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SUMMARY

Accurate and transferable estimation of battery state of health is essential for the safety and reliability of elec-

tric vehicles and energy storage systems. However, many existing approaches rely on complete charging 
and discharging data and overlook how feature selection, robustness, and data requirements affect estima-

tion performance. Here, we report a unified evaluation framework for predictive capability, transferable capa-

bility, and data efficiency for five features extracted from incremental capacity curves using partial charging 
data. We show that the voltage and magnitude of the first peak provide a better combination of accuracy, 
robustness across charge rates and temperatures, and minimal data needs. We demonstrate that these 
two features enable accurate estimation across two datasets. The results reveal that reliable health estima-

tion can be achieved using only the portion of charging data corresponding to roughly less than 50% of the 
charge process, reducing data curation effort while maintaining high accuracy and practical transferability.

INTRODUCTION

Lithium-ion batteries have been widely adopted in electric vehi-

cles and large-scale energy storage systems, owing to their high 

safety performance, long cycle life, and favorable power perfor-

mance. 1–4 However, batteries inevitably degrade during opera-

tion, with usable capacity and safety margins declining over 

time. 5 Accurate and transferable battery state of health (SOH) 

estimation is therefore essential to ensuring safety and reliability 

of these battery-enabled systems. 6,7

State-of-the-art approaches to estimate SOH can be broadly 

categorized into model-based and data-driven methods. 

Model-based approaches, including electrochemical models 

and equivalent circuit models, 8–13 are limited by intrinsic 

complexity of coupled electrochemical and physical processes 

inside and between battery systems. Aging mechanisms such 

as loss of lithium inventory (LLI), 14–16 loss of active material 

(LAM), 17 and solid electrolyte interphase (SEI) growth are difficult 

to fully characterize over the entire life cycle, while the imped-

ance parameters required for equivalent circuit models are labor 

intensive and time consuming to obtain. Moreover, the model 

parameters can be sensitive to different operating conditions, 

and it remains difficult to construct reliable models for newly de-

signed batteries lacking full aging knowledge.

Data-driven methods have gained wide adoption with rapid 

advancement of artificial intelligence, offering improved 

simplicity and predictive accuracy. Algorithms such as support

vector machines, 18 decision trees, 19 random forest, 20 relevance 

vector machines, 21 Gaussian process regression, 22 convolu-

tional neural networks, 23 recurrent neural networks, 24 and long 

short-term memory networks 25,26 have been applied to capture 

statistical relationships between measured data and battery ag-

ing states. 27 For all these models, feature engineering plays a 

critical role, as high-fidelity and transferable features are key to 

accurate and transferable estimations. Widely used model in-

puts include voltage, current, incremental capacity (IC), and dif-

ferential voltage. Among them, IC-based features have attracted 

particular attention because they can be obtained from partial 

rather than full charge or discharge data, enhancing practical 

feasibility. The IC, defined as the first-order derivative of capacity 

with respect to voltage during charging or discharging, enables 

extraction of features such as peak value, the corresponding 

voltage, and the peak area. 28,29 Li et al. 30 estimated SOH using 

extracted IC features in a fixed voltage range from 3.8 to 4.1 V. 

Lin et al. 31 proposed eight health indicators from IC, differential 

temperature, and differential thermal voltammetry curves to 

improve LSTM-based modeling. Zhao et al. 32 developed a 

voltage-position encoding approach that enabled robust IC-

based SOH estimation from incomplete charging profiles. More-

over, the evolution of IC peak positions and heights has been 

shown to reflect aging mechanisms, 33 providing a strong phys-

ical basis for feature and machine learning model interpretation. 

Many studies use feature selection methods to enhance 

model performance, with particular attention to the correlation
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between features and SOH. For example, Li et al. applied gray 

relation analysis to quantify the correlation between health indi-

cators and battery capacity, and used this as the basis for model 

variable selection. 34 Marri et al. extracted features from charging 

curves under different voltage limits and ranges, and analyzed 

their linear dependence with capacity reduction. 35 Li et al. further 

proposed a systematic feature selection approach that evalu-

ated features through multi-model influence factor scoring. 36 

Beyond correlation-based selection, several studies also 

consider robustness under varying operating conditions. Wei 

et al. ranked features using random forest importance and intro-

duced an MSHHO algorithm to avoid local optima. 37 Xia et al. 

adopted a sequential forward selection strategy combined with 

multi-objective optimization to extract features from impedance 

spectroscopy, reducing feature size and eliminating irrelevant in-

formation. 38 Although these approaches improve feature perfor-

mance, they might overlook the cost of feature acquisition. Tao 

et al. demonstrated that features extracted from the first 120 cy-

cles can be seen as sufficient for some battery management 

tasks, as adding more data did not improve estimation accu-

racy. 39 Wang et al. designed an automatic feature selection 

pipeline that reduced 206 raw features to a few features, 

improving the data efficiency of the trained model. 40 However, 

existing research lacks a systematic consideration of predictive 

capability (PC), transferable capability (TC), and data efficiency 

(DE) of the feature engineering process. Although numerous fea-

tures have been proposed in recent years and proven effective 

for battery diagnostics, their accuracy and robustness across 

different conditions are still uncertain. This gap is crucial 

because feature effectiveness directly affects the efficiency, 

interpretability, and transferability of algorithmic decisions in 

practical battery management systems. As a result, many exist-

ing extracted features perform well under specific operating con-

ditions or contain excessive information redundancy, leading to 

low data efficiency and reduced generalizability. To sum up, 

several critical issues remain unresolved: (1) features with high 

PC across different operating conditions remain under-investi-

gated, and TC of extracted features is not well identified, and 

(2) the critical balance between DE and model predictive accu-

racy is under-investigated, as model accuracy is often prioritized 

while data acquisition and model training costs are frequently 

neglected. These gaps highlight the urgent need for unified PC, 

TC, and DE evaluation methods that are critically important to 

achieve scientifically grounded feature selection and maximize 

data efficiency.

This work extracts five features from IC curves and proposes 

three criteria: PC, TC, and DE. PC is defined as the ability of fea-

tures to accurately reflect SOH, quantified through correlation 

analysis. TC captures the contribution of features to cross-con-

dition SOH prediction, using the differences between SHAP-

based and correlation-based feature importance rankings. DE 

emphasizes achieving sufficient estimation accuracy with the 

least number of features, thereby reducing testing time and 

data redundancy. Based on correlation, interpretability, and 

sensitivity analyses, we demonstrate that two features, the hor-

izontal and vertical coordinates of the first IC peak, can be seen 

as sufficient for accurate SOH estimation across the studied 

operating conditions. This result indicates the potential to

avoid unnecessary data curation and feature redundancy. An 

XGBoost-based model is employed for SOH prediction, and 

the framework is validated on CALCE and TJU datasets, span-

ning 24 batteries with 2 chemistry types over 6,000 cycles. Spe-

cifically, a transfer learning based on fine-tuning is performed 

from 1C to 0.5C discharge batteries in the CALCE dataset and 

from 25 ◦ C to 35 ◦ C batteries in the TJU dataset. Notably, with 

these two features (the x- and y-coordinates of the first peak), 

the CALCE dataset achieves an SOH estimation mean absolute 

percentage error (MAPE) of 4.82%, while the TJU dataset rea-

ches a 0.65% MAPE with high accuracy and robustness. This 

work highlights both the technical and economic potential of 

PC, TC, and DE analysis when developing data-driven battery 

management algorithms, especially considering accuracy, 

transferability, and computational resource constraints.

