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 a b s t r a c t

Making serverless computing widely applicable requires detailed understanding of performance. Although bench-
marking approaches exist, their insights are coarse-grained and typically insufficient for (root cause) analysis of 
realistic serverless applications, which often consist of asynchronously coordinated functions and services. Ad-
dressing this gap, we design and implement ServiTrace, an approach for fine-grained distributed trace analysis 
and an application-level benchmarking suite for diverse serverless-application architectures. ServiTrace (i) ana-
lyzes distributed serverless traces using a novel algorithm and heuristics for extracting a detailed latency break-
down, (ii) leverages a suite of serverless applications representative of production usage, including synchronous 
and asynchronous serverless applications with external service integrations, and (iii) automates comprehensive, 
end-to-end experiments to capture application-level performance. Using our ServiTrace reference implementation, 
we conduct a large-scale empirical performance study in the market-leading AWS environment, collecting over 
7.5 million execution traces. We make four main observations enabled by our latency breakdown analysis of me-
dian latency, cold starts, and tail latency for different application types and invocation patterns. For example, 
the median end-to-end latency of serverless applications is often dominated not by function computation but 
by external service calls, orchestration, and trigger-based coordination; all of which could be hidden without 
ServiTrace-like benchmarking. We release empirical data under FAIR principles and ServiTrace as a tested, ex-
tensible, open-source tool at https://github.com/ServiTrace/ReplicationPackage.

1.  Introduction

Emerging in the late 2010s from the integration of multiple tech-
nological breakthroughs [1], serverless computing [2–4] aims to abstract 
away operational concerns (e.g., autoscaling) from the developer by pro-
viding fully managed cloud platforms through self-serving application 
programming interfaces (APIs). Developers can leverage a rich ecosystem 
of external services (e.g., message queues, databases, image recognition), 
which are glued together by a Function-as-a-Service (FaaS) platform, 
such as AWS Lambda, through synchronous and especially asynchronous 
invocations. For the current generation of serverless platforms, ease of 
management comes with important performance trade-offs and issues, 
including high tail-latency and performance variability [5,6], and de-
lays introduced by asynchronous use of external services [7,8]. Although 
understanding these performance trade-offs is essential, existing perfor-
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mance benchmarks, measurement frameworks, and distributed tracing 
approaches, do not explicitly consider asynchronous invocations and 
external services. Addressing this gap, we propose ServiTrace, a novel 
approach for fine-grained distributed trace analysis and an application-
level benchmarking suite designed based on real-world characteristics, 
including asynchronous invocations and external services.

The need to understand and compare the performance of server-
less platforms has received much attention, leading to many useful 
results. Extensive prior work proposes empirical performance evalua-
tion of FaaS platforms [9–16]. However, there currently is no serverless 
benchmark that provides white-box, detailed analysis of realistic appli-
cations, which combine multiple functions and external services that are 
event-driven and asynchronously coordinated. Existing benchmarks are 
able to measure synchronous response times, but are unable to explain
the end-to-end performance of complex applications. Particularly, these 
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approaches do not explain how the components of a full serverless solu-
tion impact end-to-end performance. This may render root-cause anal-
ysis impossible, and limit opportunities for performance improvement 
and comparison.

Although distributed tracing [17,18] is essential for thoroughly 
understanding serverless performance, serverless architectures with
asynchronous invocations are insufficiently supported, especially for 
analysis. Inspired by Google’s Dapper [19] and popularized through 
open-source projects such as Zipkin,1 Jaeger,2 and OpenTelemetry,3 dis-
tributed tracing requires a level of cooperation with the platform that 
remains unavailable to serverless applications. Various approaches ex-
ist for this broad class of problems that assume full observability and 
accurate timing, and they are useful for synchronous microservice ar-
chitectures [20]. In contrast, many serverless applications use multiple
functions and external services, and invocations often occur asyn-
chronously.

We focus on fine-grained serverless benchmarking for synchronous 
and asynchronous applications, addressing the gap in supporting asyn-
chronous invocations. Asynchronous triggers are the only way to exe-
cute serverless functions in response to a change in a data store like 
S3. S3 is used in 68% of systems architectures provided by AWS, and 
25% of architectures contain serverless functions that read from S3 [21]. 
Asynchronous triggers are also the only way to efficiently and dynam-
ically trigger other functions [22]. HTTP requests require the caller to 
keep running, increasing the cost. Services like Step Functions require 
users to specify all possible requests in advance. We propose a novel 
approach for serverless application trace analysis, which can extract 
detailed latency information even when asynchronous invocations oc-
cur, and does not assume tight cooperation between the serverless plat-
form and the serverless application. Our approach builds on distributed 
tracing infrastructure made available by state-of-the-art cloud providers 
(e.g., AWS X-Ray,4) but additionally provides an end-to-end view of ap-
plication performance that is not directly available from the raw traces. 
Furthermore, we design, implement, and experimentally use ServiTrace, 
a benchmarking suite that leverages our novel tracing approach to offer 
application-level serverless benchmarking.

Our detailed trace analysis helps users better understand the per-
formance results of their experiments. For example, ServiTrace exposes 
where cold-start times come from, revealing that cold-start times are 
dominated by overhead in language runtimes compared to runtime ini-
tialization; platform engineers can use such information to guide their 
optimizations and debloat language runtimes. Application developers 
can evaluate competing architectures by quantifying the tradeoff be-
tween connection overhead and tail latency for different persistency 
services, an overhead that becomes apparent not from end-to-end per-
formance numbers, but by our detailed trace analysis.

Overall, our contribution in this paper is four-fold:

1. Latency breakdown analysis (Section 4): We design a novel algo-
rithm and heuristics for distributed trace analysis for serverless ar-
chitectures. The key capability over prior work is that our approach 
is applicable in a serverless context, across asynchronous call bound-
aries and external services. Our detailed latency breakdown handles 
implicit transitions (e.g., caused by asynchronous triggers or observ-
ability gaps) and accounts for every millisecond along the critical 
path by identifying and classifying each time segment. Our trace an-
alyzer implementation for AWS X-Ray is directly applicable to pro-
duction serverless traces.

2. Principled design of an application-level benchmarking suite
(Sections 3 and 4): Starting from five design principles, including 
three that are serverless-specific, we design the comprehensive Servi-

1 https://zipkin.io/
2 https://www.jaegertracing.io/
3 https://opentelemetry.io/
4 https://aws.amazon.com/xray/

Fig. 1. System model of a serverless application composed of multiple func-
tions: ≤1 and ≤2 are user-defined functions, and ≣1 is an external service. This 
work focuses on application-level benchmarking.

Trace benchmarking suite, containing 10 realistic open-source appli-
cations that cover different forms of orchestration, synchronous and 
asynchronous triggers, and real-world characteristics such as pro-
gramming language, application size, and external services. ServiT-
race orchestrates reproducible deployments, automates trace-based 
load generation, collects distributed traces, and provides detailed 
white-box analysis.

3. Empirical performance study (Section 6): As a demonstration of 
usefulness, and to foster the research community’s overall under-
standing of serverless application performance, we conduct a com-
prehensive white-box analysis of serverless application performance 
in the market-leading AWS environment. Our results cover, e.g., cold 
starts, tail latency, and the impact of application type and invocation 
patterns on performance. This study is enabled by and only made 
possible through the latency breakdown approach presented in this 
paper.

4. FAIR release of the ServiTrace software, data, and results at https://
github.com/ServiTrace/ReplicationPackage: We release ServiTrace 
on Github, and the configurations and full data (∼ 70GB) on Zen-
odo. The replication package follows the FAIR principles (“ findable, 
accessible, interoperable, and reusable” [23]), which we consider 
imperative in science and engineering.

