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SUMMARY

Accurate and transferable estimation of battery state of health is essential for the safety and reliability of elec-
tric vehicles and energy storage systems. However, many existing approaches rely on complete charging
and discharging data and overlook how feature selection, robustness, and data requirements affect estima-
tion performance. Here, we report a unified evaluation framework for predictive capability, transferable capa-
bility, and data efficiency for five features extracted from incremental capacity curves using partial charging
data. We show that the voltage and magnitude of the first peak provide a better combination of accuracy,
robustness across charge rates and temperatures, and minimal data needs. We demonstrate that these
two features enable accurate estimation across two datasets. The results reveal that reliable health estima-
tion can be achieved using only the portion of charging data corresponding to roughly less than 50% of the
charge process, reducing data curation effort while maintaining high accuracy and practical transferability.

INTRODUCTION

Lithium-ion batteries have been widely adopted in electric vehi-
cles and large-scale energy storage systems, owing to their high
safety performance, long cycle life, and favorable power perfor-
mance.'™ However, batteries inevitably degrade during opera-
tion, with usable capacity and safety margins declining over
time.® Accurate and transferable battery state of health (SOH)
estimation is therefore essential to ensuring safety and reliability
of these battery-enabled systems.®”

State-of-the-art approaches to estimate SOH can be broadly
categorized into model-based and data-driven methods.
Model-based approaches, including electrochemical models
and equivalent circuit models,>'® are limited by intrinsic
complexity of coupled electrochemical and physical processes
inside and between battery systems. Aging mechanisms such
as loss of lithium inventory (LLI),"*'® loss of active material
(LAM),"” and solid electrolyte interphase (SEI) growth are difficult
to fully characterize over the entire life cycle, while the imped-
ance parameters required for equivalent circuit models are labor
intensive and time consuming to obtain. Moreover, the model
parameters can be sensitive to different operating conditions,
and it remains difficult to construct reliable models for newly de-
signed batteries lacking full aging knowledge.

Data-driven methods have gained wide adoption with rapid
advancement of artificial intelligence, offering improved
simplicity and predictive accuracy. Algorithms such as support
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vector machines, ' decision trees, ' random forest,”° relevance
vector machines,”’ Gaussian process regression,”” convolu-
tional neural networks,”® recurrent neural networks,”* and long
short-term memory networks®>?® have been applied to capture
statistical relationships between measured data and battery ag-
ing states.?” For all these models, feature engineering plays a
critical role, as high-fidelity and transferable features are key to
accurate and transferable estimations. Widely used model in-
puts include voltage, current, incremental capacity (IC), and dif-
ferential voltage. Among them, IC-based features have attracted
particular attention because they can be obtained from partial
rather than full charge or discharge data, enhancing practical
feasibility. The IC, defined as the first-order derivative of capacity
with respect to voltage during charging or discharging, enables
extraction of features such as peak value, the corresponding
voltage, and the peak area.?®?° Lj et al.>° estimated SOH using
extracted IC features in a fixed voltage range from 3.8 to 4.1 V.
Lin et al.>" proposed eight health indicators from IC, differential
temperature, and differential thermal voltammetry curves to
improve LSTM-based modeling. Zhao et al.*’ developed a
voltage-position encoding approach that enabled robust IC-
based SOH estimation from incomplete charging profiles. More-
over, the evolution of IC peak positions and heights has been
shown to reflect aging mechanisms,*® providing a strong phys-
ical basis for feature and machine learning model interpretation.

Many studies use feature selection methods to enhance
model performance, with particular attention to the correlation
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between features and SOH. For example, Li et al. applied gray
relation analysis to quantify the correlation between health indi-
cators and battery capacity, and used this as the basis for model
variable selection.®* Marri et al. extracted features from charging
curves under different voltage limits and ranges, and analyzed
their linear dependence with capacity reduction.®® Li et al. further
proposed a systematic feature selection approach that evalu-
ated features through multi-model influence factor scoring.*®
Beyond correlation-based selection, several studies also
consider robustness under varying operating conditions. Wei
et al. ranked features using random forest importance and intro-
duced an MSHHO algorithm to avoid local optima.®’ Xia et al.
adopted a sequential forward selection strategy combined with
multi-objective optimization to extract features from impedance
spectroscopy, reducing feature size and eliminating irrelevant in-
formation.*® Although these approaches improve feature perfor-
mance, they might overlook the cost of feature acquisition. Tao
et al. demonstrated that features extracted from the first 120 cy-
cles can be seen as sufficient for some battery management
tasks, as adding more data did not improve estimation accu-
racy.>® Wang et al. designed an automatic feature selection
pipeline that reduced 206 raw features to a few features,
improving the data efficiency of the trained model.*® However,
existing research lacks a systematic consideration of predictive
capability (PC), transferable capability (TC), and data efficiency
(DE) of the feature engineering process. Although numerous fea-
tures have been proposed in recent years and proven effective
for battery diagnostics, their accuracy and robustness across
different conditions are still uncertain. This gap is crucial
because feature effectiveness directly affects the efficiency,
interpretability, and transferability of algorithmic decisions in
practical battery management systems. As a result, many exist-
ing extracted features perform well under specific operating con-
ditions or contain excessive information redundancy, leading to
low data efficiency and reduced generalizability. To sum up,
several critical issues remain unresolved: (1) features with high
PC across different operating conditions remain under-investi-
gated, and TC of extracted features is not well identified, and
(2) the critical balance between DE and model predictive accu-
racy is under-investigated, as model accuracy is often prioritized
while data acquisition and model training costs are frequently
neglected. These gaps highlight the urgent need for unified PC,
TC, and DE evaluation methods that are critically important to
achieve scientifically grounded feature selection and maximize
data efficiency.

