CHAL

UNIVERSITY OF TECHNOLOGY

BLAFS: A Bloat-Aware Container File System

Downloaded from: https://research.chalmers.se, 2026-02-09 03:22 UTC

Citation for the original published paper (version of record):

Zhang, H., Alhanahnah, M., Leitner, P. et al (2026). BLAFS: A Bloat-Aware Container File System.
Socc 2025 Proceedings of the 2025 ACM Symposium on Cloud Computing: 614-628.
http://dx.doi.org/10.1145/3772052.3772263

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)




Check for
updates

R DIGITAL Assaciaionfoe
ACM @ LIBRARY Computing Machinery @m open)
{5 Latest updates: https://dl.acm.org/doi/10.1145/3772052.3772263

RESEARCH-ARTICLE
BLAFS: A Bloat-Aware Container File System

HUAIFENG ZHANG, Chalmers University of Technology, Gothenburg, Vastra Gotaland,
Sweden

MOHANNAD ALHANAHNAH, University of Wisconsin-Madison, Madison, WI, United
States

PHILIPP LEITNER, Chalmers University of Technology, Gothenburg, Vastra Gotaland,
Sweden

AHMED ALI-ELDIN, Chalmers University of Technology, Gothenburg, Vastra Gotaland,
Sweden

Open Access Support provided by:
University of Wisconsin-Madison

Chalmers University of Technology

i PDF Download
j,.g 3772052.3772263.pdf
< 05 February 2026

Total Citations: 0
Total Downloads: 47

Published: 19 November 2025
Citation in BibTeX format

SoCC '25: ACM Symposium on Cloud
Computing

November 19 - 21, 2025

Online, USA

Conference Sponsors:
SIGOPS
SIGMOD

SoCC '25: Proceedings of the 2025 ACM Symposium on Cloud Computing (November 2025)

https://doi.org/10.1145/3772052.3772263
ISBN: 9798400722769


https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3772052.3772263
https://dl.acm.org/doi/10.1145/3772052.3772263
https://dl.acm.org/doi/10.1145/contrib-99661117183
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/doi/10.1145/contrib-99659226824
https://dl.acm.org/doi/10.1145/institution-60032179
https://dl.acm.org/doi/10.1145/institution-60032179
https://dl.acm.org/doi/10.1145/contrib-81361597657
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/doi/10.1145/contrib-81488671203
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/doi/10.1145/institution-60000990
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60032179
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3772052.3772263&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/mod
https://dl.acm.org/conference/mod
https://dl.acm.org/sig/sigops
https://dl.acm.org/sig/sigmod
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3772052.3772263&domain=pdf&date_stamp=2026-01-13

BLAFS: A Bloat-Aware Container File System

Huaifeng Zhang
Chalmers University of Technology and
University of Gothenburg
Gothenburg, Sweden
huaifeng@chalmers.se

Philipp Leitner
Chalmers University of Technology and
University of Gothenburg
Gothenburg, Sweden
philipp.leitner@chalmers.se

Abstract

Containers have become the standard for deploying applications
in many cloud systems due to its convenience. However, this con-
venience leads to significant container bloat, i.e., unused files that
inflate container image sizes, increase provisioning times, waste
resources and introduce security vulnerabilities. Bloat is partic-
ularly problematic in serverless and edge computing scenarios,
where resources are constrained, and performance is critical, and
for microservice applications where rapid scaling is key to meet
performance targets. However, existing container debloating tools
are often limited in both effectiveness and robustness. In this paper,
we propose BLAFS, a bloat-aware container filesystem that removes
bloat while guaranteeing the correct operation of the debloated con-
tainers. BLAFS addresses bloat at the filesystem level by introducing
new layers in the filesystem to enable debloating. During runtime,
accessed files are moved to the debloating layers, and then similar
to garbage collection mechanisms, BLAFS removes files that are not
accessed during runtime. An optional reloading layer fetches files
from a remote cloud cache on-demand if the files are mistakenly re-
moved. We discuss how BLAFS can be used in different deployment
scenarios and for different use-cases including container security-
hardened and a dynamic deployment mode where the target is
improved provisioning performance. We evaluate BLAFS perfor-
mance using the top 20 downloaded containers from DockerHub,
four ML containers, and SEBS, a Serverless Benchmark containing
10 serverless functions and compare its performance against two
state-of-the-art debloating tools. Our evaluation shows that BLAFS
reduces container sizes by up to 95% and cold-starts by up to 68%.
In the security-hardened mode, BLAFS removes up to 89% of CVEs
while the two state-of-the-art debloating tools fail on most of the
workloads. We identify their limitations, and show how BLAFS
provides a more principled approach to debloating. Additionally,
when combined with lazy-loading snapshotters, BLAFS improves
provisioning efficiency, reducing conversion times by up to 93%
and provisioning times by up to 19%.

This work is licensed under a Creative Commons Attribution 4.0 International License.
SoCC 25, Online, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2276-9/2025/11

https://doi.org/10.1145/3772052.3772263

614

Mohannad Alhanahnah
University of Wisconsin-Madison
Madison, USA
mohannad.alhanahnah@gmail.com

Ahmed Ali-Eldin
Chalmers University of Technology and
University of Gothenburg
Gothenburg, Sweden
ahmed.hassan@chalmers.se

CCS Concepts

« Software and its engineering — Software evolution.

Keywords

Software Bloat, Cloud Computing, Serverless Computing, Con-
tainer, File System

ACM Reference Format:

Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-
Eldin. 2025. BLAFS: A Bloat-Aware Container File System. In ACM Sympo-
sium on Cloud Computing (SoCC °25), November 19-21, 2025, Online, USA.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3772052.3772263

1 Introduction

Containers have become the main deployment model for cloud
workloads including traditional workloads [11, 42], machine learn-
ing [24, 31], serverless functions [9, 18], and edge deployments [14].
Container’s popularity is driven by how the technology simplifies
deployments. Containerized applications are distributed as con-
tainer images, composed of compact, and shareable “layers” of files.
These images are then stored in centralized registries, such as Dock-
erHub [20]. A user pulls a container from a registry, and then can
deploy, update, or create a new image based on the pulled image

Despite their advantages, container images have become exces-
sively large [51, 55]. For example, it has been shown that most con-
tainer images often package unnecessary files and libraries [51, 55].
This is commonly referred to as software or container bloat. Con-
tainer bloat is a result of software development practices that
favor rapid feature integration and dependency inclusion, even
when these components are only marginally useful to end users [8,
54]. Container bloat leads to performance degradation [45], in-
creased provisioning times [14], wasted storage and network band-
width [54], and an expanded attack surface [13, 30].

To address these inefficiencies, prior work proposed optimiza-
tions for storage reduction [26], faster provisioning [14, 16], and
improved security [23, 32]. However, most of these solutions do not
address the root-cause of the problem, container bloat. For example,
lazy-loading snapshotters [14, 16] speed up container startup by
converting the container images into a lazy-loading format which
enables the container to start before all the layers are pulled from
the registry or source. However, when a container image is bloated,
converting it into a lazy-loading format becomes costly, in many


https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772052.3772263
https://doi.org/10.1145/3772052.3772263

SoCC ’25, November 19-21, 2025, Online, USA

cases, offsetting performance benefits. In addition, snapshotters
transfer the entire container, only lazily. Hence, they do not funda-
mentally remove the bloat.

Another less studied solution is container debloating, i.e., re-
moving unused files from containers. For example, Cimplifier [44]
and SlimToolKit [21], rely on file-tracing tools, such as ptrace or
strace [5, 7], to identify and remove unused files. However, they
lack awareness of the underlying filesystem structure, which limits
their ability to handle more complex bloat scenarios and often result
in broken debloated containers that do not function [27]. These
limitations are inherent in these tools as we describe later.

We argue that the root cause of bloat is the container layered
filesystem architecture itself; Containers are built on top of other
containers often referred to as base container images. To facilitate
this, containers rely on layered filesystems such as the UnionFS [43],
the OverlayFS [38], or the Btrfs [46]. In a layered filesystem, a
container inherits all the filesystem layers of its base image, creating
anew layer on top with its own files. Any files (and bloat) in the base
image is inherited in the new container, with possibly new bloat
added with each new layer added. As a result, bloat compounds
across layers and propagates transitively.

To solve this filesystem bloat, in this paper we introduce BLAFS,
a Bloat-Aware container File System that leverages the layered
structure of container filesystems to debloat containers during
runtime. BLAFS introduces two new types of layers to container
filesystems: a debloating layer and a reloading layer. BLAFS converts
a container image to a BLAFS-image by inserting a combination of
these new layers to the container image.

At runtime, BLAFS transparently migrates any accessed files
from the original filesystem layers to the debloating layers. Sub-
sequently, the original layer is pruned by removing files that re-
main unaccessed, effectively identifying and eliminating bloat. De-
bloating layers serve as composable primitives enabling a flexible
container filesystem architecture that can be tailored to different
deployment scenarios. Based on where and how many debloating
layers are added, BLAFS supports two layer-sharing modes: (1) no-
sharing mode for minimal per-container size where no layers are
shared across containers on the same host; (2) fully-sharing mode
which optimizes aggregate storage across containers, enabling all
containers on the same host to share their common image layers.