RESULTS

Datasets and feature extraction

Two datasets encompassing batteries under different test condi-

tions are employed in this study. They are summarized in 

Table S1. Furthermore, the proposed method is equally appli-

cable to datasets with diverse test conditions. The first dataset 41 

is from the Center for Advanced Life Cycle Engineering (CALCE) 

at the University of Maryland. Charging was performed using a 

constant-current (CC) mode at 0.5C until the voltage reached 

4.2 V, followed by a constant-voltage (CV) phase at 4.2 V until 

the current dropped below 0.05 A. Discharging was conducted 

under CC mode with a cut-off voltage of 2.7 V. In this dataset, 

CS_35 batteries served as the source domain (discharged 

at 1C), while CS_33 batteries served as the target domain 

(discharged at 0.5C).

The second dataset 42 is from Tongji University (TJU) and con-

tains 18650-type NCA batteries tested at 25 ◦ C, 35 ◦ C, and 45 ◦ C. 

Batteries tested at 25 ◦ C and 35 ◦ C are used in this work. The 

source domain includes 19 batteries charged at 0.5C and dis-

charged at 1C at 25 ◦ C, while the target domain includes 3 batte-

ries charged at 0.5C and discharged at 1C at 35 ◦ C.

Both CALCE and TJU datasets follow the CC-CV charging 

protocol. Incremental capacity (IC) curves were derived by 

plotting dQ/dV against voltage, as shown in Figure 1. Multiple 

features were extracted from the IC curves, including the x-

and y-coordinates of the first peak (P1_x, P1_y), the x- and 

y-coordinates of the second peak (P2_x, P2_y), and the area 

under the curve between the two peaks (P12_Ar). Figures 1A 

and 1B present the IC curves of the CALCE dataset in the 

source and target domains, respectively, where light blue de-

notes the early aging stages and dark blue corresponds to the 

later stages. The lifetimes of the source-domain battery CS_35 

and the target-domain battery CS_33 are 870 and 850 cycles, 

respectively. Figures 1C and 1D illustrate the IC curves of the 

TJU dataset using the longest-lived batteries in the source and 

target domains (210 and 570 cycles, respectively) as repre-

sentative examples. As cycling progresses, the voltage in-

creases, the IC heights decrease, and the area enclosed by 

the IC curve becomes smaller. This demonstrates that IC 

curves capture aging information, which can be exploited 

through feature extraction.
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The feature names and explanations are presented in 

Table S2. Figure 2 shows the evolution of each feature value 

with cycling. Figures 2A–2E illustrate the trajectories of five fea-

tures for the CALCE target-domain battery CS_33, while 

Figures 2F–2J present the corresponding results for the TJU 

target-domain battery #1. Among these features, P1_x and 

P2_x exhibit an increasing trend with cycle number, whereas 

P1_y, P2_y, and P12_Ar display a decreasing trend.

Feature predictive capability

The purpose of feature extraction is to construct a data space 

from existing measurements that can accurately predict the 

SOH. To assess the predictive capability of each feature, we 

calculated the correlation between individual features and 

SOH. A higher correlation indicates a stronger mapping relation-

ship and better predictive potential. Figure 3 presents the corre-

lation analysis for two datasets. Figures 3A and 3B show the 

heatmaps of feature–SOH correlations for the source and target 

domains of the CALCE dataset, respectively. Among all features, 

P12_Ar, P1_x, and P2_x exhibit the highest correlation coeffi-

cients, with values of 0.99, − 0.95, and 0.98 in the source domain, 

and 0.96, − 0.97, and − 0.98 in the target domain, consistently 

ranking among the top three. Figures 3C and 3D present the cor-

responding results for the TJU dataset. In this case, P12_Ar also 

demonstrates a strong correlation with SOH. Although the corre-

lation of P2_x decreases, P1_x retains a relatively high correla-

tion with SOH. In addition, the Spearman correlation coefficient 

is used to analyze the relationship between the features and 

SOH degradation (Figure S1). The Spearman coefficients of 

P1_y and P2_y are higher than their Pearson correlation, which 

suggests that peak-related features are more effective in 

capturing non-linear relationships, especially under complex 

influencing factors. This supports the contribution of P1_y and 

P2_y to transferability under different operating conditions.

Feature transferable capability

Correlation analysis reflects the predictive capability of features 

within a single dataset. However, it does not reveal whether 

these features can still accurately estimate SOH under varying 

operating conditions. To address this limitation, we further eval-

uate the transferable capability of features. XGBoost is em-

ployed as the predictive model for cross-domain learning, and 

SHAP analysis is used to interpret feature contributions. This 

approach provides a combined assessment of both PC and 

TC. If a feature shows high importance in the XGBoost model 

but relatively low correlation with the target variable, it suggests 

that the feature may contain information that the model can cap-

ture but is not easily revealed through simple correlation anal-

ysis. Such information is likely to possess strong transferability, 

as it may reflect more intrinsic and cross-task feature patterns 

within the data. Figure 4A presents the SHAP analysis for the 

CALCE dataset under cross-condition SOH prediction. The high-

est-ranked feature is P2_y, which represents the vertical coordi-

nate of the second peak. Compared with correlation analysis, the 

feature rankings change under SHAP analysis because SHAP is 

model-based and accounts for both PC and TC. Since cross-

domain prediction is considered, the ranking shifts can reflect 

TC. A feature that moves upward in the ranking indicates higher 

TC, whereas a downward shift suggests lower TC, which may 

hinder SOH estimation under varying battery conditions. To 

quantify TC, we calculate the difference between SHAP-based 

and correlation-based rankings in Figure 4B. Features P1_y 

and P2_y show positive ranking changes of 1 and 3, respectively, 

indicating higher TC, while the horizontal features P1_x and P2_x 

show little or negative change. Similarly, Figure 4C displays the 

SHAP analysis for the TJU dataset. Here, P1_y ranks first and 

P2_y ranks third. In Figure 4D, the ranking differences again 

confirm that P1_y and P2_y exhibit positive changes (both +1), 

whereas P1_x shows a negative shift. An additional validation

Figure 1. Incremental capacity curves of 

the two datasets

(A) Incremental capacity (IC) curves of the CALCE 

source domain (discharge rate: 1C), where the 

x axis represents the charging voltage and the 

y axis denotes the ratio of charging capacity to 

voltage; the color transition from light to dark blue 

indicates battery aging from 1 to 870 cycles.

(B) IC curves of the CALCE target domain 

(discharge rate: 0.5C), where the x axis represents 

the charging voltage and the y axis denotes the 

ratio of charging capacity to voltage; the color 

transition from light to dark blue indicates battery 

aging from 1 to 850 cycles.

(C) IC curves of the TJU source domain (25 ◦ C, 

charge rate: 0.5C), where the x axis represents the 

charging voltage and the y axis denotes the ratio 

of charging capacity to voltage; the color transi-

tion from light to dark blue indicates battery aging 

from 1 to 210 cycles.

(D) IC curves of the TJU target domain (35 ◦ C, 

charge rate: 0.5C), where the x axis represents the 

charging voltage and the y axis denotes the ratio 

of charging capacity to voltage; the color transi-

tion from light to dark blue indicates battery aging 

from 1 to 570 cycles.
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using the Oxford battery dataset, which differs in material 

composition from the CALCE and TJU datasets, further confirms 

the same trend (Table S3).

