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Abstract: The geometric description of incompressible hydrodynamics, as geodesic
motion on the infinite-dimensional group of volume-preserving diffeomorphisms, en-
ables notions of curvature in the study of fluids in order to study stability. Formulas
for Ricci curvature are often simpler than those for sectional curvature, which typi-
cally takes both signs, but the drawback is that Ricci curvature is rarely well-defined
in infinite-dimensional spaces. Here we suggest a definition of Ricci curvature in the
case of two-dimensional hydrodynamics, based on the finite-dimensional Zeitlin mod-
els arising in quantization theory, which gives a natural tool for renormalization. We
provide formulae for the finite-dimensional approximations and give strong numerical
evidence that these converge in the infinite-dimensional limit, based in part on four new
conjectured identities for Wigner 6 symbols. The suggested limiting expression for
(average) Ricci curvature is surprisingly simple and demonstrates an average instabil-
ity for high-frequency modes which helps explain long-term numerical observations of
spherical hydrodynamics due to mixing.

1. Introduction

The incompressible Euler equations describe the motion of an ideal, inviscid fluid on
a Riemannian manifold (M, g). If u denotes the time-dependent vector field on M
representing the velocity of the fluid, the Euler equations are

oru+Vyu=-Vp,
divu =0, (1.1)
u(0) = uo
where V,u is the covariant derivative of u along itself and p is the pressure function.

Arnold [1] reinterpreted the system (1.1) as geodesic equations on the infinite-
dimensional Lie group Diff , (M) of volume-preserving diffeomorphisms of M, equipped
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with the right-invariant L? Riemannian metric. Through this discovery, geometric con-
cepts lend themselves to hydrodynamical interpretations. In particular, since fluid trajec-
tories are geodesics, positive curvature leads to convergence of nearby flows, indicating
stability, while negative curvature has the opposite effect, leading to instability. Moti-
vated by this perspective, Arnold computed sectional curvatures of Diff , (M) when M
is the two-torus, and subsequent work extended these computations to various settings,
including both two- and three-dimensional manifolds M (see, e.g., [9,11,18-20]). Col-
lectively, these results show that sectional curvatures of Diff (M) often, but not always,
turn out negative.

Specifically for Diff, (5?), which is the most important for studying large-scale
weather, curvature computations have been performed by many authors in terms of
spherical harmonics (see Suri [22] and references therein for a recent explication). Rou-
chon [19] showed that curvatures in sections containing at least one rotation field are
always nonnegative, but that for any other velocity field there is a section containing
it with negative curvature. The third author showed [18] the opposite, that for every
divergence-free velocity field on S, there is always a section containing it with positive
curvature; this is false for most other surfaces. Lukatskii [10] considered the curvatures
in sections containing u = v+ f for afunction f(z) on $2 and found that in the basis v,
of spherical harmonics, K (i, v,,) — — f”(0)2/||u ”22’ which is the closest result to the
present study in the literature and suggests the curvatures are “mostly negative” when
considered in this basis. It is not at all obvious whether such a result holds in a different
basis. On the other hand Suri [21] showed that almost every spherical harmonic flow
has conjugate points along it, indicating existence of many sections of positive curva-
ture, often found in off-diagonal directions. Hence quantifying the amount of positive
or negative curvature is far from clear in this infinite-dimensional setting, particularly
in a basis-independent way. Ricci curvature makes this precise in an invariant way but
ordinarily only gives finite values in finite-dimensional manifolds.'

As further motivation, in the special case of two-dimensional ideal hydrodynamics,
the scalar vorticity field is advected by the geodesic path of diffeomorphisms. Onsager
[16] predicted that regions of equally signed vorticity tend to merge to form vortex
condensates. However, since vorticity is advected, the merging is not via diffusion,
but via intricate thinning and folding called mixing. This way, condensates of vorticity
develop on large scales at the cost of increasing entanglement on small scales. The long-
time behavior of this dynamics comprises two-dimensional turbulence (cf. Bofetta and
Ecke [2]). But we still lack an “Arnold-like” geometric understanding of mixing and
vortex condensation, and here Ricci curvature may offer insights. Indeed, mixing can be
interpreted as sensitivity relative to initial data, which in turn is connected to the growth
of Jacobi fields. More precisely, Ricci curvature governs the evolution of infinitesimal
volumes spanned by Jacobi fields, in such a way that negative values accelerate their
growth. In this sense, average Ricci curvature is related to average mixing. Heuristically,
we expect that mixing arises from exponential growth of Jacobi fields, driven by negative
curvature, with a Lyapunov exponent proportional to the square root of the negative Ricci
curvature.

In summary, there are compelling reasons to seek a well-defined Ricci tensor for
Diff, (M), but in order to do this rigorously it is necessary to view it as convergence
of Ricci tensors of finite-dimensional geometric approximations. In this paper, we in-
troduce a notion of Ricci curvature, through quantization, for Diff , (M) when M is the

I Asa simple example, one can take the sphere of radius r in L%(M), which has sectional curvature 1 /rin
any plane. Thus, Ricci clearly diverges since there are infinitely many orthogonal planes.
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two-sphere S2. Numerical computations suggest that this quantity, defined as a renor-
malized series over Ricci curvatures in the quantized models, not only converges to a
negative value, in line with expectations from the aforementioned sectional curvature
computations, but is also given by a remarkably simple formula (Conjecture 2). Moti-
vated by the statistical long-time behaviour of hydrodynamics on the sphere, resulting in
motion that on the large scale is nearly steady up to rigid rotations,” we also compute the
Ricci curvature for a quantization model of the homogeneous space Diff , (52)/SO(3).
This homogeneous space is important due to the observation that long-term dynamics of
2D Euler appears to converge to a system on S O (3) with high-frequency terms orthogo-
nal to it fading into noise, suggesting a uniformity of the behavior in the high-frequency
quotient space.