The remainder of the paper is organized as follows: Section 2 sum-
marizes a system model for serverless applications to clarify the context 
and scope of our work. Section 3 gives a high-level overview of our ap-
proach, which consists of the trace analysis in Section 4 and ServiTrace 
application-level benchmarking suite in Section 5. In Section 6, we use 
ServiTrace to demonstrate our trace-based benchmarking approach with 
a detailed latency breakdown analysis of median latency, cold starts, 
and tail latency for different application types and invocation patterns 
in AWS. Finally, we discuss related work in Section 7 and present our 
conclusions in Section 8.

2.  System model for serverless applications

Our work assumes a system model, introduced by the SPEC Re-
search Group, to represent the operation of tens of existing server-
less platforms [24]. In this model, the serverless stack provides re-
sources (Label L1  in Fig. 1) whose use is orchestrated ( L2 ) enabling 
complex function management ( L3 ), such as auto-scaling and image-
registry. These elements have been covered extensively by the commu-
nity [25,26] and are not in the scope of this study.

The system model further includes two layers that directly ser-
vice the application and are the focus of this work. Each application 
is composed of a single or, more commonly, multiple user-defined 
functions ( L5 ) that can asynchronously trigger external (operator-
provided) services ( L4 ). Fig. 1 depicts an example of a serverless ap-
plication. There are two user-defined functions (≤1 and ≤2). During its 
execution, ≤1 synchronously triggers an operator-provided service, ≣1. 
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Fig. 2. ServiTrace high-level design.

At the end of its execution, ≤1 asynchronously triggers an operator-
provided orchestrator service.

Production-level serverless applications fit this model well. The func-
tions can communicate with external services (≣1)—and with each 
other—directly via synchronous or asynchronous triggers. They can 
also communicate via an orchestrator, which decides on the control 
flow based on user-provided instructions. Using a combination of these 
methods, we can construct complex execution paths using any of the 
operator-provided services, e.g., object stores, databases, and ML ser-
vices.

We assume there is a monitoring service that provides detailed per-
formance information and, in particular, traces the upper layers in the 
serverless stack (i.e., L4  and L5 ). We do not assume that the other 
layers are observable by the application; e.g., there is no server-side 
tracing. Although we assume the presence of distributed tracing, we do 
not assume its results are consistent and ordered across multiple com-
ponents in the system or that the application triggers can only oc-
cur synchronously. These assumptions match the operation of common
serverless platforms, such as AWS, Azure, and Google.

3.  Principled design for fine-grained serverless benchmarking

We introduce here the design principles and the high-level design of 
ServiTrace. Sections 4 and 5 detail the latency breakdown analysis and 
the construction of the benchmarking suite, respectively.

3.1.  Design principles

We formulate five design principles by adapting to serverless best 
practices on benchmarking [27,28] and by extending ideas from the 
microservice benchmark DeathStarBench [6]:

1. End-to-end operation: An application-level serverless benchmark 
should implement end-to-end functionality starting from an incom-
ing client request, following through individual functions, across ex-
ternal services, and into different composition methods. It is unlikely 
to capture with a single number the performance of all these compo-
nents, so instead, benchmarks should collect fine-grained measure-
ments across individual components. To obtain such measurements, 
benchmarks should implement realistic serverless applications and 
instrument them using distributed tracing, and further compute end-
to-end details.

2. Asynchronous applications: A representative and relevant bench-
mark suite closely matches the characteristics of real-world applica-
tions, e.g., applications ending with a synchronous response, or after 
a chain of asynchronous event-based function triggers. For this work, 
we select applications from industrial workshops and academic stud-
ies based on the most common serverless application types [2,29], 
programming languages [29,30], application sizes [25,29,30], and 
external services [25,29,30].

3. Heterogeneity: Benchmarks should strive for generality by cover-
ing a wide span of applications in the serverless design space—a 
heterogeneous benchmark suite, which includes diverse applications 
across multiple design dimensions. The suite should be able to exe-
cute workloads based on real execution traces (i.e., trace-based) so 
that the applications can be realistically evaluated.

4. Reproducibility: A reproducible benchmark suite mitigates threats 
to internal validity that could affect the ability to obtain the same 
results with the same method under changed conditions of measure-
ments [31]. We provide automated containerized benchmark orches-
tration for all applications including their configurations and pinned 
dependencies.

5. Extensibility: The variety of existing serverless applications intro-
duces the need for extensibility—benchmarks should allow adding ex-
isting serverless applications written in common programming lan-
guages, using common frameworks, or cloud service dependencies 
with no or only minor code changes. We give evidence of the extensi-
bility of our plugin-based benchmark by integrating diverse existing 
applications, with diverse structures.

3.2.  High-level design

Fig. 2 depicts the high-level design of the trace-based serverless ap-
plication benchmarking with ServiTrace. Our tracing approach (green 
box, Section 4) enables fine-grained analysis of serverless applica-
tions, which are provided and orchestrated by the serverless application 
benchmarking framework (blue box, Section 5). Step 1⃝, a serverless ap-
plication of our benchmark suite (Section 5.1) is deployed into a cloud 
provider using automated deployment scripts. Step 2⃝, a workload pro-
file (Section 5.2) invokes application-specific scenarios with different 
load levels. Step 3⃝, ServiTrace retrieves raw traces from the provider-
specific tracing service, which collects traces from the instrumented ap-
plications. Step 4⃝, ServiTrace analyzes the raw traces by extracting a 
detailed latency breakdown along the critical path of potentially asyn-
chronous invocations. Step 5⃝, our replication package visualizes the 
results, as evidenced in Section 6.

4.  Distributed trace analysis for serverless architectures

A key contribution of this work is our novel approach for distributed 
trace analysis of serverless applications. In this section, we motivate the 
need for a new approach and describe how to extract the critical path 
and a detailed latency breakdown from distributed traces.

4.1.  Challenges and background

Distributed tracing, which records how a distributed application op-
erates over time, has been adopted for various use cases [17,18] such 
as distributed profiling (i.e., latency analysis), anomaly detection (i.e., 
identifying and debugging rare problems), and workload modeling (e.g., 
identifying representative workflows). Tracing systems such as Google’s 
Dapper [19] or Facebook’s Canopy [32] help improve performance, cor-
rectness, understanding, and testing.

The ephemeral and distributed nature of serverless architectures 
makes their tracing challenging. Because the commonly used event-
based coordination is inherently asynchronous, hard-to-track back-
ground workflows need to be included in tracing data and cannot be ig-
nored as for synchronous microservice architectures [20]. Limited con-
trol in serverless environments makes users dependent on provider trac-
ing implementations or forces them to resort to less detailed third-party 
or custom implementations. Further, tracing issues are common at large 
scale, and trace analysis must detect and handle clock inaccuracy and 
incomplete traces.

We introduce here the terms needed to address distributed tracing for 
serverless applications. To simplify understanding these abstract, time-
related concepts, we illustrate them in Fig. 3. We represent each server-
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Fig. 3. Simplified depiction of an execution trace (Definition 1) with annotated latency breakdown (Definition 3) from App-B with two cold starts. Values represent 
time in milliseconds. Labels Sync/Async refer to Fig. 4.

less application, from when it is triggered by an incoming request to its 
completion, as an execution trace, where the critical path determines the 
end-to-end latency, and the latency breakdown lists and classifies each 
time span along the critical path, as in Fig. 3.

Definition 1. An execution trace of a serverless application is a causal-
time diagram of the distributed execution of a request, where a node is 
a trace span that corresponds to an individual unit of work (e.g., com-
putation) and an edge represents a causal relationship through a syn-
chronous or asynchronous invocation. Each trace span contains a start 
and end timestamp and is correlated by a trace identifier. Fig. 3 illus-
trates a simplified execution trace of a serverless application (App-B) 
with synchronous and asynchronous coordination.