Feature data efficiency

The use of more features does not necessarily lead to better per-

formance. Instead, an appropriate number of features should be

selected while considering the time required to obtain them, 

thereby ensuring data efficiency. As charging progresses, 

more features become available as the state of charge (SOC) in-

creases. Once SOC reaches 1, all SOH-related information can 

be captured, but this results in substantial data acquisition 

time and energy consumption. To evaluate the trade-off between 

feature quantity and prediction performance, we conduct a

Figure 2. The feature curves of the CALCE and TJU datasets

(A–E) Feature curves of battery CS_33 in the CALCE dataset.

(F–J) Feature curves of battery #1 in the TJU dataset.

Figure 3. Feature predictive capability anal-

ysis of the two datasets

(A) Heatmap of feature predictive capability (PC) 

for the CALCE source domain (discharge rate: 1C).

(B) Heatmap of feature PC for the CALCE target 

domain (discharge rate: 0.5C).

(C) Heatmap of feature PC for the TJU source 

domain (25 ◦ C).

(D) Heatmap of feature PC for the TJU target 

domain (35 ◦ C).
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sensitivity analysis by incrementally adding features in the order 

they become available, starting with the first peak, followed by 

the second peak, and then features beyond the second peak. 

For each feature combination, the root-mean-square error 

(RMSE) and mean absolute error (MAE) of SOH in the target 

domain are calculated.

Figure 5A shows the feature data efficiency analysis for the 

CALCE dataset. The cycle number was first used as the initial 

feature input, as it has an inherent relationship with SOH evolu-

tion. Subsequently, features P1_x, P1_y, P2_x, P2_y, and 

P12_Ar are added sequentially. The estimation error decreases 

sharply with the addition of the first few features and then only 

slightly thereafter. A clear inflection point occurs at three fea-

tures, indicating that the two features from the first peak are suf-

ficient to achieve high prediction accuracy. The occurrence of 

the inflection point is consistent across different data samples, 

indicating that it is stable. Similarly, Figure 5B presents the re-

sults for the TJU dataset, where the RMSE decreases sharply 

at first but shows slight fluctuations when more than three fea-

tures are included. The MAE decreases gradually after the addi-

tion of P1_x and P1_y. This again suggests that the features from 

the first peak alone are sufficient for accurate SOH estimation. 

The robustness analysis with different proportions of target 

domain data is shown in Figures S2 and S3. In addition, this 

finding is further validated on the Oxford dataset different from 

existing material compositions and transfer conditions 

(Table S4). Selecting only one source battery may introduce 

subjectivity. Therefore, each source battery is used to train the

Figure 4. Feature transferable capability 

analysis of the two datasets

(A) SHAP-based feature importance of the 

XGBoost model for SOH estimation in the CALCE 

target domain (0.5 C).

(B) Transferable capability (TC) analysis of fea-

tures in the CALCE dataset.

(C) SHAP-based feature importance of the 

XGBoost model for SOH estimation in the TJU 

target domain (35 ◦ C).

(D) TC analysis of features in the TJU dataset.

model and transfer it to the target 

domain. Figure 5C shows that the data 

effectiveness of the features remains 

consistent under this approach. Each 

violin plot represents the RMSE distribu-

tion of target-domain predictions using 

one source-domain battery (14 in total, 

excluding those with faulty data). When 

the number of features is one, only the cy-

cle index is used as input; with two fea-

tures, P1_x is added; and with three fea-

tures, P1_y is included. The RMSE 

reaches its minimum at three features, 

while adding further features does not 

lead to significant improvements. To 

assess the model’s practicality and 

computational efficiency in real-world 

applications, the model size, training time, and prediction time 

obtained using these three features are reported in Table S5. 

In addition to considering individual source batteries, it is also 

necessary to examine the impact of increasing the number of 

source batteries on SOH estimation. When multiple source bat-

teries are available, they are combined for training and the RMSE 

is evaluated. As shown in Figure 5D, the RMSE varies with both 

the feature combination and the number of source batteries, 

dropping sharply when three features and two source batteries 

are used. However, when the number of source batteries ex-

ceeds two, the RMSE remains nearly unchanged. In addition, 

the validation results on the Oxford dataset also demonstrate 

that both the appropriate number of features and the number 

of source-domain batteries contribute significantly to the reduc-

tion of RMSE (Figure S4).

Analysis of predictive and transferable capability and 

data efficiency

A comprehensive analysis of PC, TC, and DE is conducted for 

each individual feature as well as for different feature combina-

tions. Figure 6 presents the evaluation results across these 

three dimensions, together with the corresponding SOH esti-

mation. The SOH estimation errors, including MAE, MSE, and 

MAPE, are summarized in Table 1. The values of PC and TC 

are derived from feature ranking, whereas DE is assigned 

based on acquisition time: features from the first peak, the sec-

ond peak, and those involving both peak areas are given 

scores of 5, 3, and 1, respectively. Figures 6A–6E show that
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each feature exhibits distinct strengths and limitations across 

the three dimensions. For example, P1_x demonstrates high 

PC and DE but relatively low TC, whereas P2_y exhibits high 

TC but low PC and DE. In general, horizontal-axis features 

tend to yield higher PC, while vertical-axis features show higher 

TC. Features related to the first peak generally provide better 

DE, while those requiring longer acquisition times are associ-

ated with lower DE. In terms of SOH estimation, P12_Ar 

achieves the highest accuracy, yielding an MAPE of only 

0.22%, but obtaining this feature requires extended measure-

ment. In contrast, using P1_x and P2_y individually results in 

MAPE values of 1.84% and 2.52%, respectively, while P2_x 

and P2_y produce higher errors of 7.61% and 10.26%. 

Figures 6F–6I further illustrate the analysis of feature combina-

tions. Combination 1 provides balanced performance across all 

three dimensions, achieving an SOH estimation MAPE of only 

0.65%. By contrast, combinations 2, 3, and 4 show relatively 

high PC and TC but low DE, leading to larger MAPE values of 

1.62%, 2.50%, and 1.43%, respectively. In addition to the ra-

dar chart plotted based on rankings, the radar chart calculated 

from the numerical indicators of PC, TC, and DE is provided in 

Table S6 and Figure S5.

SOH estimation

Figure 7 presents the SOH estimation results on the CALCE and 

TJU datasets using different numbers of source batteries, with 

comparisons between using all features and only two key 

features.

Figure 7A shows the SOH estimation results for the CALCE 

target domain. When only the first-peak features are used for 

estimation and transfer, the predicted SOH remains close to 

the ground truth, showing only minor deviations from the re-

sults obtained with all features and even achieving higher accu-

racy at later stages. Figure 7B displays the corresponding ab-

solute estimation errors, where using only the first-peak

features yields lower errors. The estimation errors (MAE, 

RMSE, and MAPE) obtained with the P1 features (P1_x and 

P1_y) are 0.0339, 0.0461, and 4.82%, respectively, as reported 

in Table 2.

Figure 7C illustrates SOH estimation for the TJU target domain 

using a single source battery. A random seed of 55 is set, and ten 

runs are performed, each time randomly selecting one source 

battery. The results obtained under other random seeds are pro-

vided in Table S7 and Figure S6. The average of the ten esti-

mates is plotted as SOH results, and the standard deviation is 

calculated to construct the error band. Across different feature 

combinations, SOH estimated with only the first-peak features 

remains closer to the ground truth than with all features. 