The starting point for our definition is the Zeitlin model [24], a sequence of finite-
dimensional approximations of the group Diff , (§?) of area-preserving diffeomorphisms
of the sphere based on a quantization scheme introduced by Hoppe [7]. In this model, the
special unitary groups SU (V) serve as finite-dimensional analogues of Diff (5?) when
equipped with a particular right-invariant metric, known as the Zeitlin metric. These
groups capture the structure of, and converge to, the area-preserving diffeomorphism
group in the large- N limit; for the precise convergence statement for Zeitlin’s model on
the sphere, see [14].

Our main results begin with a structural theorem: the Ricci tensor of the Zeitlin metric
in any dimension is block diagonal with respect to a natural decomposition {Vg}évzjl of
su(N) into irreducible so(3) modules, acting as a scalar multiple r¢ () of the identity on
each subspace V;. We derive exact formulas for the values r;(N) and also determine the
Ricci curvature of the homogeneous space SU (N)/SO(3), which corresponds to fluid
motion modulo rigid rotations. Finally, we analyze the asymptotic behavior of 7¢(N) as
N — oo. This asymptotic analysis leads naturally to our definition of averaged Ricci
curvature for the infinite-dimensional limit. In addition it leads to four new conjectured
identities for Wigner 6 j symbols for which there is strong numerical evidence.

We point out that the block Ricci result does not follow from the general theory of
“nice” bases for Lie groups (cf. [8]), but relies on the specific form of the Zeitlin metric,
which is dictated by the quantized Laplacian. In particular, one can check directly that
there exist right-invariant metrics on SU (/N ) near the Zeitlin metric which do not possess
this property. On the other hand, general properties of irreducible representations show
that one should expect that the Ricci curvature, as a quadratic form invariant under the
isometric action of SO (3), should also be a multiple of the metric on each subspace V;
by Schur’s Lemma; see for example Park-Sakane [17] for a sketch of the argument. Here
we verify this statement and more importantly compute the multiples.

Concerning applications in two-dimensional hydrodynamics, our result on positivity
of Ricci curvature (see Corollary 1 below) in the lowest wavenumber eigenspace V|
implies that increased angular momentum on average has a stabilizing effect on the
dynamics. By contrast, our conjecture that the Ricci curvature is eventually negative
(see Conjecture 2 below) in all higher eigenspaces hints that on average the sectional
curvature is indeed negative, as previously suggested in the literature. As a whole, the
results are compatible with mixing observed numerically, where the large scales typically
settle on a near global rotation (where Ricci is positive), whereas small scales (where
Ricci is conjectured negative) are fully mixed [13].

It is possible to carry out this construction for other closed surfaces, such as the torus.
An earlier approach, not based on quantization, was proposed by Lukatskii [9] for the

2 These results are obtained in both numerical simulations [6,13] and physical experiments [5].
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flat torus T, but without using quantized geometry and hence innately basis-dependent.
An open problem is thus to derive Ricci curvature as in this paper but for the flat torus
using Zeitlin’s quantized model for D, (T?). Another is to extend the results to the
axisymmetric 3D Euler equations on S, which can also be addressed via quantization
[12]. Ricci curvature was computed there only in the simplest case N = 2, but for higher
N one may expect similar formulas as found here.

This paper is organized as follows. Section 2 contains an overview of our results,
including some background. Section 3 contains the computation of the Ricci tensor
and the proof of Theorem 1. In Sect. 4, we investigate the limiting behavior of Ricci
curvature for large N, making use of some new conjectured identities for Wigner 6
symbols. Finally, in Sect. 5 we determine the Ricci curvature of the homogeneous space
SU(N)/SO@3).

2. Main Results

In this section, we state our main results, including only the minimal background needed
for the formulation of the theorems. A more detailed discussion of the quantization
procedure and the structure of the Zeitlin model is deferred to the next section.

2.1. Block-Einstein structure. The Lie algebra su(/N) admits a decomposition
sUN) =V ®--- & Vy—y, (2.1

where each V; is an irreducible representation of so(3), has dimension 2¢+1 and carries a
distinguished basis {7y, : —¢ < m < ¢}, which can be thought of as a finite-dimensional
truncation of the classical spherical harmonics on 52 (cf. [14], [25]).

The quantized Laplacian Ay : su(N) — su(N) is defined so as to preserve this
decomposition and mimic the action of the standard Laplace-Beltrami operator on the
two-sphere, assigning eigenvalue —¢(£ + 1) to each V;. Concretely we take a representa-
tion of s0(3) by operators C; : su(N) — su(N) satisfying [C;, C;] = €;jxCx, and define
the Laplacian by Ay = ), Cl.z, verifying that it commutes with each C;. We then con-
struct the special basis Ty, satisfying Ay Ty, = —€( + 1) Ty, and C3(Ty) = mTy —p,
which uniquely determines the vectors up to scaling foreachm € {—¢, ..., £}. We con-
sider two Riemannian metrics on SU (N): the bi-invariant metric and the Zeitlin metric,
the latter being only right-invariant. They are given at the tangent space to the identity
by

(u,v) = Tr(ufv), (bi-invariant metric) 2.2)
1
(u, v) = N Tr (uT(—AN)v), (Zeitlin metric) (2.3)

for u, v € su(N). The basis {7y} is scaled so it is orthonormal with respect to the bi-
invariant metric. Furthermore, for the Lie algebra structure, the usual matrix commutator
is denoted [-, -]. However, in quantization theory one needs to work with the scaled

bracket %[~, -] where iy = 2/+/N? — 1. The infinitesimal (right) adjoint action is
therefore defined with respect to this scaled Lie bracket, so that

1
ad,v = —a[u, v].
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The relevance of Zeitlin’s metric lies in the fact that its geodesics provide a finite-
dimensional approximation of hydrodynamics on the sphere, as explained later in the
next section. Our first theorem says that the Ricci curvature of Zeitlin’s metric (2.3) is
a multiple of the identity when restricted to each subspace Vy, which means that the
Zeitlin model is “block-Einstein.”

