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Abstract
Dafny is a verification-aware programming language that
comes with a compiler and static program verifier. However,
neither the compiler nor the verifier is proved correct; in fact,
soundness bugs have been found in both tools. This paper
shows that the aforementioned Dafny tools can be devel-
oped with foundational correctness guarantees. We present
a functional big-step semantics for an imperative subset of
Dafny and, based on this semantics, a verified verification
condition generator (VCG) and a verified compiler for Dafny.
The subset of Dafny we have formalized includes mutually
recursive method calls, while loops, and arrays—these lan-
guage features are significant enough to cover challenging
examples such as McCarthy’s 91 function and array-based
programs that are used when teaching Dafny. The verified
VCG allows one to prove functional correctness of annotated
Dafny programs, while the verified compiler can be used
to compile verified Dafny programs to CakeML programs.
From there, one can obtain executable machine code via
the (already verified) CakeML compiler, all while provably
maintaining the functional correctness guarantees that were
proved for the source-level Dafny programs. Our work has
been mechanized in the HOL4 theorem prover.

CCS Concepts: • Theory of computation→ Higher order
logic; Program verification; • Software and its engineer-
ing→ Compilers; Software verification;
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method M(n: int) returns (r: int)
ensures r == if n <= 100 then 91 else n - 10
decreases 111 - n

{
if n <= 100 {
var tmp := M(n + 11);
r := M(tmp);

} else {
r := n - 10;

}
}

Figure 1. “91 function” in Dafny.1

1 Introduction
Dafny [41] is a verification-aware programming language
with built-in support for specifications and supporting tools:
a compiler and static program verifier. Recently, Dafny has
been successfully used by Amazon Web Services to develop
a new and improved version of their authorization engine
while provably maintaining the functional behavior of the
original implementation [13].
To build an intuition on how Dafny works, consider Mc-

Carthy’s 91 function [43] shown in Figure 1, a nested re-
cursive function that is used as a basic test for automated
verification. It is interesting from an automation perspective
because to show that the value of the decreases clause ac-
tually decreases in the second recursive call, the prover must
simultaneously establish the postcondition for tmp. To prove
that the implementation satisfies the specifications given
in the ensures and decreases clauses, the verifier trans-
lates Dafny to Boogie [6, 40], an intermediate verification
language and verification condition generator (VCG). The
generated verification conditions are then checked using a
satisfiability modulo theories (SMT) solver, such as Z3 [17].
In order to run the program, the Dafny compiler translates it
to a language, e.g., C#, whose toolchain(s) can then be used
to generate a binary.

Both the Dafny compiler and VCG pipeline are substantial
pieces of software that must produce trustworthy results.
Unfortunately, past work has identified issues—particularly
soundness bugs—in both the implementation of the compiler

1Adapted from the Dafny GitHub repository.
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and the verifier [18, 34]. We aim to address these limitations
by showing that it is possible for Dafny to be done in a
foundational, end-to-end manner. In this work, we make the
following contributions:

• Define functional big-step semantics [49] for an im-
perative subset of Dafny, including mutually recursive
method calls, while loops, and arrays (Section 2).
• Implement a verified compiler from our subset of Dafny
to CakeML [38], which, in turn, provides a verified
compiler down to machine code (Section 3).
• Define a weakest precondition (wp) calculus for the
Dafny subset, prove its soundness, and use it to imple-
ment a verified VCG (Section 4).

Our subset is expressive enough to support examples such
as the previously introduced 91 function, and array-based
programs that are used when teaching Dafny. We demon-
strate our contributions in Section 5, where we apply both
the compiler and VCG to the 91 function and a method that
swaps two elements in an array (Swap), followed by proving
the resulting verification conditions to be valid. This yields
functional correctness guarantees at the level of compiled
CakeML functions.
We have mechanized this work in the HOL4 theorem

prover. Below, we present and motivate key design choices
in the formalization that enabled each of our contributions.

2 Semantics
Before we can write a verified compiler or verified VCG,
we must first formalize the meaning of Dafny programs. We
opted to define an untyped, functional big-step semantics [49]
for Dafny, i.e., a definitional interpreter function with a clock
(also called fuel) to ensure its termination and thereby de-
finability within the HOL4 logic. This style of semantics is
also used for CakeML and its compiler’s intermediate lan-
guages because it is particularly well-suited for mechanizing
compiler correctness results in HOL4 [49].

Themain syntactic objects are expressions (dfy_exp), state-
ments (dfy_stmt), and programs (program); Dafny programs
are a list of declarations used to look up functions and meth-
ods. Our interpreters for Dafny expressions and statements
have the following type signatures, respectively:

evaluate_exp : state → dfy_env → dfy_exp
→ state × value exp_result

evaluate_stmt : state → dfy_env → dfy_stmt
→ state × stmt_result

In this section, we will first introduce the types repre-
senting the semantic primitives such as value, 𝛼 exp_result,
stmt_result, dfy_env, and state. Afterward, we will define
interpreter semantics for Dafny expressions and statements,
followed by the semantics of Dafny programs.

2.1 Semantic Primitives
Values. We support integers, booleans, strings, and arrays,

and define the value type as follows:
value =

IntV int
| BoolV bool
| StrV string
| ArrV num num type

Array values hold their length, location on the heap, and
the type of their elements.2 Note that our language supports
nested arrays, e.g., an array of arrays of integers, which is
not to be confused with multi-dimensional arrays. The heap
itself is a list of heap values; thus, heap locations are indices
into that list. We currently only support arrays but plan to
add objects in the future.

heap_value = HArr (value list) type

Results. The interpreter can fail due to undefined behav-
ior (Rfail), such as trying to read an undeclared or uninitial-
ized variable, or timing out (a feature of functional big-step
semantics):

err_result = Rfail | Rtimeout

The result type is different for expressions and statements.
Evaluating an expression can either return a value or fail
due to the reasons above:

𝛼 exp_result = Rval 𝛼 | Rerr err_result
By parameterizing the type of the value being returned, we
can use the same data type when returning a single value or
a list of values, with the latter occurring when we evaluate
a list of expressions.
When evaluating a statement, the result can be to either

continue or stop the current evaluation:
stmt_result = Rcont | Rstop stop

The current evaluation can be stopped due to evaluating a
return statement or an error:

stop = Sret | Serr err_result
By factoring out the reason for stopping into a separate
type, we make it easier in the future to add support for more
statements that cause changes in the control flow, such as
continue and labeled break statements.

Environments. The semantic environment record con-
tains the entire Dafny program, which is searched when
calling functions or methods.

dfy_env = ⟨| prog : program |⟩
2While it is not necessary for array values to hold the length of the array in
the one-dimensional case, it is necessary for multi-dimensional arrays (for
which we plan to add support in the future), as in some cases we cannot
determine the length of inner arrays by indexing to them first if they follow
zero-length dimensions.
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States. We define the state of the interpreters with the
following record:

state = ⟨|
clock : num;
locals : (string × value option) list;
heap : heap_value list;
locals_old : (string × value option) list;
heap_old : heap_value list;
locals_prev : (string × value option) list;
heap_prev : heap_value list
|⟩

To ensure that the functional big-step interpreters are well-
defined, terminating functions, the clock keeps track of the
number of clock ticks that are still available. Each time we
evaluate an expression or statement that could potentially
diverge, such as calls or while loops, we first check whether
there are ticks still available. If nomore ticks are available, the
interpreter returns the timeout error as its result. Otherwise,
the clock is decremented, and evaluation continues.