Figure 7D presents the corresponding absolute errors, again 

showing smaller deviations when only the first-peak features 

are used. The prediction errors (MAE, RMSE, and MAPE) with 

the P1 features are 0.0059, 0.0070, and 0.65%, respectively, 

as listed in Table 3, all of which are significantly lower than those 

obtained with all features. Figures 7E and 7F show the SOH esti-

mation results and absolute errors when two source batteries are 

used. A random seed of 55 is set, and 10 runs are performed, 

each time randomly selecting two source batteries. The ten esti-

mates are averaged, and the standard deviation is calculated to 

construct the error band. Compared with the case of using a sin-

gle source battery, the SOH predictions are closer to the ground 

truth. The prediction errors (MAE, RMSE, and MAPE) with the P1 

features are 0.0059, 0.0068, and 0.65%, respectively, as re-

ported in Table S8, again significantly lower than those obtained 

with all features.

Finally, Figures 7G and 7H show the results and errors when 

three source batteries are used. A random seed of 55 is set, 

and ten runs are performed, each time randomly selecting three 

source batteries. To better capture battery behavior under high-

temperature conditions and to provide a more challenging trans-

fer scenario, the SOH estimation and corresponding errors at

Figure 5. Feature data efficiency (DE) of the 

two datasets

(A) Sensitivity analysis of feature combinations for 

the CALCE target domain, where the x axis rep-

resents the cumulative number of included fea-

tures, and the y axis shows the root mean squared 

error (RMSE) and mean absolute error (MAE) of 

SOH estimation.

(B) Sensitivity analysis of feature combinations for 

the TJU target domain, with the same axis defini-

tions as in (A).

(C) Sensitivity analysis for the TJU target domain 

considering different source-domain batteries. 

For each feature combination, the model is trained 

on each individual source battery and transferred 

to the target battery. Each violin plot represents 

the distribution across multiple source batteries.

(D) Heatmap of SOH RMSE across different 

feature combinations and numbers of source 

batteries, where color intensity indicates error 

magnitude.
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45 ◦ C are presented in Figure S7. The average results are plotted 

as SOH, and standard deviation is used to construct the error 

band. The prediction errors (MAE, RMSE, and MAPE) with the 

P1 features are 0.0071, 0.0078, and 0.80%, respectively, as re-

ported in Table S9, all significantly lower than the errors obtained 

with all features. The error distribution shown in Figure 7 is pro-

vided in Table S10.

METHODS

IC curve smoothing and feature extraction

To extract reliable features from the IC curves, the raw voltage-

capacity data are first smoothed using the Savitzky-Golay filter 

to suppress measurement noise while preserving the curve’s 

peak shape. Let Q(t) and V(t) denote the charge capacity and

Figure 6. Comprehensive analysis of PC, TC, and DE

(A–E) Analysis of the PC, TC, and DE of a single feature, along with their SOH estimation results.

(F–I) Analysis of the PC, TC, and DE of combined features, along with their SOH estimation results.
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voltage as functions of time during the charging step. The IC 

curve is defined as:

dQ

dV
=

dQ

dt
dV

dt

(Equation 1)

Both Q(t) and V(t) are smoothed using the Savitzky-Golay filter, 

which fits a polynomial of degree p within a moving window of

width w to minimize least squares error. p is 3 in this study. 

The smoothed value is computed as:

ŷ(n) = 
∑m

k = − m

c k y(n + k) (Equation 2)

Where ̂y(n) is the value of the smoothed signal at the n-th sam-

pling point, c k is the convolution coefficient derived from the local

Table 1. SOH estimation error under different features and feature combinations

P1_x P1_y P2_x P2_y P12_Ar Com1 Com2 Com3 Com4

MAE 0.0163 0.0225 0.0671 0.0904 0.0020 0.0059 0.0143 0.0219 0.0125

RMSE 0.0192 0.0243 0.0716 0.0974 0.0028 0.0068 0.0153 0.0249 0.0147

MAPE 1.84% 2.52% 7.61% 10.26% 0.22% 0.65% 1.62% 2.50% 1.43%

Figure 7. SOH estimation results for the two 

datasets under different transfer settings

(A and B) Comparison of SOH estimation and 

absolute errors in the CALCE target domain 

without transfer learning, with full feature transfer, 

and with transfer based on only the first peak 

feature.

(C and D) Comparison of SOH estimation and 

absolute errors in the TJU target domain using one 

battery from the source domain, without transfer 

learning, with full feature transfer, and with transfer 

based on only the first peak feature.

(E and F) Comparison of SOH estimation and ab-

solute errors in the TJU target domain using two 

batteries from te source domain, without transfer 

learning, with full feature transfer, and with transfer 

based on only the first peak feature.

(G and H) Comparison of SOH estimation and 

absolute errors in the TJU target domain using 

three batteries from the source domain, without 

transfer learning, with full feature transfer, and with 

transfer based on only the first peak feature.
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polynomial fit, m = w − 1
2 , m is the window half-size, and w is cho-

sen as an odd number which is 21 to ensure symmetry. The 

filtered IC curve dQ
dV

(V) reveals local peaks that correspond to

distinct electrochemical phase transitions, from which charac-

teristic features are subsequently extracted.

Predictive capability

The correlation between features and capacity reflects the de-

gree to which a feature can accurately predict capacity, with 

stronger correlations indicating a higher potential for reliable ca-

pacity representation. Thus, we define predictive capability (PC) 

using the Pearson correlation coefficient:

PC i =

∑ m

j = 1

(
F ji − F i 

) ( 
SOH j − SOH 

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j = 1

( 
F ji − F i 

) 2 ∑m

j = 1

( 
SOH j − SOH 

) 2
√ (Equation 3)

SOH = 
Capacity current 

Capacity initial

(Equation 4)

Where, PC i denotes the correlation coefficient of the i-th feature,

F j i is the value of the i-th feature at the j-th cycle, SOH j is the cor-

responding ratio of capacity to initial capacity, and m is the num-

ber of lifetime cycles. The averages of features and capacity are 

given by:

F i =
1 

m

∑ m

j = 1

F ji (Equation 5)

SOH =
1 

m

∑ m

j = 1

SOH j (Equation 6)

Transferable capability

To evaluate whether extracted features are not only predictive 

within a single dataset but also transferable across domains, 

the TC of features is introduced. The underlying principle is 

that a transferable feature shows greater importance in model-

based interpretability than in correlation-based analysis, 

because model interpretability statistically reflects how well or 

how stably a feature contributes to specific SOH estimation re-

sults across different domains as compared with other features, 

which essentially represents TC. The interpretability-based 

importance of the i-th feature is obtained by training an XGBoost 

model (explained in a later section), from which the relative 

contribution of each feature to the model output is derived.

The ranking position of the i-th feature in this model-based

importance evaluation is denoted as R model 
i . It is calculated using

the SHAP value

The SHAP value of the i-th feature for a given sample x is 

defined as:

Φ i (f ; x) = 
∑

S⊆F \{i}

|S|!(|F| − |S| − 1)!

|F|!
[f S∪{i} (x S∪{i} ) − f S (x S )]

(Equation 7)

Where F denotes the complete set of features, S⊆F \{i}is any 

subset of features that does not contain feature i, and f(⋅) is the 

predictive model. The global importance of feature i is obtained 

as the expectation of the absolute SHAP values over all samples:

I i 
SHAP 

= 𝔼 x [|Φ i (f; x)|] (Equation 8)

Based on this definition, the model-based ranking position of 

feature i is given by:

R model 
i = rank 

( 
I i 

SHAP 
) 

(Equation 9)

In parallel, the correlation-based PC defined in Section 2.1 pro-

vides another ranking of features, denoted as R corr
i :

R corr 
i = rank(PC i ) (Equation 10)

The TC of the i-th feature is then defined as:

TC i = R corr 
i − R model 

i (Equation 11)

A larger difference indicates that a feature receives a higher 

ranking when model-based importance, which incorporates 

both TC and PC, is considered. This suggests higher transfer-

ability in cross-domain SOH estimation. In contrast, a smaller dif-

ference implies that the feature’s ranking decreases after ac-

counting for TC and PC, indicating lower transferability in 

cross-domain SOH estimation.