Theorem 1. The Ricci curvature of SU(N) under the Zeitlin metric (2.3) is block di-
agonal with respect to the decomposition (2.1). That is, the Ricci tensor Ric acts as a
scalar multiple of the metric on each subspace Vy for £ < N: foru € Vo and v € Vy
we have

Ric(u, v) = r¢(N) (u, v).

Furthermore, we have r¢(N) = r¢(N)* — r¢(N)~, where r¢(N)* are both nonnegative
and given explicitly by

N— 2
N T T
re(N)* = — Z (2k+1)(2k’+1>{N_ N1 N_l} :
Wy oy M T 7 2
k+k];/+f 1odd 2.4)
_._ N (e — hger)? / ¢t kK
re(N)™ = — T Qk+ DK +1) Tl N1
i ka; Ikt A A A
k+K'+€ odd

Here, h; = i(i + 1), hy =2/~ N? — —1 and {:::} denotes the Wigner 6 j symbol.

For a detailed account of Wigner symbols, see [23]. The quotientspace SU (N)/SO(3)
has a natural interpretation as the configuration space of fluid motion modulo rigid rota-
tions. We also determine the Ricci curvature of this quotient space explicitly, which turns
out to be strictly larger than the Ricci curvature of SU (V) by an amount that depends on
the wavenumber, but not the dimension N. Since we expect r¢(N) to grow like N for
fixed £ (see Theorem 3 below), the Ricci curvature of the quotient behaves in essentially
the same way as in SU(N) for large N.

Theorem 2. The Ricci tensor Ricp of the quotient space B = SU(N)/SO(3), where
SU(N) is equipped with the Zeitlin metric (2.3), acts as a scalar multiple of the metric
on each subspace Vg for2 <€ < N — 1: foru € Vy and v € Vy we have

Ricp(u,v) = (rg(N) + )Li) (u, v)p (2.5)
12

where (, )p is the quotient metric on B, and r¢(N) is as in Theorem 1.

Positivity of Ricci curvature in some special directions, and all dimensions, will
follow easily from the formulas in Theorem 1.

Corollary 1. For every N > 2, the Ricci curvature of the Zeitlin metric on SU(N) is
strictly positive in the subspace V.
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2.2. Conjectured identities and numerical results. To understand what happens in the
eigenspaces Vy for £ > 1 as N — oo, we must work with Wigner 6 symbols, whose
explicit combinatorial expressions are extremely long. In the course of computing Ricci
curvature, we have observed certain recurring patterns involving sums of these symbols,
which led us to formulate some new conjectural identities.

To begin, for fixed N, we introduce the abbreviated notation below for certain 6
symbols that appear frequently throughout the paper:

. i j Y . i
W”ZZ{N_—IN_—lN_—I}’ W?Z{.
2 2 2 ’ J

=
L

=
| ™9

e
v } . (2.6)

2

N‘

The following summation formulas are well known from the theory of angular momen-
tum in quantum mechanics, where 6j symbols play a fundamental role (see [23]).

N-—1
> @i+ HWi? = @.7)
i=0
N-—1
Z( DI 2i + HOW'TH? = (= DHNHIWE, (2.8)
i=0
N—1
Z(-l)"(zi + 1)W§ = (=DHM*5;0N. (2.9)
i=0

We now list the identities observed in our computations, which seem to extend the
above in a natural way.

Conjecture 1. Forall 1 < j, £ < N — 1, we have

N— 1(21+1)(W1]€) 1 (#Z) (2 10)
o Nj—tG+e+1y T '
N—1
D =D+ VI = (=D O+ W, 2.11)
i=1
Nf]x oi + ywiityr = A= D0 +e) = 20 2.12
;:(H)( )= N , (2.12)
N-—1
20 +1 2H;
_ i+j+Nypi | — 2777
py ( +(=D W) N (2.13)

i=1

where A; = i(i +1) as beforeand H; = 1+1/2+---+1/j is the ™ harmonic number.

These identities have been numerically verified up to N = 2048, which already
covers the range relevant for practical simulations using the Zeitlin model. Note that
since the square of a Wigner 6 symbol is a rational number, numerical verification is
exact here.
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— {=1 L5
{ =23

FZ(N)+< [0

F0.5

— 0.0
. F—0.5

—Fo(N)~<

% ~1.0
—-1.5

102 o 103
matrix size N
Fig. 1. Positive 77 (N)" and negative 7, (N) ™ parts of the average Ricci curvature values in the Zeitlin model,

for ¢ =1, ..., 23 and for matrix sizes N from 32 to 2048 (in log-scale). The negative part is independent of
N, whereas the positive part seemingly converges to zero

For the values of N where Conjecture 1 holds, we are able to get a closed form
expression for the negative part of Ricci, r¢(N) ~, and an explicit upper bound for r¢ (N)™.
If there were identities like (2.10) involving (—1)’ or the case j = ¢, we would get an
exact formula for r,(N)*, but we have not found these.

Theorem 3. Assuming the identities in Conjecture 1, the positive and negative parts of
the Ricci curvature in the Vy subspace satisfy:

2(Hp — 1) NZ—1
— = 2(Hy — 1) < 1 ) .
N (2.14)

. N%Z -1
re(N) 5(4He+2£+1)( : )

re(N)™ =

Remarkably, this formula - derived as a complicated sum involving Wigner 6 symbols
- factors into a product of two terms, one depending only on £ and the other only on N.
In light of Theorem 3, it is natural to introduce the averaged Ricci curvatures, based
on dividing by dim(SU (N)) = N? — 1:
- re(N) L re(N)F
N)=——-7, N)™ = .
Ny = 53— reN)™ =~
Numerical computations up to N = 2048 indicate that 7 (N) is not only bounded in N,
as expected from Theorem 3, but in fact converges to the limit of 7 (N)~ as N goes to
infinity - see Figure 1 below. This is equivalent to the statement that 7, (N)* — 0 as
N — oo.

