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SUMMARY

Understanding human cell metabolism through genome-scale flux profiling is of interest to diverse research 
areas of human health and disease. Metabolic modeling using genome-scale metabolic models (GEMs) has 
the potential to achieve this, but has been limited by a lack of appropriate input data as model constraints. 
Here, we compare the commonly used consumption and release (CORE) method to a regression-based 
method (regression during exponential growth phase; REGP). We found that the CORE method is not reliable 
despite being prevalent in human studies, whereas the exchange fluxes determined by REGP provide con-

straints that substantially improve GEM simulations for human cell lines. Our results show that the GEM-

simulated feasible flux space is constrained to a biologically plausible region, allowing an exploration of 
the basic organizing principles of the feasible flux space. These improvements help to fulfill the promise 
of GEMs as a valuable tool in the study of human metabolism and future development of translational 
applications.

INTRODUCTION

Metabolism of human cells is a highly complex network of thou-

sands of metabolites and reactions. Alterations in cell meta-

bolism are associated with many complex health conditions 

such as diabetes, inflammatory diseases, and cancer. 1,2 Impor-

tantly, the defining feature of metabolism is not the concentra-

tions of metabolites in the cell but the metabolic fluxes (r) through 

reactions and pathways. 3,4 Intracellular metabolic fluxes can be 

experimentally determined through isotope-labeled substrate 

tracing for a small subset of reactions, 5,6 but to systematically 

profile all fluxes of a cell at the genome scale, mathematical 

modeling is necessary.

Genome-scale metabolic model (GEM) is a modeling frame-

work wherein the complete metabolic network of a cell is recon-

structed in silico. 5,7 GEMs can be used for simulations to calcu-

late the optimal (max or min) fluxes of each reaction and 

determine the feasible flux space for the entire metabolic

network, using techniques called flux balance analysis (FBA) 

and flux variability analysis (FVA). 8 FBA and FVA require a small 

amount of input data as constraints, typically consisting of 

measured exchange fluxes (± measurement error) of a small 

number of exo-metabolites, such as glucose, lactate, and amino 

acids. With these experimentally measured input data, GEM 

simulations have been shown to be strikingly accurate in micro-

organisms such as E. coli and S. cerevisiae. 9–11 On the other 

hand, the predictive power of GEMs can vary considerably and 

often depends on the quality of the constraints. 12 This variability 

underscores the importance of collecting high-quality measure-

ments to improve GEM simulation accuracy. Critically, FBA and 

FVA assume that cells are in pseudo-steady state. Thus, input 

data for these successful applications of GEM simulations 

have all been collected during exponential growth.

Building on the success of GEM simulations in microbial appli-

cations, there is considerable interest in studying human cell 

metabolism using Human-GEM. 3,13,14 These studies determined

MOTIVATION As cellular metabolism plays a central role in human health and disease, genome-scale flux 

profiling is of interest to a wide range of research fields. Genome-scale metabolic modeling is a promising 

computational tool that can be used to simulate intracellular metabolic fluxes in human cells. However, these 

models are known to be sensitive to the quality of the constraints, which are often calculated based on single-

time point data that violate steady-state assumptions. In this paper, we investigate the potential of a regres-

sion-based method using multi-time point data to enable more accurate metabolic simulations.
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exo-metabolite exchange fluxes in human cells by the consump-

tion and release (CORE) 4 method (Figure 1A). In this method, 

exo-metabolite concentrations in the cell culture media are 

measured at a single time point and exchange fluxes are then 

calculated based on the difference between the measured 

‘‘spent’’ media and the unused (‘‘fresh’’) media (Figure 1A). 

Thus, CORE-calculated exchange fluxes are not true steady-

state exchange fluxes, and the use of these values as constraints 

for FBA and FVA should be done with caution. 