Data efficiency

The data efficiency of feature utilization during SOH estimation 

is examined through a progressive feature addition strategy 

designed to emulate the process of gradually acquiring informa-

tion along the charging trajectory. Beginning with the most

Table 2. SOH estimation error in CALCE, with no transfer, all 

features transfer, and only P1 features transfer

MAE RMSE MAPE R2

No transfer 0.0406 0.0536 6.43% 0.8647

All features + transfer 0.0281 0.0365 4.24% 0.8996

P1 features + transfer 0.0339 0.0461 4.82% 0.9371

Table 3. SOH estimation error in TJU using one battery from the 

source domain, with no transfer, all features transfer, and only P1 

features transfer

MAE RMSE MAPE R2

No transfer 0.0343 0.0355 3.87% − 0.6856

All feature transfer 0.0180 0.0203 2.05% 0.4475

P1 feature transfer 0.0059 0.0070 0.65% 0.9341

Error reduction rate (compared 

to all features)

67.2% 65.5% 68.3% –

Error reduction rate (compared 

to no transfer)

82.8% 80.3% 83.2% –
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fundamental cycling index, features are incorporated according 

to their difficulty of acquisition, thereby forming a series of nested 

feature sets. The feature subset is expressed as: F k = 

{f 1 ,f 2 ,⋯,f k },k = 1,2,⋯,N.

Where, f k denotes the k-th selected feature, and N is the 

maximum number of features considered. For each subset F k , 

source-domain data are used to train an XGBoost model, and 

the trained model is subsequently applied to the target-domain 

battery. The output is the estimated SOH of the target battery. 

The estimation error is quantified using the RMSE and MAE, 

which are defined in Section 2.6 Evaluation metric.

By tracking the variation of RMSE and MAE with the number of 

incorporated features, the elbow rule is applied to identify the in-

flection point at which the error reduction transitions from steep 

to gradual. This inflection point is regarded as the minimal 

feature set required for reliable cross-domain SOH prediction, 

thereby enabling a quantitative evaluation of DE:

E k =
1 

2 
(RMSE k + MAE k ) (Equation 12)

N elbow = arg max
k ∈ {1;⋯;N}

|E k+1 − 2E k + E k − 1 | (Equation 13)

DE = N elbow (Equation 14)

Where, E k represents the average error under the k-th feature 

subset, and N elbow corresponds to the point with the maximum 

second-order difference, that is, the point where the error 

decline has the most obvious turning point.

XGBoost predictor

XGBoost is an optimized gradient-boosted decision tree algo-

rithm designed for efficiency and scalability. The modeling logic 

of this algorithm can be described as follows: First, a generalized 

definition is given for the objective function. Then, in each itera-

tion, a suitable regression tree is identified to fit the residual pre-

dicted in the previous iteration. Subsequently, by minimizing the 

objective function, the estimated value is progressively brought 

closer to the true value. It minimizes the following regularized 

objective function at each boosting iteration t:

L (t) = 
∑n

η = 1

l 
( 
y η ; ̂y

(t − 1) 
η + f t (x η ) 

) 
+ Ω(f t ) (Equation 15)

Where,n is the number of samples, y η is the true SOH of sample η,

̂ y (t − 1) 
η is the predicted SOH of sample η after t-1 iterations, f t (x η ) is

the prediction from the t-th regression tree for input features x η , 

l(⋅) is the loss function, and Ω(f t ) is the regularization term control-

ling model complexity, defined as:

Ω(f t ) = γT +
1

2
λ 
∑T

j = 1

ω 2α (Equation 16)

Where T is the number of leaves in tree f t , ω α is the weight of leaf 

α, and γ and λ are regularization coefficients. To optimize L (t) ,

XGBoost uses a second-order Taylor expansion of the loss func-

tion around ̂  y (t − 1) 
η :

L (t) ≈ 
∑n 

η = 1

( 

l 
( 
y η ; ̂y

(t − 1) 
η

) 
+ g η f t (x η) + 

1

2 
h η f t (x η ) 

2 

) 

+ Ω(f t )

(Equation 17)

Where:

g η = 
∂l 
( 
y η ; ̂y

(t − 1) 
η

)

∂ŷ (t − 1) 
η

(Equation 18)

h η = 
∂ 2 l 

( 
y η ; ̂y

(t − 1) 
η

)

∂ 
( 
ŷ (t − 1) 

η

) 2 (Equation 19)

The optimal tree structure and leaf weights are determined to 

minimize this approximate loss at each boosting step.

Transfer learning strategy

To address the challenge of limited labeled data in the target 

domain, a transfer learning strategy is employed, consisting of 

source-domain pretraining, target-domain fine-tuning, and sub-

sequent prediction. In the first stage, the XGBoost model is 

trained on a source-domain dataset containing complete life cy-

cle data, allowing it to learn general aging patterns from a rich 

feature set. Input features primarily include IC-derived descrip-

tors, such as peak values, peak voltages, and integrated areas, 

while the number and type of features could be flexibly selected 

according to experimental design. In the second stage, the 

pretrained model is fine-tuned using only the first 25% of the 

target-domain labeled data. This procedure adjusts the model 

parameters to capture the specific aging behavior of the target 

batteries while retaining the general knowledge acquired from 

the source domain. Finally, the fine-tuned model is applied to es-

timate the SOH for the remaining 75% of the target-domain data, 

enabling continuous capacity trajectory reconstruction for un-

seen cycles.

The XGBoost model is configured with a maximum tree depth 

of 6, a learning rate of 0.05, subsampling and column subsam-

pling rates of 0.8, and regularization to prevent overfitting. Pre-

training is performed for 300 boosting rounds, followed by 100 

additional rounds for fine-tuning. All model training and predic-

tion procedures are implemented in Python using the XGBoost 

library.

Feature normalization

To ensure consistent scaling across domains, the features are 

standardized using Z score normalization. For transfer learning, 

the scaler is fitted jointly on the source-domain samples and 

the labeled portion of the target domain:

μ; σ = StandardScaler:fit 
( 

X source ∪ X 
labeled 
target

) 
(Equation 20)

The obtained μ,σ is then applied to transform all source-

domain samples for pretraining, the labeled target samples for 

fine-tuning, and the unlabeled target samples for final 

estimation:
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~X source = 
X source − μ

σ
(Equation 21)

~ X
labeled 
target =

X labeled 
target − μ 

σ
(Equation 22)

~ X
unlabeled 
target =

X ulabeled 
target − μ

σ 
(Equation 23)

Evaluation metric 

The MAE is defined as:

MAE =
1

C − d+1 

∑ C

j = d

⃒
⃒ y j − ̂ yj

⃒
⃒ (Equation 24)

The RMSE is defined as:

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

C − d+1 

∑ C

j = d

( 
y j − ̂ yj 

) 2

√ 
√ 
√ 
√ (Equation 25)

The MAPE is defined as:

MAPE =

∑C

j = d

⃒
⃒ y j − ̂ yj

⃒
⃒

∑ C

j = d

y j

× 100% (Equation 26)

where y j and ̂  yj are the true SOH and estimated SOH in the jth cy-

cle, respectively. C is the length of battery cycles, and d is the 

starting estimation point, which means the cycles used to fine-

tune the source model.