The locals field is an association list that keeps track of all
declared variables and their values. By using the first match
when looking up a variable, we can support shadowing by
simply prepending elements. Since Dafny does not require
local variables to be initialized immediately when they are
declared, we use an option to indicate their initialization sta-
tus. Recall that trying to read an undeclared or uninitialized
variable causes the interpreter to return the Rfail error. As
mentioned earlier, the heap field models a list of heap values,
where elements are looked up via their (list) index.

The locals_old and heap_old fields hold the values of lo-
cals and heap right before executing the body of a method.
These are necessary to support the semantics of Dafny’s
old-expressions, which are discussed in the next section.
Finally, the locals_prev and heap_prev fields are used in-

ternally by the generated verification conditions, allowing
them to refer to a previously set state as needed.

2.2 Expressions and old-expressions
The semantics of Dafny expressions is straightforward. For
example, we define the semantics for a unary operation as
follows by first evaluating the operand to a value, then ap-
plying the unary operator:

evaluate_exp st0 env (UnOp uop e) def
=

case evaluate_exp st0 env e of
(st1,Rval v) ⇒
(case do_uop uop v of
None ⇒ (st1,Rerr Rfail)
| Some res ⇒ (st1,Rval res))

| (st1,Rerr err) ⇒ (st1,Rerr err)
Evaluating an expression only changes the state by decre-
menting the clock when function calls are made, which we
have proven as a theorem about the semantics. Evaluation

order for expressions follows Dafny’s short-circuit seman-
tics. In the absence of short-circuiting, we choose to evaluate
expressions from left to right, which feels more natural in
the context of Dafny.

As a verification-oriented programming language, Dafny
provides expressions that are only for verification. These
can be used to give hints to the automated verifier (with
the assert statement) or annotate methods with a pre- and
postcondition (with keywords requires and ensures re-
spectively). In particular, the expressions in these constructs
are required to be Dafny expressions that evaluate to boolean
values. The postcondition expression for many methods will
often need to relate the state of the heaps before and after
the execution of the method body. Accordingly, Dafny has
special support for old-expressions, which allow referring
to the state before the body was executed within the post-
condition.

To illustrate this, consider the followingmethod that swaps
two elements in an array:
method Swap(a: array<int>, i: int, j: int)
requires 0 <= i < a.Length && 0 <= j < a.Length
ensures a[i] == old(a[j]) && a[j] == old(a[i])
modifies a

{
// <- old refers to the state here
var temp := a[i];
a[i] := a[j];
a[j] := temp;
// <- ensures refers to state here

}

As ensures refers to the state after executing the method
body, the user must use old to refer to the array before it
was modified.

We define the semantics for old as

evaluate_exp st env (OldHeap e) def
=

case evaluate_exp (use_old_heap st) env e of
(st1,r) ⇒ (unuse_old_heap st1 st,r)

use_old_heap st def
= st with heap := st .heap_old

unuse_old_heap cur prev def
= cur with heap := prev.heap

In other words, a user-annotated expression wrapped
within old is evaluated in the heap state with respect to the
old heap, which the semantics sets when it enters a callee.

We also track the old locals because the state does not sep-
arate track parameters, i.e., they are indistinguishable from
other locals, and because Dafny allows shadowing parame-
ters. To illustrate this point, suppose that after swapping the
elements in the array, the user writes var a := 0; shadow-
ing a to be an integer. If we were to take the ensures as is,
a would mistakenly refer to the newly declared integer vari-
able. We avoid this by interpreting references to parameters
in ensures annotations to be implicitly wrapped in an Old
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expression, which, analogous to OldHeap above, evaluates
an expression in the old heap and the old locals.

2.3 Statements
As many Dafny programs are written in an imperative style,
we also define semantics for statements, which may modify
the state of the program.

Skip, Return, and Then. We can easily define the seman-
tics of Skip, Return, and Then:

evaluate_stmt st env Skip
def
= (st,Rcont)

evaluate_stmt st env Return
def
= (st,Rstop Sret)

evaluate_stmt st0 env (Then stmt1 stmt2)
def
=

case evaluate_stmt st0 env stmt1 of
(st1,Rcont) ⇒ evaluate_stmt st1 env stmt2
| (st1,Rstop stp) ⇒ (st1,Rstop stp)

Recall that the clock is used to prove termination of the
interpreter. As the recursive call in the Then case takes a
strictly smaller statement as an argument, we do not need
to decrement the clock to prove termination.

Assign. Dafny supports parallel assignment, meaning
that it is possible to swap the value of two variables by
writing, e.g.,

x, y := y, x;

which we support by first evaluating the expressions on the
right-hand side of an assignment, followed by assigning to
the left-hand sides from left to right.

Array Allocation. To allocate a (possibly nested) one-
dimensional array in Dafny, we can write

a := new T[len];

where T is the type of the array and len its length. Note that
the allocation on the right-hand side of the assignment does
not specify an initial value. According to the Dafny reference,
the initial array elements are arbitrary values of type T. This
is in contrast to our semantics, which supplies a default value
for the array elements. For the types supported by our subset,
defining a default value is straightforward. The advantage of
this tweak is that it avoids the non-deterministic choice of
an arbitrary value in the semantics, which otherwise would
have to be accounted for, e.g., by making the semantics non-
deterministic via an oracle.

Formally, array allocation is defined as appending a heap
value HArr xs t to the heap, where xs is a list of len copies
of the default value, and returning a value ArrV which, as
described in Section 2.1, records the length, location on the
heap, and the type of the array. Note that Dafny does not
support deallocation.

method Find(a: array<int>, key: int)
returns (i: int)
ensures 0 <= i ==> i < a.Length && a[i] == key
ensures i < 0 ==>
forall k :: 0 <= k < a.Length ==> a[k] != key

{
i := 0;
while i < a.Length
invariant 0 <= i <= a.Length
invariant

forall k :: 0 <= k < i ==> a[k] != key
{
if a[i] == key { return; }
i := i + 1;

}
i := -1;

}

Figure 2. Linear search in Dafny.4

While. We define the semantics forWhile as follows:3

evaluate_stmt st0 env
(While guard invs decrs mods body) def

=

if st0 .clock = 0 then (st0 ,Rstop (Serr Rtimeout))
else
case evaluate_exp (dec_clock st0) env guard of
(st1,Rval (BoolV F)) ⇒ (st1,Rcont)
| (st1,Rval (BoolV T)) ⇒
(case evaluate_stmt st1 env body of
(st2 ,Rcont) ⇒
evaluate_stmt st2 env
(While guard invs decrs mods body)

| (st2 ,Rstop stp) ⇒ (st2 ,Rstop stp))
| (st1,Rval guard_v) ⇒ (st1,Rstop (Serr Rfail))
| (st1,Rerr err) ⇒ (st1,Rstop (Serr err))

Note that, unlike Then, the recursive call takes the same
while loop as an argument, meaning that the size of the
statement being evaluated stays the same. Thus, every time
we enter the loop, we need to check and decrement the clock.