Definition 2. A critical path in an execution trace is the longest path 
weighted by duration, which starts with a client request and ends with 
the trace span that has the latest end time. This definition of end-to-end 
latency includes asynchronous background workflows that do not return 
to their parent spans to capture the event-based nature of serverless 
systems, as for Async2 in Fig. 3. Hence, our definition differs from a 
critical path of a synchronous client response in microservices [20].

Definition 3. A latency breakdown of an execution trace is the most de-
tailed list of time segments along the critical path without any tempo-
ral gaps—see the highlighted segments, across multiple units of work, 
in Fig. 3. This explicitly includes transitions between trace spans, which 
are often implicit in an execution trace and thus not or incorrectly 
recorded by current tools. We propose that each time segment can be 
classified5 into the following categories common to serverless applica-
tions:

1. Computation represents the actual processing time of serverless func-
tions.

2. External service represents the time spent waiting for the completion 
of a services request (e.g., database query, file upload to a storage 
service).

5 We use high-level categories for readability and cross-application compari-
son because full trace-breakdowns are too detailed for high-level analysis. We 
posit that individual external services (such as cloud storage) can be classified 
separately.

3. Orchestration represents the time spent coordinating serverless func-
tion executions by workflow engines (e.g., AWS Step Functions) or 
API gateways dispatching requests to functions.

4. Trigger represents the implicit transition time between an event and 
a function bound to this event (e.g., time between enqueueing a mes-
sage until the event is dispatched to a function).

5. Queueing represents the time spent in function worker-queues before 
starting execution.

6. Container initialization represents the time it takes to provision the 
function execution environment.

7. Runtime initialization represents the time it takes to initialize the func-
tion language runtime during a cold start.

8. Finalization overhead represents cleanup tasks after function execu-
tion and before freezing the sandbox.

9. Other represents a catch-all timing class.

4.2.  Latency breakdown extraction

We propose a novel algorithmic approach for latency breakdown ex-
traction. The approach first extracts the critical path of an execution trace
and then refines it into a detailed latency breakdown.

To extract the critical path, we use Algorithm 1, which is a modified 
version of the weighted longest-path algorithm proposed for microser-
vices [20]. The algorithm iteratively builds the critical path from the 
start of a trace (i.e., span with earliest startTime) to its end (i.e., span 
with latest endTime) and uses recursion at Lines 11 and 13 to follow into 
child spans. Our heuristic 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.happensBefore(𝑛𝑒𝑥𝑡) detects sequen-
tial relationships by checking for span overlapping (𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑒𝑛𝑑𝑇 𝑖𝑚𝑒 <
𝑛𝑒𝑥𝑡.𝑠𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒) and 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.isAsync(𝑛𝑒𝑥𝑡) detects asynchronous invoca-
tions by comparing end times (𝑛𝑒𝑥𝑡.𝑒𝑛𝑑𝑇 𝑖𝑚𝑒 > 𝑐𝑢𝑟𝑟𝑒𝑛𝑡.𝑒𝑛𝑑𝑇 𝑖𝑚𝑒), with a 
configurable error margin 𝜀 (default 1ms6) to gracefully handle minor 
clock inaccuracies.

In comparison to previous work, our modifications

1. fix an ordering bug,
2. support asynchronous invocations, and
3. mitigate timing issues [33].

6 Suitable error margins for different datacenters can be parametrized using 
tools to quantify the clock error bound, for example ClockBound (https://github.
com/aws/clock-bound).
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We fix a bug that led to a wrong order in the critical path by moving the 
recursive call at Line 13 for the lastChild from before to after the for loop. 
We support asynchronous invocations through conditional recursion by 
only following child spans that are connected to the end of the trace. 
We mitigate common timing issues in fine-grained serverless traces due 
to different timestamp resolutions and clock shifts in large-scale dis-
tributed systems. Our sorting heuristic at Line 7 uses a secondary sort 
key to determine the order of a trace span with a duration of 0 mil-
liseconds. For more implementation detail including line-by-line expla-
nations and test cases, we refer to our replication package.

Algorithm 1 Critical path extraction supporting asynchronous invoca-
tions.
Require: Serverless execution trace 𝑇  with 𝑠𝑝𝑎𝑛 attributes 𝑐ℎ𝑖𝑙𝑑𝑆𝑝𝑎𝑛𝑠, 

𝑠𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒, 𝑒𝑛𝑑𝑇 𝑖𝑚𝑒 and
stack 𝑆 with all parent spans from the end of the trace (i.e., 

span with the latest 𝑒𝑛𝑑𝑇 𝑖𝑚𝑒).
1: procedure 𝑇 .CriticalPath(𝑆, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑝𝑎𝑛)
2:  𝑝𝑎𝑡ℎ ← [currentSpan]
3:  if 𝑆.top() == 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑝𝑎𝑛 then ⊳ update auxiliary stack
4:  𝑆.pop()
5:  if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑝𝑎𝑛.𝑐ℎ𝑖𝑙𝑑𝑆𝑝𝑎𝑛𝑠 == 𝑁𝑜𝑛𝑒 then ⊳ base case of 
recursion

6:  Return 𝑝𝑎𝑡ℎ
7:  𝑠𝑜𝑟𝑡𝑒𝑑𝐶ℎ𝑖𝑙𝑑𝑆𝑝𝑎𝑛𝑠 ← sortAscending( 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑝𝑎𝑛.𝑐ℎ𝑖𝑙𝑑𝑆𝑝𝑎𝑛𝑠, 
by=[𝑒𝑛𝑑𝑇 𝑖𝑚𝑒, 𝑠𝑡𝑎𝑟𝑡𝑇 𝑖𝑚𝑒])

8:  𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑 ← 𝑠𝑜𝑟𝑡𝑒𝑑𝐶ℎ𝑖𝑙𝑑𝑆𝑝𝑎𝑛𝑠.𝑙𝑎𝑠𝑡 ⊳ last returning child span
9:  for each 𝑐ℎ𝑖𝑙𝑑 in 𝑠𝑜𝑟𝑡𝑒𝑑𝐶ℎ𝑖𝑙𝑑𝑆𝑝𝑎𝑛𝑠 do
10:  if (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑝𝑎𝑛.isAsync(𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑) and 𝑆.top() == 

𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑) or ⊳ async child case
 (not 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑝𝑎𝑛.isAsync(𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑) and

𝑐ℎ𝑖𝑙𝑑.happensBefore(𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑) and not
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑝𝑎𝑛.isAsync(𝑝𝑎𝑡ℎ.last)) then ⊳ sync child case

11:  𝑝𝑎𝑡ℎ.extend(CriticalPath(𝑆, 𝑐ℎ𝑖𝑙𝑑)) ⊳ recursion into 
child span

12:  if (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑝𝑎𝑛.isAsync(𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑) and 𝑆.top() == 𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑)
or ⊳ async lastChild case

 (not 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑝𝑎𝑛.isAsync(𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑) and not
𝑐𝑢𝑟𝑟𝑆𝑝𝑎𝑛.isAsync(𝑝𝑎𝑡ℎ.last)) then ⊳ sync lastChild case

13:  𝑝𝑎𝑡ℎ.extend(CriticalPath(𝑆, 𝑙𝑎𝑠𝑡𝐶ℎ𝑖𝑙𝑑)) ⊳ recursion into 
lastChild span

14:  Return 𝑝𝑎𝑡ℎ

We extract the detailed latency breakdown along the critical path 
by identifying and categorizing every time segment while accounting 
for all gaps between spans. Fig. 4 visualizes the common cases for syn-
chronous and asynchronous invocations that can occur while iterating 
pairwise (current, next) over the critical path. For synchronous invoca-
tions, we distinguish two different cases: Sync1 handles a traditional syn-
chronous invocation from a current parent span into a next child span. 
Sync2 handles a potentially recursive transition from the current span 
on a synchronous invocation stack (parent→middle→current) across a 
common parent into its next child span. For asynchronous invocations, 
we distinguish two cases: Async1, if the next child span overlaps with 
the current parent span, and Async2, if there is a gap between the current
parent span and the next child span, which occurs frequently in server-
less systems when triggering a function using a slow trigger. There is 
a third case, which is structurally equivalent to Sync1 except that the 
call to next is asynchronous; although we cannot currently detect this 
case, as discussed for Open Telemetry [34], trace specifications could 
define labels for synchronous and asynchronous parent-child relation-
ships. Finally, the analyzer automatically assigns an activity label (e.g., 
computation) to each breakdown segment depending on the span type 
(e.g., function) as annotated in Fig. 3 using the provider-specific service 
mappings and metadata.