(2.15)
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Fig. 2. Average Ricci curvature values 77 (N) in the Zeitlin model for varying matrix sizes N. For a fixed ¢,
the averaged Ricci curvature eventually becomes negative as N grows, in accordance with Conjecture 2. On
the other hand, as soon as £ > N /3 the Ricci curvature in the Zeitlin model is positive. The slope 1/3 is not
clearly predicted even in our conjectured formulas, but is quite apparent graphically
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The table above shows the sign of the Ricci curvature in the direction of each eigenspace
Vi for SU(N), with P and N denoting positive and negative curvature, respectively.
The pattern mirrors the one observed in Figure 2, and persists for much higher £ and N.
One can also observe the transition pattern £/N = 1/3 in this table.

Summarizing the above discussion and numerical results, we expect the following to
hold.

Conjecture 2. For each fixed £ > 1, the averaged Ricci curvature ¥y (N) of the Zeitlin
metric on SU(N) becomes negative for sufficiently large N, and in the limit

~ Hy—1
re(N) — - as N — o0, (2.16)

where Hy is the ¢™ harmonic number.
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A possible strategy toward proving this conjecture begins with establishing the iden-
tities stated in Conjecture 1 through combinatorial methods. Once these identities are
proved, the asymptotic behavior in Conjecture 2 would follow by deriving a sharper
upper bound for r¢(N)* in order to prove that limy_, o 7¢(N)* = 0 for each £.

3. Ricci Curvature of the Zeitlin Metric

In this section, we begin by reviewing the quantization framework underlying the Zeitlin
model. Next, we derive a few lemmas that are useful for curvature computations and
prove Theorem 1.

3.1. Quantization. Theincompressible Euler equations can be viewed, following Arnold’s
framework, as geodesic equations on the infinite-dimensional Lie group Diff ,L(Sz) of
area-preserving diffeomorphisms of the sphere. The corresponding Lie algebra consists
of divergence-free vector fields, which may be identified with Hamiltonian vector fields
on the two-sphere. Passing to the vorticity formulation, one takes the curl of the first
equation in (1.1), yielding a scalar equation for the vorticity w = curl u:

hot+{Y, 0} =0, AY=o, 3.1)

where 1 is the stream function, related to the velocity u through the skew-gradient
u = V1, and {-, -} denotes the Poisson bracket induced by the area form on the
sphere. This formulation replaces the Lie algebra Diff, (S%) of Hamiltonian vector
fields with the Poisson algebra (Cgo(Sz), {, -}) of smooth, mean-zero functions on S2.

Quantization theory provides an approximation of this infinite-dimensional Poisson
algebra by a sequence of matrix Lie algebras su(/N), each equipped with a distinguished
right-invariant metric and scaled matrix commutators. Specifically, as N — oo, the
algebras (su(N), %[', 1), with hy = 2/+/N? — 1 and the metric gy in (2.3), converge
weakly-via the LZ-adjoint of a quantization operator Ty : Ccye (8?) — su(N)-to the
Poisson algebra (C(‘)’O(SZ), {-, -} (see Charles and Polterovich [4]). This approximation
is the Zeitlin model for the two-sphere. Zeitlin’s discretization replaces the continuous
vorticity equation (3.1) with a finite-dimensional analogue:

.1
Was[P.WI=0,  AyP=W. (3.2)

with P, W curves in the Lie algebra su(N). The equations (3.2) retain the Lie—Poisson
structure of the original system, and describe geodesics on SU (V) with respect to the
right-invariant Riemannian metric (2.3), derived from kinetic energy.

In what follows, we collect a few lemmas that will be used throughout the paper, in
particular in the proof of Theorem 1.

Lemma 1. The operator ad* defined by (ad},v, w) = (v, ad,w) for all u, v, w € su(N)
is given by

ad®v = —A~'ad, Av, (3.3)
where A is the quantized Laplacian, defined relative to the quantization basis {Ty,,} by

ATy = =L+ 1D)Tyy. (3.4)
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Proof. A straightforward computation using bi-invariance of (-, -) and (u, v) = — % (u, Av).
O

The weights « relating the two metrics (2.3) and (2.2) are

LL+1)
(Tem- Tem) = o¢(Tem, Tem), where oy = N (3.5
The first ingredient towards the proof of Theorem 1 is a formula for Ricci curvature
in terms of «¢. Our starting point is Arnold’s sectional curvature formula for a left- or
right-invariant metric on any Lie group, which can be written in the form

%Had;v +adlu + ad,v|? — (ad%v +ad,v, ad,v) — (ad}u, ad}v)

K(u, =
w, v) 2ol = (u, v)2

. (3.6)
Using (3.6), we can derive the following expression for Ricci curvature. A similar

formula was given in [8] in terms of an orthonormal basis, so we omit its proof.