The reloading layer is designed to address one key weakness of
debloating tools; their inability to generalize a debloated container.
If a file is removed and is later needed, the debloated container will
fail [53]. To solve this issue, BLAFS introduces an optional reloading
layer that enables containers to remote-fetch a file that is missing
from the debloated container in case it is needed after debloating.
Thus, debloating can be done repetitively, adapting to any workload
changes that were not captured previously. Hence, in addition to
the layer-sharing modes enabled by the flexibility of the debloating
layers, the reloading layer enables two more deployment modes
that can be combined with the layer-sharing modes; (1) security-
hardened mode where containers are only allowed to access files
in a debloated version that encompass all the functionalities the
container is allowed to do, failing in case any other files that are not
in the security-hardened debloated version are accessed (or raising
an error sent to the operator). In this mode, the reloading layer is
disabled; (2) dynamic deployment mode where the reloading layer

615

Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

is used to fetch any missing files from a remote file caching service,
allowing for load changes during runtime.

We anticipate four main use cases for BLAFS: (1) Serverless
functions that can be profiled and debloated prior to deployment,
reducing storage, cold start latency, and cost; (2) Serverless plat-
forms that can monitor file access in production and debloat mature
containers with stable access patterns, improving efficiency and
performance at scale; (3) Micro-service based applications where
the application’s workflow and functionality are stable; (4) Edge
computing deployments where the resources are constrained. In
building BLAFS, we make the following contributions:

o We design a flexible and effective filesystem-level container
debloating approach. We show the flexibility of BLAFS to
accommodate different scenarios. We open source BLAFS!.

e We evaluate BLAFS with 22 popular container images and
a serverless benchmarks running on OpenWhisk under dif-
ferent scenarios. We demonstrate reductions in container
provisioning times, CVEs, and storage requirements. We also
show how BLAFS reduces cold start latencies of serverless
functions by up to 68%.

o We further show that BLAFS can be effectively combined
with other container optimization techniques, such as lazy-
loading snapshotters to enhance their performance, signifi-
cantly reducing conversion time by up to 93% and provision-
ing time by up to 19%.

2 Background

2.1 Container File Systems

In essence, a container is a process running on the host operating
system isolated via operating system primitives such as cgroups
and namespaces. Containers typically use union filesystems such
as OverlayFS [38], BTRFS [46] or similar filesystems [48, 56]. A
container filesystem can be thought of as a container layer on the
top and a list of (inherited or shared) image layers, as illustrated
in Figure 12 in the appendix. The container layer handles all write
requests from the container in a copy-on-write manner with all files
created or modified by a container stored in its container layer. The
image layers on the other hand are read-only. When a container
accesses a file, the filesystem first looks up the file in the container
layer, then in the image layers one by one, top to bottom, until the
file is found, or an error is raised.

The image layers can be shared across many containers, with
the container layer allowing each container to have its isolated
filesystem. This approach greatly reduces disk space requirements
for each container. However, this architecture is also a major source
of bloat [21, 44, 49]. Most containers are built on top of a base
container image, where a container inherits all the filesystem layers
of the base container image. Any bloat in the base image is inherited
in the new container, with new bloat possibly added with each layer
added to the filesystem.

2.2 Container Debloating

Bloated containers consume unneeded disk space and network
bandwidth, while increasing the provisioning time of containerized

!https://github.com/negativa-ai/BLAFS


https://github.com/negativa-ai/BLAFS

BLAFS: A Bloat-Aware Container File System

applications [28, 47, 54]. For serverless, this leads to unnecessary
longer cold start times [34, 36, 50]. In addition, large containers
often include unnecessary dependencies, libraries, and applications
that can introduce and increase security vulnerabilities. Container
debloating tools remove bloat from container image layers to reduce
their size and improve their security and performance.

One example of such tools is Cimplifier [44]. Cimplifier uses
dynamic analysis to slim and partition containers to provide better
privilege separation across applications. SlimToolKit [21] is another
open-source container debloating tool that also relies on dynamic
analysis to generate Seccomp profiles and remove unnecessary files
from containers. Different to these tools, some container debloating
tools do not aim to reduce the size of containers but instead focus
on restricting the system calls available to them, reducing the attack
surface of these containers [23, 32].

All container debloating tools, sometimes referred to as de-
bloaters, we are aware off suffer from one or several of the following
three key limitations:

o All debloaters available today rely on tracing with some
sample workloads. This requires users to know beforehand
the exact workload that will run, otherwise, the generated
containers will fail.

o Current tracing methods fail to capture some file accesses.
For example, Cimplifier [44] and SlimToolKit [21] start trac-
ing after the container has started. Hence, they do not cap-
ture files accessed during the startup phase. This is especially
problematic for containers that utilize resources at startup,
such as CUDA libraries in machine learning containers. Re-
moval of these files can lead to the containers failing to start.

o Existing container debloaters trace files inside the container
without awareness of the layered filesystem. As a result, they
break the layered structure, eliminating layer sharing across
containers deployed on the same host. In practice, this can
cause the sum of debloated containers to be larger than the
sum of the original non-debloated containers on the host due
to redundant files being kept in each debloated container.

2.3

To improve container provisioning time, there are solutions that
use the containerd snapshotter plugin [15] to enable container
lazy-loading. Snapshotter techniques need to convert the origi-
nal container image to the snapshotter format. Starlight [14] is an
accelerator for container provisioning that redesigns the container
provisioning protocol, filesystem, and storage format. Starlight ini-
tially identifies the essential files needed for container start-up.
When a container is pulled, these essential files are retrieved first
allowing for a quick start-up. The remaining files are then pulled
in the background.

eStargz [16] is another open-source snapshotter. eStargz esti-
mates the order of use of files in the image layers of a container
and presorts the files in each compressed layer according to the
estimation. When a container starts and opens a file that has not
been transferred yet, eStargz pauses the container start-up and re-
quests the file from the registry. Similar to Starlight, the remaining
files of the container are pulled in the background, resulting in the
deployment of the fully bloated container.

Lazy-Loading Snapshotters

616

SoCC ’25, November 19-21, 2025, Online, USA

While container debloating and lazy-loading snapshotters are or-
thogonal techniques that can be effectively combined to further en-
hance the performance of containerized applications, lazy-loading
has some fundamental limitations as they require every container to
be converted to the snapshotter format. The image format conver-
sion time can be significant, taking several minutes even for simple
containers, as we show later in our evaluation. Automating this
process for every container can prove challenging in production.

2.4 Containers Cold-Starts

The large size of containers affect their cold-starts. This is espe-
cially problematic for serverless computing. Serverless functions
are widely deployed using containers in order to provide an isolated
and consistent environment for function execution [4, 6, 19]. A cold
start occurs when a serverless function is invoked for the first time,
or after a period of inactivity, requiring the serverless platform
to provision the execution environment [29]. This process typi-
cally involves downloading the container image from the registry,
initializing the runtime environment, and executing the function,
all of which contribute to latency [34, 36, 50]. Serverless function
containers are bloated, which exacerbates the cold start latency
problem. For instance, on AWS Lambda, a widely used serverless
computing platform [6], a simple serverless function that prints
"Hello World" can require a container image as large as 530 MB [3].

3 BLAFS Design

The limitations of existing tools to deal with container bloat are
fundamental and hence, to the best of our knowledge, limits their
usage in production cloud systems. To solve these limitations, we
take a radically different approach to debloating in designing BLAFS,
where we seamlessly integrate debloating in the existing container
filesystems with no added overheads. For production systems, this
requires no-changes in the container provisioning pipeline from a
user or operator perspective.

From production requirements, we identify three key design
goals that BLAFS must satisfy:

o Effectiveness. BLAFS should remove unnecessary files in
containers with no impacts on container performance.

o Flexibility. BLAFS should be flexible to run on different
cloud, edge, and container systems accommodating different
production use-cases.

e Transparency. BLAFS should be transparent with no spe-
cial requirements to work with the existing container tools
minimizing impact on existing infrastructure management
and deployment processes.

BLAFS consists of the following components: A debloating layer
that detects accessed files at the filesystem level (§3.1); An optional
reloading layer that fetches missing files on demand to ensure the
robustness of debloated containers (§3.2); A converter that composes
the debloating and reloading layers with the original image layers
in different configurations, enabling multiple operational modes for
various use cases (§3.3); a mode selection strategy to help to select
the deployment mode (§3.4); and finally an optional module that
uses package dependency analysis to expand the set of retained
files, improving the robustness of debloated containers (§3.5).



SoCC ’25, November 19-21, 2025, Online, USA

[Fufs | ! \‘ A3 {fl,fs \‘
fi, fo f2
 fafa ] 1A

l:lDebloating Layer I:llmage Layer

Figure 1: An example of debloating layers.

3.1 The Debloating Layer

When a container reads a file, the original container filesystem first
tries to open the file from the top image layer down to the bottom
layer and then reads from the file descriptor. Debloating layers are
inserted above the original container filesystem layers to detect
used files. A debloating layer D has a list of image layers as its child
layers (D.children). When reading a file from a debloating layer,
the file is moved from the child layers to the added debloating layer.
In doing so, the debloating layer only includes used files.

Figure 1 shows an example where the original container filesys-
tem has two image layers, with each layer having two files. In this
example, we add a debloating layer to the filesystem such that the
two original image layers are now child layers to the debloating
layer. When the container reads files f; and f;, the two files are
moved to the debloating layer from the image layers. The two used
files are now in the debloating layer, while the other two unused
files stay in the image layers. If we delete the image layers, the
container will be debloated containing only the two used files.

Algorithm 1 shows the details of the debloating process. We
denote a file to be read as p. We use the notation D/p to denote
concatenating the path of layer D with path p. The algorithm first
opens p in D. If p exists in D, it returns its file descriptor (fd # —1).
Otherwise, BLAFS tries to open p from the child layers. If p exists
in layer [, the file is moved from [ to D. If p does not exist in the
child layers, -1 is returned to indicate that the file does not exist
in D, and that the file should be fetched from lower debloating
layers if they exist. The lower debloating layers try to fetch the file
from their child layer(s) similarly. This enables BLAFS to have a
hierarchy of debloating layers. If no other debloating layers exist,
and the reloading layer is enabled, then the file is remotely fetched
as we describe later.