Fig. 4. Extraction cases of latency breakdown (red segments) for pairs of current 
and next nodes on the critical path. Sync# invocations are synchronous. Async#
invocations are asynchronous.

5.  ServiTrace benchmarking suite: Design, implementation, 
extensions

The ServiTrace application-level benchmarking suite provides 10
representative open-source applications to demonstrate the capabilities 
of our detailed trace analysis for serverless architectures, presented in 
the previous section. The suite includes workloads for all applications 
and supports various invocation scenarios, such as load generation based 
on production workloads. We implement ServiTrace as a Python library 
with Docker support, test all its applications on AWS, and outline its 
extensibility for other cloud providers.

5.1.  Serverless applications

Table 1 characterizes the 10 serverless applications in the ServiTrace 
serverless application benchmarking suite, covering a wide span of re-
alistic choices across multiple design dimensions; our replication pack-
age7 describes and motivates each application. The suite covers each 
of the most common types identified by survey studies [29,35] except 
for the type of operations and monitoring because such applications are 
difficult to test in isolation. In particular, in the table, API applications 
use synchronously invoked web endpoints (e.g., REST, GraphQL), async
processing applications are triggered through events (e.g., an upload to 
a storage bucket triggers a function), and batch are larger computation 
tasks often processed as concurrent functions.

We further cover three other dimensions in the serverless design 
space:

1. programming language, we select multiple applications for each of 
the dominant serverless programming languages JavaScript (JS) and 
Python [29,30], and one application for each of the popular enter-
prise languages Java, C#, and Go;

2. representative size, as datasets [25] and surveys [29,30] show that 
most applications are composed of 10 or fewer functions;

3. most popular external services used in serverless applications [25,29,
30] with a focus on API gateways and persistency services (e.g., S3 
cloud storage, DynamoDB cloud database), including both external 
services that are used for synchronous cloud orchestration (e.g., AWS 
Step Functions) and asynchronous function coordination through 
cloud pub/sub (e.g., SNS), cloud queue (e.g., SQS), and cloud stream-
ing (e.g., Kinesis).

Apps B, D, and J are examples of applications whose results would 
apply to emerging workloads like LLM applications. In these apps, the 
serverless functions are used as a glue to combine external services to 
process multimedia data. Similarly, serverless functions can glue differ-
ent components in an LLM application together.

7 https://github.com/ServiTrace/ReplicationPackage
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Table 1 
Characteristics of each end-to-end serverless application. Abbreviations: Pro-
gramming language (Lang), number of functions (# Fs), API gateway (◊), cloud 
storage (Γ), cloud DB (Θ), cloud orchestration (▴), cloud pub/sub (Δ), cloud 
queue (■), cloud streaming (Ω), cloud ML (O). Details7.
 Application  Type  Lang  # Fs  External Services
A  Min Baseline [36]  API  JS  1 ◊

B  Thumb Gen [37]  Async  Java  2 ◊ Γ

C  Event Proc [37]  Async  JS  8 ◊ Θ Δ ■

D  Facial Recog [38]  Async  JS  6 ◊ Γ ▴ Δ  O
E  Model Train [39]  Async  Python  1 ◊ Γ

F  Rw Backend [40]  API  JS  21 ◊ Θ

G  Hello Retail! [41]  API  JS  10 ◊ Γ Θ ▴ Ω

H  To-do API [37]  API  Go  5 ◊ Θ

I  Matrix Mult [37]  Batch  C#  6 ◊ Γ ▴

J  Video Proc [39]  Batch  Python  1 ◊ Γ

5.2.  Serverless workloads

In our benchmark design, workload profiles define how applications 
are invoked through application scenarios, and how their load changes 
over time through invocation scenarios.

5.2.1.  Application scenarios
Application scenarios represent user stories and are provided by each 

application as a fully programmable workload script. We implement this 
integration through the open-source, network load-testing tool k68, and 
provide scenarios written in JavaScript for all applications.

Application scenarios demonstrate common testing techniques that 
can be used for extending ServiTrace, for example, we implement client-
side tracing support to validate load generation. For multimedia appli-
cations (e.g., App-B, App-D, App-J), we support dynamic media collec-
tions, for example through randomized image generation. Some appli-
cations have business logic constraints (e.g., App-G, App-H), which we 
model through probabilistic state machines; for example, in App-H a 
to-do item must be created before it can be marked complete.

5.2.2.  Invocation scenarios
Invocation scenarios model the intensity and shape of the generated 

load when invoking an application. Thorough performance evaluation 
requires different workloads [42] because no single workload can cover 
potentially conflicting design choices [27]. Therefore, ServiTrace sup-
ports three types of invocation scenarios:

1. Sequentially invoke the application a fixed number of times to sup-
port development and microbenchmarking,

2. programmable scenarios to control the number of user sessions, 
change of request arrival rate, and more through the k6 API, and

3. replay real traces such as from the Azure Functions [25] dataset, 
the most comprehensive invocation logs from serverless production 
systems publicly available ([44,45]).9

5.3.  ServiTrace reference implementation

We implement the ServiTrace suite and trace analysis as a Python 
library that offers a CLI and SDK to orchestrate serverless applica-
tion benchmarking. New applications can be integrated by provid-
ing a Python file with three lifecycle methods to prepare, invoke, 

8 https://k6.io/ and https://k6.io/docs/using-k6/scenarios/
9 FaaSNet [43] published a 24-hour trace from Alibaba Cloud Function Com-

pute but it only includes cold starts, which makes it incomplete for load gener-
ation.

and cleanup themselves. The benchmarking lifecycle (Fig. 2) is pro-
grammable through a CLI, as demonstrated by the following example 
that deploys an application, sequentially invokes it 1000 times, waits for 
60 seconds, retrieves and analyzes the traces, and finally removes all its 
cloud resources: sb prepare invoke 1000 wait 60 get_traces 
analyze_traces; sb cleanup. Our Python SDK offers an equiv-
alent API and is suitable for more advanced scenarios (used in Sec-
tion 6) with dynamic re-configuration, re-deployment, error handling, 
and workload generation (Section 5.2). The suite supports Docker to 
package application-specific build and deployment dependencies, and 
automatically manages directory mounts and provider credentials. For 
deployment automation, most applications in the suite leverage the 
Serverless Framework but we have also tested other cross-provider 
infrastructure-as-code solutions such as Terraform and Pulumi.10 For 
workload generation, our integration makes powerful k6 invocation 
scenarios8 reusable across applications and cloud providers.

AWS Lambda uses NTP to synchronize clocks [46]. This does not 
guarantee time synchronization across domains. Therefore, we per-
formed tests to quantify the clock drift. We find that in 99.99% of the 
cases, the drift is minimal. However, when clock drift occurs, it is 5-8x 
the baseline [47].