Lemma 2. For any vectors u € Vy and v € Vy, the Ricci curvature of (2.3) is given by

N—-1N-1

o — o)
Ricw,v) = -y 3 jatdal 4052‘0’;, )" Ty Pead, Pyad, ;. 3.7)
k=1 k'=1

3.2. Wigner symbols. Formula (3.7) depends on computing the traces of certain opera-

tors. On SU (N), these traces can be computed directly in terms of the Wigner symbols

that give the structure constants relative to the special basis {7y, }. Following Zeitlin’s

construction ([24], [25]), we now recall the explicit form of these structure constants.
The commutator between 7y, and Ty, in su(N) is given by

N—1 £
(// " N
Tom. Tom1 =Y Y Coptpni Ty (3.8)

=1 m!'=—2¢g"
with structure constants
(N g (€0 e
cp i = Sz,z/,z"(l — (=D )(-Dm + (m ' m" ) | V=l N=1 N-1[>
2 2 2
(3.9
where:

(1) Se.er0n = /20 + 13/20" +14/2¢” + 1, s0 this coefficient is never zero;
(2) (:::) denotes the Wigner 3j symbol;
(3) {:::} denotes the Wigner 6 symbol.

The Lie algebra su(N) is split into subspaces (only V| is a Lie subalgebra) according
to

Vy:=span {Ty,, : |m| < ¢}, I<¢<N-1

(”m”(N) ) . . . )
imery 10 (3.9) are zero in the following special cases:

(1) If £+ ¢/ +£" is even; or

The coefficients C
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(2) If ¢, ¢, ¢” cannot be the sides of a triangle; e.g., if | — ¢'| > £”;
B) fm+m' +m” #0.

The last two properties come from selection rules of the Wigner 3 symbols ([23]).
Other zeros are possible, since it is an open problem to parametrize all zeros of Wigner
6j-symbols. We now have the necessary tools to prove Theorem 1.

Proof of Theorem 1. The key problem is to evaluate the trace term in formula (3.7). To
do this, fix k, k" and take the bases { Tjy }jm| <k of Vi and { Ty’ }jm’| <k’ of Vi, orthonormal
in the bi-invariant metric (2.2). Then, for any u and v we have

k k
Tr Prad, Pyad, P, = Z (Tiom, ady, Pyad, Tim) = — Z (ady, Tiom, Prady Tim)
m=—k m=—k
=— Z Z (ady Tim, Tirm') (ady T Tirm)- (3.10)
m=—k m'=—

Next, we specialize to basis vectorsu = Ty, and v = Ty,v, orthonormal in the bi-invariant
metric (2.2), with |r| < £ and |r/| < £'.

— 3, Tr Prad, Pyad, Py = Iy Z Z (adzy, Tim Tom ) (ad1,, Tims Terme)

m=—k m'=—k’
k/ ! k/ ’
= Z Z Cér’lgm l/;y’lkm
m=—k m'=—k’'
CkkK\| L kK
- Z Z sm,( — (- 1)“’”" ( 1>m+1<rmm>{N——M——l}
m=—k m'=—k' ? :

X

k! w1 (kK
S@’,k,k’(l _ (_l)l +k+k )(_1)}" +1 (r/ m ) { N; _1}

= SerpSepp (1= (D) (1 (et )

¢ kK 4 Ck K\ (U kK
X{N_—lN_—lb}{NlNlNl}Z Z (rmm/)<r/mm/>.

2 2 2 2

Here we note that most of the terms in the structure constant C ZZ’,; do not depend on
m or m’, so they can be pulled out of the summation, and we are left with a standard
orthogonality result for the 3 j-symbols (see [23]):

’ / / 8 /8/
Z Z (” k,) <€,k k/)z—“ T iflk—K| < <k+k.
rmm rmm 20+1

m=—km'=
Plugging this result in, we get
2 Stak Crkk") 2
_ FLN Tr PkadTu Pk/adTZ,r, Py = 8pp18,1 ﬁ(l — (=1 >

(3.11)
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which simplifies further to the statement

4(2k+1)(2k’+1){ ¢ K }2
N
2 2 2

—Tr Pyadr,, Pyady, Py = 3 N—1 N—1 N—1
hy

if £+ k + k' is odd, for any r with |r| < £.
Since the right-hand side of (3.11) vanishes whenever the indices in the top row of
the 6 symbol are even, we get from (3.7) the formula

Sevrdyy o o —— ¢ kK
Ric(Ty, . Ty, = S0 Z apay — (g — ap)? (2k+1)(2k’+1){ . _1}

2 ooy s
N kk'=1 kY 2 2 2

L+k+k" odd

Now for any vector u € Vy, we can write u = Zf:_g u, Ty, in terms of the basis
T¢, which is orthonormal in the bi-invariant metric. Thus the weighted metric will have

(u,u) = ag(u,u) = ay S°t_, u?, while the Ricci curvature will be

Ric(u, u) = Z Z trty Ric(Ter. Tir)

r=—Lr'=—¢{

;2
- Z Z —)(2k+1)(2k’+1){NZ ’i] kl}
o oty A A A
C+k+k’ odd
=re(N) (u, u)
in each subspace V;, where
1 n ;7 12
r(Ny=— Y L)@kﬂxzkwn{f e N"l} ,
hy Ayl (07307007 T 2 T2
C+k+k’ odd

as desired. Note that the extra factor of «, in the denominator is a consequence of
expressing the Ricci curvature as a multiple of the weighted metric, not the bi-invariant
metric.