Regression-based methods for estimating exchange fluxes 

have been applied in microorganisms 15 and mammalian 

studies. 16–19 In this study, we adapted a regression-based 

approach to calculate exchange fluxes in human cells, which 

we refer to as REGP (regression during exponential growth 

phase; Figure 1B), and compared it to the conventional CORE 

method. We found that REGP-calculated exchange fluxes 

(r m,REGP ) were substantially different from CORE-calculated ex-

change fluxes (r m,CORE ) (Figure 1C). Unlike models constrained 

with r m,CORE , the model with r m,REGP as input data for FBA and 

FVA produced feasible GEM simulations. Additionally, we 

showed that the GEM-simulated feasible flux space was con-

strained to a more biologically plausible region, allowing an 

exploration of the basic organizing principles of the feasible 

flux space. We anticipate that incorporating regression-based 

exchange fluxes from human cell lines as input for GEM simula-

tions can rapidly advance our understanding of cell metabolism 

in diverse applications related to human health and disease.

RESULTS

Exo-metabolite exchange fluxes at steady state

We measured the exo-metabolite concentrations of exponen-

tially growing MCF10A cells at five time points during the expo-

nential growth steady state (see Table S1) and used both the

Figure 1. Exo-metabolite exchange fluxes

(A and B) Schematic overview of exo-metabolite exchange flux calculation by the CORE and REGP methods. [m], exo-metabolite concentration; A, area under the 

curve; [ ̂ m], linear-regression-fitted exo-metabolite concentration (see STAR Methods section).

(C) Exo-metabolite exchange fluxes (r m ) for 11 cell lines in the NCI-60 panel calculated by the CORE method and for the MCF10A cell line calculated by either the 

CORE or the REGP method.

See also Table S1.
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CORE (Figure 1A) and REGP (Figure 1B) methods to calculate 

the exchange fluxes of exo-metabolites, r m . Figure 1C shows 

the comparison between r m,REGP and r m,CORE in the MCF10A 

cell line, as well as the r m,CORE of 11 cell lines of the NCI-60 panel 

that were previously considered reliable. 3,4,20 By convention, 

consumption of metabolites (e.g., glucose) is represented by a 

negative flux and release of metabolites (e.g., lactate) by a pos-

itive flux. As expected, r m,CORE were comparable between 

MCF10A cells and the 11 cell lines of the NCI-60 panel 

(Figure 1C). However, the r m,REGP and r m,CORE in MCF10A cells, 

based on the same raw metabolite measurements and cell count 

data, were substantially different. For several exo-metabolites, 

for example glutamate and glycine, r m,CORE values were positive, 

indicating that cells were releasing these metabolites into the 

culture media, while r m,REGP values were negative, indicating 

that cells were consuming these metabolites as nutrients. As 

the CORE method encompasses both the lag phase and expo-

nential growth phase (Figure 1A), whereas the REGP method cal-

culates the exchange flux during exponential growth only 

(Figure 1B), this reflects that cell metabolism differs between 

the lag phase and exponential growth (Figure 2). Our results indi-

cate that glutamate is released by the cells during lag phase and 

consumed during exponential growth (Figure 2B). Similarly, con-

sumption of glycine differs between lag phase and exponential 

growth (Figure 2C).

For other nutrients, such as glucose, glutamine, and other 

amino acids, in general, we observed that r m,REGP for nutrient 

consumption was larger (that is, more negative) than r m,CORE , 

consistent with a higher nutrient consumption rate during expo-

nential growth compared to the lag phase (Figure 1C). For 

lactate, we observed that the exchange flux for lactate release 

was smaller (that is, less positive) by the REGP method 

(Figure 1C), suggesting that lactate production is elevated during 

the lag phase and reduced during exponential growth.

Simulating steady-state cell growth

A common way to benchmark FBA- and FVA-based GEM simu-

lations is to estimate the cell growth rate, 3,21 which can be easily 

validated experimentally. To do this, we first constructed cell 

line-specific GEMs by tINIT 22 using cell line-specific transcrip-

tomics data, generated in-house for MCF10A cells (Table S2; 

GEO accession GSE293588) and mined from the Cancer Cell 

Line Encyclopedia 23 for the 11 cell lines of the NCI-60 panel. 

