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Generative molecular dynamics
Simon Olsson

Understanding biomolecular function depends on bridging
experimental observables with models that capture structural,
stationary, and dynamical properties.Molecular dynamics (MD)
simulations, in principle provide a bridge, but the sampling
problem remains a fundamental roadblock toward this goal. In
this mini-review, I outline recent progress in the area of
Generative MD (GenMD)—an approach where generative AI
(GenAI) is used to mimic the statistical distributions resulting
from MD simulations, which are inaccessible using current nu-
merical algorithms. Here, I highlight a few exemplars of
GenMDand then outline open problems and current limitations.
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Introduction
Understanding how proteins function requires charac-

terizing not only their structures but also their dy-

namics. Advances in data acquisition and data analysis

now let us extract flexibility from X-ray crystallography,

nuclear magnetic resonance (NMR), and cryo-electron

microscopy data, usually through structural models with

multiple conformations―ensembles [1—4]. Complemen-

tary techniques, including NMR relaxation [5] and

single-molecule Förster resonance energy transfer

(smFRET) [6], further probe conformational exchange

and its associated timescales. Yet, experimental ob-

servables remain incomplete and indirect, reflecting

low-dimensional projections or ensemble averages such

as distances or chemical shifts. Interpreting these data

in structural and dynamical terms therefore requires

some degree of modeling.

Molecular dynamics (MD) simulations provide a

powerful complement, yielding atomically detailed

models of structure and motion. In principle, MD grants

access to both the configurational ensemble and its ki-

netics, linking microscopic mechanisms to experimental

observables [7]. In practice, however, MD is limited by

the accuracy of force fields and the finite timescales

accessible through current computational techniques.

Even with modern hardware and enhanced sampling

algorithms [8], exhaustive exploration of conformational

space remains challenging, especially complex systems

involving multiple slow processes [9,10].

Many of the enhanced sampling techniques―along with

techniques to learn collective variables [11,12]―are

effective in certain situations where low-dimensional

representations of the configurational space can be

found. Yet, fairly limiting assumptions are required to

close the picture and extract dynamics [68]. This cre-

ates an opportunity for generative models―machine

learning frameworks that can efficiently learn and

sample complex, high-dimensional distribution-

s―without necessarily relying on dimension reduction.

Finally, artificial intelligence (AI) models such as

AlphaFold [13] have revolutionized sequence-to-

structure prediction and are being engineered to also

predict flexibility [14—17].

In this review, we discuss a new frontier: Generative

Molecular Dynamics (GenMD), the use of generative AI to

emulate or replace costly numerical simulations at a

fraction of the computational cost. This direction com-

plements ongoing advances in machine-learned inter-

atomic potentials, and enhanced sampling techniques,

and by directly mimicking the statistical behavior of MD

simulations, it has the potential to bridge the gap be-

tween accurate physical models and complex biophysi-

cal experiments.

Molecular dynamics—an informal overview
MD simulations of biomolecular systems involve the

numerical integration of the Langevin equation [18],

which describes the time evolution of all-atomic posi-

tions and their velocities in a potential U(∙) and at a

fixed thermodynamic state. The potential, or force field,

is derived under the Born—Oppenheimer approximation

and thereby describes the effective microscopic in-

teractions between atomic nuclei. The thermodynamic
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state specifies the macroscopic control parameters,

typically particle number N, temperature T, and volume

V (or pressure p). In other words, MD simulations are a

physical model of the time-dependent behavior of

molecules, including proteins and other biomolecules.

Each realization of the Langevin equation corresponds to

a trajectory in phase space (Figure 1). However, experi-

mental observables rarely correspond to single trajector-

ies―they represent ensemble averages over all possible

realizations of molecular motion. To connect simulations

to measurable quantities, we thus move from the sto-

chastic dynamics of individual trajectories to the evolu-

tion of the probability distribution pt(x, q) over positions,

x, and momenta, q. This evolution is governed by the

Fokker—Planck equation, which describes how an ensemble

of trajectories evolve from an initial condition p0(x, q)

through phase space under the combined effects of

deterministic forces and stochastic thermal noise. For

simplicity, we ignore the momenta q in the remainder of

this mini-review.