DISCUSSION

This study systematically analyzes the predictive capability, 

transferable capability, and data efficiency of IC curve features 

for battery SOH estimation. The results show that the horizontal 

coordinates of IC peaks exhibit higher predictive capability, 

while vertical coordinates have higher transferability. Feature ef-

ficiency analysis reveals that features extracted from the first 

peak provide sufficient information for accurate estimation, 

achieving a favorable balance between prediction accuracy 

and testing cost. In addition, analysis of the source-battery effi-

ciency indicates that two source batteries are adequate to 

achieve accurate transfer, while adding more batteries does 

not lead to improvements. These findings highlight the principle 

of data efficiency, suggesting that both the number of features 

and source batteries should be carefully selected to avoid un-

necessary data collection and associated energy consumption. 

Our findings align with previous studies that associate peak 

height variations in IC curves with the aging of electrode active 

materials and changes in lithium inventory, and link peak voltage 

shifts with increasing internal resistance. 43–47 While prior works 

focus on the physical interpretation of specific IC curve changes, 

our study confirms this understanding with data-driven predic-

tive modeling by explicitly linking feature predictability and trans-

ferability to aging mechanisms. This confirms the physical signif-

icance of IC features while explaining why certain features, such 

as P1_x and P2_y, consistently demonstrate robustness across 

domains. The Pearson coefficient reflects the linear correlation 

between features, while the Spearman coefficient captures their 

monotonic relationship. The decrease in correlation between 

P1_x and P2_x under Spearman analysis indicates that their rela-

tionship is not strictly monotonic, possibly due to local peak 

shifts or measurement noise. In contrast, the increase in correla-

tion between P1_y and P2_y suggests a more consistent mono-

tonic degradation trend of reaction intensities during cycling. 

Compared with earlier works that often rely on the full set of IC 

curve features or large amounts of training data, our study dem-

onstrates that accurate and transferable SOH prediction can be 

achieved using a minimal and physically interpretable feature 

set, together with a limited number of source batteries. In this 

way, our work fills an important gap in the literature by establish-

ing the concept of PC, TC, and DE of features in SOH estimation. 

This provides new insights into how to reduce the dependency 

on large datasets without compromising prediction reliability, 

which is particularly valuable under resource-constrained testing 

conditions.

The findings contribute to advancing the field by promoting a 

more efficient paradigm for battery health management, where 

feature selection and source-battery efficiency are guided by 

predictive performance and physical interpretability. The 

method remains applicable when the dataset changes, provided 

that the dataset includes batteries under different conditions that 

are transferable. This approach reduces testing costs and 

computational burdens and provides a framework for integrating 

domain knowledge with data-driven methods in a scalable 

manner.

From a practical standpoint, the concepts of PC, TC, and DE 

also provide valuable guidance for the design and deployment 

of battery management systems (BMSs). In real-world applica-

tions, BMSs are often constrained by limited computing power, 

restricted memory, and low sampling frequencies, particularly in 

embedded systems for electric vehicles or stationary storage. 

High-PC features enable accurate SOH estimation even when 

computational resources are limited, while high-TC features 

ensure that models trained under specific conditions remain reli-

able when applied to batteries experiencing different load pat-

terns or environments. DE offers an accessible framework to bal-

ance sensing cost and prediction accuracy by identifying the 

minimal yet sufficient number of features and sampling points 

needed for reliable estimation, thereby reducing both data 

acquisition and communication burdens within the BMS. 

Nevertheless, several limitations remain within this preliminary 

and demonstrative work since the current analysis is conducted 

under isothermal conditions; thus, the generalizability of the 

selected features under dynamic operating profiles or varying 

temperatures requires further validation. In addition, while the 

study focuses on handcrafted IC curve features, emerging ap-

proaches based on end-to-end deep learning may capture addi-

tional patterns beyond manually defined features. Future 

research should therefore extend this framework to non-

isothermal and real-world cycling conditions, investigate the

Please cite this article in press as: Su et al., Incremental capacity feature selection for lithium-ion battery state of health estimation considering esti-

mation capability and efficiency, Cell Reports Physical Science (2025), https://doi.org/10.1016/j.xcrp.2025.103083

Cell Reports Physical Science 7, 103083, February 18, 2026 11

Article

ll
OPEN ACCESS



integration of physically interpretable features with advanced 

machine learning models, and further explore data efficiency un-

der broader transfer learning scenarios. In the era of increasingly 

large models and datasets, 48,49 our work emphasizes the impor-

tance of data efficiency, encouraging the development of 

methods that prioritize data quality and efficiency over sheer 

volume.

RESOURCE AVAILABILITY

Lead contact

Requests for further information and resources should be directed to and will 

be fulfilled by the lead contact, Shengyu Tao (shengyu.tao@chalmers.se).

Materials availability

No materials were used in this work.

Data and code availability

• All data used in this work can be found in the works of Chen et al. 41 and 

Zhu et al. 42 The supporting data are provided in the supplemental 

information.

• The modeling code and processed data have been deposited 

on GitHub at https://github.com/terencetaothucb/SOH-Estimation-

Predictive-Capability-Transferable-Capability-and-Data-Efficiency-

Analysis.git. The associated DOI is https://doi.org/10.5281/zenodo. 

17830907.

• All data are available in the main text and supplementary information. 

Any additional information required to reanalyze the data reported in 

this paper is available from the lead contact upon request.

ACKNOWLEDGMENTS

This work was supported by the Swedish Research Council through a Project 

Grant (grant no. 2023-04314), the European Union’s Horizon Europe program 

through the Marie Skłodowska-Curie Actions (grant no. 101131278), the Key 

Scientific Research Support Project of Shanxi Energy Internet Research Insti-

tute (grant no. SXEI2023A002), and the Meituan Scholar Program-International 

Collaboration Project (grant no. 202209A).

AUTHOR CONTRIBUTIONS

L.S. and S.T. conceptualized, designed, reviewed, revised, and prepared the 

manuscript draft. Y.C., C.Z., and X.Z. supervised, reviewed, discussed, and 

acquired funding. All authors revised the manuscript before submission.

DECLARATION OF INTERESTS

The authors declare no competing interests.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j. 

xcrp.2025.103083.

Received: September 21, 2025 

Revised: November 17, 2025 

Accepted: December 15, 2025

REFERENCES

1. Yu, P., Zhou, C., Yu, Y., Chang, Z., Li, X., Huang, K., Yu, J., Yan, K., Jiang, 

X., and Su, Y. (2025). Improved PSO-TCN model for SOH estimation 

based on accelerated aging test for large capacity energy storage batte-

ries. J. Energy Storage 108, 115031. https://doi.org/10.1016/j.est.2024. 

115031.

2. Li, X., Yuan, C., and Wang, Z. (2020). State of health estimation for Li-ion 

battery via partial incremental capacity analysis based on support vector 

regression. Energy 203, 117852. https://doi.org/10.1016/j.energy.2020. 

117852.