This work extracts five features from IC curves and proposes
three criteria: PC, TC, and DE. PC is defined as the ability of fea-
tures to accurately reflect SOH, quantified through correlation
analysis. TC captures the contribution of features to cross-con-
dition SOH prediction, using the differences between SHAP-
based and correlation-based feature importance rankings. DE
emphasizes achieving sufficient estimation accuracy with the
least number of features, thereby reducing testing time and
data redundancy. Based on correlation, interpretability, and
sensitivity analyses, we demonstrate that two features, the hor-
izontal and vertical coordinates of the first IC peak, can be seen
as sufficient for accurate SOH estimation across the studied
operating conditions. This result indicates the potential to

2 Cell Reports Physical Science 7, 103083, February 18, 2026

Cell Reeorts ]
Physical Science

avoid unnecessary data curation and feature redundancy. An
XGBoost-based model is employed for SOH prediction, and
the framework is validated on CALCE and TJU datasets, span-
ning 24 batteries with 2 chemistry types over 6,000 cycles. Spe-
cifically, a transfer learning based on fine-tuning is performed
from 1C to 0.5C discharge batteries in the CALCE dataset and
from 25°C to 35°C batteries in the TJU dataset. Notably, with
these two features (the x- and y-coordinates of the first peak),
the CALCE dataset achieves an SOH estimation mean absolute
percentage error (MAPE) of 4.82%, while the TJU dataset rea-
ches a 0.65% MAPE with high accuracy and robustness. This
work highlights both the technical and economic potential of
PC, TC, and DE analysis when developing data-driven battery
management algorithms, especially considering accuracy,
transferability, and computational resource constraints.

RESULTS

Datasets and feature extraction

Two datasets encompassing batteries under different test condi-
tions are employed in this study. They are summarized in
Table S1. Furthermore, the proposed method is equally appli-
cable to datasets with diverse test conditions. The first dataset”’
is from the Center for Advanced Life Cycle Engineering (CALCE)
at the University of Maryland. Charging was performed using a
constant-current (CC) mode at 0.5C until the voltage reached
4.2 V, followed by a constant-voltage (CV) phase at 4.2 V until
the current dropped below 0.05 A. Discharging was conducted
under CC mode with a cut-off voltage of 2.7 V. In this dataset,
CS_35 batteries served as the source domain (discharged
at 1C), while CS_33 batteries served as the target domain
(discharged at 0.5C).

The second dataset™ is from Tongji University (TJU) and con-
tains 18650-type NCA batteries tested at 25°C, 35°C, and 45°C.
Batteries tested at 25°C and 35°C are used in this work. The
source domain includes 19 batteries charged at 0.5C and dis-
charged at 1C at 25°C, while the target domain includes 3 batte-
ries charged at 0.5C and discharged at 1C at 35°C.

Both CALCE and TJU datasets follow the CC-CV charging
protocol. Incremental capacity (IC) curves were derived by
plotting dQ/dV against voltage, as shown in Figure 1. Multiple
features were extracted from the IC curves, including the x-
and y-coordinates of the first peak (P1_x, P1_y), the x- and
y-coordinates of the second peak (P2_x, P2_y), and the area
under the curve between the two peaks (P12_Ar). Figures 1A
and 1B present the IC curves of the CALCE dataset in the
source and target domains, respectively, where light blue de-
notes the early aging stages and dark blue corresponds to the
later stages. The lifetimes of the source-domain battery CS_35
and the target-domain battery CS_33 are 870 and 850 cycles,
respectively. Figures 1C and 1D illustrate the IC curves of the
TJU dataset using the longest-lived batteries in the source and
target domains (210 and 570 cycles, respectively) as repre-
sentative examples. As cycling progresses, the voltage in-
creases, the IC heights decrease, and the area enclosed by
the IC curve becomes smaller. This demonstrates that IC
curves capture aging information, which can be exploited
through feature extraction.
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The feature names and explanations are presented in
Table S2. Figure 2 shows the evolution of each feature value
with cycling. Figures 2A-2E illustrate the trajectories of five fea-
tures for the CALCE target-domain battery CS_33, while
Figures 2F-2J present the corresponding results for the TJU
target-domain battery #1. Among these features, P1_x and
P2_x exhibit an increasing trend with cycle number, whereas
P1_y, P2_y, and P12_Ar display a decreasing trend.