For long times, t → ∞, pt(x) approaches the Boltzmann

distribution, μ(x), ensuring that long-time averages

along trajectory reproduce ensemble averages. This

connection―between the stochastic dynamics of atoms

and the statistical properties of ensembles―is what

makes MD such a powerful bridge between microscopic

physics and macroscopic observables (Figure 1).

The bridge to experiments comes directly from sampling

these statistical distribution: given a forward model f, the

stationary ensemble-averaged observable, such as NMR

scalar couplings or free energies, can be computed as

averages Of = ∫ f(x)μ(x) dx. Similarly, in spectroscopies,

such as NMR and smFRET, we can measure dynamic

observables which directly probe evolution of ensembles

of trajectories, through an observable probe such as dis-

tances or chemical shifts. We can express these experi-

ments as time-correlations between forward model(s) f

and g: Ot
fg = ∬ pt(x0)μ(x0)f (x0)g(xt) dx0dxt . In practice,

these averages are calculated using statistical samples

from equilibrium and the trajectory distributions―thus,

generating independent statistical samples from these

distributions is how MD is connected to experiments.

In practice, however, the gap between the microsecond

to second timescales we probe in experiments, and the

femtosecond scale time steps in MD simulations, make

direct, quantitative comparisons elusive. This limitation

known as the sampling problem―and as the name implies,

is fundamentally one of probability: drawing, or rather,

generating samples from a probability distribution, and

using these to compute averages.

The challenge motivates a complementary perspective:

instead of relying on explicit time integration, we can

attempt to model the underlying statistical structure of

molecular motion directly, with deep generative models.

Broadly, generative approaches to molecular simulation

can be organized around two goals. The first is to learn to

generate from the Boltzmann distribution itself―that is,

the equilibrium probability density over molecular

configurations―enabling efficient sampling of unbiased

ensembles without explicit trajectories. With equilibrium

samples, we can calculate stationary observables such as

free energies, including protein stability and binding af-

finities. The second approach is to learn the time-dependent

evolution of the system, capturing the dynamical transi-

tions between states approximating the transition

Figure 1

Connections among structural biology, molecular dynamics (MD), and generative molecular dynamics (GenMD). Left: The Boltzmann distri-
bution, μ(x), represents the target equilibrium ensemble, with experimental structures (blue cross) and ensemble models (teal triangles) superimposed.
Center: The time-dependent density, pt(x) (ignoring momenta), illustrates the ensemble of possible MD trajectories evolving through a configuration
space. Right: An empirical sample from stationary distribution, p∞(x) ≈ μ(x). The probability densities illustrated in the center and right panels are what
GenMD aims to target. Below: Representative methods spanning the dynamic-to-stationary spectrum of GenMD.
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probability function p(xt|x0) = pt(x) with the point-mass

initial condition p0(x) = δ(x0 − x) and a large time, t.

Sampling from the transition probability function, cor-

responds to generating long timescale solutions to the

Langevin or Fokker—Planck equation. This perspective

allows us to compute dynamic observables, such as

binding and unbinding rates. Consequently, these two

viewpoints―modeling equilibrium structure versus

dynamical evolution―offer complementary routes

toward bridging the microscopic realism of molecular

dynamics with the data-driven, statistical efficiency and

scalability of modern machine learning (ML).

Generative molecular dynamics
The philosophy of generative molecular dynamics

(GenMD) is to acknowledge the limitations of numer-

ical simulation schemes and instead learn surrogate models

that reproduce the statistics needed to compute quan-

tities of interest. As such, these models are not exactly

faithful to the physical model they approximate―-

whether it be the potential energy surface or the un-

derlying stochastic dynamics, e.g. Langevin dynamics.

Consequently, GenMD offers at best a dramatic

speedup in the quantitative computation of ensemble

averages, and at worst, becomes a computationally heavy

nonsense generator.

