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Abstract

The nonlinear response of optical materials is in general very weak. In order to make
use of these nonlinear interactions for optical processes in integrated optical devices,
such as optical parametric amplifiers, we often need very long waveguides to achieve
appreciable efficiency. These waveguides can have lengths of the order of metres and
need to fulfil multiple requirements over a range of wavelengths.

Modern advances in manufacturing and nanophotonics have made possible a high
degree of tailoring of waveguide geometries for near-field light enhancement to meet
these requirements. However, simulating and designing these nonlinear integrated op-
tical devices is challenging.

Inthisthesis, I will present methods for simulating periodic optical waveguide struc-
tures with nontrivial unit cells, and how we can use knowledge of the physics to tailor the
mesh adaptation in finite-element simulations to electrodynamic problems. I will also
present how we can combine machine learning and physics for scattering problems and
how we can use inverse design to suggest waveguide cross sections that fulfil multiple
design requirements on dispersion characteristics.

Keywords: Nanophotonics, nonlinear optics, FEM, parametric amplifiers, four wave
mixing, OPA, FWM, Inverse design, Al, machine learning, conditional variational au-
toencoder, metamaterials, waveguide
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Intfroduction

1.1 What are we pursuing?

Perhaps one of the most common day-to-day appliances relying on nonlinear optics that
you have come into contact with are green laser pointers. Here, nonlinear optical effects
are used to convert a 1064 nm (infrared) wavelength laser source into 532 nm (green) by
means of a second-order nonlinear effect. This thesis build towards towards the ability
to simulate these kinds of effects for the purpose of amplifying optical signals through
optical parametric processes. Amplification through nonlinear optical effects is inter-
esting because it enables the amplification of an optical signal with a very low added
noise which can be achieved with an on-chip design [1]. Common methods that achieve
this rely on rather simple geometrical layouts, often consisting of some homogeneous
materials or systems such as Bragg gratings [2].
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Figure 1.1: Simple vs complex geometries. Fig. 1.1a shows a uniform Bragg grating, alternating
between different dielectric materials. In Fig. 1.1b, we see an example of a more complicated
geometrical shape.




Chapter 1. Introduction

This geometrical constraint, although it simplifies the modelling, may also exclude
better designs. However, complex geometries are more costly and complicated to sim-
ulate and cannot rely on analytical solutions, which can assist in the case well-defined
and symmetric geometries. In this thesis, we will develop the tools needed to simulate
these kinds of structures in the context of a periodic optical waveguide structures where
each unit cell can have an arbitrary pattern, as illustrated in Fig. 1.1.

1.2 Structure of this thesis

Before presenting Papers I-1V, we will go through the relevant theory that we need to
understand and simulate nonlinear optical effects in waveguides, with the intention of
using them for designing optical parametric amplifiers. What this means will become
clearer over the course of this thesis. My assumption will be that the reader at a point
in time have read an undergraduate course in electromagnetism or equivalent. I will
repeat some core concepts of linear electromagnetics in Ch. 2, so we are up to speed,
and refresh the terminology that we will use on this journey. Once we are on board, we
will move over to nonlinear effects in Ch. 3. Having the theory set up, we will move to
how we concretely simulate these effects in Ch. 4. In order to utilise these methods, we
need to understand under what limitations we operate and what kinds of structures we
actually can manufacture. To that end, we will build this intuition through multiple ex-
amples of nanophotonic constructions in Ch. 5. Once we have a grasp of what structures
are possible, we will traverse into the process of how one can come up with designs for
devices to suit our needs, so-called inverse design. We will approach this subject utilizing
machine learning (ML) techniques to speed up calculations in Ch. 6 and finally solving
for the inverse problem in Ch. 7. Finally, I will present four research papers, papers I-IV.

I hope you as a reader will find the journey enlightening, and perhaps invoke some
internal thoughts over the progress that is being made in the field and the interesting
applications these nonlinear effects have.



Electromagnetic wave propagation

In this Chapter, we will summarize concepts of electromagnetic wave propagation that
are needed to understand the nonlinear optics and simulations that we will treat in Ch. 3
and 4. This will not be an exhaustive introduction, but should be seen more as a re-
minder. For those looking for a more thorough introduction to electromagnetics, see
for example Griffith [3], Jackson [4] or Yariv & Yeh [5].

In Sec. 2.1, we will treat the concept of dispersion and discuss material dependen-
cies on frequency. This will then be followed in Sec. 2.2 with a discussion on modes of
propagation in waveguides. Finally, we will discuss periodic structures in Sec. 2.3.

2.1 Understanding dispersion

The framework for studying the propagation of electromagnetic waves has been known
for a long time, starting with the work by d’Alembert [6—8] in the 18th century and con-
tinued by Euler [9] and Lagrange [10], resulting in the wave equation. The next signifi-
cant description came when Maxwell presented his work on electromagnetism in 1865
[11], verified by Hertz in 1893 [12]. The Maxwell equations that we are familiar with to-
day were, however, formulated by Heaviside based on the work of Maxwell [13, 14]. The
macroscopic differential versions of the equations can be written as:

V-D = py, VXEZ—%, (2.1)
V-B=0, VXH:]f-l-%.

Any time an electromagnetic wave interacts with a dielectric material there will be
an interaction where the electric field induces electric dipole moments in the material.
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These dipole moments then cause an added term to the electric field, E, in the form of a
polarisation, P, and together they form what is called the displacement field [3, 4]:

D = ¢E + P = ¢E, (2.2)

where the permittivities ¢ and ¢, quantify the polarizability in the material and in free
space, respectively. What gives rise to this effect is that a material contains both pos-
itive and negative charges, and when an electric field is applied they are pulled apart,
or displaced, causing the charge distribution to be polarised. If a molecule already has
a polarised distribution then the molecule also has the possibility to rotate in order to
align with the applied field.

If the polarisation is the result of a field interacting with the material on a macro-
scopic scale, it is not unreasonable to think that this effect should be dependent on the
field strength in the material and that indeed holds true. The amount of polarisation
that occurs in a material when it interacts with an electric field is expressed with the
electric susceptibility y of the material:

P=¢xE. (2.3)

The susceptibility has a frequency dependence y(w), a phenomenon called dispersion.
The effect of this is that waves propagating through the material have different amount
of attenuation and different phase velocities depending on frequency. This give rise to
different frequencies travelling with different speeds in the material, which results in
things like refraction, usually illustrated with a prism like in Fig. 2.1.

(@) (b)

Figure 2.1: Illustration of dispersion in a prism. To the left we see a 2D representation and to
the right we see a version in 3D.

When we are designing devices, waveguides, these linear effect have big consequences,
because the design needs to operate with multiple frequencies. But since we have this
frequency dependence, it also opens up the possibility to tailor systems and materials,
so that it only favours desirable frequencies and counteracts undesired ones.



2.2. Modes of propagation in waveguides

2.2 Modes of propagation in waveguides

When we talk about dielectric optical waveguides, we are referring to structures that
consists of an optical medium with high refractive index, called a core, surrounded by a
material of lower refractive index, called a cladding. The purpose of the core is to confine
light and guide it along the longitudinal direction. Waveguides come in many different
shapes and configurations, and readers interested in optical waveguides will do well to
read Liu[15], Yariv & Yeh [5], or Saleh & Teich [16].

When we have a structure where a wave can propagate with a defined field pattern in
the structure that is confined, we refer to it as a mode. If the wave leaks out of its con-
finement as it propagates in the waveguide, then it is a leaky mode. To illustrate what
a mode is, we can take the example of a planar waveguide stretching to infinity as de-
picted in 2D in Fig. 2.2. This type of waveguide has a fixed set of stable modes, which
have analytical solutions for the transverse field. If the solution has no electric field in
the propagation direction, but only in the transverse direction, it is called a transverse
electric (TE) mode. If the solution instead has no magnetic field in the propagation di-
rection, but only in the transverse direction, then it is called a transverse magnetic (TM)
mode. When we have multiple modes then we refer to them as TEO, TE1 etc. For more
complex geometries, solutions involving both electric and magnetic field, so called hy-
brid modes, are also allowed [15].

I,

1,

Figure 2.2: The first three propagating TE modes of a symmetric planar waveguide with di-
electrics with refractive index n; and n,. From left to right we see TE0, TE1, and TE2.

To quantify the propagation of a wave in a media, we can use the propagation con-
stant, y, defined as the ratio of the complex amplitude at the source to the wave at a
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distance z:
Ay . .
— =% y=a+if, (2.4)
Az

where « is referred to as the attenuation constant and f as the phase constant.

The different modes of the waveguide each have their own dispersion. Therefore, we
can express the different modes on a dispersion plot, as demonstrated in Fig. 2.3. We
can think of the modes as a change in the phase velocity of the wave due to the wave
bouncing more frequently against the walls of the waveguide, as it propagates in the

longitudinal direction, as a result of different angles of incidence.

197
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Figure 2.3: A dispersion plot showing the allowed TE and TM modes for a symmetric planar
waveguide as shown in Fig. 2.2. Dispersion on the y-axis is scaled to effective index by wave
number in vacuum and x-axis shows width, ¢, of the centre material scaled by the wavelength,
A

The dispersion relation becomes important when we want to design waveguides that
can operate over multiple frequencies. In Ch. 3, the dispersion in the waveguide will
play a role in how nonlinear effects emerge.

Although analytical solutions exist for planar dielectric waveguides, once we enclose
the side of the core and deal with non-planar waveguides, analytical solutions generally
do not exist and we are left with numerical simulations to calculate the modes. How
the mode confinement in an embedded waveguide can appear is illustrated in Fig. 2.4.
Techniques for how we can calculate the dispersion numerically will be treated in Ch. 4.
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(@) (b)

Figure 2.4: Depiction of the fundamental mode in an embedded waveguide. To the left in
Fig. 2.4a, we have a schematic waveguide with a centre core surrounded by cladding material.
To the right in Fig. 2.4b, we see an illustration of the electric field of the fundamental mode.

2.3 Bloch waves and periodic structures

We often find ourselves in a situation where we have a need to look at periodic struc-
tures. Though much of the research is focused on being able to predict the behaviour
of periodic homogeneous materials, such as crystals, the same results can be used for
waveguides, where we design patterning of materials with a given periodicity. It is con-
venient to design materials like this, since we can then analyse and categorise a smaller
segment or unit cell, simplifying the problem and decreasing the computational cost
that might hinder the design process. This can have a big impact on the simulation of
nanophotonic structures that might need to resolve the structure on a subwavelength
scale. This can lead to situation in which we have devices on the order of metres that
needs to be simulated with a resolution on the order of nanometres. These types of sim-
ulations are usually unfeasible and in the best case very slow and costly, which is why
everything greatly simplifies if we can use techniques like periodicity to perform cal-
culations on a small part of the structure. Readers interested in wave propagation in
different kinds of photonic structures are advised to read Markos and Soukoulis [17].
Knowledge of periodic crystal structures can also be found in solid-state physics books
like Refs. [18, 19].

Let us look at the periodic structure of a waveguide depicted in Fig. 2.5. In order for
us to take advantage of periodicity, we want to design the system such that the incoming
and outgoing waves are equal, save for a phase rotation or amplitude decay, as expressed
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Figure 2.5: Example of a periodic patterned waveguide structure where the structure repeats
after a distance a. The unit cell is coloured differently for easier distinction.

in Equation (2.5) 4
Yi(r +a) = €42y (n), @.5)

where a denotes the lattice vector of the periodic unit cell. Waves that behave like this are
called Bloch waves, so named after Bloch who coined the requirement in 1929 [18, 20, 21].
An understanding of the concept of Bloch periodic structures will become relevant when
we want to tailor waveguides by changing the geometry through patterning.