It is not strictly necessary to check and decrement the
clock immediately on entry; instead, it is possible to check
and decrement the clock right before the recursive call. We
decided to use the former, as it simplifies the correctness
proof for the compiler by more closely matching the seman-
tics of function calls, which is what loops compile to.

Method Call. We avoid showing the full semantics of a
method call due to its length. Instead, we use an example.
3Note that we do not check that the loop invariants invs hold here. As
we will see in Section 4, they are considered in the wp-calculus instead.
This suggests that our semantics for Dafny is actually a combination of the
functional big-step semantics presented here and the sound wp-calculus.
4Adapted from https://dafny.org/dafny/OnlineTutorial/guide.
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Suppose we want to call a method Find, which implements
linear search (Fig. 2). We write

idx := Find(a, key)

as the method call. Note that the caller must assign all out-
parameters. The semantics of the method call are as follows:

1. Look up “Find” in the prog field of the environment.
2. Evaluate the parameters a and key in the caller.
3. Check if the in- and out-parameters a, key, and i are

distinct.
4. Change locals to only contain the parameters a and

key initialized with their values, and the uninitialized
out-parameter i.

5. Copy the changed locals and the current heap to lo-
cals_old and heap_old, respectively.

6. Check the clock, and time out if no more ticks remain.
7. Decrement the clock and evaluate the method body,

expecting Rstop Sret as the return value.
8. Evaluate the out-parameter i in the callee.
9. Restore locals, locals_old, and heap_old to the original

values of the caller.
10. Assign the value of the out-parameter i to idx.

There are two noteworthy points regarding the evaluation of
the method body in step 6. First, evaluating the method body
requires a recursive call to evaluate_stmt. As the method
body can be arbitrarily large, we must check and decrement
the clock to be able to prove termination. Second, we require
the recursive call to return Rstop Sret; that is, the method
body must end with a return statement. Note that if a source
program does not explicitly endwith return (such as in Fig. 2),
the return statement is added automatically by our frontend.

2.4 Programs
Matching Dafny’s notion of executable programs, we define
the semantics of a program as first checking whether meth-
ods and functions have unique names, followed by calling
“Main” from an initial state where locals, heap, and their old
counterpart are initialized with the empty list.

evaluate_program ck (Program members) def
=

if ¬distinct (map member_name members) then
(init_state ck,Rstop (Serr Rfail))

else
evaluate_stmt (init_state ck)
(mk_env (Program members))
(MetCall [] «Main» [])

3 Verified Compiler
We now turn to describing our formally verified compiler
from Dafny to CakeML, which, together with CakeML’s
formally verified compiler [59], yields a verified compilation
pipeline for Dafny down to machine code. Our overall Dafny
compilation pipeline is as follows:

1. Generate an S-expression from an extended version of
Dafny’s existing frontend.

2. Parse the S-expression into a Dafny AST in HOL4.
3. Remove assert statements by replacing them with

Skip.
4. Freshen the AST, which updates all variable names to

be unique and start with “v”, simplifying proofs.
5. Compile the freshened Dafny AST into a CakeML AST,

discarding annotations.
6. Compile the CakeMLAST tomachine code in a verified

manner using the CakeML compiler [59].
This pipeline is engineered to maintain compatibility with
both Dafny tooling and the CakeML codebase and proofs. We
have successfully compiled and runmachine code for 18 code
examples, including Fibonacci, the 91 function, swapping
two elements in an array, and binary search.
In the rest of this section, we focus on describing the

Dafny-to-CakeML transformation, namely steps 3 and 4. The
compiler for these steps is defined as the function compile

compile dfy def
=

from_program (freshen_program (remove_assert dfy))

The technical challenges in implementing and verifying
compile include reconciling our choice of left-to-right evalu-
ation order with CakeML’s right-to-left order and handling
the possibility of early returns from Dafny method calls. We
first explain our implementation, then present the compiler
correctness statement and proof.

3.1 Compiler Implementation
Let us return to the linear search implementation shown in
Figure 2 to describe our compiler. This example showcases
many key features of Dafny; in order to compile it, we need
to map Dafny’s variables, arrays, while loops, (early) returns,
and methods to CakeML. Note that neither ensures nor
invariant clauses, nor their contents such as forall, are
compiled, as they are used only for verification purposes.

Variables. We compile Dafny variables to CakeML ref-
erences, which are mutable variables and thus semantically
equivalent. For example, i := i + 1 in Dafny is compiled to
i := !i + 1, where ! is the dereference operator in CakeML.
We postpone the discussion of variable declarations to the
compilation of the method signature later in this section.

Arrays. Dafny arrays are compiled to tuples that hold the
array and its length for the reason mentioned in Footnote 2.
For example, in Figure 2, the array a is represented by a
corresponding CakeML value of type (int * int array).
Thus, a[i] is compiled to Array.sub (snd (!a)) (!i)
and a.Length is compiled to fst (!a).

While Loops. We compile while loops as tail-recursive
functions, matching the definition of while in Standard
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ML [44]. The CakeML compiler performs tail-call optimiza-
tion, i.e., tail-recursive functions do not require allocating
a new stack frame with every call, meaning that there is
no risk of our compilation of loops causing excessive stack
allocation. The loop in Figure 2 is compiled to:

let fun loop () =
if !i < fst (!a) then (
if Array.sub (snd (!a), !i) = !key
then raise Return else ();
i := !i + 1;
loop ()

) else ()
in loop (); ... end

Note that we call loop at least once. After entering the loop,
we check whether the loop condition holds. If it does, we
execute the body and recursively tail-call the loop. If the
condition does not hold, the expression evaluates to ().
Additionally, observe that the Dafny code returns imme-

diately once the key is found. In CakeML, we compile this
as raising the Return exception. To ensure the existence of
this exception, the compiler inserts

exception Return;

at the beginning of every program. We postpone the dis-
cussion of how we handle the Return exception from the
perspective of the caller until later in the text.

The rest of the body after the loop is compiled as
i := ~1;
raise Return

Recall that the final (non-early) return line is implicitly in-
serted by the Dafny frontend at the source level and thereby
compiled the same way as all return calls to a CakeML
Return exception. This insertion ensures that every method
call explicitly returns, which is consistent with our seman-
tics.

Methods. Before discussing the compilation of the rest
of the method outside the body, it is useful to first discuss
the compilation of method calls. Suppose that idx is a local
variable, and a and key are bound to some array and integer,
respectively. Then, the method call

idx := Find(a, key)

is compiled to
let val t0 = dfy_Find key a
in idx := t0 end

Note how we assign to the left-hand side in a separate
expression, prepend “dfy_” to the method name, and reverse
the order of arguments. While separating the assignment is
not necessary in this case, it is necessary when a method has
multiple out-parameters, in which case, the method returns
a tuple. For example,

min, max := MinMax(a)

is compiled to

let val (t0, t1) = dfy_Find key a
in min := t0; max := t1 end

If a method does not have any out-parameters, its return
value and the assignment become ().

By prepending “dfy_” to method names, combined with
the fact that after the freshen pass all user-generated variable
names start with “v”, the compiler can generate additional
names, such as t0 and t1 in the preceding examples, which
(provably) do not change the semantics of the program.