We then specified the metabolites that are present in the cell cul-

ture media (Ham’s medium), followed by constraining the exo-

metabolite exchange fluxes (Figure 1C). For MCF10As, either 

r m,CORE or r m,REGP was used; for the 11 cell lines of the NCI-60 

panel, only the available r m,CORE were used (see Figure 3), which 

were mined from a previously described dataset, 3,4 accessible in 

Robinson et al. 24 Based on these input data as model con-

straints, the range of feasible in silico growth rates were simu-

lated by maximizing and minimizing biomass production. We 

found that the r m,CORE -constrained MCF10A model was infea-

sible (Figure 3A), meaning that the in silico cell was unable to 

‘‘grow’’ with the CORE-calculated metabolite uptake and secre-

tion rates. In contrast, the r m,REGP -constrained MCF10A model 

was feasible (Figure 3A). Critically, the experimentally measured 

growth rate fell within the GEM-simulated solution space 

(Figure 3A), indicating that GEM simulations are physiologically 

relevant when using r m,REGP as constraints, but not with r m,CORE . 

Similar to the r m,CORE -constrained MCF10A model, most of the 

r m,CORE -constrained models of the NCI-60 panel cell lines were 

also either infeasible or do not contain the experimentally 

measured growth rate within the simulated solution space 

(Figure 3A).

As a sensitivity analysis, we included a flexibilization factor 

ranging from 0% to 20% for all r m used as model constraints 

(i.e., lb = 0.8*r m ; ub = 1.2*r m ) and found that that this did not 

play a role in determining model feasibility or the physiological

Figure 2. Exo-metabolite exchange fluxes in different growth phases

(A) Growth curve of MCF10A cells showing a distinct lag phase (blue box) and an exponential growth phase (red box and red line).

(B and C) r Glu and r Gly showing distinct metabolic profiles during the lag phase and the exponential growth phase. The REGP method is used to calculate the 

exchange fluxes during the exponential phase (solid red line). Exchange fluxes in the lag phase are estimated by connecting a straight line from the fresh media 

sample at t = 0 h to the projected exo-metabolite concentration at t = 15 h based on REGP calculations (blue dashed line).

See also Table S1.
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relevance of the simulations (Figures 3A and 3B). The r m,CORE - 

constrained MCF10A model only produced physiologically rele-

vant simulations when the flexibilization factor was increased to 

700%; even at this point, the r m,CORE -constrained model of the 

SR cell line still performed poorly (Figure 3C).

Organization of the feasible flux space

We then took the r m,REGP -constrained MCF10A model as 

described above and added a constraint of the biomass produc-

tion reaction with the experimentally measured growth rate, to 

produce a constrained GEM of the MCF10A cell line that makes 

use of all available data. We used this model to explore the 

feasible flux space of the entire metabolic network of the cell in 

order to identify to what degree metabolic subsystems are con-

strained. Following FVA for every metabolic reaction, reactions 

were ranked by increasing flux variability (Table S3). A sliding 

window of 200 reactions with a step size of 10 was applied 

(the first window included reactions 1–200 and the second win-

dow, reactions 11–210). For each window, we calculated the 

fraction of reactions belonging to each metabolic subsystem 

(subsystems as defined by Human-GEM). For each subsystem, 

Z scores were calculated based on the mean fraction and stan-

dard deviation across all windows. The representation of meta-

bolic subsystems across the flux variability spectrum is visual-

ized in Figure 4 and listed in Table S4, where each row 

represents a subsystem and each column a window. This anal-

ysis showed that metabolic subsystems related to fatty acid 

metabolism, including fatty acid biosynthesis pathways and 

beta oxidation pathways, exhibited low variability in reaction 

flux (Figure 4). In contrast, amino acid metabolism (AAM) and 

most central carbon metabolism (CCM) pathways showed inter-

mediate to high levels of variability (Figure 4), even though the 

exo-metabolite exchange fluxes used as model constraints

were all related to CCM (glucose, lactate) and AAM, consistent 

with previous observations. 14,25 For nucleotide metabolism, we 

observed two distinct regions in this analysis, one with interme-

diate variability and another with high variability. Finally, we 

found that reactions in sphingolipid and steroid metabolism, as 

well as miscellaneous reactions such as pool reactions and arti-

ficial reactions necessary for model simulations, exhibited high 

flux variability (Figure 4).