Nonlinear optics

In this chapter, we present the theory of nonlinear optics. We start with a basic descrip-
tion of what kind of nonlinearity we refer to with nonlinear optics. Thereafter the the-
ory needed to understand the concept of optical parametric amplification (OPA) is pre-
sented. To reach this goal, we will treat nonlinear effects of materials as a perturbation
and show how these combined effects can be used to understand the intermodulation
phenomenon four-wave mixing (FWM), which is used to describe the concept of OPA.
Readers on the hunt for general books on the subject of nonlinear optics are advised to
read the books (all named "Nonlinear optics”) by Moloney and Newell [22], Robert Boyd
[23], and Nicolaas Bloembergen [24]. I can also recommend the video series by the In-
ternational School on Parametric Nonlinear Optics (ISPNLO), held in 2015 [25].

3.1 Nonlinear effects in materials

With the term "nonlinear optics”, we refer to effects that stem from the permittivity and
permeability of a material depending on the field strength:

D = «(E)E, (3.1
B = y(H)H.

Here we will focus on the electric field. Recall that we can express the displacement field
as the electric field in free space plus a polarisation term:

D = ¢(E)E = ¢E + ¢ xE. (3.2)

We then express the polarisation as a power series expansion, starting with scalar
notation to simplify the introduction:
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P =g [YWE+ yPE + yOF + ] (3.3)
=P 4 p) L pB) 4

From Equation (3.3), we see that the nonlinear dependence emerges from the higher
orders in the expansion. y(! is the normal linear susceptibility recognized from Equa-
tion (2.3), while ¥® and y® are the second- and third-order susceptibilities etc. From
the expansion, we see that higher orders are more sensitive to field strength and the
scale of the higher-order contributions to the polarisation depend on the susceptibili-
ties.

Let us put some order of magnitude on these constants, so we can get a feeling of
how they affect the fields. We can estimate these values by calculating the characteristic
atomic field strength E,om = e/(47egal), where e is the elementary charge and a, =
4regh? /(me?) is the Bohr radius of hydrogen and m is the electron mass. Plugging in
the values yields Eyyo = 5.14 x 101! V/m. The first-order susceptibility, y(1), is of the
order of unity for condensed matter, and we can estimate the orders of y(%) and y® with
)((1) /Ezrom and )((1) /E%om, respectively [23]. The orders of magnitude are presented in
Table 3.1.

Table 3.1: Table showing order of magnitudes for the first three orders of susceptibilities [23].

Susceptibility Typical order of magnitude

X(fl)

X(l) 100

¥@ 10712 m/v
MO 1024 m?/v?

From Table 3.1 and Equation (3.3), we can deduce that for these effects to appear, we
clearly need to either have large field strengths or letting the light pass through large
volumes of material, so it can accumulate enough nonlinear phase.

Before we go into a more thorough description of the nonlinear effects, it is worth
pointing out that what we are talking about here is electronic polarisation, effects in-
duced on the electrons in the materials under the influence of an electric field. In fact,
the nonlinear effects in materials can be caused by different physical mechanisms, as
summarised by Boyd [23, 26] and presented in Table 3.2. The focus of this thesis is on
electronic polarisation, sometimes referred to as instantaneous polarisation due to its
short response time, but there are other nonlinear effects that operate on longer time
scales, the extremes being heating effects in materials that have response times on the
order of milliseconds.

Moving back to electronic polarisation, we can describe the general polarisation field
as a combination of multiple electric fields, each with its own frequency, which may or

10



3.1. Nonlinear effects in materials

Table 3.2: Values of the nonlinear refractive index for linear polarised light [23]. The response
time is the time it takes to reach the steady state after we ’turn on our laser’.

Nonlinear mechanism ny [cm?/W] )((3) [m2/V?] Response time [s]
Electronic polarisation 10716 1072 1075

Molecular orientation 10714 10720 1012
Electrostriction 10714 10720 107°

Saturated atomic absorption 1071° 10716 1078

Thermal effects 1070 10712 1073

may not be the same,
P = | xWE; + YPEE; + YOVEEEs + .|, (3.4)

which opens up for interaction between different frequencies, such as intermodulation.
To understand this intermodulation, we need to start from the time dependent ex-

pression for the linear polarisation field where the polarisation is expressed as a convo-

lution of the time-dependent susceptibility and the time-dependent electric field.

o

P(t) = EOJ (& — DE()dr. 6.5)

—00
From causality we require that y(t — 7) = 0 for r > ¢, and since complex values of y
are nonphysical, the reality conditions require y to be real [27]. For higher-orders, the
susceptibility becomes a tensor and similarly to the expression in Equation (3.5), we can
express the polarisation in Equation (3.4) for its j:th component as:

Pi(t) = EOJ )(j(kl)(t — 11)Ex(71)dry (3.6)
vo| | xfe- - pB@ECM®

+ & J J J XJ(/?l)m — T, — Tyt — T3)Ek(T1)El(TZ)Em(T3)dT1dedT3

where we are using the Einstein summation convention [28]. This expression may seem
a bit confusing at first, but some interesting things happen when we view this expres-
sion in the frequency domain. Before presenting this expression, recall that the expo-
nential representation of a Dirac delta function § can be written as [29, 30]

[ee]

S(x — xp) = i J ek(x=%0) gk (3.7)

—00

11



Chapter 3. Nonlinear optics

With this, we can express the polarisation by Fourier transforming Equation (3.6)
yielding

pj(a)) = 6‘0)2].(]3)(60)]::1( 6.9
g < . .
- i H_ XJ'(kzl)(“’l’ w2) Ex(01)Ef(w2)d(00; + wp — w)dw,da,
£ < . ) )
+ (22)2 Jﬂ_m Xj(]?l)m(wl’ Wy, w3)Ex(01)Ej(w2) Epy(w3)8(wq + wy + w3 — w)dwdwydws
+ ...

From this expression, we can deduce that we have requirements on the frequencies to
match for second-and higher-order effects from the delta functions. For example, for
third-order susceptibilities, we have the requirement that

W+ wy+w3—w=0, 3.9)

for the effects to appear. This is something that we will use in the context of FWM, which
we will treat in Sec. 3.2. We can also deduce multiple symmetry requirements of the ten-
sors which is very useful since y®, for example, has 3* different elements. For details
regarding symmetry derivations, see, for instance, Refs. [23, 27].

3.2 Four-wave mixing

From Equation (3.8) in Sec. 3.1, we could see that we had requirements on the frequen-
cies. For the third-order process, we have 4 different frequencies that need to obey Equa-
tion (3.9). The interaction between these four frequencies is what is called four-wave
mixing (FWM). If we assume we have a material in which we can express the suscepti-
bility as a scalar quantity, we can write out all the possible complex amplitudes for third-
order nonlinear interactions. This will help with the intuition of the effects. Negative
frequencies are allowed and we interpret them as the complex conjugate of the field. We
end up with the following expressions where we combine all possible combinations that
result in a polarisation contribution at one frequency [23]:

P(wy) = &9 x® (3E,Ef + 6E,E; + 3E;E5) By, Py = gy PE3,
P(wy) = 6™ (6E1Ef + 3E,E} + 3E3E5) By, PGa) = eoxVES,
P(w3) = o™ (6E1Ef + 6E,Ej; + 3E3E5) Es, P(3w3) = o VB3,

12



3.2. Four-wave mixing

P(C()l + () + 0)3) = 6€0X(3)E1E2E3, P(C()l + Wy — 0)3) = 6€0X(3)E1E2E§,
P(w; — wy + w3) = 6€0X(3)E1E§E3, P(—w; + wy + w3) = 6€0X(3)E1‘E2E3,

PQw; + wy) = 3¢ )((3)EfE2, PQuw; + w3) = 3¢ )((3)EfE3, (3.10)
PQuwy + ;) = 369 x O E3E,, PQwy + w3) = 380)((3)E§E3,
P2ws + wy) = 369y EE;, PQ2ws + wy) = 369y P ESE,,
PQay — wp) = 36y VELE;, P20 — w3) = 360y DELE;,
PQuwy — ;) = 3¢9 E3ES, PQwy — w3) = 350)((3)E§E§,
PQ2ws — wy) = 3¢9y ESET, P2ws — wy) = 369y O ESES.

So how do we interpret this? What we see is a manifestation of a parametric process
that can be described by an energy diagram presented in Fig. 3.1. Here the initial and
final energy states are the same, so if we have two photons with frequency w; and w,
entering the system, they can briefly excite a virtual energy level. Conservation of en-
ergy means that when the energy state relaxes, the energy needs to radiate out again.
The result is a combination of photons that contains the same total energy entering and
leaving the system, forming a parametric process.

A E:h((x)1 +(02)
Ao hes :F)(0)3+(04>
AN VNV
Y.
A, K hwa
NN\ A%
v E—0

Figure 3.1: Energy levels of a four wave mixing process. The energy of the incoming photons
(w; & w,) adds up to a virtual energy level that later relaxes into two new photons with different
frequencies (w3 & w,).

Let us, for instance, take the first term in the expression for P(w;) in Equation (3.10).
The only way for the system to produce a photon with frequency w; is to excite the energy
state with energy from w; and then add another frequency that returns during the relax-
ation. This would result in a situation where the photons interacting in Fig. 3.1 would
obey w; = w3 and w; = wy.

A similar argument can be made for second-order effects and we would then end up
with another set of relations like in Equation (3.10), but instead of the four frequencies

13



Chapter 3. Nonlinear optics

we treat here we would have three different frequencies. For details, see for example
Ref. [23].

The idea of mixing different frequencies in a nonlinear material was known early on,
but the field of nonlinear optics really took off in the 1960s when Franken, Hill, Peters
and Weinreich experimentally demonstrated the generation of optical harmonics in 1961
[31]. They used a second-order nonlinearity to generate a harmonic of a pump frequency,
where two photons of frequency w are converted into one photon with frequency 2w,
so-called second harmonic generation (SHG). The same year, Kaiser and Garett also
experimentally showed the nonlinear optical phenomenon "two-photon absorption” in
CaF,[32], where 2 photons through a virtual energy level could reach a higher energy
state in the material and produce a higher-frequency photon. The theory of this oper-
ation was already put forth by Goppert-Mayer in 1931 [33], but it took 30 years before it
could be measured. Once SHG was demonstrated, the concept of third harmonic gen-
eration (THG) was quickly demonstrated. In THG, we combine three photons to create
one photon with thrice the frequency, 3w, through a third-order nonlinear process. This
was demonstrated in 1962 by Terhune, Maker and Savage [34]. The same year, Bloember-
gen, Armstrong, Ducuing, and Pershan used quantum mechanical perturbation theory
to first theoretically describe the process that Franken et al. had demonstrated in 1961
[35].

3.2.1 Phase matching

We saw in the previous section that we got a requirement on energy conservation for
FWM to work, which resulted in a relation between frequencies in the mixing. We also
have another requirement on the waves, with different frequencies, that interact and
that is referred to as phase matching. This means that for the waves to interact and
properly mix they need to be close in phase.