We reverse the order of arguments to account for the
difference in evaluation order between CakeML and Dafny.
Instead of reversing the order of arguments, we could have
enforced a left-to-right evaluation order using let-bindings.
The disadvantage of this approach is that we need to generate
as many internal variables as there are arguments and prove
that they do not change the semantics. While this is possible
and we do similar proofs in other parts of the compiler, they
are tedious.

Having a picture of howmethod calls are compiled, we can
now discuss the compilation of the rest of the method outside
the body. In particular, the compiled method must return
the values of the out-parameters at the end of the method.
As a method always explicitly returns, we can simply wrap
the compiled body in an exception handler, which reads the
out-parameters and returns their value:

<compiled body>
handle Return => !i

The last remaining step is to compile themethod signature:
fun dfy_Find key a =
let

val key = ref key
val a = ref a
val i = ref 0

in ... end

As the body refers to the parameters as variables, and we
compile variables as references, we have to allocate refer-
ences for key, a, and i. Note that key and a are initialized
with the respective arguments, whereas the out-parameter i
(uninitialized in Dafny) is initialized to be 0.

In general, we compile variable declarations, including
out-parameters, as references that are initialized with 0 re-
gardless of their type. This can produce CakeML code that
does not pass CakeML’s type checker but allows us to avoid
an extra layer of boxing, e.g., by storing references to op-
tions. However, in some cases, this compilation scheme still
introduces unnecessary assignments. In the future, we plan
to implement a compiler pass that eliminates such redun-
dant assignments where possible, which would allow further
optimizations such as removing references in cases where a
variable is only read.

Note that generating potentially type-incorrect CakeML
is not necessarily a problem in terms of correctness for two
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exception Return;

(* fst and snd are inlined in the compiler *)
fun fst (x, y) = x;
fun snd (x, y) = y;

fun dfy_Find (key: int) (a: int * (int array)) =
let

val key = ref key
val a = ref a
val i = ref 0

in
(i := 0;
let fun loop () =
if !i < fst (!a) then (
if Array.sub (snd (!a), !i) = !key
then raise Return else ();
i := !i + 1;
loop ()

) else ()
in
loop ();
i := ~1;
raise Return

end)
handle Return => !i

end;

Figure 3. Result of compiling Find to CakeML

reasons: first, the correctness theorem of the CakeML com-
piler applies to all programs with well-defined semantics,
regardless of their type correctness. Second, as a valid Dafny
program will always assign variables before reading them,
the generated CakeML program will also have well-defined
semantics. We will formalize a more general version of this
argument with the correctness of our compiler in Section 3.2.

Figure 3 shows the final compilation result for Find.

3.2 Compiler Correctness
Informally, our correctness theorem states that evaluating a
Dafny program using Dafny’s functional big-step semantics
is equivalent to evaluating the compiled Dafny program
using CakeML’s functional big-step semantics, according to
a notion of equivalence we define.

3.2.1 Equivalence. Recall from Section 2 that the func-
tional big-step semantics returns a state and a result. Step-by-
step, we will build up our notion of equivalence for values,
results, states, and environment, which we will use for our
correctness theorems.

Value Relation. We define equivalence between Dafny
(left) and CakeML (right) values using the inductive val_rel,

whose definition is straightforward for integers, booleans,
and strings. For example, it is defined as follows for integers:

⊢ val_rel m (IntV i) (Litv (IntLit i))
Array values in Dafny are equivalent to a CakeML tu-

ple containing the length of an array and its location in
CakeML’s store. We require that the lengths match, convert-
ing between num and int as necessary, and that the locations
are related through the map m.

⊢ lookup m loc = Some loc′ ⇒
val_rel m (ArrV len loc ty)
(Tuplev [Litv (IntLit (&len)); Loc T loc′])

Result Relation. The equivalence between Dafny and
CakeML expression results is built on val_rel:

exp_res_rel m (Rval dfy_v) (Rval [cml_v]) def
=

val_rel m dfy_v cml_v

For statements that execute normally in Dafny, we only
require that the corresponding CakeML expression return
some value. In the case of return, we check that the correct
Return exception has been raised in CakeML:

stmt_res_rel Rcont (Rval v0)
def
= T

stmt_res_rel (Rstop Sret) (Rerr (Rraise val)) def
=

is_ret_exn val

State Relation. We define the equivalence between a
Dafny and CakeML state as follows:

state_rel m l s t cml_env def
=

s.clock = t .clock ∧ array_rel m s.heap t .refs ∧
locals_rel m l s.locals t .refs cml_env.v

Here, s and t are the Dafny and CakeML states, respec-
tively. By requiring the clocks to be equal, we can prove that
a Dafny program diverges if and only if the corresponding
CakeML program diverges.
The array_rel relation requires that for every array on

Dafny’s heap, the mapping m provides the location of the
corresponding array on CakeML’s store and additionally
requires that their contents satisfy val_rel.
The locals_rel relation requires that for every local vari-

able in Dafny, the mapping l provides the corresponding
reference in CakeML, which must be bound to the same
name in the CakeML environment (cml_env). If the local
variable is initialized in Dafny, the values must be equivalent
with respect to val_rel.

Environment Relation. We define env_rel to specify
both a notion of equivalence between Dafny’s and CakeML’s
environments and additional well-formedness conditions
on the environments. First, we require the presence of ba-
sic functions and constructors such as True, False, and ::
(cons) in CakeML. Additionally, we require that the pro-
gram in Dafny’s environment be well-formed, and for each
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of its members, the corresponding function must exist in
CakeML’s environment.

3.2.2 Compiler Correctness Statement. We formalize
the correctness statement described informally at the begin-
ning of this section:

⊢ evaluate_program dfy_ck prog = (s,Rcont) ∧
compile prog = inr cml_decs⇒
∃ ck t′ m′ r_cml.
evaluate_decs (cml_init_state ffi (dfy_ck + ck))
(cml_init_env ffi) cml_decs =
(t′,r_cml) ∧

state_rel m′ empty s t′ (cml_init_env ffi) ∧
stmt_res_rel Rcont r_cml

This is a forward simulation result, which suffices to show
that the (deterministic) semantics of Dafny programs are
preserved in the output CakeML programs. Note that the
correctness statement only talks about Dafny programs that
terminate successfully (Rcont). We can use the VCG to be
sure that a given program successfully terminates, which is
implied by the correctness of the VCG and the soundness of
the weakest precondition calculus (Section 4.2). In Section 5,
we will combine this fact with the compiler theorem in the
context of the 91 function. As indicated by the sum value,
the Dafny-to-CakeML compiler can fail, for example, if the
compiler is asked to compile a forall-expression; compiler
correctness only applies when it succeeded.
To understand why we existentially quantify over addi-

tional clock ticks ck in the CakeML initial state, recall that
state_rel requires Dafny’s and CakeML’s clocks to be the
same. However, in some cases it may be necessary to compile
Dafny code into CakeML code that requires (finitely) more
ticks in the semantics. For example, a Dafny method with 𝑛
parameters is compiled to a curried function, meaning that
a call to that method requires at least one tick in Dafny’s
semantics, whereas it requires at least 𝑛 ticks in CakeML’s
semantics.