6.  Experimental results with the ServiTrace reference 
implementation

In this section, we use ServiTrace to break down and analyze the 
latency of a popular serverless platform. To demonstrate our trace-
based benchmarking approach, we deploy ServiTrace on the real-world, 
market-leading, serverless platform AWS Lambda, which various re-
ports [29,48] indicate is popular for serverless applications used in pro-
duction.

6.1.  Experiment design

We design experiments that showcase how ServiTrace supports di-
verse real-world performance scenarios:

1. latency breakdown analysis to understand the performance of warm 
invocations and of cold starts, and on

2. the impact of invocation patterns on (median) end-to-end latency. 
As this study is enabled by and only made possible through ServiT-
race, we can not provide a comparable baseline. In the following, we 
discuss our experiment design, our findings, and their implications 
for serverless practitioners and researchers.

We conduct a performance benchmarking experiment [28] with an 
open-loop load generator in the Northern Virginia (us-east-1) data cen-
ter region, as commonly used by other serverless studies [9,49–52]. We 
collected over 7.5 million traces, through 12 months of experimentation 
in 2021 and 2022.

Application configuration. All functions are configured with the same 
memory size of 1024 MB as this provides a balanced cost-performance 
ratio [53] between the minimal memory size of 128 MB (heavy CPU 
throttling) and the maximum memory size for a single CPU core of 
1769 MB [54] (inefficient for non-CPU-intensive load). For application-
specific memory size tuning, we refer to aws-lambda-power-tuning [55], 
systematic literature reviews [15,16], and many empirical studies [9,
11,53,56–59]. All supported cloud services (i.e., API Gateway, Lambda, 
Step Functions) are traced with ServiTrace. For applications with 
chained functions, we filter out “ partial cold starts” and only consider 
“ full” warm or cold invocations, where every function in the critical 
path shares the same cold start status. For applications with multiple 

10 Deployment automation: https://www.serverless.com/, https://www.
terraform.io/, and https://www.pulumi.com/.
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Fig. 5. Comparison of per-second invocation rates planned vs. sent vs. executed 
(left) and validation ratio for pairwise comparison (right).

endpoints, we present one representative endpoint in the paper and re-
fer to the replication package for detailed results.

Load generator. For accurate load generation, we deploy an over-
provisioned EC2 instance of the type t3a.large in the same region as 
the serverless applications. We validate per-second invocation rates for 
accurate load generation (planned vs. sent) by correlating the load con-
figuration with the client logs and actual load serving (sent generated 
vs. executed) by correlating the client logs with the backend traces. We 
combine visual comparison (see Fig. 5) with FastDTW [60], an approxi-
mate Dynamic Time Warping (DTW) algorithm. We monitor application 
error rates client-side by checking response status codes and server-side 
by checking for any exceptions in each trace. Finally, we investigate any 
invalid traces due to incomplete or invalid trace data following both log-
ical and time-based validation.

6.2.  Latency breakdown

We first drill down into the end-to-end latency of serverless appli-
cations to identify critical components using ServiTrace (Section 5) and 
trace breakdown extraction (Section 4). This application-level perspec-
tive complements existing work, which primarily focused on micro-
benchmarking individual components or reporting client-side response 
times for synchronously orchestrated applications [15,16]. As a base-
line, we focus on warm invocations and subsequently compare the la-
tency penalty of cold invocations and tail latency.

Method. For each of the 10 applications, we send 4 bursts of 20 concur-
rent requests with an inter-arrival time of 60 seconds between each burst. 
The first burst triggers up to 20 cold invocations used in Section 6.2.2 
and after the function completes within 60 seconds, the following 3 bursts 
trigger more warm invocations used for tail-latency analysis in Sec-
tion 6.2.3 and as baseline in Section 6.2.1. To collect sufficient samples 
under the same conditions, we conduct 10 trials and 14 repetitions result-
ing in up to 8400 warm invocations (3× 20× 10× 14)11 For each of the 
10 trials, we invoke each application using round-robin scheduling with 
inter-trial times of 50minutes to trigger cold invocations in the first burst 
for Section 6.2.2. Before each of the 14 repetitions of trials, we re-deploy 
each application to ensure a clean state. We perform cold start filtering 
based on ServiTrace annotations, as described in Section 5.

6.2.1.  Warm invocations
Serverless platforms can have optimizations to improve performance 

when functions are invoked more than once in a short period of time. It 
is key to consider this class of invocations since they are very common; 
[25] found that 99.6% of all function invocations come from functions 
that are executed on average at least once a minute and should therefore 
contain a large share of warm starts.

11 A related study [5] uses 3000 samples for individual functions; we target more 
per-application samples as requests can be distributed across endpoints.

Fig. 6. Latency breakdown of warm invocations as median fraction of end-to-
end latency. Values inside the bar-stacks represent absolute time per activity, in 
milliseconds.

Observation 1: The median end-to-end latency of server-
less applications is often dominated by external service calls 
and synchronous orchestration or asynchronous trigger-based
coordination. The actual computation time in serverless functions 
is relatively low, except for inherently compute-heavy workloads.

Results. The relative latency breakdown in Fig. 6 shows the median la-
tency for each activity introduced in Definition 3. App-A exemplifies the 
orchestration overhead (22ms) of a common serverless pattern where an 
API gateway is connected to a function. Lightweight applications such 
as App-H are similarly dominated by orchestration time (23ms) because 
they do minimal computation work and use fast external services (e.g., 
6ms database insert). App-E and App-J are examples of computation-
heavy workloads. External services such as blob storage or computer 
vision APIs are often the dominating factor, especially for many I/O op-
erations (App-I) or larger files (App-D). Asynchronous applications are 
typically dominated by transition delays due to trigger and queueing 
time as demonstrated by the applications App-B and App-C.

6.2.2.  Cold starts
We now study which time categories contribute to higher cold start 

latency using the results from Section 6.2-1 as a baseline. Tracing 
cold starts requires access to timestamps captured within the provider-
internal infrastructure. ServiTrace can extract these internal times-
tamps from their traces and distinguish between container and runtime 
initialization time, which would otherwise only be possible for self-
hosted [13] or provider-internal [61,62] systems. Insights on cold starts 
are relevant for applications that are invoked irregularly (e.g., inter-
arrival times >10minutes) or exhibit bursty invocation patterns and, 
hence, need to provision new function instances.

Results. Fig. 7 shows the latency difference between the medians for 
cold invocations compared to warm invocations. App-A depicts a com-
mon initialization overhead for a function behind an API gateway of 
265ms (98+167) in line with prior cold start studies for Node.js by [9, 
Figure 6] and [63, Figure 7]. Our results are more detailed and reveal 
differences for realistic applications. Our trace details show that runtime 
initialization typically accounts for the majority of cold start overhead 
compared to container initialization. For App-A, the container initializa-
tion time of 98ms is ∼20ms faster than the boot times for the underlying 
Micro VMs as reported for pre-configured Firecracker [61, Figure 6]. 
In comparison, other realistic applications have much higher absolute 
initialization times due to large packaged dependencies (e.g., App-E, 
App-J) and chains of multiple functions in the critical path (e.g., App-B, 
App-D).