For a four wave mixing process, like in Fig. 3.1 we have a phase matching condition of

AB=(Bi+ By~ Ps— Ba). (3.11)

Ideally the mismatch should be zero, which in turn would mean that we have conserva-
tion of momentum for the photons. There are different ways to handle this depending
on material properties. Midwinter and Warner defined two types of phase matching
for second-order processes for birefringent materials in 1962 [36], which uses the crys-
tal orientation to give different dispersion for different frequencies to counteract un-
wanted dispersion. Another approach to phase matching is to change the propagation
constant by changing the angle at which the beams enter the material, as demonstrated
by Hobden [37]. The above approaches uses slabs of materials but we can also achieve
phase matching over a periodic structure. This approach was originally proposed by
Bloembergen, Armstrong, Ducuing, and Pershan in 1962 [35] and is named quasi-phase
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3.3. Optical parametric amplifiers

matching (QPM). The use of QPM has many applications and opens up many possibili-
ties in combination with better materials engineering [38, 39]. For a review of different
quasi-matched materials, see for instance Ref. [40]. The idea is that one engineers the
dispersion of the material so that at the end of each periodic segment the phase mis-
match is negated. For this approach to work efficiently, the length of these unit cells in
the periodic structure needs to be sufficiently smaller than the coherence length L:

T

Lo=2.
€7 Ak

(3.12)
We can tailor the QPM over longer distances than L. but at the expense of weaker non-
linear interaction. This can be relevant in situations where it is hard to manufacture
the material thin enough and we can then simplify the manufacturing at the expense of
weaker nonlinear interaction per distance. Another reason might be that we have un-
wanted nonlinear processes with other frequency components that we want to remove,
then we can design the material such that phase matching for the unwanted process is
unfavourable. The process of manufacturing these periodic materials often results in
distributed noise that covers a wide frequency spectrum where basically everything is a
little bit phase matched due to manufacturing tolerances [41]. A good resource for QPM
tuning is Fejer and Byer [42]. If one wants to utilise FWM using pulsed waves, the phase
matching with first-order dispersion is usually not enough — we also need to take the
higher-order dispersion, like group velocity into account, but if we are operating in a
continuous wave (CW) or quasi-CW regime, these effects can often be neglected [43].

3.3 Optical parametric amplifiers

In practical terms, we can use the concept of FWM described in Section 3.2 to amplify a
desired signal, by means of difference frequency generation, also called optical paramet-
ric amplification (OPA). What we want is to use the energy of a pump laser and transfer
it to a desired signal. To achieve this, we need to ensure that when the excited state, as
described in Fig. 3.1, decays into two different photons, we want to tailor it so that one
of the outgoing photons has the frequency of the signal. The way to handle this most eas-
ily is to ensure that the mixing allows the pump to interact with itself to form a higher
energy state and then relax down into the signal frequency. This in turn means that the
frequency of the signal must be lower than twice the frequency of the pump. As a result
of the mixing process, we will also have another photon from the relaxation that has a
frequency different from the pump and signal. This is called the idler frequency. The
concept of OPA is depicted in Fig. 3.2.

The effect of OPA was first measured by Harris, Oshman and Byer in 1967 [44], but the
optical effect was treated theoretically by Siegman, Yariv and Louisell earlier in 1961 [45].
The OPA has an advantage regarding its amplification, compared to other techniques,
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Figure 3.2: Energy levels for a four wave mixing process in a optical parametric amplifier. Two
photons of the pump laser, with frequency w,, form an energy state that relaxes into two pho-
tons for the signal (w,) and idler (w;) frequency. The signal photon amplifies the existing signal
photons that passes through the system, indicated in blue.

due to the fact that it has very low noise [45, 46]. The downside of the OPA, as we have
seen from expression of ¥, is that the interaction is very weak, and we therefore need
to propagate the light through a large volume of material to accumulate nonlinear phase.
Since the light needs to interact with a large volume it also attenuates due to losses in
the material. For amplification to occur we therefore must ensure that the losses in the
material are low enough so it doesn’t negate the amplification. Due to the length of
material required for OPA, they are usually constructed in the form of fibres and on chip
waveguides [47].

3.3.1 Phase-sensitive amplifier

When using optical parametric amplification, there are two types of amplifiers that are
common and that is phase-insensitive amplifiers (PIAs) and phase-sensitive amplifiers
(PSAs). As the name suggests, the difference between the two is that the gain in phase-
sensitive amplifier (PSA) is dependent on the absolute optical phase of the incoming
wave, while this is notimportant for PIA. Acommon example of PIA is the erbium-doped
fiber amplifier (EDFA) [48]. In general, optical amplification is limited by thermal noise,
which results in a lowest possible noise figure (NF) of 2 dB [46], with typical commercial
EDFA having NF = 5dB [49]. A PSA, however, can operate under certain conditions
where it doesn't generate excess noise, meaning it has a quantum-limited NF = 0dB
[46, 50]. Implementations of different types of PSA can be seen in Refs. [49, 51-60].

In order to build some understanding of how an OPA process looks like when mea-
sured, we can look at an example taken from Ref. [56]. Here a PSA is realised using
highly nonlinear fiber (HNLF) and a setup where two pumps are used to amplify a sig-
nal. Schematically the system behaves as shown in Fig. 3.3, where unwanted signals

16



3.3. Optical parametric amplifiers

A
Ail i2
: dh
ROEAR

A

>

A, A

Figure 3.3: Figure depicting a FWM mixing process using two pumps centred round centre sig-
nal. The dashed lines represent unwanted FWM signals including the higher order idler, i1, i2.
Reprinted from Ref. [56] with permission from Optica.
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Figure 3.4: Figure depicting the measured optical spectrum of a PSA based on HNLF with two
pumps. Line colour on inset to the right highlight the difference between PIA (blue) and PSA
(orange) and for the inset on the right it highlights difference between unlocked (blue) and phase-
locked (orange) amplified binary-phase-shift keying (BPSK) signal. Reprinted from [56] with
permission from Optica.

from the FWM process is located outside the pumps.

How this system looks while measured is depicted in Fig. 3.4. As we can see, mix-
ing processes resulting from combinations of all components combined with the fact
that signals have a bandwidth and accumulated noise creates regions with higher un-
wanted signal strength. In order to keep the NF down for the signal, one wants to sup-
press these unwanted signals. As mentioned in Sec. 3.3, creating favourable circum-
stances for desired wavelengths and unfavourable circumstances for unwanted wave-
lengths contribute to a better NF. In the rightmost inset in Fig. 3.4, we can also see an
example of the difference between PIA and PSA that can be achieved.
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Ensuring that the conditions for this type of process for the purpose of on-chip de-
sign waveguide for PSA is part of the goal of papers III & IV. In paper III, we focus on
simulation techniques to simulate dispersion and nonlinearity for 3D structures and in
paper IV, machine learning and 2D mode simulations of waveguide cross sections are
used in order to achieve good phase matching and nonlinearity for power transfer to a
signal while also keeping conditions unfavourable for unwanted mixing processes.
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Electromagnetic simulations

In this chapter, we will go through the different types of numerical methods needed to
achieve the goals, presented in Ch. 1, of simulating arbitrary patterned Bloch periodic
waveguides using the theory described in Ch. 2 and 3. The chapter will describe the
use of nonlinear Schrodinger equations (NLSE) to simulate the propagation over long
distances and how we will use finite element methods to determine the constants that
we need in the NLSE. For a good overview of numerical methods in the field of photonics,
see for instance Obayya [61].

4.1 Simulating the propagation of optical signals in
waveguides

In this section, we will discuss how we can simulate nonlinear wave propagation over
longer distances. When we are after results of wave propagation over long photonic
structures spanning up to metres in length, as used in Ref. [1], full-wave simulations of
the entire waveguide structure becomes computationally infeasible without some sim-
plification. In the following sections in this chapter, we will introduce how this can be
done by solving a NLSE to get an expression for how the excited wave propagates along
the longitudinal direction of the waveguide.

4.1.1 Nonlinear Schrédinger equation

We will here go through the steps taken in order to arrive at the NLSE used to calculate
the wave propagation. Asthe name suggest, itis an extended variation of the Schrédinger
equation, first published by Erwin Schrodinger i 1926 [62]. The NLSE was first written
down in 1962 by Townes, Garmire and Chiao [63], but is in itself a simplification of the
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Ginzburg-Landau equation first published in 1959 by Landau and Ginzburg [64, 65]. For
further details of the derivations we refer to the work by Marhic [66] and Agrawal [43].
The derivation will be made with just linear components and the nonlinear contribu-
tions will be added afterwards as a perturbation. In Sec. 2.1 we discussed the concept of
dispersion and it will, here, play a big role in setting up the NLSE. For the problems we
are interested in, we want to address a range of frequencies, w, for the solution to work
we need them centred around a centre frequency, w, and the difference

Q=0w-—uw, (4.1

to be sufficiently small. We can the express the dispersion as a power series:

o o(n)
f(w) = flw, + Q) = . + Z ﬂn—'Q”. (4.2)
n=1 :
where o
fo= o) and p0 =L 43
W7 =,

We express the electric field along the longitudinal direction, z, with the slowly vary-
ing envelope A(z, ).

E(z,t) = % |AGz. elPz=ed) 4 c.c | (4.4)

where c.c. stands for the complex conjugate of the field. This is an assumption that A
varies slowly over time and that most change occurs in the propagation direction.

In order to reach the final expression, we will first decompose A in terms of its Fourier
decomposition, B(Q2). Then we will differentiate the expression and combine them to
obtain our results.

At the start, we have our envelope

o0

A0,1) = J B(Q)e % dQ. (4.5)

—00

Since we assume linear propagation along the longitudinal direction we can describe
the envelope at any position along the propagation axis as

o0

A(z,t) = J B(Q)el(f-Pz—i gy (4.6)

—00

We then take the derivative of Equation (4.6), which yields

[oe]

0A(z,1) _ J B(Q)i(ﬂ _ ﬂc)ei(ﬂ_ﬁc)z_’gtdQ. (4.7)

0z

20



4.1. Simulating the propagation of optical signals in waveguides

From Equation (4.2), we know that we can replace the parts containing § — ff, and we
get

00 0 (n)
8A(Z, t) —i B(Q) Z ﬁ_Qn ei(ﬂ_ﬂc)z_iQtdQ. (4.8)
0z —o = n
If we then were to take the m:th derivative of (4.6) with respect to ¢, we get
m o0
%(m“) = J B(Q)(—iQ)melf-A)==i% gq), 4.9)

Comparing Equations (4.9) and (4.8), we note that we can replace the integral in Equa-
tion (4.8) with a sum of time derivatives, which results in

A(zt) " AR
0z n! otn

0, (4.10)
n=1
which is our expression for the wave propagation taking only dispersion into account.
To reach our final expressio,n we need to add the loss of the propagation constant, «, and
the nonlinear part. The loss is incorporated by adding the term «/2 to the dispersion.
The nonlinear effect is added using a nonlinear parameter y to achieve the full NLSE:

0A(z, 1)
0z

o 00 in+1ﬁ(n) A(z,t) )
+ A1) - > - = iy|Az, D)|?A(z, 1). (4.11)

n=1

When we are operating in a regime where the frequency components are close together
we can assume that the nonlinear part has a constant frequency dependence and if we in
turn have a system where the nonlinearity has a low spatial dependency, we can simplify
the expression of y to be

20
= (4.12)
8n Aeff
where 1 is the effective refractive index
_2
=p22 4.13
B 1 (4.13)

and the effective area, A.g, is a measure on the transverse mode profile overlap [43]:

. 2
L[y y)dxdy]
Acfr = o . (4.14)
[J(*y)2dxdy
Here y denote the transverse component of the electric field, with dependence on x and
y. What Equation (4.12) and (4.14) describe is that we can get a nonlinear effect either

21



Chapter 4. Electromagnetic simulations

by choosing a material with high y® or by ensuring that the field is concentrated in the
cross section as much as possible. To be able to achieve stable solutions for the NLSE,
so called solitons, requires us to either tailor the spatial details of our system or tweak
the time dependence, like sending pulses of light. The first soliton solution achieved
was a spatial soliton, realised by Garmire, Chiao and Townes in 1964 [67] and the first
temporal soliton solution using pulses of light was realised in optical fibres by Tappert
and Hasegawa in 1973 [68]. In order for us to use the NLSE we need to have values for
the constants present in Eq. (4.11) and in paper III we present methods of how this can
be achieved for complex 3D geometries in a computationally efficient way.