Correctness of Statement Compilation. A major com-
ponent of the top-level correctness proof is the correctness of
the compiler for statements. Omitting some technical details,
it is stated as

⊢ evaluate_stmt s env_dfy stmt_dfy = (s′,r_dfy) ∧
r_dfy ≠ Rstop (Serr Rfail) ∧
from_stmt stmt_dfy lvl = inr e_cml ∧
state_rel m l s t env_cml ∧
env_rel env_dfy env_cml ∧ is_fresh_stmt stmt_dfy ∧
no_shadow (set (map fst s.locals)) stmt_dfy ⇒
∃ ck t′ m′ r_cml.
evaluate (t with clock := t .clock + ck) env_cml
[e_cml] = (t′,r_cml) ∧

state_rel m′ l s′ t′ env_cml ∧ m ⊑ m′ ∧
stmt_res_rel r_dfy r_cml

Note the similarities to the top-level correctness statement.
Here, we prove that evaluating a Dafny statement and its
compiled counterpart results in a state and result that are
equivalent under their respective relations; we also permit
the CakeML semantics to begin with more clock ticks.

The main difference is that the assumptions of this latter
statement are more general. In particular, we universally
quantify over all states and environments that satisfy state_-
rel and env_rel, respectively. Additionally, we assume the
properties that are established by the freshen pass, namely
that variable names are unique and begin with “v”, which is
captured by is_fresh_stmt and no_shadow. This generality
allows us to prove compiler correctness using the induction
principle arising from the termination proof of the functional
big-step semantics for Dafny.

4 Verified VCG
This section presents our formally verified verification con-
dition generator (VCG), which, given a Dafny program, pro-
duces a list of verification conditions as Dafny expressions.
Verifying the output expressions shows functional correct-
ness of Dafny programs and, moreover, guarantees well-
definedness as assumed by our compiler. A key challenge is
to design the VCG to support sound analysis for loop framing
and termination, which, in particular, enables verification
for subtle examples like the 91 function (Fig. 1).

We approached the VCG formalization in two phases:
1. Define a weakest precondition calculus for Dafny as

an inductive relation in HOL4 and prove it sound with
respect to the Dafny semantics.

2. Define a concrete VCG implementation function that
checks the program and emits verification conditions
as Dafny expressions; this step is proved correct with
respect to the wp-calculus.

This two-phase methodology is also applied when extend-
ing the wp-calculus with new rules or refining existing ones.
By splitting the VCG into a calculus and a function, we can
focus on clearly and concisely specifying the wp-rules in the
calculus while leaving potential performance considerations
to the implementation of the VCG function. Mirroring our
development process, we will first describe our calculus and
its soundness, followed by the VCG and its correctness.

4.1 Weakest Precondition Calculus
We implement the wp-calculus as an 8-place inductive rela-
tion for Dafny statements:

stmt_wp m reqs stmt post ens decs mods ls
In order of appearance, the parameters are: the set of avail-

able methods m, the preconditions reqs, a Dafny statement
stmt, the postconditions post and ens, a termination measure
decs, a list of locations that may be modified mods, and a
list of defined locals and their types ls. The parameters reqs,
post, ens, decs, and mods are lists of expressions, matching
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the type of user annotations in the input program. The rules
of our calculus are more easily understood if one considers
the parameter reqs as the output and all the other parame-
ters as inputs, which, as we will see later, is mirrored by the
implementation of the VCG.

We distinguish two kinds of postconditions, where the pa-
rameter ens determines the conditions that must hold upon
statement return (i.e., Rstop), while post determines the con-
ditions that must hold assuming we continue executing nor-
mally (i.e., Rcont). This is necessary to support early-return
semantics, and the difference is easily illustrated by the def-
inition of stmt_wp for the Return and Skip cases, which
requires their preconditions to be ens and post, respectively:

⊢ stmt_wp m ens Return post ens decs mods ls
⊢ stmt_wp m post Skip post ens decs mods ls

We can also easily express the relation in the case of state-
ment composition:
⊢ stmt_wp m pre1 s1 pre2 ens decs mods ls ∧
stmt_wp m pre2 s2 post ens decs mods ls⇒
stmt_wp m pre1 (Then s1 s2) post ens decs mods ls

The verification condition lists are interpreted conjunc-
tively, so to add a verification condition, we can simply
prepend it to the precondition, as in the case of user as-
sertions:
⊢ stmt_wp m (e::post) (Assert e) post ens decs mods ls

Note that there is an implicit well-formedness check for
verification conditions: since they are expressions, to prove
their validity we must show that they evaluate to True in
all states, which is impossible if an expression is not well-
formed, as its evaluation would fail in some state.

Assign. A classical wp-rule for assignment would per-
form variable substitution, which can be tricky to get right,
in particular in the presence of parallel assignment. Addi-
tionally, if variables are substituted for large expressions, the
generated conditions can explode in size [23]. We avoid both
of these issues by using a let-expression instead, for which
we have defined functional big-step semantics similar to the
assignment statement.

To illustrate this, suppose we want to determine the weak-
est precondition for the statement

b := a + a + a;
x, y := b + b + b, c;

and the postcondition x < y. In the case of variable substi-
tution, the intermediate result stemming from Then is

b + b + b < c

with the final result being
a + a + a + a + a + a + a + a + a < c

With our approach of using let, the intermediate result is
let x = b + b + b, y = c in
x < y

with the final result being
let b = a + a + a in
let x = b + b + b, y = c in

x < y

Formally, the complete rule for assignment is as follows:
⊢ map fst l = map VarLhs ret_names ∧
map snd l = map ExpRhs exps ∧ distinct ret_names ∧
every (𝜆 v. ¬mem v mods) ret_names ∧
length exps = length ret_names ∧
set ret_names ⊆ set (map fst ls) ∧
get_types ls exps = inr rhs_tys ∧
get_types ls (map Var ret_names) = inr lhs_tys ∧
lhs_tys = rhs_tys⇒
stmt_wp m [Let (ZIP (ret_names,exps)) (conj post)]
(Assign l) post ens decs mods ls

The precondition is now a Let expression that binds the
names being assigned to their respective expressions in the
scope of the postcondition. The rule also performs several
syntactic well-formedness and type correctness5 checks on
assignments, which is necessary for soundness; these checks
are usually added/modified as we discovered their necessity
when formalizing soundness of the calculus. We omit further
discussion of these checks for brevity.

Array Update. We also support array updates such as
a[idx] := e;

Similar to the assignment rule, the rule for array updates
performs several syntactic well-formedness and type cor-
rectness checks. In particular, it syntactically checks that a
is part of the modifies clause. As a consequence, only vari-
ables can be included in the modifies, and not expressions
such as a[idx]; we aim to lift this restriction in the future.