Recalling that oy = A¢/N for each £ in the Zeitlin metric (2.3), we can express this
in terms of the original parameters Ay = £(£ + 1) via

N & A= (- "2
re(Ny=— Y #(2k+1)(2k/+1) R
N kel Mg ke A A A

L+k+k" odd
(3.12)

Finally, note that from (3.12) we can split the Ricci curvature into a positive and a
negative term r¢(N) = rg(N)* — rg(N)~ where r(N)* and r¢(N)~ are given in (2.4).
This concludes the proof of Theorem 1. O



Ricci Curvature for Hydrodynamics Page 13 0f 22 37

4. Asymptotic Analysis and Conjectured Formulas

We now turn to the asymptotic regime, with the goal of understanding the limiting
behavior of the Ricci eigenvalues 7¢(N) as N — 00. As in (2.6), we write:

” i e (N1 N1
15 4
wH ={N—1 N=1 N—1}7 W; = { e N2—1}

2 Tz 2 J 3 T

2 2 2
for these Wigner 6 symbols. Formula (2.7) immediately gives the upper bound

1
ije
(W ) T NQL+1) “.1

Remark 1. In the case where i + j + £ is even, the asymptotic formula (see [3])

ije 1 200 \2
where C f(?jo is the Clebsch-Gordan coefficient, shows that as far as N is concerned, the
upper bound (4.1) is essentially sharp. On the other hand, if i + j + € is odd, then the
coefficients Cfgjo vanish and the proof of (4.2) given in [3] is no longer valid. Indeed,
numerically it seems that a sharper bound than (4.1) is possible in the case of i + j +£ odd,
which would help with Conjecture 2, but this requires exploiting this parity assumption
somehow.

Concerning the sign of Ricci curvature, we first prove Corollary 1, which states that
Ricci curvature is always positive in the V; subspace.

Proof of Corollary 1. We first claim that the negative part of Ricci in the V; subspace,
namely r| (N), is zero for every N. From Theorem 1, we have

N—1 2/~ .
N (i =22+ D)Q2j+1) /o 2
N)” = — A7 4.3
N hy l_Zzl Aikjhi ( ) (43
i+1,4]-jodd

Due to selection rules, the upperrow i, j, 1 of the 6 j symbol Wi/l mustsatisfy [i —j| < 1.
At the same time, our Ricci formula forces i + j + 1 to be odd, so that i + j is even, which
means that only i = j is allowed in the sum for r|” (N). Thus, (4.3) vanishes due to the
(A — Aj)z term.

On the other hand, the positive part

N-—1 . .
N MQRi+D2j+1 N2
Nt = ) = ,w)f : )(WUI) 4
N i,j=1 1
i+1+j odd

never vanishes, because in the special case i = j = 1, we have (cf. [23])
2 2
Wiy’ = 45
( 3IN(NZ2 —1)’ (4-5)
ensuring that the sum (4.4) is strictly positive. O

In the remainder of this section, we make use of the identities listed in Conjecture 1, and
derive the necessary estimates to prove Theorem 3. The proof is broken down into two
parts: an upper bound for r;(N)* and an exact formula for r;(N)~.
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4.1. Upper bound for r¢(N)*. We start with (2.4), estimating

2 N—1 . N=1 ..
Qi+ 1D)QCk+1) s Qi+ 1)QCk+1) s
r{(N) = — W) < — W)
Nk )‘ ikX::1 ik ikZ:l Aikk
i+k+¢ odd '
4.6)
Therefore, by (2.10) we get
N—1 . N—1
A2i+1) (2k+1) 2
R rf(N) < N@2e+1 (Wt 4.7
v —; i —tarern TN +)I; AR
i£e k odd

The partial fraction decomposition of the first sum in (4.7) is

N-1

Z Qi+ 1) Z 1 1 1
A|z—£|(z+£+1) i+l+1 i—ﬁ i i+1

1;&(
N—1
1 1 1 1

+ Z - + - e
i i+0+1 i—¢ i i+1
i=0+1

=2(He—1+ He+ Hyy1) — 1 — (Hae + Hppy1)
—(Hy+Hy_1)+ Hyyo+Hy ¢

<4H,

in terms of the harmonic numbers H, = Zi:l k~!. Meanwhile the second sum is
estimated roughly using (2.7). Combining the two estimates gives

Xrf(N) < 4Hp+20+1.

We expect this is far from sharp, since numerically it approaches zero faster than this as
N — oo; see Figure 1. To proceed further we would need identities for the unknown
terms

N—-1 N—-1
2k +1 2k +1) 2
1/{ ilkN\2 d 0Lk .
1;1( ) " W2 an k§=1 % (W)

k odd

4.2. Formula for r, (N). Starting from the definition of r, (N) in (2.4),

n_ M ) @D+

W)‘UZ (N) = Z Aihk W7 (4.8)
i k=1
i+2+k0dd

we expand the (A; — )2 term and split the above sum as

Ni:‘ (hi — 2) (20 + 1)k + 1)
i k=1 hitk
i+{+k odd

W2 =24 — 2B (4.9)
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where

=

—1 . N-1 .
A AQi + 1)(2k + 1) Wity — Z AiQ2i+1)2k+1) Withy2,
1 i,k=1 M

Ai
(l)dd i+{+k odd (4' 10)

e
Il

i
i+l

2+
4

B:i= Y (2i+1)Q2k+ (W)

i, k=1
i+¢+k odd

We use the fact that (1 — (—1)"**K) vanishes if and only if i + € + k is odd to remove
the oddness constraint in the sum (4.10), and we get

N0 =m0 + 12K+ 1)

. A
i,k=1
N—1 . N—1
2i +1 .
=5 ! a2k + 1) (Witky2

i=1 k=1

N—-1 i+0+1

i=1 Ai k=1

l
NZl2id 1 (N2 = D)y +20) = 200 +N‘1 (= D)*N 24 + 1) (A + o) e
“ A N(N2 —1) — Ai i

using formulas (2.11) and (2.12) from Conjecture 1. Now we split each term of the sum
into those that involve A; in the numerator and those that do not.