DISCUSSION

Understanding human cell metabolism at the systems level is 

of critical interest in many areas of health and medicine. GEM-

based simulations have shown very promising applications in 

microorganisms, 9–11 but obtaining the necessary input data in 

human cells has proven to be difficult. A number of methodol-

ogies have been developed to leverage transcriptomics data 

as model constraints, 26–30 with mixed results, 31 likely because 

metabolic fluxes are poorly reflected by the abundance of 

(transcripts of) enzymes in a cell. More recently, exo-metabo-

lite exchange fluxes have been used, 3,9,14,32 based on a com-

parison of exo-metabolite concentrations between the 

‘‘spent’’ and ‘‘fresh’’ media. 4,14 The caveat of this method is 

that it violates the steady-state assumption of FBA and FVA 

and thus should be used with caution. To address this limita-

tion, we applied a multiple-time point regression approach, 

which collects exo-metabolite fluxes exclusively during the 

exponential growth phase (Figures 1B and 1C). Our results 

indicated a substantial difference in exchange fluxes in 

different phases of cell growth (Figure 2), underscoring the 

importance of distinguishing between growth phases when 

studying cell metabolism. With the exponential growth-phase 

exchange fluxes as model constraints, GEM simulations were

Figure 3. FVA simulation of cell growth rates

Each cell line-specific GEM was constrained with the corresponding cell line-specific exo-metabolite exchange fluxes (r m ) with a flexibilization factor of 0% (A), 

20% (B), and 700% (C). Rows labeled as infeasible indicate that no solution exists that satisfies all constraints. Black bars, FVA-simulated minimum and maximum 

in silico cell growth rate for each cell line. Red dots, experimentally measured growth rate for each cell line. In none of the simulations did the minimum and 

maximum biomass flux equal zero (max = min = 0).

See also Table S2.
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biologically plausible, with the measured cell growth rate fall-

ing within the simulated solution space (Figure 3). This allowed 

us to explore the entire metabolic network of the cell with a 

physiologically relevant flux profile, revealing a distinct organi-

zation of the feasible flux space by metabolic subsystems 

(Figure 4).

Previously, cell-specific GEMs constrained by the exchange 

fluxes of glucose, lactate, and threonine (all calculated by the 

CORE method) were shown to predict the cell growth rate to a 

reasonable degree of agreement with experimentally measured 

cell growth rates. 3 However, incorporation of additional (CORE-

calculated) exo-metabolite exchange fluxes, with a flexibilization 

factor of up to 20%, led to a large number of infeasible models 

(Figures 3A and 3B), suggesting underlying problems with the 

model constraints and the biological relevance of the simulations. 

With the REGP method, model simulations remained feasible with 

a larger number of measured exo-metabolite exchange fluxes, 

and the feasible flux space was constrained to a biologically plau-

sible region (Figure 3). We found that the maximum in silico growth 

rate exceeded the experimentally determined growth rate by 

approximately 2-fold (Figures 3A and 3B). This suggests that a 

portion of the consumed nutrients is diverted into non-growth-

related metabolic tasks, consistent with the notion that, perhaps 

with the exception of fast-growth cancer cells, human cells do 

not operate to solely maximize growth. 31,33

Our results show that even though the input constraints of our 

model were all related to CCM (glucose, lactate) or AAM (see 

Figure 1C), there is, nevertheless, an intermediate level of flux 

variability in these subsystems (Figure 4). This is in line with pre-

vious work showing that these subsystems do not operate at 

full capacity in growing cells. 25,34 In contrast, we found that 

reactions in fatty acid metabolism exhibited low flux variability, 

while reactions in sphingolipid metabolism and steroid meta-

bolism exhibited high flux variability, likely reflecting the de-

grees of connectivity (i.e., pathway branching) in these 

subsystems. 3,35

Even though regression-based methods for determining ex-

change fluxes have been established in other systems, 15–19 our 

study applies and validates this approach in a human cell line, 

showing it that substantially enhances the biological accuracy 

of GEM simulations compared to the conventional CORE method 

(Figure 3). To further confirm the robustness of this method in hu-

man cell lines, future work should validate the approach across 

additional human cell lines and conditions. While this approach 

demands more resources for exo-metabolite measurements, 

we believe that it is crucial to profile the metabolic fluxes of human 

cells at the genome scale, which can lead to a better understand-

ing of the metabolic process in healthy cells and the identification 

of potential metabolic targets in diseases.