Omitting some well-formedness checks, the weakest pre-
condition for the example above is:

0 <= idx /\ idx < a.Length /\
SetPrev (ForallHeap [a]
(a[Prev idx] = (Prev e) /\
forall i: int ::
(i != (Prev idx) /\
0 <= i /\ i < a.Length ==>
a[i] = PrevHeap (a[i]))

==> post))

The expressions SetPrev, Prev, PrevHeap, and ForallHeap
are our extensions to provide sufficient expressivity for ver-
ification conditions. The expression ForallHeap quantifies
over all heaps where previously allocated locations outside
a remain unchanged, including heaps with newly allocated
locations. More specifically, the argument to ForallHeap is a
list of locations that are havoced and thus must be a subset
of what is provided in the modifies clause. By using Prev

5While VCG and type checking are typically performed as separate passes,
we have combined them into a single phase for this work.
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and PrevHeap within SetPrev, expressions are evaluated at
the point of SetPrev, with locals and heap appropriately set.
The index must be wrapped in Prev to correctly handle cases
such as a[a[idx]] := a[idx]. Together, the verification
condition frames the unmodified state around the update.

Array Allocation. To understand the wp-rule for array
allocation, consider

a := new T[len]; <next statement>

Observe that the example above is a sequence of statements,
with the first statement assigning the newly allocated array
to a. This is because the wp-rule for array allocation is a
special case of the wp-rule for statement composition: sub-
sequent statements may modify a, so it must be added to
the list of locations that the following statement may mod-
ify. Note that requiring allocation to be followed by another
statement does not limit expressivity: statements only occur
in methods, which, as previously mentioned, must explicitly
return using a Return statement, meaning that allocation
never occurs on its own.

Again, omitting some well-formedness checks, the weak-
est precondition for the example above is:

0 <= len /\
SetPrev (ForallHeap [] (forall a: array<T> ::
(a.Length = (Prev len) /\
let x = (Prev default_e) in
(forall i: int ::

(0 <= i /\ i < a.Length ==> a[i] = x))
==> wp_next_stmt)))

Note that it uses the constructs Prev and ForallHeap, which
were introduced in the context of array updates. However,
in contrast to array updates, the list passed to ForallHeap is
empty, meaning that, except for potentially newly allocated
locations, the heap is unchanged. Recall from Section 2.3 that
we define arrays to be initialized with some default value.
This fact is expressed in the verification condition using the
let-expression. Finally, wp_next_stmt is the weakest precon-
dition of the statement following the allocation. It is the same
as in the general rule for statement composition, except that
a has been added to its mods.

While. Fundamentally, our definition of the wp-rule for
while loops is the same as the standard Hoare Logic rule
with annotated invariants. However, our definition must ad-
ditionally account for termination and framing to ensure that
the loop preserves properties of variables not modified by
its body. To illustrate these points, consider SumToN (Fig. 4),
which includes the decreases clause automatically guessed
by the Dafny frontend. Keeping it high-level, the weakest
precondition for the while loop is:

invariant (holds on entry) /\
invariant is maintained /\
forall sum, i ::
!(i <= n) /\ invariant ==> ensures

method SumToN(n: int) returns (sum: int)
requires n >= 0
ensures sum == n * (n + 1) / 2
ensures n >= 0

{
var i := 1;
sum := 0;

while i <= n
invariant 1 <= i <= n + 1
invariant sum == (i - 1) * i / 2
decreases n - i

{
sum := sum + i;
i := i + 1;

}
}

Figure 4. Summing to n in Dafny.

Note that in the final conjunct, where we prove the post-
condition, we only quantify over sum and i, which we have
determined by syntactically checking which locals are as-
signed to. In particular, we do not quantify over n, effectively
framing the property n >= 0. Since the loop does not include
a modifies clause, the heap is unchanged.
To ensure that the loop terminates, we need to check

whether the expression in decreases actually decreases. For
this, we need to be able to refer to the value of decreases at
the beginning of an iteration, which we achieve by storing
that value in fresh variables.
If we were to explicitly apply this transformation to the

loop body in Figure 4, we would get
var prev_n_i := n - i;
sum := sum + i;
i := i + 1;

It should be noted that we do not explicitly apply this trans-
formation. Instead, the wp-calculus quantifies over a list of
variables that are sufficiently unique.

Knowing this, we can now discuss where the decreases
check happens, namely as part of checking that the invariant
is maintained

i <= n /\ invariant ==> body_wp

where body_wp represents the weakest precondition of the
loop body and the postcondition

invariant /\
n - i < prev_n_i /\
0 <= prev_n_i /\ 0 <= n - i

Method Call. The weakest precondition for method calls
must make sure that the precondition of the call is satis-
fied, recursive calls decrease the termination measure in
decreases, and that the postcondition of the method call
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implies the weakest precondition of the rest of the state-
ments. An (optional) modifies clause indicates locations on
the heap that may have changed.
For example, the weakest precondition of the first call in

the 91 function (Fig. 1) is
// precondition
let n = n + 11 in True /\
// decreases
(let n = n + 11 in 111 - n) < old(111 - n) /\
0 <= (let n = n + 11 in 111 - n) /\
0 <= old(111 - n) /\
// postcondition implies wp for the rest
forall tmp: int ::
(let n = n + 11, r = tmp in

r == if n <= 100 then 91 else n - 10)
==> ...

We can simplify the condition by noticing that, at the
method call, n <= 100 holds, and that because the method
does not update n, we know that old(n) is equal to n.

Applying substitution and basic simplification rules to the
last conjunct, we get:

forall tmp: int ::
tmp == if n <= 89 then 91 else n + 1
==> ...

By considering the fact that n <= 100, we know that tmp
is a number that is between 91 and 101. Hence, it is less
than 111, meaning that the value of 111 - tmp is non-
negative. Considering what we know about tmp from the
postcondition of the call, we also know that it is larger than n.
Thus, the next recursive call will pass the decreases check.
From the postcondition and the range of tmp, we know that
rwill be exactly 91, proving the postcondition of the method
for n <= 100.

4.2 Weakest Precondition Soundness Statement
The soundness of our weakest precondition calculus consists
of a top-level soundness theorem for methods, which uses a
soundness result for stmt_wp.

Informally, the soundness theorem for methods states that
if for every method its precondition (requires) implies the
weakest precondition (stmt_wp) of its method body, then
eachmethod will adhere to its specification whenever started
from a state satisfying its precondition.
This top-level method soundness theorem is proved by

induction on a well-founded order in such a way that we get
an inductive hypothesis stating that any method call using
an input state that is smaller, according to the well-founded
order, behaves according to its specification. The order we
use is a lexicographic order on the “level” of a method and
the values of its decreases clause. The level of a method
is determined using a topological sort on the call graph of
a program. Thus, if methods are (mutually) recursive, they
have the same level and may only call each other if the values

of the decreases clause actually decrease at calls. Otherwise,
the callee has a lower level than the caller, and no decreases
clause is required.

The soundness proof of methods uses the following sound-
ness theorem for the weakest precondition for statements.
One can read this soundness theorem as saying: if reqs holds
in the initial state st, and all methods in m can be found in
the environment env, then evaluating stmt will terminate
and result in a state where post or ens is satisfied, depending
on whether the statement returns.

⊢ stmt_wp m reqs stmt post ens decs ls⇒
conditions_hold st env reqs ∧
compatible_env env m ∧ . . . ⇒
∃ st′ ret .

eval_stmt st env stmt st′ ret ∧
case ret of
Rcont ⇒ conditions_hold st′ env post
| Rstop Sret ⇒ conditions_hold st′ env ens
| Rstop (Serr v3) ⇒ F ∧
. . .