4.1.2 Split-step Fourier method

In order to solve the NLSE for the wave propagation, described in Sec. 4.1.1, we can use
the split-step Fourier method (SSFM) first developed by Tappert in 1972 at Bell Labora-
tories [69]. The method is based on that we separate the components of the NLSE (4.11)
intoalinear and nonlinear part and then assume that they can act separately on the wave
function during small steps in the longitudinal direction. To speed this up one then lets
the linear part act in the frequency domain and the nonlinear part in the time domain.
The process goes as follows [43]:
We take Equation (4.11) and express it like

A(zt) | a i o

0z - 2 n! ﬁ + l}/|A(Z t)|2 A(Z t) = [b + N] A(Z, t), (4.15)

n=1
where D expresses an operation representing the linear part of the NLSE, while N rep-
resent the nonlinear part. If we then take a small enough step, h, in the longitudinal z
direction, we assume that the numerical error induced by separating D and N is small.
This means that we can write the solution for propagation of a small step, &, as

A(z+h,t) = DN A(z,t). (4.16)

We then note from Equation (4.15) that the linear part D contains all the time deriva-
tives. These are cumbersome to calculate, but we note that the time derivatives become
much more simple to calculate in the frequency domain
o n+1 ﬁ(n) P o & it ﬁ(n)

n!ﬁ 2

F {D} =F{-Z+ (iw)", (4.17)

n=1 n=1

where # denotes the Fourier transform and the transform gives (iw) in place of the time
derivatives. Thus, the easiest way to calculate is to propagate the linear part in the fre-

quency domain and the nonlinear part in the time domain.
Putting it together, we then get the expression for one spatial step, h, to be
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4.1. Simulating the propagation of optical signals in waveguides

Az + ht) = F1 {ehff‘ Dt {eth Az, t)}}, (4.18)

which has an accuracy to the second-order in the step size h [43].

We can further increase the accuracy of the SSFM by using a staggered step where the
nonlinear part is allowed to act on A at the midpoint between steps, h/2. This is known
as the symmetrized split-step Fourier method, illustrated in Fig. 4.1, first used by Feit,
Fleck, and Morris in 1976 [70].

Dispersion Nonlinear

/\
e[ T PIY 7Y
Z=0 h . T

Figure 4.1: Illustration of symmetrized split-step Fourier method, showing the placement in the
geometry when dispersion and nonlinearity are added.

The symmetrized SSFM instead expresses Equation (4.16) as two half linear propaga-
tion steps on the boundaries and one full nonlinear step in the segment

hoa z+h X o
A(z+ht) = eEDexp (J N(z’)dz’) eEDA(z, b). (4.19)
z

When we use a small step size, the integral in Eq. (4.19) can be approximated with

z+h X )
exp (J N(z’)dz’) ~ "N, (4.20)

We can then use a trick to speed up the calculations. By combining Equations (4.20)
and (4.19), we can rewrite them as

h A~ ~  h A h ~ ~ h
A(z +ht) = eEDehNeEDA(z, t) = e 2P (ehDehN) eEDA(z, t). (4.21)

From Equation (4.21) we note that the middle section contains a full step length. This
means that for the propagation over a longer length containing M steps we can write
the final expression of A as

na (Mo L\ s
A(z+ Mh,t) = ¢ 2P (H ehDeN eEDA(Z, t). (4.22)
m=1

This means that, apart from the beginning and end, we can evaluate the linear and
nonlinear contribution with the same step length, cutting the number of Fourier trans-
forms down by almost a factor of 2 [43].
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4.2 Determining propagation and dispersion
constants

This section will describe the use of the finite element method to determine the disper-
sion for a Bloch periodic waveguide. Recall from Sec. 4.1 that we need these values if we
want to describe the behaviour of the nonlinear effects and solve the NLSE. By utilizing
the methods described in this section we will be able to use full-wave linear simulations
to determine nonlinear respones of systems by combining the numerical results with
the theory in Sec. 4.1.

We will introduce the finite element method and how we can use it to solve for at-
tenuation dispersion by the use of eigenmode simulations. The overarching goal with
this section is to present the tools needed to simulate these waveguide and provide an
understanding of what different steps in the process do, while providing references for
further reading on the subject.

42.1 Finite element method

Since it was first conceived in 1943 by Courant [71], the finite element method (FEM) has
grown to be a very popular and useful numerical tool to solve partial differential equa-
tions (PDE). The method works by subdividing the geometry into smaller mesh cells and
approximate the solution with a finite number of parameters, referred to as degrees
of freedom (DOF). The process of subdividing the geometry is called meshing, where
we partition the geometry with a mesh consisting of polygons and polyhedrons. The
physics calculations are then performed on these elements and the size of the elements
determine how accurately the physics can be described. A good reference on the use
of FEM in electromagnetism is Ref. [72]. This thesis will not go into details of the ex-
act workings of the finite element method, but will treat subjects needed to understand
and use FEM for solving for the dispersion in optical waveguides. For a thorough un-
derstanding of finite element solvers, read for example Ottosen and Petersson [73], but
also manuals from commercial FEM packages usually have a good explanation, see for
example COMSOL [74-76].

Having many elements results in more calculations to be performed since we need to
determine more DOF. It is always of interest to keep the DOF down, both to cut down
the simulation times and also to be able to utilise available memory better. In paper I
[77], we presented a meshing strategy based on a posteriori information of the calculated
electric fields on the domain, implemented in COMSOL [78]. By starting with a coarse
mesh and then refining mesh elements that exhibit larger errors, we can ensure that
we only refine elements that needs refining to resolve the electromagnetic behaviour, as
demonstrated in Fig. 4.2.

In the following subsections, we will go through how we convert the strong form of the
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Figure 4.2: Demonstration of a mesh refinement in a 3D structure were regions with smaller fea-
tures are resolved with a denser mesh because of the need to resolve the electromagnetic fields.

PDE of our problem into the weak form (Sec. 4.2.1.1), how we deal with different bound-
aries for our simulation domain (Sec. 4.2.2) and how we rewrite our electromagnetic
expression in order to solve for for eigenmodes at a specified frequency (Sec. 4.2.3).

4.2.1.1 Weak expression

When solving for a physics based PDE with FEM, we do not need to use the original form
of the PDE, called the strong form. Instead, we express the variational form of the PDE,
called the weak form.

The concept revolves around expressing the original PDE as an integral equation. The
solutions of interest are then approximated with a set of basis functions on small sec-
tions of the integral. We then multiply the original PDE expression with a test function,
this test function can then be tweaked and chosen in a way that we can can approximate
the value of our solution over the integrated area by computing smaller elements of the
integral individually.

To arrive at the weak expression needed to solve for the electric field, we start with
the wave equation for the electric field:

2
V X (lv X E) - ew—zE =0. (4.23)
i c

We then get the weak formulation by multiplying the expression in Equation (4.23) with
a test function (sometimes called weight function), v, to yield:

2
Fg(v,E) = (Vxv) - = (VX E) = ¢ 5w - E =0, (4.24)
J7; c
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which then is solved for in the context of an integral equation over our domain.

J]] Fg(v,E) = 0. (4.25)

The test function can be any function and Equations (4.24) and (4.25) still hold, be-
cause we have multiplied the test function with an expression that was zero and then
integrated the expression that was zero.

What we gain from this formulation is not obvious at first glance, but this opens
up the possibility to split the integral equations into multiple smaller sections, or "el-
ements”. Each element gets its own test function and the value of E we want to solve
for is approximated over the element by a set of basis functions. The basis functions
assume different types of shapes over the element and are therefore also named shape
functions. The purpose of the shape functions is to be able to describe the solution over
the element and therefore also need to form a complete basis over the geometry. The
test functions are chosen depending on the implementation, but a common choice is
based on the Galerkin method [79] [73], which is why we sometime see this name when
people are referring to FEM.

As an example to illustrate this point, we can in Fig. 4.3 see a 1D example of how an
arbitrary function u(x) can be approximated with different basis functions for different
element sizes. Here the basis functions are chosen to be the simplest form of piece-
wise linear. This example also highlights that we then can choose elements so they have
a smaller size where the solution changes a lot, while we can have a bigger element size
where the solution is more constant, which means that we can keep the DOF down and
solve for the system faster.

4.2.2 Boundary conditions

When we simulate electromagnetic fields over a domain, we need to be able to confine
the size of the geometry. Electromagnetic interactions extends to infinity so there is
a need for us to accurately handle wave propagation when it "leaves” the structure so
we do not get unwanted numerical artefacts and can save computation time. In the fol-
lowing subsections, we will present the boundary conditions needed to solve for wave
propagation in an optical waveguide. We will treat periodic conditions, perfect mag-
netic/electric conductor, and scattering boundary conditions. The boundary conditions
are discussed from the viewpoint of use in COMSOL [78], but the principle is the same
for other implementations.

4.2.2.1 Perfect electric/magnetic conductor - PEC/PML

When we want to simulate interactions with an ideal metal, we can simulate a perfect
electrical or magnetic boundary. This is useful when we are interested in capturing ef-
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Figure 4.3: Example of how an arbitrary function u(x) is described by means of basis functions
over different element partitions. The first basis function is coloured grey. In Fig. 4.3a, the ele-
ments have equal size and in Fig. 4.3b the elements are refined in regions where u varies more.

fects of ground planes or metallic effects where we do not need to account for metallic
losses.
The boundary condition for a perfect electrical conductor (PEC) simply imposes the

boundary condition
nxE=0 (4.26)

along the boundary. Here n is the normal vector to the boundary. Creating a symmetry
plane where tangential electric-fields becomes anti-symmetric. In a similar way, the
perfect magnetic conductor (PMC) can be used to create a symmetry plane for electric
fields by imposing the boundary condition

nxH = 0. (4.27)

The effect of using different boundary conditions is illustrated in Fig. 4.4.

E, lE‘z H, le E, lEz H, lﬂz
— — —_— —»
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T A D P P PR ...... P A
E, ;-EQ -H, ‘E'Hg -E, ;Eg H, ;-Hg

Figure 4.4: Figure depicting the symmetries of fields when using PEC and PMC boundary con-
ditions. Subscripts 1 and 2 denote tangential and normal component of the fields.
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This means that if we are interested in simulating modes in a waveguide, we can use
these boundaries to create symmetry planes if the device allows for it. So if we want
to simulate transverse electric modes in a waveguide that is homogeneous or has a sym-
metry plane along the longitudinal propagation direction, we only need to simulate half
of the geometry if we add a PMC in the middle, as shown in Fig. 4.5. The side effect of
this choice is that we then exclude the transverse magnetic modes, since they won't ap-
pear due to the added boundary. If we instead were to use PEC, we would calculate the
transverse magnetic modes.