N—1 N—1 4.
(N —2X¢) 2i+1 XAy
2A = 2i +1 + —
Z, l(l ) N(N2 N Z,- TN
N—1 —1
( )t+Z+N(21 + 1)}%
+§: DN Qi + 1) W+ wt
(=D (2i +1) o ;

i=1 i=1

N-1
N? —1—=2x 2i+1 (1 ; 4.11)
= "4 — 4 (=])iHN e :

N KZ Ai <N ( ) i

2

N-1
+ (=D Y (i + HW/
i=1
N2 —1-2x 2MH,
— 4 + ei1e +(_1)Z+N+1Wé
N N

using (2.13) from Conjecture 1 along with the identity (2.9) in the form

N-1
D =D+ HW = —wg.

i=1
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Now to evaluate B, notice that we do not need any of the conjectured identities, only
the known ones. We write

2B

N—-1

D= (=D @i+ D2k + DOV
i,k=1

N-1 N-1

D o@i+1) Y @k + HVH?

i=1 k=1

N-1 N-1
+ Y (=D Qi) Y (= DF 2Kk + V)
1 k=1

i=
N—-1

: 1 i = i+0+ . + i
- ;(21 +1) (ﬁ -W 50)2> + l;(—n 12 +1) ((-1)” Wt —ow 20)2),

using formulas (2.7)-(2.8), correcting for the fact that those sums start at k = 0 rather
than k = 1.
Using the identities (2.7)-(2.9), this becomes

N—1 N—1

1 . (+N i ¢

2B = ?_1 Qi+ 1)+ (=D ;—1 (—1) 2i + D!
N—1 N—1

= Qi+ DOV Y (=i + V)

i=l i=l (4.12)
N2 -1 +N 4 = . i00\2
== +EDTEWH = Y0 @i hov' )
47 odd
N?Z—1

— ~ + (_])Z+N+1Wg.

Here the last sum vanishes since W0 cannot satisfy the triangular relation if (i + £) is
odd. Subtracting (4.12) from (4.11), we obtain

hiaer; (N) =2A — 2B = 2)(Hy — 1). (4.13)
Final formula and estimate on r,(N). Putting everything together, we get
re(N) =r{(N) —r, (N)

1
(AH, +20+1—2H, +2)

<< —
TR, (4.14)
(N2 —1)2H; +20+3
7 :
The lower bound
N? — 1)(Hy — 1
re(N)Z—( )(He = 1)

2

can also be obtained by simply ignoring r; (N). This concludes the proof of Theorem 3.
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5. The Homogeneous Space SU(N)/SO (3)

This section is devoted to the full computation of Ricci curvature for the homogeneous
space SU(N)/SO(3), leading to the proof of Theorem 2. As explained in the introduc-
tion, this quotient space is natural from the point of view large scale, long-time behaviour
of hydrodynamics on the sphere, serving as a model for Diff , (S 2)/S0(3).

Let h = V). This is a Lie subalgebra of su(N), corresponding to the subgroup
SO(3) € SU(N). In the Zeitlin metric, its orthogonal complement is

br=Va@® - @ Vy_1. (5.1)

The projection 7 : SU(N) — SU(N)/SO(3) is a Riemannian submersion, and by
O’Neill’s formulas, the sectional curvatures K¢ of the total space G = SU(N) and Kp
of the base space B = SU(N)/SO(3) are related by (see [15])
IAxYI?
X A Y2

provided that X, Y are horizontal vectors, linearly independent so that the normalizing
factor

Kg(X,Y) = Kg(X,Y) +3 (5.2)

IX AYIP=I XY )17 — (X, ¥)?
is not zero. The tensor A is given by
1
AxY = EV(ﬁxy) (5.3)

where Lx Y is the Lie derivative of Y in the direction of X, and V is the projection onto
the vertical subspace Vi. We begin by noting the following simplification, which will
turn out to be very useful.

4 "
Lemma 3. Let Cf ;;zml’ . denote the structure constants as given in (3.9). Then, we have

_ 2 2 2 1200 + 1)

1,—1 1,0 L1

(Cz,m,e,l—m) + (CZ,m,E,—m> + (CZ,m,Z,—m—l> SNNI-D (5.4)
forall1 < < N —1and|m| < £. Note that the right-hand side does not depend on m.
Proof. Starting from (3.9), first note that since £’ = 1 and ¢’ = ¢,

(Jzz + 120+ 1V207 + 1(1 — (—1)“‘“1))2 = 12(2¢+ ). (5.5)

Next, we turn to the product of Wigner symbols
pin’ ._ (e ¢ 1//) {NE_I Nﬁ_l Nl_1 }
b= \mm" m" ) | 5= 557 5=

both of which admit simple closed form expressions due to repeated indices and the
presence of the 1 in the upper row. They are given by (see [23], in particular section
9.5.4 for the 6 symbol):

}2_w+1> (4, l)z_w—mww
TNV De+ 1) ml—m-1) = 20 +1)QL+1) "’

(e ¢ 1)2_ m? (z ¢ 1)2_(e—m)(1+z+m)
m—-mO0) — l+1)2¢+1) m—1—-m1l)] = 20+1DQ¢+1)
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Note that the 3 symbols on the right column above vanish when m = —¢ (top) and
m = £ (bottom), so that we can ignore those two exceptional cases. From this, we have
(o )2_ (£ —m+1)(C+m) (o1 )2_ m?
bmbl=m] T ON(N2 — 1)(2¢ + 1)’ Em.bo=m ) N(N2 = 1)(2€ + 1)2
(D]’] )2_ l—m)(1+€+m)
Emb=l=m] T AN(N2 — 1)(20 + 1)2°

Therefore, the squares of the coefficients in (5.7) are

_ 2 & —m+1)(+m) 6(L —m +1)(€ +m)
Com = 122 + 1)? = ,
( ﬁ’m,‘il—m> ( ) 2N(NZ —1)(2¢ + 1)2 N(N2—-1)
2 m?2 12m?
c,y = 1220+ 1) = :
( f’m"fﬂ—m> ( ) N(N2 —1)(2¢+ 1)2 N(N2 —1)
2 € —m)1+L+m) 6(f —m)(1+£+m)
cH! =12(2¢ +1)? = .
( z,m,z,—m—1> ( ) 2N(N2 —1)(2¢ + 1)2 N(N2-1)
Adding these up concludes the proof. O

The next lemma is the main tool we need in order to compute the Ricci curvature of the
quotient space SU(N)/SO (3) using O’Neill’s formula (5.2).