Beyond runtime and container initialization, other categories can 
add cold start overhead that is often overlooked. Computation can

Future Generation Computer Systems 179 (2026) 108336 

7 



J. Scheuner et al.

Table 2 
Partial cold starts in applications.
 App  Partial cold start fraction  Partial cold start latency [ms]  Warm start latency [ms]  Cold start latency [ms]
B  0.9%  9232  1934  15,789
C  0.04%  856  32  1550
D  0.3%  2770  1517  4779
I  0.8%  4279  1119  8134

Fig. 7. Latency-penalty breakdown for cold invocations compared to the base-
line of warm invocations (Fig. 6) as a fraction of the difference between the 
medians. Values inside the bar-stacks are absolute, in milliseconds (ms), e.g., 
for App-B, Computation takes 4425ms longer compared to a warm invocation.

Observation 2: Runtime initialization and container initialization 
add the most overhead for cold invocations but external service 
connection initialization and one-off computation tasks can also 
contribute.

contain conditional code executed only upon cold starts or trigger one-
off optimizations such as just-in-time compilation for interpreted lan-
guages [64] exemplified by the applications App-B in Java and App-I in 
C#. External service time can add connection overhead due to extra au-
thentication upon cold starts (e.g., App-B caches S3 authentication) or 
database connection setup (e.g., App-H connects to DynamoDB). Finally, 
the following categories related to application coordination remain un-
affected by cold starts: orchestration, trigger, queueing, and instrumen-
tation overhead.

We observe partial cold starts in four of the ten applications we run. 
These occur due to some functions, but not all, in the function chain ex-
perience a cold start. We summarize the fraction of requests that expe-
rienced a partial cold start and compare their latency to warm and cold 
invocations in Table 2. The application with the highest fraction (0.9%) 
of partial cold starts is the thumbnail generator ( B ), despite only being 
composed of two functions. The second highest (0.8%) is matrix mul-
tiplication ( I ) which is composed of five functions and many parallel 
invocations. We hypothesize that the large fraction of partial cold starts 
for B  is due to the long duration of the functions. Their long dura-
tion means that function instances are not freed frequently, increasing 
the likelihood of subsequent invocations being subjected to a cold start. 
The end-to-end latency of requests that experience a partial cold lies 
between the latencies experienced by warm and cold invocations.

6.2.3.  Tail latency
Tail latency is increasingly important at scale for cloud 

providers [65] and hence particularly challenging for massive 
multi-tenant serverless systems. Prior studies [5,7,9,10] conducted 
micro-benchmarks to measure tail latency of individual serverless 
components. By leveraging our trace analysis (Section 4), we can 

Fig. 8. Latency-penalty breakdown for slow invocations compared to baseline 
of warm invocations (Fig. 6) as a fraction of the difference between the me-
dian and 99th percentile. Values inside the bar-stacks are absolute, in millisec-
onds (ms), e.g., for App-J, the Cloud storage service adds 2427ms of delay for 
slow invocations; this accounts for ∼90% of the tail-latency slowdown.

Observation 3: Tail latency is primarily caused by external ser-
vices, particularly by object storage.

directly identify which time categories contribute to tail latency (99th
percentile) for entire applications.

Results. Fig. 8 shows that external services cause major variability. In 
particular, storing a large file (+2429ms for App-J) causes massively 
more tail-latency delay than storing many chunks of small files (+602ms
for App-J). Database services contribute less to tail latency than object 
storage as demonstrated by the applications App-C, App-F, App-G, and 
App-H with latency penalties between 35ms and 99ms.

Another factor of tail latency is the serverless overhead for or-
chestrating synchronous applications (i.e., orchestration time) and asyn-
chronous applications (i.e., trigger and queueing time). These categories 
double or triple their latency in comparison to the baseline in Fig. 6. 
Computation is inherently variable in a multi-tenant system but con-
tributes at most 25% to the latency penalty for compute-heavy App-E.

6.3.  Invocation patterns

Real-world applications exhibit diverse invocation patterns [25], but 
prior work rarely investigated dynamic workloads over time [10] or 
different invocation patterns [14] and if so, using artificial applications, 
patterns, and one-time bursts [5,9,51]. It remains unclear how different 
invocation patterns derived from the Azure Function Traces [25] affect 
the end-to-end latency of serverless applications. To address this gap, 
we investigate the performance effect of varying invocation rates over 
time under an equivalent average invocation rate.

Scalability prestudy. We conducted a prestudy to adjust the average in-
vocation rates to our 10 heterogeneous applications. Using the same 
invocation rate or concurrency level for all applications is inappropri-
ate because it overloads some applications while others remain close 
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Table 3 
Invocation rates (in reqs./s) per application (50% of the achieved 
load in the scalability pre-study).
A B C D E F G H I J

 200  37  50  25  22  167  154  200  10  25

to idle12 Therefore, we test increasing load levels with constant arrival 
rates for 90 seconds until an application exceeds a rate of 5% for trace 
errors or invalid traces twice in succession. Trace-based root cause anal-
ysis identified rate limits and function tracing issues.13 To avoid over-
loading an application, we select 50% of the achieved load level as the 
target average invocation rate for parameterizing the invocation pat-
terns (Table 3).

Method. We treat each application from Table 1 with two artificial and 
four realistic workloads derived from real-world traces as described be-
low. The artificial workloads serve as a baseline for fully constant load 
and maximal burstiness simulated by on_off alternations with load for 
one second and idle time of three seconds. We scale the average invo-
cation rate per-application following Table 3. We discard warmup mea-
surements of the first 60 seconds as the actual invocation rate can deviate 
from the target rate in the first second and initial cold starts dominate 
the start of every experiment.

To derive invocation patterns from the Azure Function Traces [25], 
we selected 528 functions (out of 74 347 functions in the traces) with 
relevant properties for benchmarking. We removed 45 564 temporary 
functions not available over the entire two-week period and skip 15 319
timer triggers because these follow predictable periodic patterns [25] 
and are typically not latency-critical. Knowing that the 18.6% most pop-
ular applications with invocation rates ≥ 1∕𝑚𝑖𝑛 represent 99.6% of all 
function invocations [25], we selected the 2.6% most popular functions 
with average invocation rates ≥ 1∕𝑠 as they are relevant for high-volume 
benchmarking.

We visually identified four typical invocation patterns by manu-
ally classifying two time ranges for 100 of the selected 528 functions. 
We first created 200 individual line plots with invocation counts over 
20minutes14 and grouped similar traffic shapes into several clusters. Af-
ter merging similar patterns, we identified four common patterns (see 
Fig. 9):
1. steady (32.5%) represents stable load with low burstiness,
2. fluctuating (37.5%) combines a steady base load with continuous load 
fluctuations especially characterized by short bursts,

3. spikes (22.5%) represents occasional extreme load bursts with or 
without a steady base load, and

4. jump (7.5%) represents sudden load changes maintained for several 
minutes before potentially returning to a steady base load.

Results. Fig. 10 shows the partial CDF of the end-to-end latency for ap-
plications that accurately followed the target invocation pattern (<10%
deviation from target invocation rate and error metrics). The median 
latency is unaffected by invocation patterns as shown by the overlap-
ping CDF curves. Percentiles up to p99 clipped in the ECDF also show 

12 We collected over 700K traces for App-B to App-J using the invocation pat-
terns described later in this subsection with an average rate of 20 reqs∕sec. We 
tried different concurrency levels but noticed that long-running applications 
were overloaded and short-running applications were served by few function 
instances.
13 We reported this and additional issues related to clock drifting and trace 
correctness to AWS for further investigation.
14 We explored different time resolutions (2weeks, 1 day, 4 hours, 1 hour, 30min, 
20min, 10min) and found that hourly patterns are similar enough to 20minutes, 
which is feasible cost-wise for repeated experimentation with many different 
applications under varying configurations.

Fig. 9. Typical serverless invocation patterns over 20min.

Fig. 10. End-to-end latency for different invocation patterns clipped at the 99th
percentile.