Implementation. The debloating layer of BLAFS is developed
in C++ with 1k+ lines of code, reimplementing all file-related in-
terface, such as open, read, opendir, etc.. To insert a debloating
layer into the container’s filesystem, BLAFS first parses the con-
tainer configuration to retrieve the list of image layers and their
corresponding locations on the host filesystem. For each debloating
layer, BLAFS creates a new directory on the host, which serves
as a mount point for the BLAFS filesystem. This mount point acts
as the debloating layer and accepts a list of directories, which are
the locations of container’s image layers—as its child layers. While
the original container filesystem is linear-layered where the layers
are stacked sequentially, BLAFS is a tree-layered filesystem due to
the debloating layers mounting the original layers as child layers.
BLAFS then modifies the container’s configuration to change the
original images layer paths to this new mount point. As a result,
when the container starts, all file accesses are transparently routed
through BLAFS’s mount point. Any file access is handled according

617

Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

Algorithm 1 Pseudo-code of function DOPEN

Input: Debloating layer D; file path p
Output: File descriptor
1: function DOPEN(D,p)
2: fd « open(D/p)
if fd # -1 then
return fd
end if
for ! in D.children do
fd < open(l/p)
if fd # -1 then
move(l/p,D/p)
return open(D/p)
end if
12: end for
13: return -1
14: end function

> from top to bottom

10:
11:

to the logic defined in Algorithm 1, enabling separation of accessed
and unaccessed files during execution.

Layer-sharing modes. Depending on the number and posi-
tion of the added layers, BLAFS enables two layer sharing modes,
namely, no-sharing and fully-sharing modes. Operating in the no-
sharing mode results in a container with maximum per-container
size reduction, while operating in the fully-sharing mode results in
multiple containers with maximum total size reduction. We now
describe the details of these two modes.

(1) No-sharing Mode. In this mode, BLAFS guarantees the min-
imum possible size of a container by removing files that are not
used by the container without considering any other containers
sharing the same host. Given a container with n image layers, the
no-sharing mode inserts one debloating layer, which has all the n
original image layers as its child layers. The debloated container
contains only files needed by the container’s workloads. This mode
is equivalent to existing container debloaters, such as Cimplifier and
SlimToolKit, i.e., it flattens the layers of the container file system to
be a single layer. The no-sharing BLAFS is effective in producing
debloated containers with a minimum size per container, but dupli-
cate files among multiple debloated containers on the same host
can result in the total size of the debloated containers being larger
than the total size of the original containers which share filesystem
layers. We note that all existing container debloaters have this flaw
(or feature). To give an example, Figure 2 displays an example of
no-sharing BLAFS. The two containers, C; and Cy, share the same
image layers, which include two layers and four files fi, f;, f5 and f3
whose sizes are 1IMB, 2MB, 3MB, and 4MB respectively. Thus, both
C; and C, are 10MB. When using BLAFS, C; reads f; and f,, so both
are moved to the debloating layer from the image layer. Similarly,
f> and f; are moved to the debloating layer of C,. After debloating,
C; has one debloating layer, which contains f; and f;, while C;’s
debloating layer contains f, and f;. As a result, the sizes of C; and
C, are reduced to 3MB and 5MB. However, f; is duplicated in both
debloated containers.

(2) Fully-sharing mode. This mode allows sharing of common
files across multiple debloated containers located on the same host.
Given a container with n image layers, BLAFS inserts n debloating



BLAFS: A Bloat-Aware Container File System

C
Profile: /lﬁ
C| reads f1 fi, fa Cy
C| reads fo S Export
Cy
Profile:
Cy r::aldes fal| for f3 Cy
C reads f3 Export

D

I:lDebloating Layer

Image Layer

Figure 2: Example for no-sharing BLAFS

Cy C1

Cy

Profile:
C1 reads f1
C\ reads f

Profile:
Cy reads fo
C reads f3

l:l Image Layer

[

Figure 3: Example for fully-sharing BLAFS

Debloating Layer

layers, each of which has one image layer as its child layer. This
means that layers shared among different containers on the same
host can still be shared among their debloated versions, with the
added debloating layers having the superset of all the files used
by all the containers sharing the same layer. Compared with the
no-sharing mode, this can lead to a larger size for each container,
but the total storage used is reduced since the layers can be shared.
Figure 3 shows an example with the fully-sharing mode. The input
container C; and C, and the workloads are the same as in Figure 2.
First, two debloating layers are inserted for each image layer, with
the image layer converted to be their child layers. The inserted
debloating layers are shared by C; and C,. After conversion, the
debloated versions of C; and C; share the two debloating layers.
Therefore, the sizes of C; and C, are the same, which is 6MB. The
size is larger than the sizes of 3MB and 5MB generated by the no-
sharing BLAFS, because each container consists of an unnecessary
file (f5 for Cy,f; for C;). However, unlike no-sharing BLAFS, the
debloating layers are shared by the two debloated containers. So
the total size of C; and C, is 6MB, which is smaller than the size of
8MB generated by no-sharing BLAFS.

3.2 The Reloading Layer

The reloading layer can be used to fetch files missing in a debloated
container in case these files were mistakenly removed or if the
workload dynamics change. Figure 4 shows an example of the
reloading layer in-action. The reloading layer is appended as the
bottom layer in the file system, below all the other image layers.
When a container accesses a file, it searches top-to-bottom across
the filesystem layers of the layered filesystem. Thus, if a file request
reaches the reloading layer, it indicates that the file was not found
in any of the preceding layers. The reloading layer intercepts the
request for the file and connects to a remote file caching service that
can be either the container registry itself, or a cheap cold storage
such as AWS S3 [1]. The reloading layer is optional and is used
depending on the mode BLAFS is running in as we explain later.

618

SoCC ’25, November 19-21, 2025, Online, USA

\fl,fa R \fl,fz

Download fz ;

fa f2
I:l Reloading ‘ Cloud ‘ ‘ Image
Layer Cache Layer

Figure 4: An example of reloading layers.

Algorithm 2 presents the pseudo-code of this reloading process.
M is a mapping of the absolute file paths of files expected to exist in
the image layers of the container, to their corresponding file types
defined by UNIX file system [52]. M is populated by analyzing the
file system of container C before debloating. If file p is not in M,
it implies that p does not exist in the original file system. So —1 is
returned to signify that p does not exist. BLAFS tries to open p from
R.If p does not exist in R(fd = —1), BLAFS downloads p from the
cloud cache and saves it to R. Then it opens p from R. Finally, the file
descriptor is returned. The reloading layers are usually appended to
the end of the image layers, to avoid unnecessary file downloading.

Algorithm 2 Pseudo-code of function ROPEN

Input: Reloading layer R; file path p
Output: File descriptor
1: function ROPEN(R,p)
2 if p not in M then
3 return -1
4 end if
5 fd « open(R/p)
6: if fd = -1 then
7 download(R,p)
8 fd < open(R/p)
9 end if
10: return fd
11: end function

Implementation. The reloading layer component of BLAFS
is developed in C++ with another 1k+ lines of code. We use AWS
S3 [1] as a prototype of a remote caching service. The reloading
layer employs the AWS S3 C++ SDK [2] to retrieve from remote
caching service on demand.

Reloading modes. BLAFS provides two reloading modes that
either enable or disable the reloading layer. When enabled, the dy-
namic deployment mode enables the reloading layer with a remote
cache, guaranteeing that containers never fail; even if a file is miss-
ing, it is remotely fetched. This would enable operators to enable
repetitive debloating, where file removal is run periodically. The
security-hardened mode disables the reloading layer for container
image hardening [25], enabling users to set the container to only
run allowed workloads based on which the container is debloated.

3.3 The Converter

The third main component of BLAFS is the image converter. The
image converter converts the original container file system to a
BLAFS file system by adding debloating layers and reloading layers.
Users or operators can choose one of the different BLAFS modes to



SoCC ’25, November 19-21, 2025, Online, USA

convert the original filesystem to, i.e., no-sharing security-hardened,
fully-sharing security-hardened, no-sharing dynamic deployment,
and fully-sharing dynamic deployment. Since the converter only
adds the layers based on the configuration, the total conversion
time are several seconds.

Converter Implementation: The converter extracts the layer
information of containers and add the debloating and reloading
layer to create a BLAFS filesystem. It is implemented in Golang
with 1.7k+ lines of code.

3.4 Layer-Sharing Mode Selection Strategy

Since many cloud applications run colocated on the same host, we
implement a heuristic-based tool that determines which mode is
better for the containers running on a given host between the two
sharing modes. During runtime, and given n containers Cy, Cy, - - -,
Cp, running on the same host, our tool calculates the debloated size
of each container using the no-sharing mode based on their running
workloads sy, s, - - -, sp. We denote the total disk size required by
the debloated containers as t. BLAFS then computes the sizes of
these containers if debloated with the fully-sharing BLAFS, s{, s;,

s;, respectively. The total size of the debloated containers in

sl
this mode is t’. Let a denote the size of duplicated files in s; because
of no-sharing; f§ denotes the size of unnecessary files in s; because

of fully-sharing. « is calculated by Equation 1,

n
a= Zl si—t 1)
p can be obtained using Equation 2,
n ’
B=Ds =) @
Here we define 6 as shown in Equation 3,
n i — t/
R )
B Xi(si—si)

If 6 is small, it means there are very few files that can be shared
between the debloated containers (¢ is small), and many unnec-
essary files will be packed with each container if fully-sharing(f
is large). If 6 is large, then many files can be shared between the
debloated containers (« is large); and fewer unnecessary files will
be incurred if using the fully-sharing BLAFS (f is small). In our
deployments, we set 1 as a threshold for 0. No-sharing BLAFS is
more appropriate for debloating if 0 < 1; otherwise, fully-sharing
BLAFS is used.