Feature predictive capability

The purpose of feature extraction is to construct a data space
from existing measurements that can accurately predict the
SOH. To assess the predictive capability of each feature, we
calculated the correlation between individual features and
SOH. A higher correlation indicates a stronger mapping relation-
ship and better predictive potential. Figure 3 presents the corre-
lation analysis for two datasets. Figures 3A and 3B show the
heatmaps of feature—-SOH correlations for the source and target
domains of the CALCE dataset, respectively. Among all features,
P12_Ar, P1_x, and P2_x exhibit the highest correlation coeffi-
cients, with values of 0.99, —0.95, and 0.98 in the source domain,
and 0.96, —0.97, and —0.98 in the target domain, consistently
ranking among the top three. Figures 3C and 3D present the cor-
responding results for the TJU dataset. In this case, P12_Ar also
demonstrates a strong correlation with SOH. Although the corre-
lation of P2_x decreases, P1_x retains a relatively high correla-
tion with SOH. In addition, the Spearman correlation coefficient
is used to analyze the relationship between the features and
SOH degradation (Figure S1). The Spearman coefficients of
P1_y and P2_y are higher than their Pearson correlation, which
suggests that peak-related features are more effective in
capturing non-linear relationships, especially under complex
influencing factors. This supports the contribution of P1_y and
P2_y to transferability under different operating conditions.

from 1 to 570 cycles.

Feature transferable capability

Correlation analysis reflects the predictive capability of features
within a single dataset. However, it does not reveal whether
these features can still accurately estimate SOH under varying
operating conditions. To address this limitation, we further eval-
uate the transferable capability of features. XGBoost is em-
ployed as the predictive model for cross-domain learning, and
SHAP analysis is used to interpret feature contributions. This
approach provides a combined assessment of both PC and
TC. If a feature shows high importance in the XGBoost model
but relatively low correlation with the target variable, it suggests
that the feature may contain information that the model can cap-
ture but is not easily revealed through simple correlation anal-
ysis. Such information is likely to possess strong transferability,
as it may reflect more intrinsic and cross-task feature patterns
within the data. Figure 4A presents the SHAP analysis for the
CALCE dataset under cross-condition SOH prediction. The high-
est-ranked feature is P2_y, which represents the vertical coordi-
nate of the second peak. Compared with correlation analysis, the
feature rankings change under SHAP analysis because SHAP is
model-based and accounts for both PC and TC. Since cross-
domain prediction is considered, the ranking shifts can reflect
TC. A feature that moves upward in the ranking indicates higher
TC, whereas a downward shift suggests lower TC, which may
hinder SOH estimation under varying battery conditions. To
quantify TC, we calculate the difference between SHAP-based
and correlation-based rankings in Figure 4B. Features P1_y
and P2_y show positive ranking changes of 1 and 3, respectively,
indicating higher TC, while the horizontal features P1_x and P2_x
show little or negative change. Similarly, Figure 4C displays the
SHAP analysis for the TJU dataset. Here, P1_y ranks first and
P2_y ranks third. In Figure 4D, the ranking differences again
confirm that P1_y and P2_y exhibit positive changes (both +1),
whereas P1_x shows a negative shift. An additional validation
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Figure 2. The feature curves of the CALCE and TJU datasets
(A-E) Feature curves of battery CS_33 in the CALCE dataset.
(F-J) Feature curves of battery #1 in the TJU dataset.

using the Oxford battery dataset, which differs in material
composition from the CALCE and TJU datasets, further confirms
the same trend (Table S3).

Feature data efficiency
The use of more features does not necessarily lead to better per-
formance. Instead, an appropriate number of features should be

selected while considering the time required to obtain them,
thereby ensuring data efficiency. As charging progresses,
more features become available as the state of charge (SOC) in-
creases. Once SOC reaches 1, all SOH-related information can
be captured, but this results in substantial data acquisition
time and energy consumption. To evaluate the trade-off between
feature quantity and prediction performance, we conduct a
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sensitivity analysis by incrementally adding features in the order
they become available, starting with the first peak, followed by
the second peak, and then features beyond the second peak.
For each feature combination, the root-mean-square error
(RMSE) and mean absolute error (MAE) of SOH in the target
domain are calculated.