GenMD methods are implemented using a growing

family of deep generative architectures, which train

neural networks to transform samples from an easy-to-

sample reference distribution (e.g. a high-dimensional

normal) into samples from a difficult target distribu-

tion (e.g. a Boltzmann distribution) [19]. These models

are typically trained either from data, obtained through

simulations, or by interacting directly with a potential

energy function.

Modeling the Boltzmann distribution
Boltzmann generators (BGs) [20] are an early and

influential class of GenMD. In this approach, a model

distribution ρ(x) is trained to approximate μ(x) using

samples obtained either from molecular simulations or

directly from the potential energy function. A key

advantage of BGs is that they enable the exact compu-

tation of ensemble averages through importance sam-

pling. Specifically, any observable ensemble average

〈A(x)〉μ can be evaluated as a weighted average over

model-generated samples, with weights

w(x)∝
exp(− ßU(x))

ρ(x)
; 〈A(x)〉μ≈

∑N
i=1w(xi)A(xi)
∑N

i=1w(xi)
: (1)

This reweighting procedure systematically corrects for

modeling errors in the surrogate ρ(x), ensuring unbiased

estimates of observables corresponding to the Boltzmann

distribution specified by a potential energy model, U(∙),

and the thermodynamic state, ß.

The efficiency and practical usefulness of BGs ulti-

mately depend on how much they reduce the cost of

generating a sample from μ compared to state-of-the-art

MD [21]. If this cost is low, the up-front expense of

training and generating data can quickly be recovered.

In practice, efficiency is governed by three factors:

the cost of sampling, the computation of ρ(x), and

how well a neural network can approximate μ(x) for

diverse molecular systems. Finding generative archi-

tectures that satisfy these criteria has proven chal-

lenging. Recent work improves generalization across

related chemistries, though BGs remain limited to

small peptides [22,23,69].

Can we be more pragmatic?
If we regard BGs as an ideal to aspire to, we may ask

which corners can be cut while still making meaningful

progress. Recognizing that most classical potential energy

models are themselves approximate, we might accept

that perfect faithfulness to these models is

unnecessary and that it may suffice to sample from a

distribution that merely approximates their Boltzmann

statistics. Viewed this way, we can exploit highly scalable

generative architectures while freeing ourselves from the

costly computation of ρ(x) and the subsequent

reweighting step. Models that follow this more pragmatic

strategy are termed Boltzmann Emulators (BEs) [24].

Unsurprisingly, BEs have attracted considerable

attention and achieved notable success within only a

few years. One prominent example is Microsoft’s

BioEmu model [25], which adopts an AlphaFold2-

inspired architecture to parameterize a diffusion-

based generative model. BioEmu generates coarse-

grained, approximately Boltzmann-weighted samples

across a broad range of globular proteins, capturing

multiple conformational states. Coupled with a fine-

tuning strategy against large-scale experimental data

on protein thermal stability, BioEmu can be calibrated

to predict the destabilizing impact of mutations with

remarkable accuracy. Nevertheless, there are several

cases where prediction accuracies drop dramatically,

such as detection of cryptic pockets, suggesting that

these models still have a far way to go.

BioEmu is not alone: a large number of BEs are

continuously presented in the literature, differing in

both their scope and their representation of molecular

configurations within the neural architecture [26,27].

One promising strategy that we have been exploring

adopts a divide-and-conquer approach [28,29]. First, a

BE generates an ensemble of configurations that spans

the metastable states of a molecule; second, an

ensemble of short MD simulations is launched from

these configurations, combining the best of both para-

digms, and offers a pragmatic path forward for scalable

molecular simulation, possibly combined with new
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reweighing and guiding strategies inspired by the

Markov state modeling community [30—38].

Beyond the methods discussed here, there are

numerous other AI- and ML-based methods to target

this problem, recently reviewed more comprehensively

by Rotskoff [39]; Aranganathan et al. [40]; Zhu et al.

[41]; and Janson and Feig [42]―for machine-learned

interatomic potentials, several excellent reviews are

available [43,44].