3.5 Package-Dependency-Based Expansion

Traditional container debloaters rely on profiling sample workloads
to identify files to be retained. However, these sample workloads
may not cover all possible workload variations. To mitigate the
risk of removing files that may be accessed by unobserved work-
loads, BLAFS employs a Package-Dependency-Based Expansion
algorithm, PDBE, to expand the files to be retained in the debloated
containers. BLAFS first analyzes the packages installed in the con-
tainers and the files included in each package. Then for each pack-
age, BLAFS calculates the necessity degree of this package(d,),
which is defined as follows:

size(F, N F)
size(Fy)

p =

619

Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

where F,, is the set of files included in package p. F. are accessed
files by profiling workloads. A package of d;, > 0 is considered a
likely needed package since at least some of its files are used by the
observed workloads. To account for potential unseen workloads,
all files within such packages are also retained in the debloated
container. Two key rules are used to expand likely needed packages:

RO: If a package is a likely needed package, then all files within
it will be retained.

R1: If a package is a likely needed package, its dependent pack-
ages are also likely needed packages.

Based on the above two rules, PDBE first creates a package depen-
dency graph. Packages with a necessity degree greater than zero
are selected as starting points. The package dependency graph is
traversed from these starting points to find all the dependencies
(R1). The result is a sub-graph that only contains likely needed
packages. All the files included in the likely needed packages will
be retained in the debloated container(RO0).

An alternative strategy for handling files from likely needed
packages is to serve them through a cloud-based caching service
instead of retaining them in the debloated container, allowing the
reloading layer to fetch them on demand.

Implementation. We implement PDBE for Python packages;
We use pipreqdeb to scan the packages installed in a container
and pip to identify files included in a package. Support for other
package types is left for future work.

4 Evaluation

We compare BLAFS with debloaters and lazy-loading snapshotters
on the top 20 most downloaded containers from DockerHub, several
ML containers, and a serverless function benchmark. In addition,
we evaluate the security hardening benefits of BLAFS by measuring
the number of vulnerabilities in the debloated containers. We also
evaluate the mode selection strategy, the effectiveness of PDBE,
and the overheads incurred by the debloating and reloading layers.

4.1 Comparing to Debloaters

We start our experiments by comparing the effectiveness of BLAFS
against two state-of-the-art container debloaters, Cimplifier and
SlimToolKit. For these experiments, we ran with the no-sharing
security-hardened mode as this is similar to what these debloaters
provide. We select the top 20 downloaded containers from Dock-
erHub, focusing exclusively on application containers rather than
general-purpose operating system containers. For each selected con-
tainer, we manually identified representative workloads to cover
as many relevant use-cases as possible. The number of identified
workloads for each container ranges from 2 to 7. We used these
as our debloating container. Each workload may include multiple
functionalities. The details of the selected containers are shown
in Table 7 in the appendix. Additionally, we evaluate two machine
learning (ML) training containers sourced from AWS Deep Learn-
ing Containers (DLC) [12], which offer pre-built environments for
model training and inference. For these containers, we use the same
training workloads from AWS DLC for debloating.

Table 1 summarizes the debloating results for successfully de-
bloated containers. While BLAFS successfully debloated all 22 con-
tainers, Cimplifier and SlimToolKit successfully debloated 7 and 8



BLAFS: A Bloat-Aware Container File System

containers, respectively, producing broken containers for the re-
maining containers. The results also reveal significant bloat across
most of the containers, with average size reductions of 59%.

Table 1: Number of successfully debloated containers and
the average, minimum, and maximum size reduction.

Debloater #Containers Avg. Min. Max.
Cimplifier 7 51% 4%  95%
SlimToolKit 8 55% 4%  93%
BLAFS 22 59% 4%  95%

Table 8 in the appendix lists the detailed debloating results for
all 22 containers using BLAFS, sorted by the reduction percentage.
The results for Cimplifier and SlimToolKit are detailed in Tables 9
and 10 in the appendix. The original container sizes ranged from
14 MB to 16,822 MB, with size reductions varying between 4% and
95%. We note that 16 out of the 22 containers had size reductions
more than 50%, and only two had a size reduction of less than
10%. Furthermore, for the two ML containers, tensorflow-train
and pytorch-train, their original sizes are much larger than the
other containers, with sizes of 10,952 MB and 16,822 MB. BLAFS
successfully reduce their sizes by 85% and 83%, respectively. Our
findings show the effectiveness of BLAFS in debloating containers.
It also shows the significant bloat present in these widely-used
containers.

SummaRry. BLAFS successfully debloats all 22 containers,
while Cimplifier and SlimToolKit only succeed on 7 and 8
containers, respectively. The container size reduction of
BLAFS ranges from 4% to 95%, with an average of 59%.

4.2 BLATFS for Serverless Computing

In this set of experiments, we evaluate BLAFS with realistic server-
less function containers in both open-source and commercial server-
less platforms. We test BLAFS with nine serverless containers of
the Serverless Benchmark [17]. One of the containers in the bench-
mark requires special configuration on the serverless platform was
excluded from the evaluation. We evaluate cold start latency im-
provements by deploying the function containers on two serverless

Table 2: Container size and cold start latency of original and
debloated function containers on OpenWhisk. Percentages in
parentheses are reductions. Ori.=Original, Deb.=Debloated.

Function Size/MB Latency/ms
Ori. Deb. Ori. Deb.

dynamic-html 1,085 (96%) 49 18,192 (68%) 5,839
uploader 1,084 (95%) 49 18,682 (68%) 6,029
thumbnailer 1,099 (95%) 55 18,854 (68%) 6,017
video-proc. 1,339 (91%) 125 21,737 (67%) 7,244
compression 1,084 (96%) 49 19,206 (67%) 6,335
image-recog. 1,802 (66%) 619 28,283 (46%) 15,392
graph-page. 1,093 (95%) 60 18,619 (62%) 7,158
graph-mst 1,093 (95%) 60 18,869 (67%) 6,162
graph-bfs 1,093 (95%) 60 18,682 (68%) 5,975

620

SoCC ’25, November 19-21, 2025, Online, USA

Table 3: Container size and memory usage of function con-
tainers on AWS Lambda. The percentage in parentheses is
the reduction.

Function Container Size/MB  Memory Usage/MB
dynamic-html 537 (72%) 40 (2%)
uploader 535 (67%) 79 (3%)
thumbnailer 564 (68%) 93 (2%)
video-proc. 789 (68%) 321 (0%)
compression 535 (67%) 101 (1%)
image-recog. 1,893( 61%) 681 (1%)
graph-page. 553 (72%) 41 (2%)
graph-mst 553 (72%) 41 (2%)
graph-bfs 553 (72%) 41 (2%)

platforms: an open-source serverless platform, OpenWhisk [19],
and a commercial serverless platform, AWS Lambda [6].

Evaluation on OpenWhisk We first evaluate the performance
improvement of the debloated serverless functions using Open-
Whisk. The framework was deployed on a machine with 16 CPUs
and 64GB of memory. We use DockerHub as the container registry.
We run the functions using the no-sharing mode. Since serverless
functions are supposed to be modular, we also use the security-
hardened mode. For each original and debloated container, we
enforce cold starts 50 times and record the cold start latency. The
results, summarized in Table 2, include the container sizes and
medians of the cold start latency of the original and debloated
containers. The debloated container sizes are much smaller, with
reductions ranging from 66% to 96%. Similarly, cold start latencies
also decrease, with reductions between 46% and 68%. The standard
deviation of the cold start latency was less than 6%.

Evaluation on AWS Lambda. We perform the same evaluation
on a commercial serverless platform, AWS Lambda. We again eval-
uate the no-sharing mode of BLAFS using the same workload we
used with OpenWhisk. The results of our experiments are summa-
rized in Table 3. The evaluation focuses on two metrics provided by
the AWS Lambda platform: memory usage and cold start latency.
Memory usage measures the amount of memory consumed by the
function during execution. We use the billed duration reported by
the benchmark as the cold start latency metric, which represents the
time from when the function begins executing until it terminates,
rounded up to the nearest millisecond. Table 3 shows the original
container size, memory usage and their reductions after debloat-
ing. For AWS Lambda function containers, the container sizes are
reduced by 61% to 72%. Since AWS Lambda hosts containers in its
registry, smaller container sizes can further reduce costs associated
with storage and network bandwidth. Besides the container size
reduction, the memory usage is also reduced by 0% to 3%.

Figure 5 shows the cold start latency of the original and de-
bloated containers for each function. For all functions, the de-
bloated containers show lower cold start latency compared to
the original containers. We calculate the relative improvement
of the cold start latency using the median values. The functions
dynamic-html, graph-mst and graph-bf's achieve the highest im-
provements, with reductions of 14% in cold start latency. The mini-
mal improvement of 1% was observed for the video-processing
and image-recognition. While the median cold start latencies



SoCC ’25, November 19-21, 2025, Online, USA

show modest improvements, the tail cold start latency shows a re-
duction of up to 35%. We believe this is because AWS Lambda
already employs certain lazy-loading techniques—such as lazy-
loading snapshotters—to accelerate cold starts. Nevertheless, BLAFS
provides additional performance gains. We further demonstrate
how BLAFS can complement lazy-loading snapshotters to achieve
greater improvements in § 4.6.