Figure 5A shows the feature data efficiency analysis for the
CALCE dataset. The cycle number was first used as the initial
feature input, as it has an inherent relationship with SOH evolu-
tion. Subsequently, features P1_x, P1_y, P2_x, P2_y, and
P12_Ar are added sequentially. The estimation error decreases
sharply with the addition of the first few features and then only
slightly thereafter. A clear inflection point occurs at three fea-
tures, indicating that the two features from the first peak are suf-
ficient to achieve high prediction accuracy. The occurrence of
the inflection point is consistent across different data samples,
indicating that it is stable. Similarly, Figure 5B presents the re-
sults for the TJU dataset, where the RMSE decreases sharply
at first but shows slight fluctuations when more than three fea-
tures are included. The MAE decreases gradually after the addi-
tion of P1_x and P1_y. This again suggests that the features from
the first peak alone are sufficient for accurate SOH estimation.
The robustness analysis with different proportions of target
domain data is shown in Figures S2 and S3. In addition, this
finding is further validated on the Oxford dataset different from
existing material compositions and transfer conditions
(Table S4). Selecting only one source battery may introduce
subjectivity. Therefore, each source battery is used to train the

Pl .y Pl x P2y P2 xP12 Ar

tures, P1_x is added; and with three fea-
tures, P1_y is included. The RMSE
reaches its minimum at three features,
while adding further features does not
lead to significant improvements. To
assess the model’s practicality and
computational efficiency in real-world
applications, the model size, training time, and prediction time
obtained using these three features are reported in Table S5.
In addition to considering individual source batteries, it is also
necessary to examine the impact of increasing the number of
source batteries on SOH estimation. When multiple source bat-
teries are available, they are combined for training and the RMSE
is evaluated. As shown in Figure 5D, the RMSE varies with both
the feature combination and the number of source batteries,
dropping sharply when three features and two source batteries
are used. However, when the number of source batteries ex-
ceeds two, the RMSE remains nearly unchanged. In addition,
the validation results on the Oxford dataset also demonstrate
that both the appropriate number of features and the number
of source-domain batteries contribute significantly to the reduc-
tion of RMSE (Figure S4).

Features

Analysis of predictive and transferable capability and
data efficiency

A comprehensive analysis of PC, TC, and DE is conducted for
each individual feature as well as for different feature combina-
tions. Figure 6 presents the evaluation results across these
three dimensions, together with the corresponding SOH esti-
mation. The SOH estimation errors, including MAE, MSE, and
MAPE, are summarized in Table 1. The values of PC and TC
are derived from feature ranking, whereas DE is assigned
based on acquisition time: features from the first peak, the sec-
ond peak, and those involving both peak areas are given
scores of 5, 3, and 1, respectively. Figures 6A-6E show that
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each feature exhibits distinct strengths and limitations across
the three dimensions. For example, P1_x demonstrates high
PC and DE but relatively low TC, whereas P2_y exhibits high
TC but low PC and DE. In general, horizontal-axis features
tend to yield higher PC, while vertical-axis features show higher
TC. Features related to the first peak generally provide better
DE, while those requiring longer acquisition times are associ-
ated with lower DE. In terms of SOH estimation, P12_Ar
achieves the highest accuracy, yielding an MAPE of only
0.22%, but obtaining this feature requires extended measure-
ment. In contrast, using P1_x and P2_y individually results in
MAPE values of 1.84% and 2.52%, respectively, while P2_x
and P2_y produce higher errors of 7.61% and 10.26%.
Figures 6F-6l further illustrate the analysis of feature combina-
tions. Combination 1 provides balanced performance across all
three dimensions, achieving an SOH estimation MAPE of only
0.65%. By contrast, combinations 2, 3, and 4 show relatively
high PC and TC but low DE, leading to larger MAPE values of
1.62%, 2.50%, and 1.43%, respectively. In addition to the ra-
dar chart plotted based on rankings, the radar chart calculated
from the numerical indicators of PC, TC, and DE is provided in
Table S6 and Figure S5.

SOH estimation

Figure 7 presents the SOH estimation results on the CALCE and
TJU datasets using different numbers of source batteries, with
comparisons between using all features and only two key
features.

Figure 7A shows the SOH estimation results for the CALCE
target domain. When only the first-peak features are used for
estimation and transfer, the predicted SOH remains close to
the ground truth, showing only minor deviations from the re-
sults obtained with all features and even achieving higher accu-
racy at later stages. Figure 7B displays the corresponding ab-
solute estimation errors, where using only the first-peak
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the TJU target domain, with the same axis defini-
tions as in (A).

(C) Sensitivity analysis for the TJU target domain
considering different source-domain batteries.
For each feature combination, the model is trained
on each individual source battery and transferred
to the target battery. Each violin plot represents
the distribution across multiple source batteries.
(D) Heatmap of SOH RMSE across different
feature combinations and numbers of source
batteries, where color intensity indicates error
magnitude.
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features vyields lower errors. The estimation errors (MAE,
RMSE, and MAPE) obtained with the P1 features (P1_x and
P1_y) are 0.0339, 0.0461, and 4.82%, respectively, as reported
in Table 2.