3. Ma, L., Xu, Y., Zhang, H., Yang, F., Wang, X., and Li, C. (2022). Co-estima-

tion of state of charge and state of health for lithium-ion batteries based on 

fractional-order model with multi-innovations unscented Kalman filter 

method. J. Energy Storage 52, 104904. https://doi.org/10.1016/j.est. 

2022.104904.

4. Cao, N., Du, H., Lu, J., Li, Z., Qiang, Q., and Lu, H. (2025). Designing ionic 

liquid electrolytes for a rigid and Li+-conductive solid electrolyte interface 

in high performance lithium metal batteries. Chem. Phys. Lett. 866, 

141959. https://doi.org/10.1016/j.cplett.2025.141959.

5. Zou, Y., Lin, Z., Li, D., and Liu, Z. (2023). Advancements in Artificial Neural 

Networks for health management of energy storage lithium-ion batteries: 

A comprehensive review. J. Energy Storage 73, 109069. https://doi.org/ 

10.1016/j.est.2023.109069.

6. Gong, J., Xu, B., Chen, F., and Zhou, G. (2025). Predictive modeling for 

electric vehicle battery state of health: A comprehensive literature review. 

Energies 18, 337. https://doi.org/10.3390/en18020337.

7. Pradhan, S.K., and Chakraborty, B. (2022). Battery management strate-

gies: An essential review for battery state of health monitoring techniques. 

J. Energy Storage 51, 104427. https://doi.org/10.1016/j.est.2022.104427.

8. Li, D., Yang, D., Li, L., Wang, L., and Wang, K. (2022). Electrochemical 

impedance spectroscopy based on the state of health estimation for 

lithium-ion batteries. Energies 15, 6665. https://doi.org/10.3390/ 

en15186665.

9. Liu, B., Tang, X., and Gao, F. (2020). Joint estimation of battery state-of-

charge and state-of-health based on a simplified pseudo-two-dimen-

sional model. Electrochim. Acta 344, 136098. https://doi.org/10.1016/j. 

electacta.2020.136098.

10. Li, C., Yang, L., Li, Q., Zhang, Q., Zhou, Z., Meng, Y., Zhao, X., Wang, L., 

Zhang, S., Li, Y., and Lv, F. (2024). SOH estimation method for lithium-ion 

batteries based on an improved equivalent circuit model via electrochem-

ical impedance spectroscopy. J. Energy Storage 86, 111167. https://doi. 

org/10.1016/j.est.2024.111167.

11. Wu, C., Wang, L., Meng, J., Huang, J., Yang, T., Wang, L., Chang, Y., and 

He, X. (2025). A hybrid deep learning model for lithium-ion battery state-of-

health estimation using electrochemical impedance spectroscopy. Energy 

339, 138974. https://doi.org/10.1016/j.energy.2025.138974.

12. Liu, Y., Yang, L., Liao, R., Hu, C., Xiao, Y., He, C., Wu, X., Zhang, Y., and Li, 

S. (2025). Degradation mechanism of sodium-ion batteries and state of 

health estimation via electrochemical impedance spectroscopy under 

temperature disturbances. Energy 332, 137064. https://doi.org/10.1016/ 

j.energy.2025.137064.

13. Tong, L., Li, Y., Xu, Y., Fang, J., Wen, C., Zheng, Y., Zhang, H., Peng, B., 

Yang, F., Zhang, J., and Gong, M. (2025). A combined method for state-of-

charge estimation for lithium-ion batteries based on IGWO-ASRCKF and 

ELM under various aging levels. J. Energy Storage 124, 116843. https:// 

doi.org/10.1016/j.est.2025.116843.

14. Dubarry, M., Truchot, C., and Liaw, B.Y. (2012). Synthesize battery degra-

dation modes via a diagnostic and prognostic model. J. Power Sources 

219, 204–216. https://doi.org/10.1016/j.jpowsour.2012.07.016.

15. Dawkins, J.I.G., Martens, I., Danis, A., Beaulieu, I., Chhin, D., Mirolo, M., 

Drnec, J., Schougaard, S.B., and Mauzeroll, J. (2023). Mapping the total 

lithium inventory of Li-ion batteries. Joule 7, 2783–2797. https://doi.org/ 

10.1016/j.joule.2023.11.003.

16. Wu, Z., Wang, H., and Zhang, Y. (2025). Mechanism-traced diagnosis of 

lithium inventory loss for lithium-ion batteries using physics-driven ma-

chine learning. Energy 338, 138936. https://doi.org/10.1016/j.energy. 

2025.138936.

Please cite this article in press as: Su et al., Incremental capacity feature selection for lithium-ion battery state of health estimation considering esti-

mation capability and efficiency, Cell Reports Physical Science (2025), https://doi.org/10.1016/j.xcrp.2025.103083

12 Cell Reports Physical Science 7, 103083, February 18, 2026

Article

ll
OPEN ACCESS

mailto:shengyu.tao@chalmers.se
https://github.com/terencetaothucb/SOH-Estimation-Predictive-Capability-Transferable-Capability-and-Data-Efficiency-Analysis.git
https://github.com/terencetaothucb/SOH-Estimation-Predictive-Capability-Transferable-Capability-and-Data-Efficiency-Analysis.git
https://github.com/terencetaothucb/SOH-Estimation-Predictive-Capability-Transferable-Capability-and-Data-Efficiency-Analysis.git
https://doi.org/10.5281/zenodo.17830907
https://doi.org/10.5281/zenodo.17830907
https://doi.org/10.1016/j.xcrp.2025.103083
https://doi.org/10.1016/j.xcrp.2025.103083
https://doi.org/10.1016/j.est.2024.115031
https://doi.org/10.1016/j.est.2024.115031
https://doi.org/10.1016/j.energy.2020.117852
https://doi.org/10.1016/j.energy.2020.117852
https://doi.org/10.1016/j.est.2022.104904
https://doi.org/10.1016/j.est.2022.104904
https://doi.org/10.1016/j.cplett.2025.141959
https://doi.org/10.1016/j.est.2023.109069
https://doi.org/10.1016/j.est.2023.109069
https://doi.org/10.3390/en18020337
https://doi.org/10.1016/j.est.2022.104427
https://doi.org/10.3390/en15186665
https://doi.org/10.3390/en15186665
https://doi.org/10.1016/j.electacta.2020.136098
https://doi.org/10.1016/j.electacta.2020.136098
https://doi.org/10.1016/j.est.2024.111167
https://doi.org/10.1016/j.est.2024.111167
https://doi.org/10.1016/j.energy.2025.138974
https://doi.org/10.1016/j.energy.2025.137064
https://doi.org/10.1016/j.energy.2025.137064
https://doi.org/10.1016/j.est.2025.116843
https://doi.org/10.1016/j.est.2025.116843
https://doi.org/10.1016/j.jpowsour.2012.07.016
https://doi.org/10.1016/j.joule.2023.11.003
https://doi.org/10.1016/j.joule.2023.11.003
https://doi.org/10.1016/j.energy.2025.138936
https://doi.org/10.1016/j.energy.2025.138936


17. O’Kane, S.E.J., Ai, W., Madabattula, G., Alonso-Alvarez, D., Timms, R., 

Sulzer, V., Edge, J.S., Wu, B., Offer, G.J., and Marinescu, M. (2022). 

Lithium-ion battery degradation: how to model it. Phys. Chem. Chem. 

Phys. 24, 7909–7922. https://doi.org/10.1039/D2CP00417H.