PMC

Figure 4.5: Figure showing the use of PMC to create a symmetry plane to cut the simulation
domain in half.

4.2.2.2 Periodic Floquet boundary conditions

Floquet boundary conditions are a set of boundary conditions that uses Floquet theory
named after Gaston Floquet who studied these systems during the late nineteenth cen-
tury [80]. It describes systems where we can express a vector field at a destination loca-
tion x as a phase shift operation acting on a the vector field from the source location

Udestination = usourcee_ikpx- (4.28)
In a normal periodic problem, when we have a unit cell with length
L = |rger — Tsrcls (4.29)
we would have a boundary condition stating
u(L) = u(0). (4.30)

If we instead have accrued a change in phase or amplitude, we can express the period-
icity like in Equation (4.28) as

u(L) = u(o)e_ikF'(rdst_rsrc)_ (4.31)
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This boundary condition is useful when we want to simulate an infinite periodic struc-
ture, as described in Sec. 2.3, and we know that the change after the wave has propa-
gated one unit cell results in an added phase shift. This is used and demonstrated in
paper III.

4.2.2.3 Scattering boundary conditions

When we have a wave exiting our domain of interest, we want a way to make this wave’go
away’ so it does not disturb the rest of the simulation. There are different ways to handle
this, such as with perfectly matched layers (PML) [81, 82], which is a well established
method to truncate a simulation volume. It does come with a performance penalty and
requires an additional region to be meshed to enclose the simulated volume.

Another less costly method is the scattering boundary condition (SBC) of the first-
order [78]

nx (VE) —iknx (Exn) =0, (4.32)

which is a complex-valued variation of the Robin boundary condition [83, 84]. This can
be made more effective by including a second-order term with an added computational
cost. The second-order scattering boundary condition adds a tangential derivative term
along the boundary which lessens reflection at greater angles of incidence

nx(VE)—iknx(Exn)—#Vx(n-(VxE)):0. (4.33)
0

All of these methods still allow reflections to occur when the incidence angle of the
field deviates from the boundary normal. In many cases, the SBC is good enough but
it depends on the geometry and scattering properties of the specific problem we try to
solve. This boundary condition is used in paper III-1V.

4.2.3 Eigenmode simulations

When we have a periodic Bloch structure, as described in Sec. 2.3 and 4.2.2.2, we often
find ourselves in a situation where we want to calculate the dispersion relation with re-
spect to frequency. The conventional way to achieve this numerically, as described in,
for instance, Refs. [85, 86], is to solve for the eigenmodes of the system. We fix the wave
vector k and solve for which frequencies the eigenmodes have. Then we perform a para-
metric sweep of the wave vector to get the full dispersion. In some instances, however,
it is more interesting to do this the other way around and fix the frequency instead of
k. We might, for example, be interested in a design that can only operate at certain fre-
quencies. Approaches to achieve this in 2D with FEM were first proposed in Refs. [87],
but generalised formally in 3D in Ref. [88].
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The process to get the wave vector at a specified frequency with finite element eigen-
mode simulation involves a rewrite of the weak expression presented in Equation (4.24).
The way we do this is rather straightforward, we express the electric field as a Bloch wave:

E(x) = u(x)el@~kx), (4.34)

where u(x) is a periodic function. We then insert Equation (4.34) into the wave equation
(4.23) and receive a new field equation for u:

2 2
k—u—k(k-u)—ikx(leu)—iVx(lkxu)+Vx<leu)—sw—2u:O. (4.35)
TR p p p c

We can then solve for k like an eigenvalue problem, by writingk = A -1, where t is the
normalised direction of periodicity and A is the eigenvalue we solve for. We need to fix
the periodic direction, ¥, in order to decrease the dimension of k down to 1, so we can
solve for it using an eigenvalue solver.

To be able to solve it, we need to use Equation (4.35) to create a new weak formula-
tion for the finite element solver. This is done by multiplying Equation (4.35) with a test
function v:

2
Fp(v,u) = %v-u— %(V-k)(ku)—iiv'[kx(qu)]—i(va)‘i(kxu) (4.36)

1 w?
+(va)'—(qu)—e—zv~u:O.
u c

Soif we are interested in the propagation constant along the propagation direction, z,
along a periodic structure, we use expression (4.36) and set the wave vector tobek = A2
and solve the expression for eigenvalue A.

This method for 3D structures is not readily available in common electromagnetic
solvers or packages. However, the 2D equivalent method, where instead of simulat-
ing a 3D structure and fix the propagation direction one simulated the 2D cross section
of an infinite structure is readily available. Solution for solving for the mode profile is
present both in finite differences (FD) [89] and finite element (FE) methods [72] and are
generally called mode analysis, boundary mode analysis, or eigenmode solver.

424 Selecting modes from simulations

When working in nanophotonics with eigenmode solvers like those discussed in Sec.4.2..3,
we find ourselves in a situation where we have frequency regions where some modes
don't propagate, for example illustrated in Fig. 2.3 in Sec. 2.1. In practice, selecting and
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Figure 4.6: Figure depicting the cross section of a simulated waveguide.

discerning different modes based on propagation constants can be tricky. As an exam-
ple, take the cross section geometry of a waveguide as shown in Fig.4.6.

By performing a sweep over frequency or wavenumber, one finds oneself with a set of
eigenvalues as depicted in Fig. 4.7.
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Figure 4.7: Figure depicting the plethora of modes that can be present in a waveguide.
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Here we can see that when solving for eigenvalues, we can also get modes that are lossy
and therefore not often interesting for the application. Acommon method to extract rel-
evant modes is to use the fact that since the eigenvalue of the mode is complex, we have
one part that determines the loss and the other part that is the propagation constant or,
with scaling, effective refractive index, nqsr:

2
B = nefff- (4.37)

Many times, the effective index is given as a complex value, in which case the imaginary
part expresses the attenuation of the system, with the same scaling as in Eq. (4.37).

In order to extract relevant modes, a common way is to simply sort them on loss as
employed in for example, Ref. [88]. A disadvantage with this method is that when we
have multiple propagating modes or when all are somewhat lossy, sorting on loss can
give eigenvalues of different modes for different adjacent frequencies. If we are inter-
ested in the same mode over multiple frequencies in order to calculate its derivative, as
detailed in Sec. 4.1.1, this can result in discontinuities that negatively impacts the re-
sults. If the eigenvalue are all that is available for the problem one has to make do with
only these. In many cases, however, one has also access to the mode profile, i.e., the
field distribution. This can be utilized to calculate quantities, which can be used to aid
in selecting modes. For waveguides, one such metric is the effective area (or effective
mode area) (4.14) mentioned in Sec.4.1.1.

Another method that can prove valuable if we are interested in the field concentration
of the mode in specific parts of a waveguide is to use the confinement factor[90]:

_ Icore E*E dX

— e 4.38
| E*Edx (4-38)

which gives us a direct measure of the amount of energy that is present in the core of
the waveguide. This can also be a good measure when we are interested in modes that
concentrate the field to specific regions of the waveguide, then we simply change the re-
gion of integration from the core geometry to the desired region. This can, for example,
be useful for optimizing a geometry for nonlinear optics where concentration of field to
certain materials that have a higher nonlinear interaction is desired.

All of these methods do not guarantee the same mode is selected for different fre-
quency in a scenario like that described in Fig. 4.7. In order to ensure that the same
mode is followed over the entire frequency range, the mode profile needs to be tracked
over different wavelengths by comparing how close the field distributions are. This can
be achieved by calculating the coupling efficiency [91-93]:

Re (] E'Edx)”
T TEE,dx | E{E,dx’

(4.39)
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Figure 4.8: Electric field distribution and effective index of the first 4 modes from eigenmode
simulations of the geometry in Fig.4.6 at 200 THz.

T Emax

where E; & E, are the fields for different modes to compare. If one also have access to
the magnetic field H, then the power coupling coefficient [94] can be used instead.

P ke (] EHydx) (J E;H,dx) 1

= (4.40)
P2 j E* 1dX Re (f E;szX)

But even this can give an undesired result if modes are compared that are far from the
effective index of the mode, where the coupling efficiency is sought after. This is illus-
trated with the example in Fig. 4.8.

Here, the mode profile of all modes at 200 THz is presented and depicts a scenario
where modes are distributed close to the adjacent modes and can thus give similar over-
lap values. This can in turn be mitigated by both filtering away undesired modes based
on metrics previously mentioned or by only calculating the coupling efficiency in the
near vicinity of the target mode in terms of n.g.

Combining these techniques, we can go from a scenario as depicted in Fig. 4.7to a
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scenario where we have traced all the modes based on field overlap depicted in Fig. 4.9.
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Figure 4.9: Tracking of modes in the geometry of Fig.4.7 using coupling efficiency presented in
Eq. (4.39) starting the mode track from 300 THz and going down.

Note that the method of overlap with adjacent modes relies on the fact that there actu-
ally exists such a mode. If, for example, there exists a bandgap, we will have modes that
are purely imaginary and risk losing the track in the gap. For other problems, where
symmetries and reciprocities can be utilized, there exists other methods that can be
used to track modes and mode crossings [95—97]. For practical considerations, the use
of any field overlap calculations is also dependent on the resolution of the fields and,
therefore, on the mesh resolution of the problem. While we can get very accurate values
of the effective index, even with a coarse mesh, the resolution of the fields might be less
exact. If one is working on a single design, having higher resolution of the mesh might
be acceptable, but if it is needed to generate a big dataset, as in the case of work in Paper
IV, then one might need to accept a coarser resolution of the fields to keep memory and
computational cost down.

Another point for consideration when designing free-form waveguides is that you can
get structures that contain "multiple waveguides” or exhibits crossovers between modes.
An example of this is seen in Fig. 4.10. For this geometry, we can see a scenario where
two fundamental modes are crossing at about 2 THz. The structure is overall rather
lossy, which, given the shape of the cross section, might not come as a surprise given
the erratic shape of this particular example.
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Figure 4.10: Tracking of modes in the geometry from Fig. 4.10a using coupling efficiency pre-
sented in Eq. (4.39), starting the mode track from 300 THz and going down.
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4.2.5 Quasi-normal modes (QNM)

When we are dealing with electromagnetic systems, it is often so that we are interested
in a structure’s response in terms of a frequency-dependent scattering matrix, S(w)
[98,99], which contains the information about the transmission, reflection, and absorp-
tion of a system. Here, it can sometimes be advantageous to instead look at the system
in terms of active resonances and use the fact that there’s a formalized theory that re-
lates the scattering parameters with the resonances in the system. This theory is called
quasinormal modes (QNMs) [100, 101].

What this means is that we can look at eigenmodes of a lossy system described by the
source-free Maxwell’s equations (4.41),

V x Ey, = i@y ptHypy,
- _ (4.41)
V x H,, = —iw,,cE,,,

for complex mode & = wy, + iy, of mode number, m, where we make the assumption
that energy leaks away from the resonator, often described as satisfying outgoing-wave
boundary conditions [102].