Figure 7C illustrates SOH estimation for the TJU target domain
using a single source battery. Arandom seed of 55 is set, and ten
runs are performed, each time randomly selecting one source
battery. The results obtained under other random seeds are pro-
vided in Table S7 and Figure S6. The average of the ten esti-
mates is plotted as SOH results, and the standard deviation is
calculated to construct the error band. Across different feature
combinations, SOH estimated with only the first-peak features
remains closer to the ground truth than with all features.
Figure 7D presents the corresponding absolute errors, again
showing smaller deviations when only the first-peak features
are used. The prediction errors (MAE, RMSE, and MAPE) with
the P1 features are 0.0059, 0.0070, and 0.65%, respectively,
as listed in Table 3, all of which are significantly lower than those
obtained with all features. Figures 7E and 7F show the SOH esti-
mation results and absolute errors when two source batteries are
used. A random seed of 55 is set, and 10 runs are performed,
each time randomly selecting two source batteries. The ten esti-
mates are averaged, and the standard deviation is calculated to
construct the error band. Compared with the case of using a sin-
gle source battery, the SOH predictions are closer to the ground
truth. The prediction errors (MAE, RMSE, and MAPE) with the P1
features are 0.0059, 0.0068, and 0.65%, respectively, as re-
ported in Table S8, again significantly lower than those obtained
with all features.

Finally, Figures 7G and 7H show the results and errors when
three source batteries are used. A random seed of 55 is set,
and ten runs are performed, each time randomly selecting three
source batteries. To better capture battery behavior under high-
temperature conditions and to provide a more challenging trans-
fer scenario, the SOH estimation and corresponding errors at



Please cite this article in press as: Su et al., Incremental capacity feature selection for lithium-ion battery state of health estimation considering esti-
mation capability and efficiency, Cell Reports Physical Science (2025), https://doi.org/10.1016/j.xcrp.2025.103083

Cell Rerrts .
Physical Science ¢? CellPress
OPEN ACCESS
A B C D E
Pl x Pl y P2 x P2y P12 Ar
TC TC TC TC TC
s 5 5 N 5
PC PC PC PC PC
DE DE DE DE DE
1.0 A 1.0 1.0 1.0
= GG 3 310 3 L
5 MAPE \ 5 991 ware 5 09 Tmare 509+ é 097 wape ™
” 0g L 184% 1 2.52% @ 7.61% 10.26% 0.22%
0 250 0 250 0 250 0 250 0 250

Lifetime (Cycles) Lifetime (Cycles)

Combination 1 Combination 2

TC TC
5 5
PC PC
DE DE
1.0 1.0 A
& Q S
= 0.9 1 jus) 4
Q MAPE 4. o 0.9 MAPE
7] . w2
0.65% 1.62%
0 250 0 250

Lifetime (Cycles) Lifetime (Cycles)

PC: Predictive Capability
Combination 1: P1_x, P1_y
Combination 3: P1_x, P1_y, P2_x, P2_y

== True SOH Estimated SOH

Figure 6. Comprehensive analysis of PC, TC, and DE

Lifetime (Cycles)

TC: Transferable Capability
Combination 2: P1_x, P1_y, P2_x
Combination 4: P1_x, P1_y, P2_x, P2_y, P12_Ar

Lifetime (Cycles Lifetime (Cycles)

Combination 3 Combination 4

TC TC
5 S
PC PC
DE DE
1.0 1 1.0 4
3\ 3\
&} &} \
Z 0.9 - = 09 - K
S MAPE N\ S MAIN
2.50% 1.43%
0 250 0 250

Lifetime (Cycles) Lifetime (Cycles)

DE: Data Efficiency

(A-E) Analysis of the PC, TC, and DE of a single feature, along with their SOH estimation results.
(F-1) Analysis of the PC, TC, and DE of combined features, along with their SOH estimation results.

45°C are presented in Figure S7. The average results are plotted
as SOH, and standard deviation is used to construct the error
band. The prediction errors (MAE, RMSE, and MAPE) with the
P1 features are 0.0071, 0.0078, and 0.80%, respectively, as re-
ported in Table S9, all significantly lower than the errors obtained
with all features. The error distribution shown in Figure 7 is pro-
vided in Table S10.

METHODS

IC curve smoothing and feature extraction

To extract reliable features from the IC curves, the raw voltage-
capacity data are first smoothed using the Savitzky-Golay filter
to suppress measurement noise while preserving the curve’s
peak shape. Let Q(t) and V(t) denote the charge capacity and
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Table 1. SOH estimation error under different features and feature combinations

P1_x P1_y P2_x P2_y P12_Ar Com1 Com2 Com3 Com4
MAE 0.0163 0.0225 0.0671 0.0904 0.0020 0.0059 0.0143 0.0219 0.0125
RMSE 0.0192 0.0243 0.0716 0.0974 0.0028 0.0068 0.0153 0.0249 0.0147
MAPE 1.84% 2.52% 7.61% 10.26% 0.22% 0.65% 1.62% 2.50% 1.43%

voltage as functions of time during the charging step. The IC
curve is defined as:

aQ

aQ gt .

v - @ (Equation 1)
dt

Both Q(t) and V(t) are smoothed using the Savitzky-Golay filter,
which fits a polynomial of degree p within a moving window of

width w to minimize least squares error. p is 3 in this study.
The smoothed value is computed as:

m

> cy(n +k)

k=-m

y(n) = (Equation 2)

Where y(n) is the value of the smoothed signal at the n-th sam-
pling point, ¢ is the convolution coefficient derived from the local
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Figure 7. SOH estimation results for the two
datasets under different transfer settings
(A and B) Comparison of SOH estimation and
absolute errors in the CALCE target domain
without transfer learning, with full feature transfer,
and with transfer based on only the first peak
feature.