Modeling the dynamics
The immediate impulse when modeling molecular dy-

namics with generative models might be to take inspi-

ration from video and text generative models and to

model entire trajectories. Indeed, several works have

taken this approach [45—47]. However, we know the

generative process of MD is Markovian and therefore,

the joint distribution of a trajectory is specified by an

initial condition, x0, and the transition probability den-

sity p(xt |x0).

Consequently an alternative perspective is to model the

transition probability density p(xt|x0), directly. This

object encodes the probabilistic evolution, and corre-

sponds to solutions to the Langevin equations at long

time horizons. This approach enables prediction of dy-

namic and stationary observables, including binding and

unbinding rates and free energies, and can unravel mo-

lecular mechanisms of action with speedups of several

orders of magnitude [48—54]. Further, in contrast to

BGs and BEs, this approach can be trained directly on

MD simulation data using arbitrary time strides.

Because it does not rely on an independent and iden-

tically distributed (i.i.d.) Boltzmann sampling assump-

tion, this can be done without introducing statistical

bias. A related idea is latent space simulation, which

simultaneously learns a latent space and a propagator on

that space [55—57].

One interesting strategy is to investigate the mathe-

matical structures of the solutions to the Langevin and

Fokker—Planck equations, and come up with training

strategies and architectures that exploit these struc-

tures. Implicit Transfer Operators (ITOs) do this [48].

ITO uses the Markovian operator―the Transfer Oper-

ator―of equilibrium MD that encodes the solutions to

the Fokker—Planck equation. In this context, the

operator eigenfunctions are independent of t, and are

linearly combined with their corresponding t-dependent

eigenvalues to encode the solutions. This simple

mathematical structure tells us that we should be able

to learn a single model to predict the probability of xt

given x0 for any t. We have shown that this approach can

both work on coarse-grained protein representations

[48], and can be combined with BEs to boost data ef-

ficiency [50]. More recently, we also show that these

models can generalize across different chemical systems

[49] with all-atom resolutions. Remarkably, these

models can faithfully predict microsecond dynamics on

unseen molecules even if the model only ever saw

nanosecond-scale dynamics during training. Related

methods can also be used as Boltzmann generators,

when combined with a Monte Carlo accept and reject

scheme as explored in TimeWarp Klein et al. [51].

What do we sacrifice?
In moving toward data-driven surrogates of molecular

dynamics, we inevitably step away from the explicit

physical models that have anchored molecular simula-

tion for decades. Classical molecular dynamics is

grounded in equations of motion derived from a po-

tential energy function: forces following from gradients,

kinetic, and potential energies are clearly defined, and

the integration scheme ensures approximate conserva-

tion laws and detailed balance under specified thermo-

dynamic conditions. These properties give trajectories

physical meaning and guarantee that long-time statistics

correspond to a well-defined ensemble.

With GenMD, by contrast, these mechanistic founda-

tions are replaced by learned statistical transformations

optimized to reproduce target distributions or transition

statistics. In such models, there is no explicit potential

energy function; energy and forces are implicit, at best.

As a result, detailed balance―and even Markovianity-

―are not formally guaranteed. This is particularly true

because most learned representations omit momenta

altogether or rely on coarse-grained descriptions, both

consistent with a Mori—Zwanzig-type projection in

which memory effects become unavoidable. Neverthe-

less, effective strategies are beginning to emerge to

mitigate these issues [58].

This raises a deeper question: how can we be confi-

dent that we can discover something under such a

phenomenological, data-driven paradigm? If the

generative process itself is learned rather than

derived from physical principles, can it reveal

nontrivial phenomena not explicitly encoded in the

training data? In traditional physics-based models, we

know that simple microscopic laws can give rise to

complex emergent behavior. In learned models, these

laws are replaced by a complex interplay between

architectural inductive biases, model training proced-

ures, and the available training data. I argue that such

models can exhibit complex and nontrivial behavior

even without explicit physical constraints; however,

whether this behavior can consistently translate into

genuine scientific insight remains an open question.