153

1100

~ 1000
% £ 900
800

Latency (ms)
ms)

Latenc

. 1100 é

Original Debloated Original Debloated Original Debloated
(a) dynamic-html (b) uploader (c) thumbnailer
38 =
2 3600 g 6000
3 3400 3
4500 5500
Original Debloated Original Debloated Original Debloated

(d) video-processing (e) compression  (f) image-recognition

i

Debloated

)

300

y (ms

300

Latency (ms)

p

0

Latenc

o

:

Debloated

8

200

Original Debloated Original

(i) graph-bfs

Original

(g) graph-pagerank (h) graph-mst

Figure 5: Cold start latency of the original and debloated
containers for each function on AWS Lambda.

SummARy. For serverless function containers in Open-
Whisk and AWS Lambda, BLAFS reduces container sizes
by up to 96% and 72%, and cold start latencies by up to 68%
and 14%, respectively.

4.3 Evaluation of Security Impact

To better understand the security benefits of debloating, we use
Grype [10], a popular container scanning tool to scan the vulnera-
bilities in a set of 10 debloated versus the original containers. For
this experiment, we opted to use slightly older versions of the con-
tainers that are widely used in production today. We debloated
these containers using the no-sharing security-hardened mode.

Table 4 displays the number of CVEs at each severity level found
in the original containers and debloated containers. As can be
seen, BLAFS significantly reduces the number of CVEs, with re-
duction percentages ranging from 20% to 97%. For mysql:8.0.23,
redis:6.2.1,golang:1.16.2andpython:3.9. 3, the critical level
CVEs are also reduced considerably. The number of CVEs found in
the debloated containers is considerably lower than that in the orig-
inal containers, indicating that debloating can effectively reduce
the security risks associated with production containers.

621

Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

maven:3.9.9 & mongo:8.0

dynamic-html & uploader

layer-sharing-a & layer-sharing-|

1000

Figure 6: Container sizes under different modes.

SumMARY. For a set of 10 widely-used containers, BLAFS
reduces the number of CVEs significantly, with reductions
ranging from 20% to 97%.

4.4 Evaluation of Mode Selection Strategy

To evaluate the mode selection strategy of BLAFS, we select two con-
tainers with shared layers, maven:3.9.9 and mongo: 8.9, and two
AWS Lambda function containers dynamic-html and uploader.
We also manually created two containers layer-sharing-a and
layer-sharing-b with shared layers. These two created contain-
ers have a large overlap in their layers and the files they access.
We debloated these containers using no-sharing and fully-sharing
BLAFS. The results are presented in Figure 6.

For containers maven:3.9.9 and mongo: 8.0, originally sized at
534MB and 858MB (totaling 1,310MB due to shared layers), debloat-
ing with no-sharing BLAFS results in a significant size reduction,
bringing the total size down to 448MB. When debloated using fully-
sharing BLAFS, while the total size of both containers is slightly
smaller, individual container sizes are slightly larger than their
no-sharing counterparts. The 0 value of these two containers is 0.3.
This means that debloating these two containers using fully-sharing
BLAFS will cause each container to include more unneeded files.
Therefore, no-sharing BLAFS for these containers is more suitable.

In the case of containers dynamic-html and uploader, with
original sizes of 578MB and 576 MB, no-sharing BLAFS reduces the
total size to 343MB while layer-sharing BLAFS markedly decreases
the total size to 185MB. This significant size reduction, supported
by a 6 value of 6, indicates a clear advantage of fully-sharing BLAFS
for these containers.

The experiment with layer-sharing-a and layer-sharing-b
reveals an intriguing aspect of container debloating. The original
total size of two containers is 75MB, debloating with no-sharing
BLAFS, however, increases their total size to 92MB. This issue, that
the total size of debloated containers can exceed that of the original
ones, is faced by all state-of-the-art debloating tools like Cimplifier
and SlimToolKit. These tools break the layer-sharing feature of
container filesystems. However, fully-sharing BLAFS utilizes the
layer-sharing feature and effectively reduce their total size to 54MB.
A remarkably high 6 value of 380,000 in this scenario indicates that
fully-sharing BLAFS is more suitable.

SumMARY. The mode selection strategy of BLAFS effec-
tively selects the appropriate debloating mode for contain-
ers with shared layers, leading to optimal size reductions.




BLAFS: A Bloat-Aware Container File System

SoCC ’25, November 19-21, 2025, Online, USA

Table 4: Number of CVEs at each severity level found in the original containers and debloated containers. Numbers in the
parenthesis represent the numbers of CVEs found in the debloated containers.

Container Critical High Medium Low Negligible Total Reduction
mysql:8.0.23 26 (3) 71 (7) 44 (5) 34 (3) 90 (11) 265(29) 89%
redis:6.2.1 20 (2) 67 (12) 32 (6) 25 (3) 60 (3) 204 (26) 87%
ghost:3.42.5-alpine 14(12)  129(108) 67 (46) 7(7) 63 (2) 217 (173) 20%
registry:2.7.0 4(3) 46 (37) 9(7) 0(0) 0(0) 59(43) 27%
golang:1.16.2 63(2) 376 (19)  314(5) 80 (3) 499 (5) 1332(34) 97%
python:3.9.3 145 (15) 863 (47) 1048 (34) 418 (3) 898 (10) 3372 (109) 20%
bert_tf2:latest 38(26) 358 (256) 1426 (452) 549 (210)  57(3) 2428 (947) 61%
nvidia_mrenn_tf2:latest’ 38 (26) 358 (225) 1445 (451) 558 (210) 57 (3) 2456 (945) 62%
merlin-pytorch-training:22.04" 47(46) 166(127) 902(134) 317(15) 70(3) 1502(325) 78%
merlin-tensorflow-training:22.04  15(14) 109(76) 939(222) 304(34) 56(3) 1423(349) 75%
" These machine learning containers are collected from NVIDIA NGC services [37].
4.5 Comparing to Lazy-Loading BN baseline WM BLAFS eStargz ~ EEE Starlight
‘ 4@1)}?57 ‘lUn‘ls ‘ Los }OO‘I\Ib‘ps,‘QU‘Omf

Lazy-loading snapshotters are used to improve container provi-
sioning time. They rely on the containerd snapshotter plugin as
discussed earlier. In this experiment, we compare BLAFS with three
state-of-the-art container provisioning approaches: the containerd
baseline [15], and two lazy-loading snapshotters; eStargz [16] and
Starlight [14]. We deployed an image registry on a t3.large in-
stance, with ten different images using the no-sharing mode. We
then pulled the containers from a g4dn.2x1large instance acting
as an emulated edge server. We compare deploying the debloated
image (including pulling, creating and starting) to the baseline of
using a containerd container and the two lazy-loading snapshotters.

To run this experiment, the original containers were converted
to the eStargz and Starlight format. In addition, Starlight requires
a proxy server for mediating between Starlight workers and the
registry server, which we set up in the same AWS instance as the
registry server. We pulled the container 30 times with each of the
approaches on two different network settings, namely a network
connection with 4Gbps bandwidth and 10ms latency, and another
network connection with 100Mbps bandwidth and 200ms latency.

To compare the speed-ups of the different approaches, we divide
the average provisioning time of each approach with the aver-
age provisioning time of containerd original file-system. Figure 7
presents the average speed-up of provisioning time using the three
approaches. We note that for six containers, Starlight produces non-
functional containers?. For these containers, we do not plot any
result for Starlight. Figure 7 shows that for the 4Gbps bandwidth and
10ms latency network configuration, BLAFS outperforms eStargz
for 4 out of 10 containers. For golang:1.16.2 and python:3.9.3,
BLAFS and eStargz have similar performance. BLAFS outperforms
Starlight for 3 out of 4 containers. Under the 100Mbps bandwidth
and 200ms latency configuration, BLAFS has higher performance
compared to eStargz for eight containers, having a slightly worse
performance for two (nvidia_mrcnn_tf2 and mysql). Comparing
BLAFS with Starlight, BLAFS outperforms Starlight for only one
out of four Starlight working containers (golang:1.16.2).

We finally note that when containers are converted using eS-
targz and Starlight, their compressed sizes are slightly larger than
the original containers, requiring larger space on (the constrained
edge) host. This is a limitation that all state-of-the-art lazy-loading

2We reported our findings to the paper authors, and they are investigating the reason.

622

1.00

0.75

0.50

Figure 7: Provision time speed-up under different network
connections. The lower, the better the provision performance
is. For python:3.9.3 to merlin-tensroflow-training:22.04,
Starlight fails to generate functional containers and their
results are not plotted.

snapshotters, to the best of our knowledge, have. For example, SOCI,
another state-of-the-art snapshotter based on eStargz, deployed
in AWS Fargate only provides benefits for containers larger than
250MB [41]. For small container images, SOCI can even slow down
the time taken to launch AWS Fargate Tasks.

SummARY. Compared to eStargz and Starlight, BLAFS
achieves comparable container provisioning performance,
while also reducing container sizes significantly.

4.6 Combining BLAFS with Lazy-Loading

BLAFS can be combined with lazy-loading snapshotters to further
enhance provision performance. Lazy-loading snapshotters first
convert container images into a lazy-loading format, a process that
can be time-consuming [14]. This conversion latency can lead to
delays in updating serverless functions. Once converted, the im-
age is pushed to and stored in a registry. During container startup,



SoCC ’25, November 19-21, 2025, Online, USA

only the essential files for startup are immediately pulled, while
the remaining files are fetched in the background. This mechanism
allows the container to start faster. We evaluate whether debloating
can improve two key metrics of lazy-loading snapshotters:(1) Image
format conversion time and (2) Container pull time. We combined
BLAFS with two lazy-loading snapshotters, eStargz and Starlight.
We used the same nine OpenWhisk serverless containers, debloat-
ing them using the no-sharing mode. The full-sharing modes is not
used, as lazy-loading snapshotters do not rely on a base image to
start the container. Then we convert both the original and debloated
containers into a lazy-loading format using eStargz and Starlight.