(C and D) Comparison of SOH estimation and
absolute errors in the TJU target domain using one
battery from the source domain, without transfer
learning, with full feature transfer, and with transfer
based on only the first peak feature.

(E and F) Comparison of SOH estimation and ab-
solute errors in the TJU target domain using two
batteries from te source domain, without transfer
learning, with full feature transfer, and with transfer
based on only the first peak feature.

(G and H) Comparison of SOH estimation and
absolute errors in the TJU target domain using
three batteries from the source domain, without
transfer learning, with full feature transfer, and with
transfer based on only the first peak feature.
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Table 2. SOH estimation error in CALCE, with no transfer, all
features transfer, and only P1 features transfer

MAE RMSE MAPE R?
No transfer 0.0406 0.0536 6.43% 0.8647
All features + transfer 0.0281 0.0365 4.24% 0.8996
P1 features + transfer 0.0339 0.0461 4.82% 0.9371

polynomial fit, m = WT*H m is the window half-size, and w is cho-
sen as an odd number which is 21 to ensure symmetry. The
filtered IC curve %(V) reveals local peaks that correspond to
distinct electrochemical phase transitions, from which charac-
teristic features are subsequently extracted.

Predictive capability

The correlation between features and capacity reflects the de-
gree to which a feature can accurately predict capacity, with
stronger correlations indicating a higher potential for reliable ca-
pacity representation. Thus, we define predictive capability (PC)
using the Pearson correlation coefficient:

S (F - F) (SO — 5OH)
PC; = —1=_

(Equation 3)

\/z (F| — F)° 3> (SOH — SOH)’
i=1 =1
Capacitycurent

SOH = :
Capacitynitial

(Equation 4)

Where, PC; denotes the correlation coefficient of the i-th feature,
F{ is the value of the i-th feature at the j-th cycle, SOH is the cor-
responding ratio of capacity to initial capacity, and m is the num-
ber of lifetime cycles. The averages of features and capacity are
given by:

—_ 13
Fi=—>F Equati
: (Equation 5)

1 . i
SOH = > SOH (Equation 6)

Transferable capability

To evaluate whether extracted features are not only predictive
within a single dataset but also transferable across domains,
the TC of features is introduced. The underlying principle is
that a transferable feature shows greater importance in model-
based interpretability than in correlation-based analysis,
because model interpretability statistically reflects how well or
how stably a feature contributes to specific SOH estimation re-
sults across different domains as compared with other features,
which essentially represents TC. The interpretability-based
importance of the i-th feature is obtained by training an XGBoost
model (explained in a later section), from which the relative
contribution of each feature to the model output is derived.

Table 3. SOH estimation error in TJU using one battery from the
source domain, with no transfer, all features transfer, and only P1
features transfer

MAE  RMSE MAPE R?
No transfer 0.0343 0.0355 3.87% —0.6856
All feature transfer 0.0180 0.0203 2.05% 0.4475
P1 feature transfer 0.0059 0.0070 0.65% 0.9341
Error reduction rate (compared 67.2% 65.5% 68.3% -
to all features)
Error reduction rate (compared 82.8% 80.3% 83.2% -

to no transfer)

The ranking position of the i-th feature in this model-based
importance evaluation is denoted as R{™°%. It is calculated using
the SHAP value

The SHAP value of the i-th feature for a given sample x is
defined as:

@(f,x) = >

SCF\{i}

[SMIFI = 1SI = 1)

!
&0 [fsuiiy (Xsugiy) — fs(xs)]

(Equation 7)

Where F denotes the complete set of features, SCF\{i}is any
subset of features that does not contain feature i, and f(:) is the
predictive model. The global importance of feature i is obtained
as the expectation of the absolute SHAP values over all samples:

SHAP
15MP =

Ex[|®i(f, x)|] (Equation 8)

Based on this definition, the model-based ranking position of
feature i is given by:

RIo%! = ranj (I;5"4P) (Equation 9)

In parallel, the correlation-based PC defined in Section 2.1 pro-
vides another ranking of features, denoted as R{°":

R°" = rank(PC;) (Equation 10)

The TC of the i-th feature is then defined as:

TC; = R — Rodel (Equation 11)

A larger difference indicates that a feature receives a higher
ranking when model-based importance, which incorporates
both TC and PC, is considered. This suggests higher transfer-
ability in cross-domain SOH estimation. In contrast, a smaller dif-
ference implies that the feature’s ranking decreases after ac-
counting for TC and PC, indicating lower transferability in
cross-domain SOH estimation.