Limitations of the study

The REGP method has a higher demand for experimental re-

sources compared to the conventional CORE method, as 

several exo-metabolite measurements (rather than only one) 

must be taken, at the appropriate time points, which must be first 

determined experimentally. Connected to this limitation, this 

study shows the application of the REGP method in only one hu-

man cell line, MCF10A. Application of our method across addi-

tional human cell lines and conditions is warranted in future 

studies.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources may be directed to and will be 

fulfilled by the lead contact, Rosemary Yu (r.yu@science.ru.nl).

Materials availability

This study did not generate new unique reagents.

Data and code availability

• Raw RNA-seq data are available at GEO, accession GSE293588.

• All other data and code used in this paper are available in the GitHub re-

pository (https://github.com/Radboud-YuLab/FluxProfilingREGP). An 

archival DOI is provided in the key resources table.

• Any additional information required to re-analyze the data reported in 

this paper is available from the lead contact upon request.

Figure 4. Organization of the feasible flux space of MCF10A cells

The MCF10A-specific GEM was constrained with r m,REGP and the measured 

growth rate, both with a flexibilization factor of 20%. FVA was performed to 

determine the flux variability (i.e., the feasible solution space) for every metabolic 

reaction. The fraction of each metabolic subsystem was calculated in a sliding 

window of 200 reactions of increasing flux variability, followed by a Z score 

transformation to facilitate comparison. For ease of visualization, Z scores of >3 

or < − 3 were set to 3 or − 3, respectively. Rows represent metabolic sub-

systems, and columns represent a window. Metabolic subsystems were 

grouped into larger metabolic pathway categories to facilitate visualization and 

interpretation; the raw Z scores with corresponding metabolic pathways can be 

found in Table S4.

See also Tables S3 and S4.
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rung, S., Siewers, V., and Nielsen, J. (2017). Evolutionary engineering 

reveals divergent paths when yeast is adapted to different acidic envi-

ronments. Metab. Eng. 39, 19–28. https://doi.org/10.1016/j.ymben. 

2016.10.010.

40. Yu, R., Vorontsov, E., Sihlbom, C., and Nielsen, J. (2021). Quantifying ab-

solute gene expression profiles reveals distinct regulation of central car-

bon metabolism genes in yeast. eLife 10, e65722. https://doi.org/10. 

7554/eLife.65722.

Cell Reports Methods 6, 101275, January 26, 2026 7

Report
ll

OPEN ACCESS

https://doi.org/10.5281/zenodo.3583004
https://doi.org/10.1038/s41467-020-15749-0
https://doi.org/10.1371/journal.pcbi.1000082
https://doi.org/10.1093/bioinformatics/btq602
https://doi.org/10.1093/bioinformatics/btq602
https://doi.org/10.1371/journal.pcbi.1000489
https://doi.org/10.1186/1752-0509-6-73
https://doi.org/10.1186/1752-0509-6-150
https://doi.org/10.1186/1752-0509-6-150
https://doi.org/10.1371/journal.pcbi.1003580
https://doi.org/10.1371/journal.pcbi.1003580
https://doi.org/10.1371/journal.pcbi.1005698
https://doi.org/10.1371/journal.pcbi.1005698
https://doi.org/10.1038/nrg3643
https://doi.org/10.1038/s41467-022-30513-2
https://metabolicatlas.org/
https://doi.org/10.7717/peerj.16380
https://doi.org/10.1038/s41587-020-0446-y
https://doi.org/10.1038/s41587-020-0446-y
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1038/s41596-018-0098-2
https://doi.org/10.1016/j.ymben.2016.10.010
https://doi.org/10.1016/j.ymben.2016.10.010
https://doi.org/10.7554/eLife.65722
https://doi.org/10.7554/eLife.65722


STAR★METHODS

KEY RESOURCES TABLE

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell lines

MCF10A cells were purchased from ATCC (Cat# CRL-10317). Cells were cultured in DMEM/F12 (Cat# 11320033, Gibco) supple-

mented with MEGM Mammary Epithelial Cell Growth Medium SingleQuots Kit (Cat# CC-4136, Lonza) without GA-1000, along