If we have a system consisting of N ports that contains P modes, we can describe the
scattering matrix as [103, 104]:

S(w) = €“7[C(w) + D(iw — iQ) "M~ 1DTC(w)]e", (4.42)

where C(w) is an N x N matrix representing a slowly varying background, Disan N x P
matrix with columns d,,, Q is a diagonal matrix of QNM eigenfrequencies @,,, and M is
a P x P matrix with elements

did,

M .~ .~k >
lwr,p - la)r’m

mp =

where &y, = @y, + iyy . The N complex-valued elements of d,,, should be interpreted
as the amplitudes of the m:th QNM on the ports. 7 is a diagonal N x N matrix of real
numbers, 7, that determine the phase accumulated between the scatterer and the ports.

Using this formalism one can think of a scattering spectrum in terms of a set of poles
on a complex plane. This formalism was used in Paper II [104] where a neural network
was trained to predict the values of the constants in Eq. (4.42).
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Metamaterials

In this chapter, I want to explain what metamaterials are, what the concept builds on
and give a sense of the history and the development of the field. The ultimate goal cul-
minating in Sec.5.1is that we get an understanding about some of the challenges these
materials can assist in solving and that we also get a sense of the kind of structures that
nowadays can be manufactured to realise these applications. The take away from this,
that we will transfer to designs of integrated optics, is the possibilities that subwave-
length patterning of structures can present when it comes to controlling light. We will
first focus on applications and then in the following chapters we will delve into methods
with which to simulate and design these devices, which also is treated in paper II.

Youmight have come across the term metamaterials before and its function is described
by the Greek work "meta”’, meaning beyond. A metamaterial is a material where we pur-
posefully design the material’s structure so that it exhibits behaviour different from the
bulk material, i.e. achieving performance beyond what the chemical composition of
the material can provide. The concept of metamaterials can be applied to many areas of
physics such as mechanics [105-107] and acoustics [108, 109], but we will in this thesis
focus on metamaterials for electromagnetism. The history of metamaterials begin to
some extent in the 19th century, with investigations and measurements on dielectrics
by Hertz [110], but only in the middle of the 20th century did structures, such as metallic
delay lenses [111], that manipulate the phase velocity of radio waves appear, making it
a starting point for development of metamaterials for electromagnetism. Arguably the
field really took off round the start of the millennia with the work of Pendry and Smith,
when they proposed and realized solutions for achieving negative refraction [112, 113].
This work then resulted in the first invisibility cloak for electromagnetic waves using
metamaterials [114], displayed in Fig. 5.1b.

Common for all metamaterials is the need to control geometries on subwavelength
scale to be able to efficiently control the wave interactions. Some natural examples do
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(@) (b)

Figure 5.1: (2) The experimental verification of a metamaterial with negative index of refraction,
from [115]. Reprinted with permission from AAAS. (b) A 2D microwave cloaking structure, from
Ref. [114]. Reprinted with permission from AAAS.

exist such as structural colour, the phenomenon by which a butterfly has patterning on
their wings to create their shade of blue [116, 117], but overall man-made constructions
have the potential to outperform natural elements with vast design freedom. This in
turn puts two concrete limitations on the field: (1) The resolution we can manufacture
a structure with and (2) which structure shapes we predict to work either through the-
ory or numerical calculations. Much of the physics and computational methods needed
to predict the behaviour of metamaterial structures have been present for some time
and the continued improvements in computational hardware and software have greatly
lowered the bar of entry and made it possible to simulate complicated structures with
a lower wall-clock time. Although many metamaterials are designed for a specific re-
sponse, there’s also the concept of tunable or reconfigurable metamaterials, that can alter
its response [118, 119]. As to manufacturing, we are now able to manufacture structures
on the order of nanometres [120-122], still with increasing accuracy. These numbers
can be hard to contextualize in the head, so in Fig. 5.2a we see some of the possibilities
we now have of manufacturing, with more examples in Sec. 5.1.
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Figure 5.2: (a) An example of a bi-chiral photonic crystal, reprinted with permission from
Ref. [123], Copyright 2025 American Chemical Society. (b) illustrate precision of fine details of
structures, reprinted with permission from Ref. [124], Copyright 2025 American Chemical Soci-

ety.

5.1 Metamaterials in nanophotonics

When it comes to metamaterials for photonics, the fact that we are dealing with optical
wavelengths results in that we need to manufacture structures that are smaller than mi-
crometres. In the previous section, we touched on some structures from nature at these
length scales, but for man-made structures the ability to build sub-micrometre struc-
tures only appeared in the late 1980s, following many decades of development, mostly
driven by semiconductor development, following Moore’s law[125]. First in the 1990s,
we could see emergence of optical subwavelength structures [126—128], with example
images in Fig. 5.3.

The metamaterials at the time mainly consisted of different combinations of pillars,
ridges and holes [129, 130]. Later on, during the 2010s, we started seeing metamateri-
als emerge that utilized new kinds of shapes as building blocks, such as angled v-shaped
rod [131] shown in Fig. 5.4, where Nanfang et al. managed to create abrupt phase changes
on the scale of the wavelength to create a desired reflection and refraction. From here,
metamaterials with a more freeform design started to appear, such as the work of Pig-
got and Vuckovié et al. [132-134], where gradient-based methods were used to generate
2D structures, shown in Fig. 5.5. Here, a demultiplexer has been designed, which redi-
rects incoming light with different wavelengths to separate ports.

Following these development, we have seen larger metagratings, metalenses, and
structures [130, 135-138] and a continuous development of new areas of applications
and further free form designs, bringing new advantages and solutions to problems pre-
viously unsolved, and with increasingly smaller feature sizes [139-151]. Recently we have
also seen metamaterials being used for analogue computing [152, 153], where we can per-
form matrix multiplications with light directly on chip from multiple inputs [154, 155],
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(@)

Figure 5.3: (2) A scanning electron microscope (SEM) micrograph of a cross section of a subwave-
length transmission grating from Ref. [126], ©2025 Optica Publishing Group. (b) SEM image of
a subwavelength grating, from Ref. [128] ©2025 Optica Publishing Group.

as illustrated in Fig. 5.6.
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Figure 5.4: (a) a SEM micrograph of an array of V-shaped gold rods with varying angle, that each
introduces a specific phase shift. Combining multiple of these shapes into an array enables the
control of the angle of a wavefront as illustrated in (b). Here we see a formed wavefront based
on FDTD simulations, from Ref. [131]. Reprinted with permission from AAAS.
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Figure5.5: () a SEM micrograph of a demultiplexer. Light incoming from left (port 1) is directed
to either port 2 or 3, shown in (b). Reprinted with permission from Ref. [133]. Copyright © 2015,
Springer Nature Limited.
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Figure 5.6: (2) A manufactured chip that perform analogue vector-matrix multiplication of 3 in-
put fields. (b) shows a time snapshot of the simulated magnetic field distributions. Reprinted
with permission from Ref. [154]. Copyright © 2024, Springer Nature Limited.
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In previous chapters, we have delved into fundamental theory and how we use physics
and numericas methods to simulate and predict how a material or geometry behaves.
This is also referred to as ”solving the forward problem”. That is, we have a very clear
physics-based mapping that, given the input like material parameters or geometry, de-
terministically predicts the behaviour of the system. We will in this chapter treat how we
can utilize machine learning to solve these problems and later on in Ch. 7we will explore
how we can use machine learning to solve for the more complicated inverse problem,
where we want to predict which input to the forward problem will give us the desired
outcome.

Machine learning is nowadays becoming integrated into basic education and the ba-
sics of how a neural network works in terms of back-propagation, activation functions
and perceptions etc., are assumed known to the reader. I will here instead focus on
common practices, methods, and workflows with relevance to nanophotonics and in-
verse design in particular. For readers interested in introductory materials to machine
learning, I would suggest reading "Machine Learning with PyTorch and Scikit-Learn: De-
velop machine learning and deep learning models with Python” by Sebastian Raschka [156], or
for a more statistics focused approach to read "An Introduction to Statistical Learning” by
Gareth James [157]. For the basic practicalities of working with and developing machine
learning code, a very good source is the tutorials included with larger machine learn-
ing packages. The most accessible of these are PyTorch [158—-160], TensorFlow [161, 162],
scikit-learn [163] and Keras [164]. I have mainly used PyTorch during this work, but the
difference between using different frameworks is more a matter of syntax or if one has
the possibility to piggy-back on someone else’s previous work. If you are currently about
to start on a new project with no known biases, I would recommend to use PyTorch in
this year.
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6.1 Why use machine learning for the forward
problem?

Now you might be wondering: "Why should I need machine learning to solve a deter-
ministic forward problem?”. We often find ourselves in situations where we have some
method with which we can correctly simulate our system. Methods like simulating the
transmission spectra for some material composition perhaps or predicting the effect of
changing the thickness of a dielectric slab. For these cases, there often exist analytical
solutions or the possibility to perform a full-wave simulation using methods like finite-
difference time-domain (FDTD) or FEM. The advantage in this scenario is that of infer-
ence time [165]. Simulation of physical system is often time consuming and more often
than not the development and characterization of a system will benefit from having a
high simulation speed, so it is easier to iterate on ideas early on in the design process.
Neural networks (NNs) can bring considerable improvement in this regard in the form
of so called surrogate models that have been trained to solve the forward problem. Dur-
ing inference, these NNs are typically very fast, allowing for fastiteration. The downside
is that they take time to train in the first place, taking time from our development bud-
get. This means we need to judge if it is worth to train a surrogate model for our specific
problem. The more simulations we expect to use during the process, the easier it is to
motivate utilizing a surrogate model. Even though we can train networks that have a
very high accuracy, we make one sacrifice by using NN, and that is certainty. The black
box nature of NN introduces an uncertainty depending on the complexity of the project.
In practice, this is seldom a big issue in most projects during the development, since we
always have the option to validate design candidates with our more reliable but slower
method at the end.

Another case where machine learning is very suitable when solving the forward prob-
lem is when we have no accurate model to describe our system. We might for example
have a dataset of measurement data and are in need of a surrogate model to describe
our system, but we don't have any physics model or correct parametrization of the in-
put/output space due to difficulties in measurements. Here machine learning provides
a possibility to describe and predict something that otherwise could not be obtained.

Even though the NN usually is applied like a black box solution as mentioned earlier
in this section, there are ways to decrease the "black box level” of the model by incorpo-
rating knowledge of physics, which we will treat in Sec. 6.2.
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6.2 Incorporating physics and exploiting symmetry in
neural networks

When training NN on physics problems, the straightforward way is to generate a dataset
connecting an intended input space to the desired output and then start training some
model. This approach usually works but given that we already know something about
the physics of the problem we can then take steps to incorporate this knowledge di-
rectly into the machine learning problem. In order to achieve this we need some form
of physics model that at least explains part of the system we are working on. By then let-
ting the network learn the input or output of this model we can decrease the complexity
of the problem that the NN needs to learn and thereby also cutting computation time
and cost. These types of physics-informed networks have been demonstrated in a variety
of NNs [104, 166—170] and are also incorporated in paper II, where quasinormal mode
(QNM) theory, as described in Sec.4.2.5, was used for the simulation of photonic crystal
(PhC) slabs and dielectric free-form metasurfaces [104].