The time required to convert each container is measured, and we
display the results in Table 5. Both eStargz and Starlight exhibit sig-
nificant reductions in conversion time for debloated containers. For
eStargz, the conversion time is reduced by 28% to 79%. For Starlight,
the reduction range from 45% to 93%. The standard deviation of the
conversion time is less than 3%. These results demonstrate that de-
bloating significantly reduces the time needed to convert container
images into a lazy-loading format.

Table 5: The conversion time of eStargz and Starlight. Per-
centages in parentheses are reductions. Time is in seconds.

Function eStargz Starlight
dynamic-html 73s (79%)  114s (93%)
uploader 67s (77%)  113s (93%)
thumbnailer 68s (77%)  114s (93%)
video-proc. 70s (70%)  115s (92%)
compression 67s (77%)  114s (93%)
image-recog. 111s (28%) 117s (45%)
graph-page. 68s (77%)  113s (93%)
graph-mst 63s (76%) 1125 (93%)
graph-bfs 65s (76%)  114s (93%)
Zsw0 s %l
E 700 EI E 700 -%[I
E 600 ; g 600 -E[l
£ & £
00 Grigmal  Debloated 0 rigmal  Debloated 0 Srigimal  Debloated
(a) dynamic-html (b) uploader (c) thumbnailer
Eso Esm é l%
E 700 %I E 700
g 600 = g 600 =] %'
& 5 £ 5 5
500G igmal  Debloated 00 Sriemal  Debloated 00 el Debloated

(d) video-processing

(e) compression

(f) image-recognition

—{

E

Provision Tim

=

Provision Time (ms)

800

700

600

T

Original

Debloated

500

Original

Debloated

Original

Debloated

(g) graph-pagerank

(h) graph-mst

(i) graph-bfs

Figure 8: Provision time of the original and debloated con-
tainers for each function using eStargz.

623

Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

#Expanded Packages
40 60

0 20 80 100
tensorflow 54.4 o8
90
pytorch 63.8 ]
graph-bfs

graph-mst
graph-pagerank
image-recognition
compression

video-processing

thumbnailer
#Expanded Packages

uploader Bl Relative Size Increase

dynamic-html

0 20 40 60 80
Relative Size Increase(%)

100 120

Figure 9: Relative size increase and number of expanded
packages using PDBE.

Figure 8 presents the provisioning times for both the original and
debloated containers. Starlight is excluded from this evaluation, as
it failed to start the containers. The results show that with eStargz,
the average provisioning times for debloated containers is reduced
by 13% to 19%. However, the tail is reduced by up to 40% for the
compression function. These findings confirm that container de-
bloating can complement lazy-loading snapshotters, reducing the
time required for format conversion and container provisioning,
and thereby improving the overall performance of lazy-loading
snapshotters. We note that running with AWS Lambda function
containers had similar results.

SummARY. Combining BLAFS with lazy-loading snapshot-
ters significantly reduces the time required for image for-
mat conversion (by up to 93%) and container provisioning
(by up to 19%).

4.7 Evaluation of PDBE

Table 6: Execution results of unobserved workloads for the
two ML containers.

pytorch-train tensorflow-train

Workloads” BLAFS BLAFS +PDBE  Workloads™ BLAFS BLAFS +PDBE
Torchdata X v/ TensorBoard v v
PytorchRegression 4 v TFAddons v v
PyTorchwithInductor X v TFKerasHVDFP32 X v
Torchaudio X v TFKerasHVDFAMP X v

" Please refer to the appendix §A.6 for the details of the workloads.

PDBE is designed to mitigate the risk of removing necessary files
by expanding the set of retained files based on package dependency
analysis. While this improves coverage, it also increases the size
of the debloated containers. To evaluate this trade-off, we focus on



BLAFS: A Bloat-Aware Container File System

AWS serverless function containers and two ML containers, all of
which use Python packages—the package type currently supported
by PDBE. We compare two configurations in no-sharing mode:
debloating containers with or without PDBE. Figure 9 presents the
relative size increase compared to the debloated containers and the
number of expanded packages across the containers. As expected,
all containers show a size increase due to the additional retained
files introduced by PDBE, ranging from 2.7% to 63.8%. Notably,
the two ML containers exhibit the most size increases (63.8% and
54.4%), as PDBE expanded the largest number of packages for these
containers (90 and 68).

We further evaluate whether PDBE improves the robustness of
debloated containers against unobserved workloads. The two ML
containers (pytorch-train and tensorflow-train) are selected
for this evaluation, as they are designed to perform more various
workloads than the serverless function containers. The two ML
containers were debloated using training workloads for a CNN
model, representative of their core functionality. To test robustness,
we use four additional ML workloads drawn from publicly available
samples [12]. These workloads serve as unobserved workloads to
evaluate robustness of the debloated containers. Table 6 summarizes
the results for the two containers. Containers debloated with only
BLAFS show partial success—some workloads execute successfully,
while others fail due to missing files. In contrast, containers de-
bloated with BLAFS + PDBE successfully execute all four workloads.
It is important to note that this does not imply PDBE guarantees
robustness, for that the reloading layer should be used. However,
the results demonstrate that PDBE can meaningfully improve the
robustness of debloated containers.

SummARy. PDBE effectively enhances the robustness of
debloated containers against unobserved workloads, but
at the cost of increased container size.

4.8 Debloating and Reloading Overheads

Our final set of experiments aim to show how running with both
layer sharing and dynamic mode introduces overheads. We note
that our previous evaluations did not evaluate the dynamic sharing
mode since it does not affect any aspects of the BLAFS performance
except by adding an extra overhead to fetch the file remotely. All
our previous results thus hold for the reloading layer, except for
the overheads added.

Overhead of the debloating layer. To measure the perfor-
mance overhead of BLAFS, we run disk benchmarks [39] using the
Phoronix test suite [40]. Here we use the fully-sharing mode as it has
more layers compared to the original file system. We first run the
disk benchmarks in a container with the original container filesys-
tem. Then we convert the filesystem into fully-sharing BLAFS and
run the same disk benchmarks in the converted container. The Flex-
ible IO Tester of the disk benchmark was executed in the container.
Only read operations were measured as BLAFS does not affect the
writing layer of a container. Both random read and sequential read
operations were measured with block sizes of 4KB and 2MB, and
the bandwidth and I/O per second (IOPS) were recorded. Then we
compare the performance metrics of the original container with the

624

SoCC ’25, November 19-21, 2025, Online, USA

Sequential Read, 4KB, IOPS 1.04

Sequential Read, 4KB, Bandwidth 1.0

Sequential Read, 2MB, IOPS 1.00

Sequential Read, 2MB, Bandwidth 1.00

Random Read, 4KB, IOPS 1.03:

Random Read, 4KB, Bandwidth 1.03

Random Read, 2MB, IOPS 1.01

Random Read, 2MB, Bandwidth 1.00

0.0 0.2 0.4 0.6 0.8

Relative Overhead

1.0

Figure 10: Relative overhead of file-system read operations.
Lower is better.

10MB 30MB

—— 10% —— —

2% 10°

6 x 10?

102 4% 10 10

3% 107

Response Time (ms)

y N 2 % 102 6% 107 h

4% 10°

Original  File-missing File-missing

200MB

Original  File-missing Original

50MB 100MB

}

Original

10t

3x10°

6 10° 10"

x 10°

s
Ax 10 6 10°

3% 10°

10 1 10°

3 10°

2 x 10

Original  File-missing File-missing Original  File-missing

Figure 11: Violin plots of the response time distribution (in
milliseconds) of file retrievals. The horizontal line in the
shade indicates the mean value of the response time.

container of BLAFS. The performance metrics of the container of
BLAFS were divided by the same metrics of the original container to
obtain the relative overhead. Figure 10 shows the relative overhead
(x-axis) of the read operations of BLAFS. The results show that all
the metrics are around 1, indicating that the performance of BLAFS
and the original container filesystem are similar. The debloating
layer does not incur much performance overhead. Although we
show the results for the fully-sharing BLAFS, the no-sharing BLAFS
achieves similar performance.

Overhead of the reloading layer. In this experiment, we com-
bine the no-sharing mode with the dynamic deployment mode,
i.e., with enabled reloading layer and remote cache service. The
reloading layer incurs overhead when a file needs to be fetched on
demand. In order to test the performance overhead of the reloading
layer, we simulate the case when a file is missing using a Nginx
server serving data from six files with sizes of 1MB, 10MB, 30MB,
50MB, 100MB and 200MB inside the container. In this experiment,
we removed the files from the containers manually, triggering the
reloading layer when the first time the file is accessed. While un-
realistic, we choose this scenario to be able to control the size of
the file-misses. We used Locust [35] for request generation. The
experiment ran for 3 minutes with a locust spawn rate of 10 users
per second. In total, the 1MB file was downloaded over 77000 times,
and over 440 times for the 200MB file, with the other sizes having
their download times in-between these two numbers. We compare
the response time of file retrievals in the file-missing container with
that of the original container. We used AWS S3 Standard storage as



SoCC ’25, November 19-21, 2025, Online, USA

the remote file caching service, while the containers are deployed
on g4dn. 2xlarge instances.