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

DMEM/F12 Gibco 11320033

MEGM Mammary Epithelial Cell Growth 

Medium SingleQuots

Lonza CC-4136

Cholera toxin Enzo Life Sciences BML-G117

Penicillin-streptomycin Gibco 15140

Trypsin-EDTA Gibco 25300054

Trypan blue Gibco 15250061

Critical commercial assays

CyQUANT Cell Proliferation Assay ThermoFisher Scientific C7026

aTRAQ Kit AB Sciex 4442673

KAPA RNA HyperPrep Kapa Biosystems KK8502

Quick-RNA Microprep Zymo Research R1051

Qubit HS Invitrogen Q32854

High Sensitivity DNA analysis Agilent 5067–4626

Deposited data

Data & code repository This paper doi:10.6084/m9.figshare.30784106

MCF10A RNA-seq This paper NCBI GEO accession number: GSE293588

Experimental models: Cell lines

MCF10A ATCC Cat# CRL-10317; RRID: CVCL_0598

Software and algorithms

MultiQuant SCIEX 3.0.3

Seq2science van der Sande et al. 36 https://github.com/vanheeringen-

lab/seq2science

Human1 Robinson et al. 3,24 https://github.com/SysBioChalmers/

Human-GEM/tree/v1.19.0

tINIT Agren et al. 22 https://github.com/SysBioChalmers/

Human-GEM/tree/v1.19.0

MEMOTE Lieven et al. 37 https://github.com/opencobra/memote

MATLAB MathWorks, Inc. 2023a

Gurobi solver – https://www.gurobi.com/

R – https://www.r-project.org/

COBRA toolbox Heirendt et al. 38 https://github.com/opencobra/cobratoolbox

NCI-60 metabolomics Jain et al. 4 , Robinson et al. 3,24 N/A

Other

HPLC Shimadzu N/A

Nexera UHPLC system Shimadzu N/A

Qtrap 6500+ system AB Sciex 1250140

BEH C18 column Waters 186002353

NextSeq 2000 system Illumina N/A
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with 0.1 μg/mL cholera toxin (Cat# BML-G117, Enzo Life Sciences) and 100 U/mL penicillin-streptomycin (Cat# 15140, Gibco). Cells 

were tested for mycoplasma contamination routinely.

METHOD DETAILS

Cell proliferation assays

Absolute cell counts were measured at 22, 26, 30, 46, 50, and 54 h after seeding using the CyQUANT Cell Proliferation Assay kit (Cat# 

C7026, ThermoFisher Scientific) with a CLARIOstar Plus plate reader (BMG LABTECH). Cell proliferation at all other time points were 

measured by Incucyte ZOOM (Essen Bioscience), then converted to absolute cell counts based on the corresponding cell counts 

from the CyQUANT measurements.

Biomass determination

Cells were harvested with 0.05% trypsin-EDTA (Cat# 25300054, Gibco) and counted using 0.4% trypan blue (Cat# 15250061, Gibco) 

in a TC20 Automated Cell Counter (BioRad). The cell suspension was transferred into pre-weighed Eppendorf tubes and pelleted by 

centrifugation at 200g for 5 min. Pellets were dried in a microwave at 360 W for 20 min, and desiccated in a desiccator for >3 days.

Exo-metabolite measurements

Sampling for exo-metabolites was done during cellular exponential growth phase between 22 and 30 h after seeding by collection of 

culture supernatant. Glucose and lactate concentrations were quantified as described before, 39 using an HPLC (Shimadzu) with an 

Aminex HPX-87H column (Cat# 1250140, BioRad) at 65 ◦ C and an IR detector. The column was eluted with 5 mM H 2 SO 4 at a flow rate 

of 0.6 mL/min for 26 min. Amino acids were quantified as described before, 40 with the aTRAQ Kit (Cat# 4442673, AB Sciex) using a 

Nexera UHPLC system (Shimadzu) coupled to a Qtrap 6500+ system (AB Sciex) with a BEH C18 column (150 × 2.1 mm, 1.7 μm) (Cat# 

186002353, Waters) at 50 ◦ C. A gradient elution of water (eluent A) and methanol (eluent B), both containing 0.1% formic acid and 

0.01% heptafluorobutyric acid, were used as the mobile phases with a constant flow of 1 mL/min. The following MS parameters 

were used: Curtain Gas: 50; Collision Gas: Medium; IonSpray Voltage: 5500 V; Temperature: 500 ◦ C; Ion Source Gas 1: 60; Ion Source 

Gas 2: 50. The gradient method was: 2% B from 0 to 2.5 min, 2%–40% B from 2.5 to 3.9 min, held at 40% B until 4.2 min, 40%–90% B 

from 4.2 to 6.0 min, held at 90% B until 6.1 min, 90%–2% B from 6.1 to 8.0 min. Data acquisition and processing were performed 

using Analyst and MultiQuant 3.0.3 software. Following data QC, exo-metabolite exchange fluxes (r m ) were calculated by CORE 4 

or REGP (see below).