Note that this is a total correctness result—the fact that evalu-
ating stmt will terminate is hidden in the eval_stmt relation
(more details below), which requires there to exist clocks
such that evaluation does not time out.

The soundness theorem above has some of its assumptions
omitted (. . . ) because the assumptions include the lengthy in-
ductive hypothesis regarding method calls: specifically, that
we can assume that every method that we might call adheres
to its specification if the call is made in a state where the
well-founded order used in the method soundness proof has
decreased. The fact that the measure decreases is something
we get to know from the verification conditions we generate
for each call site.
To prove the soundness of stmt_wp, we proceed by in-

duction over the definition of stmt_wp, showing that each
wp-rule is locally sound. For its proof, it is more convenient
to work with a relational-style semantics, as opposed to the
functional big-step style used in the compiler proof.

To bridge the relational and functional styles, we defined
the relations eval_exp and eval_stmt (shown below), which
effectively quotient out the functional big-step clocks in
evaluate_exp and evaluate_stmt, respectively, by existential
quantification.

eval_exp st env e v def
=

∃ ck1 ck2 .
evaluate_exp (st with clock := ck1) env e =
(st with clock := ck2,Rval v)

eval_stmt st env body st′ ret def
=

∃ ck1 ck2 .
evaluate_stmt (st with clock := ck1) env body =
(st′ with clock := ck2,ret) ∧

ret ≠ Rstop (Serr Rtimeout)
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This allows us tomake further relational big-step-style defini-
tions and also to prove lemmas about these relations. For ex-
ample, given an expression e, eval_true asserts that there ex-
ist clocks such that e evaluates to true; in fact, conditions_hold
(used in the statement of the soundness theorem) is also for-
mally defined with respect to this relation.

eval_true st env e def
= eval_exp st env e (BoolV T)

conditions_hold st env def
= every (eval_true st env)

We can state the relational big-step-style semantics for the
“then” branch of an if-statement as
⊢ eval_true st env grd ∧ eval_stmt st env thn st1 ret ⇒

eval_stmt st env (If grd thn els) st1 ret
Similar relational big-step style lemmas about the definitions
eval_exp and eval_stmt are used throughout the soundness
proof.

4.3 Verified VCG Implementation
The final step in our development of a verified VCG for Dafny
is to define a function that generates verification conditions.
The implementation follows naturally from the definition
of the wp-calculus and is written in a result monad. For
example, several clauses of the generator are shown below,
corresponding to the wp-calculus snippets defined earlier.

stmt_vcg m Return post ens decs mods ls def
= inr ens

stmt_vcg m Skip post ens decs mods ls def
= inr post

stmt_vcg m (Then s1 s2) post ens decs mods ls def
=

case dest_ArrayAlloc s1 of
None ⇒
do
pre′ ← stmt_vcg m s2 post ens decs mods ls;
stmt_vcg m s1 pre′ ens decs mods ls

od
| Some . . . ⇒ . . .

stmt_vcg m (Assert e) post ens decs mods ls def
=

inr (e::post)
stmt_vcg m (Assign ass) post ens decs mods ls def

=

let (lhss,rhss) = UNZIP ass
in
do
vars ← result_mmap dest_VarLhs lhss;
es ← result_mmap dest_ExpRhs rhss;
assert (distinct vars)
«stmt_vcg:Assign: variables not distinct»;

assert (list_disjoint vars mods)
«stmt_vcg:Assign: assigning to mods»;

. . .

inr [Let (ZIP (vars,es)) (conj post)]
od

Note that in the case of Then, we split on whether the first
statement allocates an array, matching our description of the

wp-rule for array allocation as a special case of statement
composition.
We proved the correctness of stmt_vcg by showing that

it only produces verification conditions that can be derived
using the wp-calculus:

⊢ stmt_vcg m stmt post ens decs mods ls = inr res⇒
stmt_wp (set m) res stmt post ens decs mods ls

While we have focused on the VCG for statements in this
section, our mechanization also includes a formalization of
the VCG formethods. In particular, the generated verification
condition for methods requires that the requires clause of
a method imply the weakest precondition of the body.

5 Putting It All Together
To demonstrate that our formally verified tools work in uni-
son, we have used them to compile and verify the 91 function
in an end-to-end manner. As a brief reminder, the complete
workflow is as follows.

1. We use an (untrusted) Dafny frontend to produce an
S-expression for the 91 function.

2. The S-expression is parsed inHOL4, andwe useHOL4’s
in-logic evaluation to generate verification conditions
from stmt_vcg.

3. Since the verification condition is a Dafny expression,
we prove its validity by showing that the expression
evaluates to True in all states. We have mechanized
this proof, which involves expanding the semantics
and using HOL4’s decision procedure for integers.

4. Finally, we combine the validity of the verification con-
dition, the soundness of the wp-calculus, the correct-
ness of the VCG, and the correctness of the compiler
to prove that the generated CakeML function satisfies
the specification of the 91 function:

⊢ compile_member mccarthy = inr mccarthy_cml ∧
clos_env_ok clos_env ⇒
AppReturns (INT n)
(Recclosure clos_env [mccarthy_cml] “dfy_M”)
(INT (if n ≤ 100 then 91 else n − 10))

The assumption clos_env_ok ensures that basic functions
and constructors are available to the method, while the predi-
cate AppReturns [14] is defined in the context of the CakeML
translator [47] and best understood as a Hoare triple. Here,
it says that applying the (recursive) closure of the CakeML
91 function to an input CakeML integer 𝑛 returns a CakeML
integer that is either 91 if 𝑛 ≤ 100 or 𝑛 − 10 otherwise. No-
tice that this result is verified entirely for CakeML program
semantics and does not involve the Dafny toolchain(s).
We can apply both the compiler and the VCG to other

methods, including the previously presented methods Swap,
Find, and SumToN. Out of thesemethods, we have also proved
the validity of the verification condition for Swap. We have
not attempted to prove the verification conditions of the
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other methods, as the manual approach does not scale well.
Our aim is to improve this in future work by adding a path
to SMT, allowing the use of SMT solvers to automatically
prove the validity of verification conditions.
Similarly, we hope to minimize the proof effort needed

to carry the functional correctness guarantees of verified
Dafny methods to their CakeML counterparts, as we have
manually done for the 91 function.

6 Related Work
We start with an overview of related work at the intersection
of formalization and verification-aware programming plat-
forms like Dafny, F*, and Why/Why3. This is followed by a
discussion of the broader literature on verified compilation
and verified verification condition generation/checking.

6.1 Verified Verification-Aware Programming
Dafny. To the best of our knowledge, verification condition
generation and compilation for Dafny has not been done
in a foundational way before. Nezamabadi and Myreen [48]
implemented a Dafny-to-CakeML compiler for a subset of
Dafny that is larger than the one we present here, but only
proved correctness for the compilation of some binary ex-
pressions. There have also been efforts to implement Dafny’s
compilers in Dafny [16], with the initial target being a purely
functional subset of Dafny.