AlphaFold provides an optimistic example from

structural biology. Ultimately, however, the value of

GenMD will rest on its ability to generate nontrivial,

testable hypotheses that are inaccessible through

4 Folding, Binding and Protein Design (2026)
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other methodologies―or to enable inquiry at scales

that are currently impractical.

Ultimately many may remain hesitant: we gain flexi-

bility and computational speed but risk losing inter-

pretability and physical grounding. Balancing these

trade-offs, developing more robust testing

strategies and correcting models when they violate basic

principles will be important. However, I argue that the

acceptable balance between speed, fidelity, and inter-

pretability must ultimately depend on the scientific

questions being addressed at a given time. Some ques-

tions might still be answered even if the tools are

imperfect right now.

Where do we go from here?
In the long term, it seems inevitable that we will

converge toward learned models that faithfully repro-

duce the statistical behavior of MD, effectively side-

stepping explicit numerical simulations in most

biophysical and structural biology applications. Yet, this

vision remains distant. My reasoning is as follows: we

already know the statistical quantities we aim to

reproduce, and numerical algorithms provide a princi-

pled―if computationally expensive―route to generate

them. Decades of progress in algorithms and hardware

have delivered, at best, only a few orders of magnitude of

speedup, and while impressive, the complexity of the

systems we study in structural biology has grown

even faster.

Closing the gap between theoretical descriptions and

experimentally observed phenomena will require alter-

native strategies. GenMD currently stands out as a

promising route: one that replaces direct numerical

simulation with learned statistical surrogates, trading

exactness for scalability in a controlled way, and, in the

future, with rigorous statistical testing and experimental

data integration.

While these methods show some ability to generalize

and extrapolate to larger systems, they are by no means

perfect drop-in replacements for MD yet. They suffer

from similar error accumulation issues, albeit less

severely, as the latent space simulators [55,57], when

applied to systems very different from, and in particular

much larger than, those seen during training [49]. Most

methods consider only a single thermodynamic state;

however, recent progress also shows promise in gener-

alizing across thermodynamic states as discussed by

Dibak et al. [59]; Moqvist et al. [60]; Janson et al. [61];

Herron et al. [62]; and Qiu et al. [63].

The naive, data-centric approach to resolve these prob-

lems would favor scaling training data volumes, model

size, and training time, including both simulation and

experimental data. This strategy has been celebrated in

other domains including in large language models, lately

improvement in model performance in these domains

have started plateauing. More data will likely be

necessary but it is unclear whether it is sufficient or

practical. Going forward, better neural architectures and

balancing smart data acquisition techniques with rigorous

testing of models might prove to be a productive direc-

tion. Beyond this, encouraging transparency and clearly

delineating the generalization scope of a given GenMD

model, providing well-calibrated confidence scores of

samples not unlike those of AlphaFold, and developing

hybrid methods which integrate traditional MD with

GenMD methods will all have their place. Further, the

design of benchmarks that probe a model’s ability to

reproduce emergent phenomena, including: long-time

dynamical behavior, slow relaxation processes, and out-of-

distribution dynamical regimes, beyond those explicitly

present in the training data, will be essential. Finally,

grounding or verification strategies, which test whether

the generated samples are faithful to the underlying

physical dynamics, satisfy detailed balance or other

constraints will likely be significant. However, we must

not become impatient: classical MD force fields have

undergone decades of development and still fails to be

quantitatively predictive and generalizable to arbitrary

systems―similarly, simulation algorithms which are both

practical and satisfy basic constraints such as equi-

partition and detailed balance took decades to emerge. In

comparison, GenMD is in its infancy and relies on data

from classical MD―for now.

Finally, scaling to systems which are of interest in

structural biology is also critical for these methods to

truly have impact. A significant road block is that current

architectures are deep and work with high dimensional

feature spaces and dense interaction graphs. These

three factors lead to large memory and computational

footprints, limiting both the size and the throughput of

the leading GenMD models. Moving forward, architec-

tures which more carefully balance expressivity against

the costs are needed [64], and the community will likely

benefit from classic ideas from computational chemistry

and physics [65,66] and long-context ideas from large

language models [67].
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