Lemma 4. For any fixed (¢, m) with2 < £ < N — 1 and —¢ < m < {, we have

Z Z IA7, Tow? 9
— = I Ten AT |2 260+ 1)
m'=—{

where in the above summation, we skip the term (¢', m") = (£, m), for which the summand
on the left is not well-defined.

Proof. We expand the Lie bracket of X = Ty, and Y = T, according to (3.9), but
since we are only interested in the vertical component, the condition ¢ = 1 is imposed,
which forces m” e {—1, 0, 1}, and we get

1
AT@m Ty = V(adem Tyw) = _ﬁ[T[m, Tom]
1 (5.6)
= 2h (C me'm /Tl _1+CZWK/HI/TIO+C [/ ’Tl 1)

Selection rules for 3 j symbols imply a dependence of ¢', m’ on £, m, so the only nonzero
values are:

1 1,—1
AT@m Tg,l_m = ~2hn CZ m.e,1— mTl,—l for m 75 —ﬁ,
1 1,0
A1y Te~m = =37 Co'mot,—m 11,05 (5.7)
1 1,1
ATem Tg,_l_m = kN CZ ml,—m— 1T1 1 for m 7& L.

Recall that the {7}, } basis is orthonormal in the bi-invariant metric, but only orthogonal
in the Zeitlin metric (2.3), so we have

e+ D+ 1)

1 Tem A Term 1> = 1 Tem 11 Termr 1> = N7 . for (€, m) # (¢, m)).
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In particular, || T, ||> = 2/N for |m| < 1. Thus, summing over all (¢/, m") # (¢, m) and
using (5.7),

N-1 ¢ 5 s N—-1 ¢
| Az, Tom | 3N 2
3 m — A T/ ,
Z Z I Tom A Tz’m’||2 62(6 + 1)2 Z Z I Tom £ m I
=2 m'=—t/ U=2m'=—t'

_3N?
4020+ 1)2h3,

=t P e ol + [ il
tm, e 1—-m*1,—1 m,0,1—m*1,0 tm, e 1—m* 1.1

2 2 2
= s (Cthan) + () (Chira))
3N N2—1120(0+1)

T 2020+ 12 4 N(N2-=-1)
9
200+ 1)’

by Lemma 3. O
The last ingredient we need is the following sum of sectional curvatures of SU (N).

Lemma 5. Forany2 < ¢ < N — 1l and —¢ <m < £, we have

3
K (Towm, Tio) + Kg(Tem, T1 —1) + K (T, T = —. 5.8
G Tem, Tro) + K6 (Tom, Tr,—1) + K (Tom, T1,1) e+ D) (5.8)

Proof. Recall Arnold’s formula for sectional curvature of a Lie group in the form (3.6).

We have ad,v = —%[u, v] and ad*v = %A’] [, Av], where A is the quantized

Laplacian. For u = Ty, —1 < m’ < 1, and v = Ty, then in the Zeitlin metric we
have:

(w,v) =0; Jul> =1 =2/N; |lv|> =ar=£E+1)/N,
adju =adjv =0,

1 1 ~L,—m
adyv = adTlmr Tom = m[TZma Tlm’] = HC Ty, —m,

1 1 emllm/ L,—m 1 ~t—m (59)

*o * _ — _ ,— _ ,—

aduv = adTlm’ Tom = mA [T, ATyl = Wclm%m Ty m = _ﬂcemlm/ R
2 L, —m

adju = adj, Tiw = 7= A7 [Tow, ATi] Tt -

== ¢t
£+ )hy ~mim
It follows from the third and fourth lines in (5.9) that

* _ * _
adjv +ad,v = adTlm, Tom +adr,,, Tom = 0.
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Thus, Arnold’s formula reduces to

1 lady, Tipll®
4T PN Tem 1> = (T s Tem)?
_ N lladg,, Til1®
4

20(€+1) (5.10)

— A 23(“1)
T80+ 1) \ L+ Dy tmin

_ N <CZ,—m )2
- 2 tmlm’ ) -~
202(€ + 1)2hg, T

K¢ (TlmH Tém)

Adding these up and using Lemma 3 gives

1 N 1 2
K (Tips Tom) = —————— (C"*’",)
Z G (Tim's Tom) 232(€+1)2h%] Z tmlm

m'=—1 m'=—1
B N 12¢(¢ + 1)
202(¢ +1)2h3 N(N? — 1)
3
T2+ 1)

O

Proof of Theorem 2. Let Ricp denote the Ricci curvature of the quotient space
SU(N)/SO(3). Summing over (¢', m") # (£, m) below, we get

n 14
Ricg (Tem, Tem) = ||T2m||22 Z Kg(Tem, Ty)
0=2 m'=—t
”AT1 TE’m/”
K6 (Tam, Tom) +3o-—2 0 )
Zz Z ( " 1 Tem A Tem |12
m'=—
e/
Ae " e
== KTy, Tppy) | + ——— Lemma 4
v ZZZ mX_jl/ 6 (Tem: Tew) | + 53001 ( )

1
. Ag 9
= Ric(Tym, Tom) =7 D K6(Tom, Tiw) + 7

m'=—1
3 9
= Ric(Tym, Tom) — N 2N (Lemma 5)

. 3
= Ric(Tem, Tem) + N
Now, since Ric(Tpn, Tem) = re(N){Tem, Tem) by Theorem 1, we get

. 3 3
Ricg(Tem, Tom) = re(N){(Tem, Tom) + v (FE(N) + E)(Tfma Tom).
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