Figure 11 shows the distribution of response times when re-
questing files from both the original container and the file-missing
container. We notice that the file-missing container exhibits a longer
tail towards higher response times for all file sizes compared to the
original container. This outcome is anticipated since the reloading
layer must dynamically load files when they are absent before they
can be served, resulting in a significant performance overhead for
the initial few requests. Nevertheless, the distributions of the orig-
inal container and the file-missing container display comparable
spreads around the mean, suggesting that the performance over-
head imposed by the reloading layer occurs only occasionally. Once
the missing files are loaded, the file-missing container’s perfor-
mance aligns with that of the original container, leading to nearly
identical mean values.

SummARy. The debloating layer incurs negligible perfor-
mance overhead, while the reloading layer incurs overhead
only when files are fetched on demand, with performance
similar to the original container once files are loaded.

5 Discussion

Limitations. Our current implementation of reloading layer fetches
files individually, while loading a bloated container fetches all files
at once, often with compression. This design of the reloading layer
can lead to decreased fetching performance, leading to reloading
consuming more bandwidth as reloading layer cannot batch or
compress multiple files in a single transfer. However, this overhead
is mostly mitigated by the fact that fewer files are fetched in total,
since it is unlikely that all removed files will be accessed. In many
cases, even a change of workload does not lead to significant file
misses. To further address this issue for fault-tolerant or horizon-
tally scaled services, where multiple instances of the same service
coexist, a practical approach is to maintain one bloated instance to
which any missing-file requests can be redirected, while deploying
additional instances using the debloated container. Although this
strategy slightly increases the overall cost, the savings remain sub-
stantial due to the large number of replicas typically involved, and
scaling or provisioning operations continue to be fast.

Integration with Existing Systems.. BLAFS can be integrated
into existing CI/CD pipelines. After the container image is built,
BLAFS can be used to debloat the image based on profiling work-
loads. The debloated image can then be pushed to a container
registry for deployment. This process can optionally generate a
Software Bill of Materials (SBOM) listing accessed and removed files
for auditing and compliance. In production environments, BLAFS
can continuously monitor file accesses and dynamically remove
unused content based on actual workloads. This enables automatic
adaptation to evolving execution patterns, maintaining efficiency
without requiring manually crafted profiling workloads.

6 Related Work

The problem of container bloat has been well studied from both
academia and industry. Apart from the lazy-loading snapshotters

625

Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

discussed in §2, many other techniques have been proposed to ad-
dress the effects of container bloat. CNTR [49] introduces the con-
cept of a slim and a fat container image. The three main use cases
for CNTR are: Container to container debugging in production;
Host to container debugging; and Container to host administration.
Both the slim and fat containers run on the same host, and there
are no space or bandwidth savings. Slacker [26] is a Docker storage
driver designed to optimize fast container startup and reduce the
time it takes to provision a container. It provisions the container
quickly using backend clones and minimizes startup latency by
lazily fetching container data. DADI [33] is a block-level image
service for increased agility and elasticity in deploying applications
by providing fine-grained on-demand transfer of remote images.
FAASNET [51] is a middle-ware system designed for highly scal-
able container provisioning in serverless platforms, which enables
scalable container provisioning via a lightweight, adaptive func-
tion tree structure and uses an on-demand fetching mechanism to
reduce provisioning costs. Gear [22] is a new image format that
reduces container deployment time and storage size of the image
registry by separating the index that describes the filesystem struc-
ture from the files that are required for running an application.
We argue that these optimizations only solve the symptoms of the
problem, but not the root cause. We believe that the root cause of
long provisioning time and increased resource usage is container
bloat, and BLAFS can be combined with them to provide further
improvements.

7 Conclusion

This paper addresses the issue of container bloat, which impacts pro-
visioning times, resource utilization, overall system performance
and security. We demonstrate that container bloat is widespread,
with over 50% of the top 20 containers in DockerHub containing
more than 60% of bloat. Existing debloating tools have several inher-
ent limitations, such as breaking the layered structure of container
filesystems. To overcome these limitations, we introduced BLAFS, a
bloat-aware filesystem that preserves container functionality while
significantly reducing container bloat. BLAFS supports multiple
modes, including no-sharing, fully-sharing, security-hardened and
dynamic deployment, making it adaptable to diverse use cases. Our
evaluations show that BLAFS reduces cold start latency of server-
less functions by up to 68% and, when integrated with lazy-loading
snapshotters, enhances container provisioning performance by re-
ducing conversion times by 93% and provisioning times by 19%.
Under the security-hardened mode, BLAFS effectively reduces the
number of CVEs in containers by up to 89%. BLAFS provides an
effective and flexible solution to container debloating that balances
the trade-off between container convenience and efficiency.

Acknowledgments

This project is supported by the Knut and Alice Wallenberg Foun-
dation via a Wallenberg Al, Autonomous Systems and Software
Program PhD grant and an SSF future research leaders grant. Mo-
hannad was funded by the Office of Naval Research (ONR) under
Contracts N68335-17-C-0558 and N00014-24-1-2049.



BLAFS: A Bloat-Aware Container File System

References

(1]

[2

—

(3]

[10]

[11

[12

[13]

[14]

=
)

[16]

[17

[18

[19

™
=

[21
[22]

[23

[24

[25

Amazon S3 - Cloud Object Storage - AWS — aws.amazon.com. https://aws.
amazon.com/s3/, 2025. [Accessed 2025-07-10].

AWS SDK for C++ — aws.amazon.com. https://aws.amazon.com/sdk-for-cpp/,
2025. [Accessed 2025-07-10].

Deploy Python Lambda functions with container images - AWS Lambda —
docs.aws.amazon.com. https://docs.aws.amazon.com/lambda/latest/dg/python-
image . html#python-image-instructions, 2025. [Accessed 2025-07-10].

GitHub - openfaas/faas: OpenFaaS - Serverless Functions Made Simple —
github.com. https://github.com/openfaas/faas, 2025. [Accessed 2025-07-10].
ptrace(2) - Linux manual page — man7.org. https://man7.org/linux/man-pages/
man2/ptrace.2.html, 2025. [Accessed 2025-07-10].

Serverless Function, FaaS Serverless - AWS Lambda - AWS — aws.amazon.com.
https://aws.amazon.com/lambda/, 2025. [Accessed 2025-07-10].

strace(1) - Linux manual page — man7.org. https://man7.org/linux/man-pages/
manl/strace.1.html, 2025. [Accessed 2025-07-10].

Toannis Agadakos, Nicholas Demarinis, Di Jin, Kent Williams-King, Jearson
Alfajardo, Benjamin Shteinfeld, David Williams-King, Vasileios P Kemerlis, and
Georgios Portokalidis. Large-scale debloating of binary shared libraries. Digital
Threats: Research and Practice, 1(4):1-28, 2020.

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,
Andre Beck, Paarijaat Aditya, and Volker Hilt. {SAND}: Towards {High-
Performance} serverless computing. In 2018 Usenix Annual Technical Conference
(USENIX ATC 18), pages 923-935, 2018.

Anchore. Grype. https://github.com/anchore/grype, 2025. [Online; accessed
2025-07-10].

Ali Anwar, Mohamed Mohamed, Vasily Tarasov, Michael Littley, Lukas Rupprecht,
Yue Cheng, Nannan Zhao, Dimitrios Skourtis, Amit S Warke, Heiko Ludwig, et al.
Improving docker registry design based on production workload analysis. In
16th { USENIX} Conference on File and Storage Technologies ({ FAST} 18), pages
265-278, 2018.

AWS. Aws deep learning containers. https://github.com/aws/deep-learning-
containers, 2025. [Online; accessed 2025-07-10].

Michael D Brown, Adam Meily, Brian Fairservice, Akshay Sood, Jonathan Dorn,
Eric Kilmer, and Ronald Eytchison. A broad comparative evaluation of software
debloating tools. In 33rd USENIX Security Symposium (USENIX Security 24), pages
3927-3943, 2024.

Jun Lin Chen, Daniyal Liagat, Moshe Gabel, and Eyal de Lara. Starlight: Fast
container provisioning on the edge and over the WAN. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), Renton, WA, April
2022. USENIX Association.

containerd. Containerd. https://github.com/containerd/containerd, 2025. [Online;
accessed 2025-07-10].

containerd.  Stargz snapshotter.  https://github.com/containerd/stargz-
snapshotter, 2025. [Online; accessed 2025-07-10].

Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and
Torsten Hoefler. Sebs: A serverless benchmark suite for function-as-a-service
computing. In Proceedings of the 22nd International Middleware Conference,
Middleware "21, page 64-78, New York, NY, USA, 2021. Association for Computing
Machinery.

Lazar Cvetkovi¢, Francois Costa, Mihajlo Djokic, Michal Friedman, and Ana
Klimovic. Dirigent: Lightweight serverless orchestration. In Proceedings of the
ACM SIGOPS 30th Symposium on Operating Systems Principles, pages 369-384,
2024.

Karim Djemame, Matthew Parker, and Daniel Datsev. Open-source serverless
architectures: an evaluation of apache openwhisk. In 2020 ieee/acm 13th inter-
national conference on utility and cloud computing (ucc), pages 329-335. IEEE,
2020.

Docker. Dockerhub. https://github.com/libfuse/libfuse, 2025. [Online; accessed
2025-07-10].

Slimtoolkit. https://slimtoolkit.org/, 2025. [Online; accessed 2025-07-10].

Hao Fan, Shengwei Bian, Song Wu, Song Jiang, Shadi Ibrahim, and Hai Jin. Gear:
Enable efficient container storage and deployment with a new image format. In
2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS),
pages 115-125. IEEE, 2021.

Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-
chronakis. Confine: Automated system call policy generation for container
attack surface reduction. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 443-458, 2020.