Data efficiency

The data efficiency of feature utilization during SOH estimation
is examined through a progressive feature addition strategy
designed to emulate the process of gradually acquiring informa-
tion along the charging trajectory. Beginning with the most
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fundamental cycling index, features are incorporated according
to their difficulty of acquisition, thereby forming a series of nested
feature sets. The feature subset is expressed as: Fx =
{f1,f2, i}k = 1,2,---,N.

Where, f, denotes the k-th selected feature, and N is the
maximum number of features considered. For each subset Fy,
source-domain data are used to train an XGBoost model, and
the trained model is subsequently applied to the target-domain
battery. The output is the estimated SOH of the target battery.
The estimation error is quantified using the RMSE and MAE,
which are defined in Section 2.6 Evaluation metric.

By tracking the variation of RMSE and MAE with the number of
incorporated features, the elbow rule is applied to identify the in-
flection point at which the error reduction transitions from steep
to gradual. This inflection point is regarded as the minimal
feature set required for reliable cross-domain SOH prediction,
thereby enabling a quantitative evaluation of DE:

1

E, = E(RMSEk + MAEy) (Equation 12)

Nepow = argkgrﬂa'\z(NJEkn — 2E; + Ex_+| (Equation 13)

DE = Nepow (Equation 14)

Where, Eirepresents the average error under the k-th feature
subset, and Ngponcorresponds to the point with the maximum
second-order difference, that is, the point where the error
decline has the most obvious turning point.

XGBoost predictor

XGBoost is an optimized gradient-boosted decision tree algo-
rithm designed for efficiency and scalability. The modeling logic
of this algorithm can be described as follows: First, a generalized
definition is given for the objective function. Then, in each itera-
tion, a suitable regression tree is identified to fit the residual pre-
dicted in the previous iteration. Subsequently, by minimizing the
objective function, the estimated value is progressively brought
closer to the true value. It minimizes the following regularized
objective function at each boosting iteration t:

= > Iy, yi"

n=1

+ fi(x,)) + Q(f) (Equation 15)

Where,n is the number of samples, y,, is the true SOH of sample 7,
y'~Vis the predicted SOH of sample , after t-1 iterations, fy(x,) is
the prediction from the -th regression tree for input features x,,
I() is the loss function, and Q(f,) is the regularization term control-
ling model complexity, defined as:

(Equation 16)

Where T is the number of leaves in tree f;, w, is the weight of leaf
a, and y and 4 are regularization coefficients. To optimize £,
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XGBoost uses a second-order Taylor expansion of the loss func-
tion around y'' = "):

1
~Z ( yn,yt V) + gufi(x,) + thft(xn)z) +Q(fy)

n=1

(Equation 17)

Where:
(t—1)
gy = %”1)) (Equation 18)
dy,7
02 , ot-1)
h, = (y” y” ) (Equation 19)

The optimal tree structure and leaf weights are determined to
minimize this approximate loss at each boosting step.

Transfer learning strategy

To address the challenge of limited labeled data in the target
domain, a transfer learning strategy is employed, consisting of
source-domain pretraining, target-domain fine-tuning, and sub-
sequent prediction. In the first stage, the XGBoost model is
trained on a source-domain dataset containing complete life cy-
cle data, allowing it to learn general aging patterns from a rich
feature set. Input features primarily include IC-derived descrip-
tors, such as peak values, peak voltages, and integrated areas,
while the number and type of features could be flexibly selected
according to experimental design. In the second stage, the
pretrained model is fine-tuned using only the first 25% of the
target-domain labeled data. This procedure adjusts the model
parameters to capture the specific aging behavior of the target
batteries while retaining the general knowledge acquired from
the source domain. Finally, the fine-tuned model is applied to es-
timate the SOH for the remaining 75% of the target-domain data,
enabling continuous capacity trajectory reconstruction for un-
seen cycles.

The XGBoost model is configured with a maximum tree depth
of 6, a learning rate of 0.05, subsampling and column subsam-
pling rates of 0.8, and regularization to prevent overfitting. Pre-
training is performed for 300 boosting rounds, followed by 100
additional rounds for fine-tuning. All model training and predic-
tion procedures are implemented in Python using the XGBoost
library.

Feature normalization
To ensure consistent scaling across domains, the features are
standardized using Z score normalization. For transfer learning,
the scaler is fitted jointly on the source-domain samples and
the labeled portion of the target domain:
H,0 = StandardScaler.ﬁt(Xsou,ceUX@fgeéfd> (Equation 20)

The obtained u,s is then applied to transform all source-
domain samples for pretraining, the labeled target samples for
fine-tuning, and the unlabeled target samples for final
estimation:



Please cite this article in press as: Su et al., Incremental capacity feature selection for lithium-ion battery state of health estimation considering esti-
mation capability and efficiency, Cell Reports Physical Science (2025), https://doi.org/10.1016/j.xcrp.2025.103083

Cell Reports
Physical Science
. X, —
Keoureg = S0urce — K (Equation 21)
o
B labeled __ U
ng;ftd _ [target (Equation 22)
o
- ulabeled __ u
x;",’;ﬁf’ed - target 7 (Equation 23)
o

Evaluation metric
The MAE is defined as:

1

c
MAE = m; lv; — ¥ (Equation 24)

The RMSE is defined as:

1

C
~\2 .