Apart from using specific physics models, one can also leverage symmetries in data
to great effect. The typical example of this is when we are working with image based
problems, where the input space has the form of a 2D image. In many cases, it is not
important where in this image a feature resides as long as it exists somewhere in the
space. One reason that convolutional neural networks (CNNs) are efficient at these
image-based tasks is that they by their nature are translationally equivariant in vanilla
form without stride or pooling [171-174]. The sweeping kernel acts the same on the pixels
no matter where they are. So one way to ensure that network architectures are transla-
tion invariant is to base them on convolution blocks. These kinds of symmetries in input
data are usually exploited in machine learning to enlarge the dataset by means of data
augmentation [175-177].

An alternative to using symmetries to enlarge the dataset is to encode the symme-
tries directly into the network, given that one has knowledge of these symmetries, and
employ what is called “equivariant networks” as building blocks for a machine learning
model. These networks make it possible to specify a group action that the feature space
in each layer will respect. If the reader is interested in incorporating equivariance into
machine learning models, then some good references can be found in the book by Mau-
rice Weiler, Patrick Forré, Erik Verlinde, Max Welling [178] and in Refs. [179—181]. There
currently exists an available python packages called escnn [182].

6.3 Open datasets

The availability of data is one of the limiting factors for the field in terms of training ma-
chine learning algorithms. While other more traditional and mature fields in machine
learning, such asimage classification, has an abundance of datasets to pick from to start
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developing and benchmarking models, the entry into the field of physics usually start
with the task of creating and curating a dataset.

The datasets usually have an unstandardised formatting in comparison to images, re-
flecting the variations in parametrization and target parameters that are being investi-
gated. Many datasets are usually available upon "reasonable requests” and the accom-
panied code and documentation is usually not the topic of prioritization. Nevertheless,
there exist some open and readily accessible dataset that can help lower the bar of entry
into the field if one wants to check methods against other datasets or lacks the compu-
tational resources to generate large enough datasets within reasonable wall-clock time.

Attempts have been made to standardise data sharing in photonics [183, 184] and gen-
eral physics [183], but have so far gained little traction. A search for readily available
datasets resulted in Refs. [184—192]. We also plan to make the dataset used in paper IV
available.
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In the previous chapter we went through uses of NN in nanophotonics when we want
to solve the forward problem and how one can use surrogate models to speed up cal-
culations. The forward problem is typically a well posed problem as first defined by
Hadamard [193] i.e., a problem that fulfils the following criteria:

1. The problem has a solution;
2. The solution is unique;
3. The solution’s behaviour changes continuously with the initial conditions.

When we have a forward problem we know that everything is well defined and under-
stood and we know that if we solve this problem the solution is uniquely what we want.
The problem is that this is more of a verification of the current state that we have. A
very common problem is rather that we want a system to exhibit a certain response. We
want to focus light in a certain way, interact with different wavelengths differently, and
achieve a certain design goal. So we really want to solve for it in reverse and solve the
inverse problem. This is illustrated in Fig. 7.1. Here we have a nanophotonic example,
we want to pattern a dielectric surface such that we have a geometry consisting of two
different materials. Given such a pattern/geometry, the physics of the problem is well
known from Maxwell’s equations and we can numerically solve for the electric field, E,
propagating in the structure. We know from physics that we will have a solution, since
it will produce some field response. And we know from physics that we always will get
the same field response for this time-invariant structure. If we want to do the inverse on
the other hand, even if we know the physics of the system, we quickly see that this can be
an ill-posed problem. Imagine, for example, that we are interested in the transmission
coefficient of this system. We most likely can construct many different geometries that
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Figure 7.1: Forward vs the inverse design problem.

produce the same transmission, making this a problem without a unique solution. Say
we choose a not uncommon way of parametrizing the geometry as a binary image where
1& o denotes different materials, and have a resolution of 256x256 pixels. We then have a
system where a space of 2(250¥256) possible combinations determines 1value, but in this
input space we most likely have many combinations that yield the same output value. If
we flip direction to the case of inverse design then using this one value, we would like
to recreate as many of these different designs as possible, which is not trivial. Yet, this
is still a problem we can solve using a variety of different methods. The field of inverse
design in nanophotonics is growing and some great inspirations for inverse design in
the field can be found in Refs. [194—-201].

Here it might be worth mentioning that there is a difference between finding one so-
lution and finding the best solution. In many applications, one solution is good enough,
we might design a system with a minimum requirement of some sort and it is good
enough if it satisfies this requirement. The quest to find the global optimum of the prob-
lem is an active research field and currently there is no guarantee of finding the global
optimum but there are certain steps that one can take to increase the likelihood of find-
ing the global optimum. It turns out that machine learning is a very good tool to use for
this purpose.

When it comes to methods for solving the inverse problem, there are typically two
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types of thoughts towards solving the problem. One is to make refinements to one cho-
sen starting design by calculating a gradient or error based on some figure of merit and
use this to make alterations to the current design. This process is then iterated multiple
times to reach a target. Here we see methods like topology and shape optimization [202-
205]. The other approach, and the focus of this thesis is machine learning based meth-
ods, where training data used to construct models that generate the desired designs are
generated. Another machine learning based method that is emerging is the use of agen-
tic systems which will be further discussed in Sec. 7.2. There is also a class of methods that
have been used with success that we will not treat in this thesis and that is what is col-
lectively called metaheuristic methods [206—-210], that among others, contain stochastic
optimizations techniques such as particle swarm optimization (PSO), genetic algorithm
(GA), ant colony optimizations (ACO) and more.

Before we further delve into the subject of different machine-learning methods, it
is worth discussing the different use cases and when each approach is useful. When it
comes to topology optimization, it is by its nature iterative where one repeats a simu-
lation of the structure for each step in the optimization. The efficiency of this method
comes down to use the case and how fast one can simulate one iteration, but it has an
advantage in the fact that it is easier to understand what the process is doing and how it
reaches the final design, while machine learning methods have a black box element to it
that obfuscates the inner workings of the method. If multiple designs are sought, then
the topology optimization process needs to be repeated for each new design.

When looking at machine learning methods, then multiple simulations need to be
executed to build the dataset, a process that costs a lot of computing power. The advan-
tage to the construction of the training dataset is that each sample is independent of
the other, meaning that the computation can be made in parallel, given that we have
access to sufficient computational resources. Then the process of training the machine
learning model also takes time and computing resources. When measuring the total
computational cost of both methods, then the machine learning approach is typically
more taxing, under the assumption that we are optimizing for few samples. Once the
machine learning model is trained, its use is typically very fast and cheap, making it
more attractive when we want to generate multiple variations of designs or vary our
design targets such as construction of nanophotonic structures with different charac-
teristics such as dispersions as discussed in Ch. 4. When it comes to the work of setting
it up and tuning the process, my own experience is that the amount of work needed to
spend on either of the approaches is similar.

Machine learning methods employing deeper networks for inverse design, are typi-
cally based on one of the following concepts:

1. Iterative inverse methods;
2. Direct inverse method — for example Tandem networks [211] and variational au-

toencoders (VAE) [212];
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3. Generative adversarial networks (GAN) [213, 214];
4. Diffusion models [215].

We will now review the concept of these methods.

For iterative inverse methods, one uses machine learning to train a surrogate model.
One then leverages the surrogate model’s fast inference time to iterate over the design
and evaluate it fast with the surrogate model to reach the desired design target. The
success of this approach depends on the speed and accuracy of the surrogate model and
how one evaluates changes to the design between iterations. The setup of the surro-
gate model and its training benefits from lower complexity compared to other machine-
learning methods.

The direct inverse methods, as a concept, revolves around training a network struc-
ture that once trained can be used directly to retrieve the inverse of the problem. The
training of these systems is more complicated than that of a surrogate model but offers
the advantage of presenting the inverse solution directly.

Generative adversarial networks (GANs) are a technique that has the potential to gen-
erate a higher diversity in the designs [185] and has the potential to generate high-quality
designs. GAN training is a type of indirect training that consists of training two mod-
els together, one generator that generates designs, and one discriminator that judges
how realistic/correct the generated designs are. These two models then compete against
each other during training to perform the best. The downside of GANs is that they often
are complicated to train and can suffer from mode collapse [216].

Diffusion models have rapidly gained popularity in many fields, largely driven by their
success in generating images and video. In this year of 2026 we have seen a huge surge
in Al generated content in the form of images and videos with models such as Stable Dif-
fusion [217] and Sora [218] with different derivatives and competitors popping up. If you
have seen artificial intelligence (AI) generated visual content online, then it most likely
is based on a diffusion model. This interest also means that a lot of work is currently put
into its development. The models themselves are trained to denoise a given input and
after training it is used to generate designs by replacing the blurred input with random
noise.

In the work presented in this thesis, the focus has been on direct inverse methods,
specifically conditional variational autoencoder (cVAE), which was used in paper IV. These
concepts will be further treated in Sec.7.1.

7.1 Conditional variational autoencoders

In this section, we will explain the concept of a conditional variational autoencoder (cVAE)
and the purpose of its design. In order to do it, we will start with the concept of an au-
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toencoder (AE) and then, building on this, move on to variational autoencoders (VAEs),
and finally to cVAEs.

7.1.1 Autoencoders

The concept of an autoencoder (AE) has its roots in the 1980s [219-225] and is illustrated
in Fig. 7.2. The idea is that we want to find a latent space representation that accurately
describes our data in a lower dimension than the original. We have an NN that acts
as an encoder expressing the information in the image to a few values illustrated by the
block in the middle. We then have a decoder NN that, given this latent space representa-
tion, reconstructs the image. The use case for these systems is primarily when we want
to perform dimensionality reduction [226] in the same way as we might use principal
component analysis [227].

- Encoder » - Decoder >

Figure 7.2: Autoencoder structure with a compressed latent representation in the middle. Image
to the left is compressed into a latent space and then reconstructed to full size on the right.

7.1.2 Variational autoencoder

An inherent problem with the autoencoder (AE) described in Sec. 7.1.11s the fact that we
have no real control over the latent space that is expressed by the encoder. This makes it
hard to sample the latent space and generate new data using the decoder. This is reme-
died in the variational autoencoder (VAE) [212]. Here, the structure is set up in such a
way that the latent space the network learns takes the form of a probability distribution,
of which the most common choice is a normal distribution, which we will focus on here.
The structure of the variational autoencoder (VAE) is illustrated in Fig. 7.3.

In order to enforce this behaviour, some things need to be adapted from the case of
an AE. First we need to add a term to the loss function that ensures that the distribution
learned correctly reflects the data. This is achieved by the use of the Kullback Leibler
divergence (KL divergence) [228] also known as information gain or relative entropy [229]:

KL (plg) = J p(x)log (%) dx, (7.1)

which is a statistical measure that quantifies how much distribution ¢ differs from dis-
tribution p. For illustration purpose the quantity is demonstrated in Fig. 7.4. This has

51



Chapter 7. Inverse design in nanophotonics

Figure 7.3: VAE structure. Like in Fig. 7.2, the network learns to deconstruct the input to the left.
In a VAE this is achieved by learning a distribution here illustrated by a normal distribution with
mean, y, and standard deviation, o.

Kullback-Leibler-Divergence of p(z) w.r.t. ¢(x

0
Figure 7.4: Figure illustrating the Kullback Leibler divergence of two distributions as a function

of x.

among its properties that it is non-negative, invariant under reparametrizations, and
asymmetric, meaning that KL (plq) # KL (q|p)-

In order to incorporate this into the loss function one makes use of the variational lower
bound (or evidence lower bound, ELBO) and the backward KL divergence to express the loss
function as

Z = E[log (p(x|2))] — KL (q(z|x)l[p(2)) - (7.2)

Here the E is interpreted as the encoder block operating on the value. This can further
be extended by adding a weight to the KL part resulting in a f-VAE [230, 231]:

& = Zreconstruction — ,BgKL' (7.3)

We thus get a loss function that contains a term for the reconstruction loss of the image
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Figure 7.5: Reparametrisation trick in VAE.