Exo-metabolite exchange flux (r m ) calculation by REGP

Exo-metabolite exchange fluxes (r m ) were determined by calculating the ratio between spent media and unused media samples, then 

normalizing to the known metabolite concentrations of the cell culture media (DMEM/F12). Exo-metabolite concentrations were 

normalized for culture volume and cell dry weight, and a linear model was fitted to regress the concentrations against time. r m,REGP 

is then taken as the slope of the linear model, i.e., the derivative of the fitted metabolite concentration [ ̂ m] with respect to time 

t (Figure 1B). Goodness of fit was determined by R 2 , with an arbitrary cutoff of 0.7.

RNA sequencing

RNA was sampled at 27 h after seeding. RNA was extracted using the Quick-RNA Microprep Kit (Cat# R1051, Zymo Research) ac-

cording to the manufacturer’s protocol. Libraries were prepared from 300 ng RNA with the KAPA RNA HyperPrep Kit with RiboErase 

(HMR) (Cat# KK8502, Kapa Biosystems). RNA fragmentation was performed for a desired library insert size of 200–300 bp by frag-

mentation for 6 min at 94 ◦ C. Library concentrations were determined using the Qubit HS kit (Cat# Q32854, Invitrogen). Library size 

distribution was determined using a High Sensititivy DNA analysis (Cat# 5067-4626, Agilent) on a Bioanalyzer 2100 (Agilent). Libraries 

with an average between 300 and 400 bp were loaded on the NextSeq 2000 system (Illumina). Reads were quality controlled, mapped 

to the human genome hg38, and counted by Seq2science, 36 available at https://github.com/vanheeringen-lab/seq2science.

Genome-scale metabolic modeling

The consensus Human-GEM, Human1 v1.12.0, 3 was used for all procedures detailed below. Human-GEM is a ‘generic’ model which 

contains all observed metabolites and reactions in human cells. For each cell line, contextualized models were constructed using 

tINIT, 22 where the generic Human-GEM is pruned in a cell line-specific manner based on whether or not the (transcript of) an enzyme 

is expressed. MEMOTE was applied to test model validity, which confirmed that all models had a consistency score >85%. 37 We 

used transcriptomics data measured in-house (MCF10As) or mined from CCLE, 23 with an arbitrary expression level cutoff of

1 TPM. Each cell line-specific model was first constrained with components of the growth media (without specifying the exchange 

fluxes), and model feasibility was verified under these unconstrained conditions. The models were then further constrained by the 

measured exchange fluxes with a flexibilization factor ranging from 0% to 700%. For simulation of growth rate, the range of feasible 

in silico growth rate was determined using FVA by sequentially minimizing and maximizing the biomass reaction, as implemented in 

the COBRA toolbox. 38 The MCF10A-specific model was further constrained with the measured growth rate to perform FVA for all 

reactions. The flux variability for each reaction, i.e., max(flux) – min(flux), is sorted from lowest to highest. A sliding window of
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200 reactions with a step size of 10 reactions across the sorted list was used to assess the variation in reaction flux across different 

subsystems. Within each window, Z-scores were calculated for the fraction of reactions per subsystem in a given window by 

comparing the fraction to the overall mean and standard deviation across all windows. Exchange reactions, transport reactions, 

and subsystems with less than 5 reactions, were excluded from the visualization of this analysis in Figure 4. All simulations were per-

formed using MATLAB 2023a (MathWorks, Inc.) with Gurobi solver v10.0.1 (Gurobi Optimizer).

QUANTIFICATION AND STATISTICAL ANALYSIS

Procedures related to metabolic modeling are described in detail in the sections above and were implemented in MATLAB (2023a). 

Numerical analyses and graphics are done in R v4.2.3.
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