The MAPE is defined as:

(9]

Py v = ¥l
MAPE =%
7

x 100% (Equation 26)

Mo

j=d

where y;and y; are the true SOH and estimated SOH in the jth cy-
cle, respectively. C is the length of battery cycles, and d is the
starting estimation point, which means the cycles used to fine-
tune the source model.

DISCUSSION

This study systematically analyzes the predictive capability,
transferable capability, and data efficiency of IC curve features
for battery SOH estimation. The results show that the horizontal
coordinates of IC peaks exhibit higher predictive capability,
while vertical coordinates have higher transferability. Feature ef-
ficiency analysis reveals that features extracted from the first
peak provide sufficient information for accurate estimation,
achieving a favorable balance between prediction accuracy
and testing cost. In addition, analysis of the source-battery effi-
ciency indicates that two source batteries are adequate to
achieve accurate transfer, while adding more batteries does
not lead to improvements. These findings highlight the principle
of data efficiency, suggesting that both the number of features
and source batteries should be carefully selected to avoid un-
necessary data collection and associated energy consumption.

Our findings align with previous studies that associate peak
height variations in IC curves with the aging of electrode active
materials and changes in lithium inventory, and link peak voltage
shifts with increasing internal resistance.***” While prior works
focus on the physical interpretation of specific IC curve changes,
our study confirms this understanding with data-driven predic-
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tive modeling by explicitly linking feature predictability and trans-
ferability to aging mechanisms. This confirms the physical signif-
icance of IC features while explaining why certain features, such
as P1_x and P2_y, consistently demonstrate robustness across
domains. The Pearson coefficient reflects the linear correlation
between features, while the Spearman coefficient captures their
monotonic relationship. The decrease in correlation between
P1_x and P2_x under Spearman analysis indicates that their rela-
tionship is not strictly monotonic, possibly due to local peak
shifts or measurement noise. In contrast, the increase in correla-
tion between P1_y and P2_y suggests a more consistent mono-
tonic degradation trend of reaction intensities during cycling.

Compared with earlier works that often rely on the full set of IC
curve features or large amounts of training data, our study dem-
onstrates that accurate and transferable SOH prediction can be
achieved using a minimal and physically interpretable feature
set, together with a limited number of source batteries. In this
way, our work fills an important gap in the literature by establish-
ing the concept of PC, TC, and DE of features in SOH estimation.
This provides new insights into how to reduce the dependency
on large datasets without compromising prediction reliability,
which is particularly valuable under resource-constrained testing
conditions.

The findings contribute to advancing the field by promoting a
more efficient paradigm for battery health management, where
feature selection and source-battery efficiency are guided by
predictive performance and physical interpretability. The
method remains applicable when the dataset changes, provided
that the dataset includes batteries under different conditions that
are transferable. This approach reduces testing costs and
computational burdens and provides a framework for integrating
domain knowledge with data-driven methods in a scalable
manner.

From a practical standpoint, the concepts of PC, TC, and DE
also provide valuable guidance for the design and deployment
of battery management systems (BMSs). In real-world applica-
tions, BMSs are often constrained by limited computing power,
restricted memory, and low sampling frequencies, particularly in
embedded systems for electric vehicles or stationary storage.
High-PC features enable accurate SOH estimation even when
computational resources are limited, while high-TC features
ensure that models trained under specific conditions remain reli-
able when applied to batteries experiencing different load pat-
terns or environments. DE offers an accessible framework to bal-
ance sensing cost and prediction accuracy by identifying the
minimal yet sufficient number of features and sampling points
needed for reliable estimation, thereby reducing both data
acquisition and communication burdens within the BMS.

Nevertheless, several limitations remain within this preliminary
and demonstrative work since the current analysis is conducted
under isothermal conditions; thus, the generalizability of the
selected features under dynamic operating profiles or varying
temperatures requires further validation. In addition, while the
study focuses on handcrafted IC curve features, emerging ap-
proaches based on end-to-end deep learning may capture addi-
tional patterns beyond manually defined features. Future
research should therefore extend this framework to non-
isothermal and real-world cycling conditions, investigate the
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integration of physically interpretable features with advanced
machine learning models, and further explore data efficiency un-
der broader transfer learning scenarios. In the era of increasingly
large models and datasets,*®*® our work emphasizes the impor-
tance of data efficiency, encouraging the development of
methods that prioritize data quality and efficiency over sheer
volume.
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