Observation 4: Different invocation patterns with per-second 
load fluctuations do not meaningfully affect the median end-to-
end latency except when the workload causes rate limiting of ex-
ternal services.

no relevant difference with the exception of App-D, where the peak in-
vocation rates of the spikes workload reach the rate limit of the facial 
recognition service causing external service delays.

The number of initial cold starts differs by invocation pattern but 
remains very low after the 60 seconds warmup time. The on_off and 
spikes patterns have higher peak invocation rates and trigger more initial 
cold starts. However, after the warmup time, additional cold starts are 
rare (below 10).

6.4.  Discussion

Our results emphasize the importance of serverless benchmarking 
that integrates fine-grained latency breakdown analysis and varied 
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benchmark applications. Furthermore, our experiments lead to relevant 
implications for serverless practitioners and researchers.

Slowdowns are caused by control flow and coordination, not computation. 
Our trace-based latency break-down suggests that future research should 
go beyond computation-optimization approaches [53,56,66], given how 
little computation time contributes to the end-to-end latency of many 
applications. The high fraction of external service time shows that fast 
data exchange between stateless functions remains a key challenge 
for serverless applications. Many applications would benefit from low-
latency storage solutions such as Pocket [67], Shredder [68], or Lo-
cus [69]. Finally, efficient function coordination through triggers [7,22] 
and workflow orchestration [70,71] deserves more research attention 
given the high transition delays.

Cold start times are best improved by debloating language runtimes. Lan-
guage runtimes should be the primary focus for optimizing cold start 
latency given their major impact, adding >500ms overhead for most 
applications. Existing runtimes were not designed for serverless archi-
tectures and recent optimizations for Java [72] and .NET [73] achieve 
large speedups of up to 10×, though sometimes at the cost of more mem-
ory usage or larger deployment sizes. Debloating system stacks [74] and 
application dependencies [75] is another promising optimization moti-
vated by large initialization overheads for applications with large depen-
dency trees (e.g., App-E and App-J). Alternatively, serverless developers 
can select languages with lower runtime initialization overhead, such as 
Golang [63].

The main cause of tail-latency problems for warm invocations are external 
services and poorly chosen triggers. Latency-critical applications should 
carefully choose external services and trigger types. Measurement stud-
ies covering different external services can guide the initial selection 
process [5,7,9,10]. Our trace-based latency breakdown confirms these 
findings and identifies cloud storage as a key contributor to performance 
variability [5]. Beyond that, ServiTrace can provide insights into al-
ternative application implementations. For example, applications using 
database services (App-C, App-F, App-G, App-H) exhibit better tail la-
tency than those using cloud storage (App-B, App-I, App-J). However, 
initializing a database connection can add additional cold start delay 
(cf., Fig. 7). For asynchronous orchestration, choosing appropriate trig-
ger types is crucial as the cloud storage trigger introduces massive tail 
latency (e.g., App-B in Fig. 6). In contrast, the pub/sub trigger used in 
App-C adds minimal tail latency. However, queueing time may become 
an issue as non-HTTP-triggered functions have lower scheduling prior-
ity [76].

Serverless fulfills its core promise of stable performance under bursty work-
loads. Our results show that serverless is indeed well-suited for bursty 
workloads after initial cold starts and when staying below platform-
specific rate limits. Hence, serverless fulfills its promise of built-in scal-
ability under the given load levels for our 10 applications. This re-
sult was somewhat unexpected, especially contrasting with prior re-
search [5,10,51]. However, of course, bursty workloads may still neg-
atively impact performance on different platforms or with even more 
rapid bursts than what we evaluated (e.g., per-microsecond bursts rather 
than per-second bursts).

6.5.  Limitations

Despite careful design, we cannot avoid a small number of limita-
tions in our design and results.

First, the presented results are specific to the AWS serverless plat-
form. The applications were implemented and evaluated on AWS. Sim-
ilarly, ServiTrace itself relies on the comprehensive tracing information 
offered by the AWS X-Ray service. The reason for focusing on AWS in 
this work is one of scope, with the knowledge that this cloud provider 

is considered to be state-of-the-art and, at the moment, a popular solu-
tion in the serverless domain. However, conceptually ServiTrace enables 
benchmarking of a wider range of cloud providers and is designed for 
extensibility. Some cloud providers may provide less detailed tracing 
information than X-Ray—a mostly technical issue that we believe will 
lessen as the market matures, or can be overcome with third-party tool-
ing.

Second, we do not tune the performance of the individual benchmark 
applications and functions. For instance, increased memory allocation 
in AWS Lambda has been studied extensively [9,11,53,56–59] and typ-
ically provides a function with more CPU shares, more priority in IO, 
and higher network throughput limits. We rely on the default settings 
provided by the platform, which is common practice in benchmark de-
sign [27] to increase the fairness of comparison. The community could 
further work to investigate the ideal settings for each application in the 
benchmarking suite.

Third, specifically for the invocation pattern results, there are lim-
itations because of the Azure dataset, which only provides data on a 
per-minute granularity. For simulating extremely bursty workloads, a 
more fine-grained configuration would be necessary, for example, to 
configure a burst that happens within a few milliseconds using custom 
invocation scenarios (Section 5.2.2). This may explain why we observed 
only a limited impact of different invocation patterns on end-to-end la-
tency in Section 6.3.

Fourth, tracing instrumentation could introduce overhead to the per-
formance of the benchmark applications. Tracing libraries increase the 
deployment and memory footprint [77], which can lead to increased 
cold start times [78], but they are often required anyways in production 
deployments [79]. Our testing of sequential trace points has shown that 
asynchronous tracing APIs minimize the runtime overhead below mea-
surement granularity (i.e., <1ms). However, asynchronous trace data 
uploading comes with a limitation at high load levels, where traces be-
come invalid due to discarded trace spans caused by an X-Ray buffer 
overflow in the AWS Lambda infrastructure. Future work can use re-
quest sampling to achieve higher load levels at the cost of partial ob-
servability.

We experimentally found that X-Ray drops traces after 1000 req/s. 
The maximum invocation rates we use (200 req/s) do not generate 
enough tracing requests to trigger drops. There should be no trace 
drops as long as the throughput remains under 1000 req/s, even with 
sub-second bursts. To reduce tracing overhead when collecting a large 
amount of data at high throughput, users could use a tail sampling ap-
proach [80].

This work depends on a unified tracing framework such as X-Ray or 
OpenTelemetry to extract fine-grained information from applications. 
Such frameworks currently do not support accelerators (e.g., GPUs), lim-
iting this work’s usefulness in those scenarios.

We identify but do not address the possible issue of long-term perfor-
mance changes in cloud settings. Cloud providers iterate rapidly on their 
services. Similarly, the operational policies and practices of providers 
can change, which can influence performance over time, sporadically 
or even permanently. Though this type of experimentation could not fit 
within the scope, its importance of it is clear to serverless computing in 
general. Future work enabled by our replication package could address 
this situation through techniques such as periodic, long-term measure-
ments in a longitudinal study.

7.  Related work

The distributed tracing approach in Section 4 in particular, and Servi-
Trace in general, advance the field of serverless benchmarks and, more 
generally, of performance analysis.

Distributed trace analysis. Our work has a new focus, on serverless com-
puting. Distributed tracing is common in microservice architectures 
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Table 4 
Summary of related serverless benchmarks.