(how close the reconstruction is to the original) and one term containing the KL diver-
gence.

Itisnot sufficient to change theloss function to get the VAE to work, just using the val-
ues predicted by the encoder would just result in a normal AE. In order for the system to
properly learn a distribution, we need to use the values from the decoder to create a dis-
tribution that we can sample from. In order to achieve this, we employ a reparametriza-
tion trick using stochastic backpropagation [232], illustrated in Fig. 7.5. We are using the
values outputted by the encoder as parameters for a distribution from which we draw a
new random value, z. If we want the VAE to learn a normal distribution, as illustrated
in Fig. 7.5, then we draw this new value using the predicted mean and deviation of the
distribution as:

z=p+oe e~N(0,1), (7.4)

where € is a random variable drawn from a normal distribution at the inference step.
This entire structure is then trained end-to-end, and after training one can generate

new designs using the distribution by only using the decoder part and sample z as de-

picted in Fig. 7.6. An example of its use in nanophotonics can be seen in Ref. [233].

o,
s
5

o

\/

T <

-,V

Figure 7.6: VAE inference structure, different designs are generated by varying z.
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7.1.3 Conditional variational autoencoder

Even though VAEs described in Sec. 7.1.2 are good for the purpose of generating de-
signs from a specified distribution in the field of physics, we are more often interested
in specifying targets more precise than simply drawing from a distribution. This can
be achieved by extending the VAE by giving it a conditional expression, which leads to
a conditional variational autoencoder (cVAE) [234]. The analogy between a VAE and a
cVAE is that, given a dataset of many cats of different labelled breeds as classes we can
train a VAE on this system. By then sampling the latent space, z, we can generate many
cats, but if we want to generate a "Selkirk Rex” or a "Norwegian Forest” we cannot give
this input to the VAE. In some scenarios, the system can encode certain information
such that specific parts of the distribution contain different classes, but their location
in the latent space is not given in the training. In this case the latent space needs to be
investigated in the hope of finding a region that we can sample from to obtain the right
result. The concept of cVAE is that we provide the targets as an additional input to both
the encoder and the decoder as depicted in Fig. 7.7.

P P
\

- Encoder

\

Decoder -

Figure 7.7: CVAE structure, f is the conditional target/label, y, o are parameters of the normal
distribution learned.

Apart from the inclusion of this data, the training and construction of the cVAE follows
the same concept as VAE described in Sec.7.1.2. After training it end-to-end, we sim-
ilarly discard the encoder part and generate designs, as depicted in Fig. 7.8, using the
target 8, and vary the results from the distribution by changing the distribution variable
z.

For some example of where a cVAE has been used in the field of physics, see Refs. [185,
235-239] as well as its use in paper IV.
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B
N\ A
Decoder —
N

Figure 7.8: CVAE structure that creates new designs.

7.2 Agentic systems

An emerging topic in the world of machine learning is the concept of agentic systems. This
is a development that has been made possible by the recent advances in the development
of large language models (LLMs), arguably popularised by the advent of the first gener-
ative pre-trained transformer (GPT) [240] in 2018, utilised by the company OpenAlI in
its chatbot ChatGPT. This advance was made possible by the development of the trans-
former network the year before [241], which then took over from the previously domi-
nant long short-term memory (LSTM) models [242] for text and language tasks, much
due to their shorter training times.

The availability of these LLMs and their growing performance has opened up an area
of automatisation where LLMs are used is to create an autonomous system that per-
forms tasks, called agenticAl. The Al is given the target function and tools to simulate/evaluate
the designs and then the Al agent iterates until it finds a solution that fulfils the target
function. In the field of metamaterials, there now exists work that utilizes these agentic
Als, such as ChatGPT, to solve for problems [243-245]. These systems rely on LLMs for
higher-level abstraction of the entire workflow to simulate the designs and interfaces
with classical solvers, specialized surrogate models, and also other specialized LLMs.

The concept of creating agents that iterate on a problem is in principle nothing new.
In machine learning, there is the concept of active learning or query learning [246]. Com-
monly using a Bayesian framework, one forms an iterative process that predicts how to
generate new training data to improve the model as optimally as possible. What sets
agentic systems apart is the potential for higher-level abstraction that LLMs can pro-
vide. In both cases, however, one must take care in formulating the design goals and
how to evaluate them. LLMs are fast during inference, however training LLMs is costly,
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and readily available LLMs often have the problem of being too general for a problem.
One can then refine existing LLMs to be more specialized and for scenarios where the
generality isn't needed one can employ what is called small Language Models (SLMs)
[247].

56



Summary of papers

Paper |

Adaptive meshing strategies for nanophotonics using a posteriori error estimation

In Paper I, we present a meshing strategy for simulating nanophotonic systems using a
posteriori error estimation in the finite element method. As we can recall from the dis-
cussion in Ch. 4 & 7, an overall challenge when working with electromagnetism is the
computational cost and time associated with simulations. In this paper we introduce a
method to utilise finite element method (FEM) more efficiently.

This is achieved by first simulating the electric field on an initial coarse mesh. We can
then use this field to evaluate the a posteriori errors for each element in a finite element
mesh. Using this information, we can then determine which of these elements exhibit
the largest errors. By having a scheme where we iteratively only refine a fraction of the
total elements and only choosing the elements that show the largest errors we provide
a h-FEM method that reliably and predictably converges to a result while keeping the
degrees of freedom (DOF) down as much as possible.

We implement this strategy in COMSOL Multiphysics for arbitrary 3D geometries
and benchmark the strategy against other conventional adaptive meshing approaches.
We demonstrate that the use of adaptive meshing leads to faster convergence with lower
memory footprint for complex three-dimensional nanophotonic structures. Further-
more we discuss an issue with mesh refinement where propagation of mesh refinement
can result in poor convergence for situations where the starting mesh is too coarse.
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Paper

General framework for knowledge integration in machine learning for electromagnetic
scattering using quasinormal modes

In paper II, we present QNM-Net, a universal physics-informed neural network for elec-
tromagnetic scattering based on the quasinormal mode (QNM) expansion of the scat-
tering matrix. In Ch. 6, we elaborated on how we could remove some of the "black box”
aspects of a neural network (NN) by incorporating physics models into the system. This
approach has multiple advantages, one being that it increases insight into what the NN
is learning and the other is that it simplifies the relation that the network needs to learn
from data, thereby reducing the amount needed for training data.

We show that incorporating physics knowledge into the network significantly im-
proves data efficiency for training models on photonic crystal (PhC) slabs and all-dielectric
free-form metasurfaces. Our implementation works by, instead of allowing a neural
network to predict scattering parameters directly from a given device geometry, having
it predict the parameters of a QNM physics model. Through this approach, we simplify
the problem that the network needs to learn, while also satisfying the constraints of the
model and being more robust to noise.

Paper llI

Determining the dispersion and nonlinear characteristics of 3D periodic waveguides
using finite-element eigenmode simulations

In paper III, we present a method for determining the dispersion and nonlinearity co-
efficients for 3D waveguides that are periodic in the propagation direction. Recall from
Ch. 4 that we can solve for the nonlinear response of a waveguide by means of the nonlin-
ear Schrodinger equations (NLSE), which in turn contain constants that we can calculate
from linear full-wave simulations.

Reducing simulation times is always desirable, and in this paper we report a method
using the finite element method (FEM) and an eigenvalue solver to calculate the dis-
persion of waveguide modes at a specified wavelength, making it possible to use this
method only at frequencies of interest without having to sweep over a range of wave vec-
tors. This facilitates the simulation of periodic integrated waveguides with patterned
unit cells, where simulation time often is the major challenge when using alterative
methods. We benchmark the method against systems with known analytical solutions
in the form of a slab waveguide and a Bragg reflector. Furthermore, we compare our
method with conventional boundary mode analysis for a photonic crystal fibre (PCF).
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Paper IV

Inverse design of optical waveguides for phase-sensitive amplifiers using machine learning

In paper IV, we present our work on inverse design of suitable waveguide cross sections
for an on-chip Si3Ny platform that favours nonlinear four-wave mixing (FWM) for use
with optical parametric amplifiers (OPAs).

Aswe have treated continuously throughout this thesis, the process of predicting how
a nanophotonic structure should look to fulfil its design targets is a process consisting
of many different parts. In this work, where the cross section of an optical waveguide is
optimised through inverse design to produce dispersion that benefits a phase-sensitive
amplifier (PSA), incorporates aspects of every chapter so far in this thesis. The approach
used in this paper is based on using machine learning, through the training of a condi-
tional variational autoencoder (cVAE), in order to predict waveguide geometries that
yield a desired dispersion. We present how we parametrise the problem and generate a
dataset for the training of the NN, based on mode analysis, the finite element method
(FEM), and mode selection.
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Conclusions and outlook

We have now reached the final vantage point of this thesis where I will pause briefly and
allow myself some reflections on the progress of this field and turn the looking glass
towards the horizon to attempt to catch a glimpse of what lies ahead.

In the grand scheme of things, the subject of nonlinear physics is a rather new field,
yet also quite old, emerging during the 1900s resting comfortably on the shoulders of
electromagnetism and quantum physics. The basic physics has been well studied now
for several generations. Yet the field is thriving and expanding at the moment. Our
technology in lasers and manufacturing of photonic devices has now improved to such
a point that we now can manufacture many things that were previously unthinkable.
The possibility to use 2020s lithography techniques (now referred to as "modern”) de-
veloped much for the purpose of current electronics manufacturing opens up the door
for amazing materials design. We can now construct optical amplification below con-
ventional quantum limits [1] with on-chip manufacturing 57 years after Miller coined
the term integrated optics [248], a testament to the quality of today’s manufacturing
prowess.

We are now in a regime where, for many applications, the manufacturing part is no
longer the limiting factor when designing a device, but rather our ability to come up
with the designs themselves. With more complicated geometries and designs we also
see the numerical calculations taking a larger chunk of the work time associated with
designing devices. Improvement in computational methods will not necessary change
this, since if we have access to more compute power, that also means we can tackle bigger
and more complex systems. This, in turn, creates a need for more computational power,
leading to us simulating more complex systems, completing the circle.

The process of setting up simulations, however, is labour intensive. Depending on
the problem, there are different methods to choose from and many possible parametri-
sations. Solutions that attempt to address this, through automated pipelines, such as
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agentic systems, still relies on detailed domain knowledge to set up and monitor, cost-
ing an equivalent amount of work time as alternative methods. Here I believe that we
will see a great impact in the future decades. I think our increased access to computa-
tional resources will enable us to create more optimized and polished software pipelines
that ultimately decrease the work time the researchers and designers needs to spend
on software implementation, time which then can be focused on defining good goals
for the automated process. The challenges we face are that of fragmentation. Each of
our physics problems are highly specialized with huge variations and a pipeline for one
problem is seldom usable for another. I think we still have a long way to go until we see a
scenario where an experimentalist or system designer that wants some manufacturable
photonic crystal design that meets the design requirement can get such a design at the
press of a button without a lengthy design process, but I think we are approaching such
a future, maybe within our lifetime. Truly, science is progressing and paints a bright
future.
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