Dafny targets the intermediate verification language Boo-
gie [6, 40] in order to generate verification conditions; there
has been work by Parthasarathy et al. [50] on validating
Boogie’s outputs using Isabelle/HOL.
Gladshtein et al. [27] present a framework for founda-

tional, multi-modal program verifiers, which they instantiate,
among other things, to reason about Dafny-style programs.
In contrast to the deep embedding presented in this work,
they use a monadic shallow embedding in Lean.

F*. F* [57] is a proof-oriented programming language that,
like Dafny, supports automated reasoning about programs
using SMT solvers. However, while Dafny mostly follows
an imperative style, F* encourages a higher-order functional
programming with effects style and has a dependent type
system. Strub et al. [56] have implemented a type checker
for F* in F* that returns type derivations. In particular, it can
return the type derivation for typechecking itself, which in
turn can be checked in Rocq.

F* is also a popular target for embedding domain-specific
programming languages: Low* [53] is a low-level program-
ming language that is shallowly embedded into F* and has
a paper formalization of extracting it to Clight [9], which
can be compiled by the CompCert [42] compiler, a verified C
compiler that has been formalized in Rocq. Steel [26] is a con-
current programming language that is shallowly embedded
into F*. It is based on the concurrent separation logic Steel-
Core [58] and has verified verification condition generation

mechanized in F*. There has also been work on embedding
a subset of the x64 assembly language in F* [25], which in-
cludes an embedding of Vale [10], an automated verifier for
high-performance assembly code that builds on top of exist-
ing verification languages like Dafny and F*, and a verified
and efficient VCG. To our knowledge, these embeddings have
not been verified in a foundational proof assistant.

Why3 andWhy. Why3 [21] is a platform for deductive pro-
gram verification. It provides an ML dialect called WhyML
for which it can generate verification conditions. Unlike
Dafny, it does not automatically discharge the generated
verification conditions. Instead, users can choose between
automated and interactive provers. To generate simpler ver-
ification conditions, it statically controls aliasing using its
type system [22]. Why is a verification condition generator
for a “WHILE” language [20]. Similar to Why3, Why can
output its verification condition to automated and interac-
tive provers. It has inspired work by Herms et al. [31], where
they have implemented a VCG that can produce verification
conditions for multiple provers and proven it sound in Rocq.

6.2 Verified Compilation and Verified Verification
Condition Generation

Combining Compilation and Verification. The Verified
Software Toolchain (VST) [4] project combines CompCert
with static analysis tools for invariant generation and verified
invariant checking for an end-to-end verified toolchain for
C programs. It has been used, for example, to verify the
OpenSSL implementation of SHA-256 [5] and HMAC with
SHA-256 [8].

CakeML provides a verified implementation of Character-
istic Formulae for ML [15, 19, 30, 51], which allows users to
state specifications in the style of separation logic and prove
them correct using tactics within HOL4.
seL4 [36] is a verified microkernel written in C that has

been formalized in Isabelle/HOL. Its compilation down to
machine code has been proven correct using a translation
validation approach [55]. More specifically, it makes use of
a proof-producing decompilation of the binary [45, 46], a
formalization of the machine architecture [24], and SMT
solvers to show that the binary is a refinement of its C se-
mantics. It has also made extensive use of the VCG provided
by Simpl to prove refinement between its executable, monad
specification, and high-performance C implementation [63].

Verification Condition Generation. Over the years, there
have been multiple works on verification condition genera-
tion that were built as tactics in interactive theorem provers
such as HOL or Isabelle: Gordon [28] presented a shallow
embedding of a simple imperative language, for which he
mechanically derived a Hoare logic and developed tactics to
generate verification conditions.

Agerholm [2] presented a shallow embedding of an imper-
ative language with non-determinism and loops, for which
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he formalized weakest precondition semantics and imple-
mented a verification condition generator using tactics.

Homeier and Martin [32] presented a deep embedding of a
standardwhile loop language including expressionswith side
effects, for which they proved sound axiomatic semantics and
used the axiomatic semantics to define a verified verification
condition generator.
Huisman and Jacobs [33] formalized the semantics of an

imperative language including loops and abrupt termination
(e.g., return and continue) in higher-order logic, provided
an extension of Hoare logic with abrupt termination, and
used it in the context of Java with the proof tool PVS. Its
approach is reminiscent of our combination of functional
big-step semantics and a weakest precondition calculus.

Schirmer [54] presented Simpl, a model for sequential im-
perative programming languages, including a proven sound
and complete Hoare logic for both partial and total correct-
ness and a verification condition generator embedded as an
Isabelle tactic.
There has also been work on verifying optimized verifi-

cation condition generation: Vogels et al. [62] used Rocq to
formalize an efficient VC generation algorithm [23, 39] that
avoids an exponential blowup. Grégoire and Sacchini [29]
formalized in Rocq the use of static analysis to simplify gen-
erated verification conditions for Java bytecode.

Verified End-to-End Compilers. PureCake [35] is a veri-
fied compiler for a Haskell-like language, which, similar to
our Dafny compiler, is built on top of CakeML. Pancake [52]
is a systems programming language with a verified compiler,
which reuses the lower parts of the CakeML backend.

CertiCoq [3] compiles Gallina, the specification language
of Rocq, to C, which can be compiled using CompCert to form
an end-to-end verified compiler. Note that while CertiCoq’s
components have been verified, proving a composed end-to-
end correctness theorem is still ongoing work [37].

Vélus [11] is a verified compiler for synchronous dataflow
languages like Lustre [12] and is built on top of CompCert.
In the context of the CompCert project, the translation

validation approach has been employed for an SSA-based
middle-end [7], instruction scheduling [60], and software
pipelining [61].

7 Conclusion
We have presented a verified compiler and verified verifica-
tion condition generator based on functional big-step seman-
tics for an imperative subset of Dafny. Our subset includes
mutually recursive method calls, while loops, and arrays,
which is expressive enough to support interesting examples
such as McCarthy’s 91 function and array-based programs
that are used when teaching Dafny. Together, our formaliza-
tion shows that it is possible to obtain foundational correct-
ness guarantees across the entire toolchain for verification-
aware programming languages.

Future Work. Beyond the contributions described in this
paper, we believe that our work provides a scaffolding that
can be expanded in different directions: feature support, au-
tomation, and integration with the CakeML ecosystem.
By improving feature support and automation, we can

bring our implementation closer to a drop-in replacement
for the current Dafny toolchain. Initial steps in this regard
could be to support Dafny’s compiler litmus test suite and
to implement and verify a connection to SMT, allowing the
use of automatic SMT solvers. Supporting Dafny’s compiler
litmus test suite will most likely involve building support
for Dafny’s object-oriented features (traits and classes) as
well as functional features (first-class function values and
algebraic data types). The latter features have straightfor-
ward compilation targets in CakeML, and ideas to compile
traits and classes have been very briefly sketched in previous
work [48].

Furthermore, a deeper integration of our work with the
CakeML ecosystem could allow CakeML code to call Dafny
code, and vice versa. Thus, it may enable the input and out-
put of Dafny programs to be placed on solid foundations.
More generally, a program could simultaneously make use
of Dafny’s verification automation, CakeML’s HOL4 fron-
tend [1, 47], and Hoare-style reasoning using separation
logic [19, 30, 51], without compromising on trustworthiness.
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