 Reference  Focus  Insights  Workloads  Scope
 white-box  async  concurrent  trace-based  apps  func/app  micro  langs  services

 faas-profiler [12]  Server-level overheads  3  7  3  7  5  1  28  2  0
 vHive [13]  Cold-start breakdown  3  7  7  7  10  1  0  1  1
 ServerlessBench [59]  Diverse test cases  7  7  7  7  4  1–7  10  4  1
 SeBS [50]  Memory size impact  7  7  3  7  10  1  0  2  1
 FunctionBench [39]  Diverse functions  7  7  7  7  8  1  6  1  1
 FaaSDom [63]  Language comparison  7  7  3  7  0  –  5  4  0
 BeFaaS [93]  Application-centric  (3)  7  3  7  1  17  0  1  1
 ServiTrace (this work)  White-box analysis  3  3  3  3  10  1–21  0  5  7

but its practice and analysis are big challenges across all software en-
gineering [81–83]. Current production systems such as Canopy [32] 
from Facebook are primarily used for ad hoc manual analysis [32,83] 
but research proposed several techniques for automated trace analysis. 
[84] introduce a formal notation for causality and time and survey ap-
proaches for detecting causal relationships in distributed systems. Pivot 
tracing [85] introduces an efficient happened-before join operator to fa-
cilitate cross-component event correlation. [86] present algorithms for 
critical path analysis and trace graph comparison based on their gen-
eralized graph representation of execution traces [87]. FIRM [20] com-
bines critical path and critical component analysis with machine learn-
ing models to identify and mitigate service level objective (SLO) vio-
lations. [88] use graph clustering to characterize the call graph depen-
dency structure and performance of production microservice at Alibaba.

Although tracing for serverless computing raises several new chal-
lenges, it has received little attention. GammaRay [77] augments AWS 
X-Ray to track casual ordering and Lowgo [89] proposes a tracing tool 
for multi-cloud serverless applications. A comparison study of different 
serverless tracing tools investigates how well they detect different types 
of faults [90] and Costradamus [91] uses distributed tracing to estimate 
per-request costs. However, serverless tracing is still emerging and trace 
analysis remains a largely manual process [92]. Provider-managed in-
frastructure limits access to fine-grained instrumentation and developers 
need to rely on distributed tracing services offered by cloud providers. 
This leads to observability gaps and typically requires implicit tracing 
of downstream services due to missing tracing support. Further, the 
event-based nature of serverless requires adaptations to traditional crit-
ical path analysis for synchronous invocation patterns as performed in 
FIRM [20]. In contrast, ServiTrace offers an innovative and pragmatic 
solution for detailed latency-breakdown analysis of asynchronous server-
less applications (details in Section 4.2).

Serverless benchmarks and measurement frameworks. Table 4 compares 
ServiTrace with the most important serverless benchmarks and perfor-
mance frameworks. Our study

1. enables insights through fine-grained white-box analysis across a va-
riety of situations common in production, including asynchronous 
invocations and external services,

2. adds realistic applications and workloads based on real-world char-
acteristics [25,29,35],

3. has a wider scope in the design space of serverless applica-
tions (see Section 5.1), and

4. does not rely on low-level, server-side tracing, which is not available 
for public serverless platforms.

ServiTrace complements serverless platform benchmarks and greatly 
extends application-level benchmarks that interact with cloud services. 
Platform benchmarks such as vHive [13] enable detailed white-box 
analysis across the entire FaaS stack, including server-level analysis 
(e.g., branch prediction) as shown by faas-profiler [12]. Complemen-
tary, ServiTrace targets the interactions between applications ( L5 ) and 

services ( L4 ) as depicted in Fig. 1, enabling the analysis of realistic 
applications in large-scale production deployments, which is impossible 
with self-hosted platform benchmarks (as argued in Section 4). Most ex-
isting benchmarks focus on single-function applications [12,13,39,50] 
or artificial micro-benchmarks [12,39,59,63], and ServerlessBench [59] 
and BeFaaS [93] include larger applications but are limited to a sin-
gle external service (i.e., database), apart from an API gateway used 
by all benchmarks for easy invocation. We observe similar computation 
times for individual functions as other works observe when they use 
functions with a large amount of memory. For example, our thumbnail 
generator requires 194 ms of computation, which is comparable to the 
124.5 ms spent by the thumbnail function in SeBS [50]. The external 
service communication latency of applications that only use a database, 
F (142 ms) and G (54 ms), is higher than that reported by BeFaaS [93] 
(<10 ms), which utilizes an in-memory database. It is similar to Server-
lessBench [59] ( 150 ms), which uses CouchDB, a database that writes 
to disk.

Further, ServiTrace is the first-of-its-kind to support trace-based 
workload generation and detailed insights into realistic applications; 
particularly, no prior benchmark supports detailed white-box trac-
ing across asynchronous call boundaries and diverse external services. 
The white-box analysis of faas-profiler [12] and vHive [13] relies on 
low-level tracing and thus is not applicable to public serverless plat-
forms, and BeFaaS [93] only supports coarse-grained, language-specific, 
function-level tracing.

Performance evaluation of serverless platforms. Performance is an im-
portant and commonly studied aspect [94,95] of serverless computing. 
Over 100 studies from academia and industry have already appeared 
according to several literature reviews [15,16,94,95]. Commonly in-
vestigated topics include scalability [14,96], cold starts [9,78], per-
formance variability [10,97], instance recycling times [9,98], and the 
impact of parameters such as memory size [11,99,100], or program-
ming language [63,101]. These studies tend to rely on single-purpose 
micro-benchmarks and most commonly target single-core CPU per-
formance [15], whereas the ServiTrace application-level benchmark-
ing suite includes 10 realistic and diverse applications (Section 5.1). 
Whereas prior work is limited to synchronous invocations and typically 
relies on client-side measurements with few exceptions that explore 
asynchronous FaaS [77,102] and distributed tracing [77] using simple 
scenarios, ServiTrace supports asynchronous invocations across diverse 
external services and contributes a novel approach for detailed latency 
breakdown analysis of distributed serverless traces (Section 4). Further, 
reproducibility [31] remains a big challenge in serverless performance 
studies, as analyzed recently [15], and ServiTrace is designed (Sec-
tion 3) and implemented (Section 5) to mitigate reproducibility chal-
lenges through automated containerized benchmark orchestration.

8.  Conclusion

Due to their compositional and asynchronous nature, serverless 
applications and the platforms executing them are challenging to
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benchmark. We designed and implemented ServiTrace, an approach for 
fine-grained distributed trace analysis and an application-level bench-
marking suite for serverless architectures. Unlike existing approaches, 
ServiTrace:

1. proposes a novel algorithm and heuristics to enable white-box anal-
ysis even for asynchronous applications and data produced by dis-
tributed traces of serverless applications,

2. leverages a suite of 10 diverse and realistic applications (importantly, 
including both synchronous and asynchronous cases) and generates 
trace-based workloads, and

3. supports end-to-end experiments, capturing fine-grained 
application-level performance and enabling reproducible re-
sults.

Using ServiTrace, we conducted a large-scale empirical investiga-
tion of the AWS serverless platform, collecting over 7.5 million execu-
tion traces. We observe that median end-to-end latency is most often 
dominated by external service calls, orchestration, or by waiting for 
asynchronous triggers. Excessive tail latency is similarly caused more 
by external services (particularly object storage) than any computation 
inherent to serverless applications. Regarding cold starts, our tracing re-
sults indicate that investment into simplifying runtime environments or 
slimming them down (e.g., as Golang does) is the most promising angle 
to speed up scaling. Finally, our experiments confirm the AWS platform 
can react effectively to workload differences, even to challenging bursty 
invocation patterns, for most applications.

ServiTrace, and the distributed tracing and general serverless bench-
marking concepts demonstrated by it, can be used by practitioners for 
detailed performance analysis of their own applications (e.g., to evalu-
ate trade-offs between alternative services). Platform engineers can use 
our approach and tooling to further improve serverless platforms. We 
envision ServiTrace to become an integral part of the evaluation of fu-
ture serverless research contributions, also as an extensible basis.
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