance under specified thermo-
dynamic conditions. These properties give trajectories
physical meaning and guarantee that long-time statistics
correspond to a well-defined ensemble.

With GenMD, by contrast, these mechanistic founda-
tions are replaced by learned statistical transformations
optimized to reproduce target distributions or transition
statistics. In such models, there is no explicit potential
energy function; energy and forces are implicit, at best.
As a result, detailed balance—and even Markovianity-
—are not formally guaranteed. This is particularly true
because most learned representations omit momenta
altogether or rely on coarse-grained descriptions, both
consistent with a Mori—Zwanzig-type projection in
which memory effects become unavoidable. Neverthe-
less, effective strategies are beginning to emerge to
mitigate these issues [58].

This raises a deeper question: how can we be confi-
dent that we can discover something under such a

phenomenological, data-driven paradigm? If the
generative process itself is learned rather than
derived from physical principles, can it reveal

nontrivial phenomena not explicitly encoded in the
training data? In traditional physics-based models, we
know that simple microscopic laws can give rise to
complex emergent behavior. In learned models, these
laws are replaced by a complex interplay between
architectural inductive biases, model training proced-
ures, and the available training data. I argue that such
models can exhibit complex and nontrivial behavior
even without explicit physical constraints; however,
whether this behavior can consistently translate into
genuine scientific insight remains an open question.
AlphaFold provides an optimistic example from
structural biology. Ultimately, however, the value of
GenMD will rest on its ability to generate nontrivial,
testable hypotheses that are inaccessible through

Current Opinion in Structural Biology 2026, 96:103213
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other methodologies—or to enable inquiry at scales
that are currently impractical.

Ultimately many may remain hesitant: we gain flexi-
bility and computational speed but risk losing inter-
pretability and physical grounding. Balancing these
trade-offs,  developing  more  robust  testing
strategies and correcting models when they violate basic
principles will be important. However, [ argue that the
acceptable balance between speed, fidelity, and inter-
pretability must ultimately depend on the scientific
questions being addressed at a given time. Some ques-
tions might still be answered even if the tools are
imperfect right now.

Where do we go from here?

In the long term, it seems inevitable that we will
converge toward learned models that faithfully repro-
duce the statistical behavior of MD, effectively side-
stepping explicit numerical simulations in most
biophysical and structural biology applications. Yet, this
vision remains distant. My reasoning is as follows: we
already know the statistical quantities we aim to
reproduce, and numerical algorithms provide a princi-
pled—if computationally expensive—route to generate
them. Decades of progress in algorithms and hardware
have delivered, at best, only a few orders of magnitude of
speedup, and while impressive, the complexity of the
systems we study in structural biology has grown
even faster.

Closing the gap between theoretical descriptions and
experimentally observed phenomena will require alter-
native strategies. GenMD currently stands out as a
promising route: one that replaces direct numerical
simulation with learned statistical surrogates, trading
exactness for scalability in a controlled way, and, in the
future, with rigorous statistical testing and experimental
data integration.

While these methods show some ability to generalize
and extrapolate to larger systems, they are by no means
perfect drop-in replacements for MD yet. They suffer
from similar error accumulation issues, albeit less
severely, as the latent space simulators [55,57], when
applied to systems very different from, and in particular
much larger than, those seen during training [49]. Most
methods consider only a single thermodynamic state;
however, recent progress also shows promise in gener-
alizing across thermodynamic states as discussed by
Dibak et al. [59]; Mogpvist et al. [60]; Janson et al. [61];
Herron et al. [62]; and Qiu et al. [63].

The naive, data-centric approach to resolve these prob-
lems would favor scaling training data volumes, model
size, and training time, including both simulation and
experimental data. This strategy has been celebrated in
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other domains including in large language models, lately
improvement in model performance in these domains
have started plateauing. More data will likely be
necessary but it is unclear whether it is sufficient or
practical. Going forward, better neural architectures and
balancing smart data acquisition techniques with rigorous
testing of models might prove to be a productive direc-
tion. Beyond this, encouraging transparency and clearly
delineating the generalization scope of a given GenMD
model, providing well-calibrated confidence scores of
samples not unlike those of AlphakFold, and developing
hybrid methods which integrate traditional MD with
GenMD methods will all have their place. Further, the
design of benchmarks that probe a model’s ability to
reproduce emergent phenomena, including: long-time
dynamical behavior, slow relaxation processes, and out-of-
distribution dynamical regimes, beyond those explicitly
present in the training data, will be essential. Finally,
grounding or verification strategies, which test whether
the generated samples are faithful to the underlying
physical dynamics, satisfy detailed balance or other
constraints will likely be significant. However, we must
not become impatient: classical MD force fields have
undergone decades of development and still fails to be
quantitatively predictive and generalizable to arbitrary
systems—similarly, simulation algorithms which are both
practical and satisfy basic constraints such as equi-
partition and detailed balance took decades to emerge. In
comparison, GenMD is in its infancy and relies on data
from classical MD—for now.

Finally, scaling to systems which are of interest in
structural biology is also critical for these methods to
truly have impact. A significant road block is that current
architectures are deep and work with high dimensional
feature spaces and dense interaction graphs. These
three factors lead to large memory and computational
footprints, limiting both the size and the throughput of
the leading GenMD models. Moving forward, architec-
tures which more carefully balance expressivity against
the costs are needed [64], and the community will likely
benefit from classic ideas from computational chemistry
and physics [65,66] and long-context ideas from large
language models [67].
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