18. Weng, C., Cui, Y., Sun, J., and Peng, H. (2013). On-board state of health 

monitoring of lithium-ion batteries using incremental capacity analysis 

with support vector regression. J. Power Sources 235, 36–44. https:// 

doi.org/10.1016/j.jpowsour.2013.02.012.

19. Zhang, Z., Li, L., Li, X., Hu, Y., Huang, K., Xue, B., Wang, Y., and Yu, Y. 

(2022). State-of-health estimation for the lithium-ion battery based on 

gradient boosting decision tree with autonomous selection of excellent 

features. Int. J. Energy Res. 46, 1756–1765. https://doi.org/10.1002/ 

er.7292.

20. Tao, S., Ma, R., Chen, Y., Liang, Z., Ji, H., Han, Z., Wei, G., Zhang, X., and 

Zhou, G. (2024). Rapid and sustainable battery health diagnosis for recy-

cling pretreatment using fast pulse test and random forest machine 

learning. J. Power Sources 597, 234156. https://doi.org/10.1016/j.jpows-

our.2024.234156.

21. Hu, C., Jain, G., Schmidt, C., Strief, C., and Sullivan, M. (2015). Online esti-

mation of lithium-ion battery capacity using sparse Bayesian learning. 

J. Power Sources 289, 105–113. https://doi.org/10.1016/j.jpowsour. 

2015.04.166.

22. Liu, K., Hu, X., Wei, Z., Li, Y., and Jiang, Y. (2019). Modified Gaussian pro-

cess regression models for cyclic capacity prediction of lithium-ion batte-

ries. IEEE Trans. Transp. Electrific. 5, 1225–1236. https://doi.org/10.1109/ 

TTE.2019.2944802.

23. Zheng, Y., Hu, J., Chen, J., Deng, H., and Hu, W. (2023). State of health 

estimation for lithium battery random charging process based on CNN-

GRU method. Energy Rep. 9, 1–10. https://doi.org/10.1016/j.egyr.2022. 

12.093.

24. Teixeira, R.S.D., Calili, R.F., Almeida, M.F., and Louzada, D.R. (2024). 

Recurrent neural networks for estimating the state of health of lithium-

ion batteries. Batteries 10, 111. https://doi.org/10.3390/bat-

teries10030111.

25. Ma, Y., Shan, C., Gao, J., and Chen, H. (2022). A novel method for state of 

health estimation of lithium-ion batteries based on improved LSTM and 

health indicators extraction. Energy 251, 123973. https://doi.org/10. 

1016/j.energy.2022.123973.

26. Peng, S., Wang, Y., Tang, A., Jiang, Y., Kan, J., and Pecht, M. (2025). State 

of health estimation joint improved grey wolf optimization algorithm and 

LSTM using partial discharging health features for lithium-ion batteries. 

Energy 315, 134293. https://doi.org/10.1016/j.energy.2024.134293.

27. Che, Y., Deng, Z., Li, P., Tang, X., Khosravinia, K., Lin, X., and Hu, X. 

(2022). State of health prognostics for series battery packs: A universal 

deep learning method. Energy 238, 121857. https://doi.org/10.1016/j.en-

ergy.2021.121857.

28. Wang, G., Li, C., Cui, Z., Yuan, H., and Cui, N. (2025). A practical state of 

health estimation method for lithium-ion batteries using charging duration 

in different voltage segments. J. Energy Storage 132, 117712. https://doi. 

org/10.1016/j.est.2025.117712.

29. Wu, J., Fang, L., Dong, G., and Lin, M. (2023). State of health estimation of 

lithium-ion battery with improved radial basis function neural network. En-

ergy 262, 125380. https://doi.org/10.1016/j.energy.2022.125380.

30. Li, X., Yuan, C., Li, X., and Wang, Z. (2020). State of health estimation for Li-

Ion battery using incremental capacity analysis and Gaussian process 

regression. Energy 190, 116467. https://doi.org/10.1016/j.energy.2019. 

116467.

31. Lin, M., Wu, J., Meng, J., Wang, W., and Wu, J. (2023). State of health esti-

mation with attentional long short-term memory network for lithium-ion 

batteries. Energy 268, 126706. https://doi.org/10.1016/j.energy.2023. 

126706.

32. Zhao, J., Zhang, X., and Hu, C. (2025). Lithium-ion battery State-of-Health 

estimation using voltage-position encoding CNN and Incremental Capac-

ity Analysis with a novel smoothing parameter selection strategy. J. Energy 

Storage 130, 117296. https://doi.org/10.1016/j.est.2025.117296.

33. Dubarry, M., Svoboda, V., Hwu, R., and Yann Liaw, B. (2006). Incremental 

capacity analysis and close-to-equilibrium OCV measurements to quantify 

capacity fade in commercial rechargeable lithium batteries. Electrochem. 

Solid State Lett. 9, A454. https://doi.org/10.1149/1.2221767.

34. Li, Y., Stroe, D.-I., Cheng, Y., Sheng, H., Sui, X., and Teodorescu, R. 

(2021). On the feature selection for battery state of health estimation based 

on charging–discharging profiles. J. Energy Storage 33, 102122. https:// 

doi.org/10.1016/j.est.2020.102122.

35. Marri, I., Petkovski, E., Cristaldi, L., and Faifer, M. (2023). Comparing Ma-

chine Learning Strategies for SoH Estimation of Lithium-Ion Batteries Us-

ing a Feature-Based Approach. Energies 16, 4423. https://doi.org/10. 

3390/en16114423.

36. Li, H., and Chen, C. (2025). Lithium-ion battery SOH prediction based on 

multi-dimensional features and multi-model feature selector. Energy 

331, 136844. https://doi.org/10.1016/j.energy.2025.136844.

37. Wei, Z., Li, Y., Sun, X., Liu, W., Liu, C., and Lu, H. (2025). SOH estimation of 

lithium-ion batteries based on multi-feature extraction and improved 

DLEM. J. Energy Storage 120, 116460. https://doi.org/10.1016/j.est. 

2025.116460.

38. Xia, X., Chen, Y., Shen, J., Liu, Y., Zhang, Y., Chen, Z., and Wei, F. (2025). 

State of health estimation for lithium-ion batteries based on impedance 

feature selection and improved support vector regression. Energy 326, 

136135. https://doi.org/10.1016/j.energy.2025.136135.

39. Tao, S., Sun, C., Fu, S., Wang, Y., Ma, R., Han, Z., Sun, Y., Li, Y., Wei, G., 

Zhang, X., et al. (2023). Battery Cross-Operation-Condition Lifetime Pre-

diction via Interpretable Feature Engineering Assisted Adaptive Machine 

Learning. ACS Energy Lett. 8, 3269–3279. https://doi.org/10.1021/acse-

nergylett.3c01012.

40. Wang, J., Zhang, C., Zhang, L., Su, X., Zhang, W., Li, X., and Du, J. (2023). 

A novel aging characteristics-based feature engineering for battery state 

of health estimation. Energy 273, 127169. https://doi.org/10.1016/j.en-

ergy.2023.127169.

41. Chen, B., Liu, Y., and Xiao, B. (2024). A novel hybrid neural network-based 

SOH and RUL estimation method for lithium-ion batteries. J. Energy Stor-

age 98, 113074. https://doi.org/10.1016/j.est.2024.113074.

42. Zhu, J., Wang, Y., Huang, Y., Bhushan Gopaluni, R., Cao, Y., Heere, M., 
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