Runsheng Guo, Victor Guo, Antonio Kim, Josh Hildred, and Khuzaima Daud-
jee. Hydrozoa: Dynamic hybrid-parallel dnn training on serverless containers.
Proceedings of Machine Learning and Systems, 4:779-794, 2022.

Md Sadun Hagq, Thien Duc Nguyen, Ali Saman Tosun, Franziska Vollmer, Tur-
gay Korkmaz, and Ahmad-Reza Sadeghi. Sok: A comprehensive analysis and
evaluation of docker container attack and defense mechanisms. In 2024 IEEE
Symposium on Security and Privacy (SP), pages 4573-4590. IEEE, 2024.

626

[26

[27]

[28

™~
29,

[30

(31

%
&,

[33

[34

[37

[38

[39

[40

[41]

[42

[43

[44

[45

[46

[47

SoCC ’25, November 19-21, 2025, Online, USA

Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. Slacker: Fast distribution with lazy docker containers. In
14th { USENIX} Conference on File and Storage Technologies ({FAST} 16), pages
181-195, 2016.

Muhammad Hassan, Talha Tahir, Muhammad Farrukh, Abdullah Naveed, Anas
Naeem, Fareed Zaffar, Fahad Shaon, Ashish Gehani, and Sazzadur Rahaman.
Evaluating container debloaters. In 2023 IEEE Secure Development Conference
(SecDev), pages 88-98. IEEE, 2023.

Shihong Hu, Weisong Shi, and Guanghui Li. Cec: A containerized edge computing
framework for dynamic resource provisioning. IEEE Transactions on Mobile
Computing, 22(7):3840-3854, 2023.

Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke Darlow,
Jianfeng Wang, Qiwen Deng, and Adam Barker. Serverless cold starts and where
to find them. In Proceedings of the Twentieth European Conference on Computer
Systems, EuroSys ’25, page 938-953, New York, NY, USA, 2025. Association for
Computing Machinery.

Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. Set the config-
uration for the heart of the os: On the practicality of operating system kernel
debloating. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 4(1):1-27, 2020.

Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santambrogio,
Markus Weimer, and Matteo Interlandi. {PRETZEL}: Opening the black box of
machine learning prediction serving systems. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), pages 611-626, 2018.
Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, Yuewu Wang, and
Qi Li. Speaker: Split-phase execution of application containers. In Detection of
Intrusions and Malware, and Vulnerability Assessment: 14th International Confer-
ence, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings 14, pages 230-251.
Springer, 2017.

Huiba Li, Yifan Yuan, Rui Du, Kai Ma, Lanzheng Liu, and Windsor Hsu. Dadi:
Block-level image service for agile and elastic application deployment. In Pro-
ceedings of the 2020 USENIX Conference on Usenix Annual Technical Conference,
pages 727-740, 2020.

Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze Zeng, Zhuo
Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. Help rather than recycle:
Alleviating cold startup in serverless computing through Inter-Function container
sharing. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
69-84, Carlsbad, CA, July 2022. USENIX Association.

Locust. An open source load testing tool. https://www.locust.io/, 2025. [Online;
accessed 2025-07-10].

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren Nayak,
and Vadim Sukhomlinov. Agile cold starts for scalable serverless. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19), Renton, WA, July
2019. USENIX Association.

NVidia. Nvidia NGC containers. https://catalog.ngc.nvidia.com/containers, 2025.
[Online; accessed 2025-07-10].

Overlay filesystem. https://docs kernel.org/filesystems/overlayfs.html, 2025. [On-
line; accessed 2025-07-10].

Phoronix. Disk test suite. https://openbenchmarking.org/suite/pts/disk, 2025.
[Online; accessed 2025-07-10].

Phoronix. Phoronix test suite 10.8.4. https://github.com/phoronix-test-suite/
phoronix-test-suite, 2025. [Online; accessed 2025-07-10].

Olly Pomeroy and Vaibhav Khunger. Under the hood: Lazy load-
ing container images with seekable oci and aws fargate. https:
//aws.amazon.com/blogs/containers/under-the-hood-lazy-loading- container-
images-with-seekable- oci-and-aws-fargate/, 2025. [Online; accessed 2025-07-
10].

Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk, and Rav-
ishankar K Iyer. {FIRM}: An intelligent fine-grained resource management
framework for {SLO-Oriented} microservices. In 14th USENIX symposium on
operating systems design and implementation (OSDI 20), pages 805-825, 2020.
David Quigley, Josef Sipek, Charles P Wright, and Erez Zadok. Unionfs: User-and
community-oriented development of a unification filesystem. In Proceedings of
the 2006 Linux Symposium, volume 2, pages 349-362, 2006.

Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. Cimplifier: Automatically debloating containers. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
page 476-486, New York, NY, USA, 2017. Association for Computing Machinery.
Yuxin Ren, Kang Zhou, Jianhai Luan, Yunfeng Ye, Shiyuan Hu, Xu Wu, Wenqin
Zheng, Wenfeng Zhang, and Xinwei Hu. From dynamic loading to extensible
transformation: An infrastructure for dynamic library transformation. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22),
pages 649-666, 2022.

Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The linux b-tree filesystem.
ACM Transactions on Storage (TOS), 9(3):1-32, 2013.

Deepa Rajendra Sangolli, Nagthej Manangi Ravindrarao, Priyanka Chidambar
Patil, Thrishna Palissery, and Kaikai Liu. Enabling high availability edge comput-
ing platform. In 2019 7th IEEE International Conference on Mobile Cloud Computing,


https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/sdk-for-cpp/
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html#python-image-instructions
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html#python-image-instructions
https://github.com/openfaas/faas
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://aws.amazon.com/lambda/
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://github.com/anchore/grype
https://github.com/aws/deep-learning-containers
https://github.com/aws/deep-learning-containers
https://github.com/containerd/containerd
https://github.com/containerd/stargz-snapshotter
https://github.com/containerd/stargz-snapshotter
https://github.com/libfuse/libfuse
https://slimtoolkit.org/
https://www.locust.io/
https://catalog.ngc.nvidia.com/containers
https://docs.kernel.org/filesystems/overlayfs.html
https://openbenchmarking.org/suite/pts/disk
https://github.com/phoronix-test-suite/phoronix-test-suite
https://github.com/phoronix-test-suite/phoronix-test-suite
https://aws.amazon.com/blogs/containers/under-the-hood-lazy-loading-container-images-with-seekable-oci-and-aws-fargate/
https://aws.amazon.com/blogs/containers/under-the-hood-lazy-loading-container-images-with-seekable-oci-and-aws-fargate/
https://aws.amazon.com/blogs/containers/under-the-hood-lazy-loading-container-images-with-seekable-oci-and-aws-fargate/

SoCC ’25, November 19-21, 2025, Online, USA

Services, and Engineering (MobileCloud), pages 85-92, 2019.
[48] Yu Sun, Jiaxin Lei, Seunghee Shin, and Hui Lu. Baoverlay: a block-accessible

Table 7: Details of containers evaluated.

Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

. 1 .
overlay file system for fast and efficient container storage. In Proceedings of the Container #Workloads” Pull Times
11th ACM Symposium on Cloud Computing, pages 90-104, 2020. httpd:2.4 4 1B+

[49] Jorg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci. Cntr: i
Lightweight {OS} containers. In 2018 { USENIX} Annual Technical Conference nginx:1.27.2 4 1B+
({USENIX} { ATC} 18), pages 199-212, 2018. memcached:1.6.32 6 500M+

[50] Parichehr Vahidinia, Bahar Farahani, and Fereidoon Shams Aliee. Cold start mysql:9.1 7 1B+
in serYerlelszcomputlng: Cgrrex?tl trendIs ar;;i mltl%atlon strgtglg;fgs. In 2020 In- postgres:17 4 1B+
;z;rzr:)a'nona onference on Omni-layer Intelligent Systems (( ), pages 1-7, ghost:5.101.3 5 S00M+

[51] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba redis:7.4.1 4 1B+
Li, Rui Du, and Yue Cheng. Faasnet: Scalable and fast provisioning of custom haproxy:3.0.6 4 1B+
serverless container runtimes at alibaba cloud function compute. In 2021 USENIX mongo:8.0 7 1B+
Annual Technical Conference (USENIX ATC 21), 2021.

[52] Wikipedia. Unix file types. https://en.wikipedia.org/wiki/Unix_file_types, 2025. s0lr:9.7.0 4 100M+
[Online; accessed 2025-07-10]. rabbitmq:4,0 4 1B+

[53] Qi Xin, Qirun Zhang, and Alessandro Orso. Studying and understanding the maven:3.9.9 3 500M+
tradeoffs between generality and reduction in software debloating. In 37th elasticsearch:8.16.0 4 500M+
IEEE/ACM International Conference on Automated Software Engineering, pages . .

1-13, 2022, eclipse-mosquitto:2.0.20 5 500M+

[54] Huaifeng Zhang, Fahmi Abdulqadir Ahmed, Dyako Fatih, Akayou Kitessa, Mo- telegr af:1.30 3 500M+
hannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin. Machine learning nextcloud:28.0.12 2 500M+
containers are bloated and vulnerable. arXiv preprint arXiv:2212.09437, 2022. sonarqube:9.9.7 3 1B+

[55] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht, .

Dimitrios Skourtis, Amit S Warke, Mohamed Mohamed, and Ali R Butt. Large- registry:2.8.3 4 1B+
scale analysis of the docker hub dataset. In 2019 IEEE International Conference on consul:1.15.4 4 1B+
Cluster Computing (CLUSTER), pages 1-10. IEEE, 2019. traefik:v3.2.0 3 1B+

[56] Chao Zheng, Lukas Rupprecht, Vasily Tarasov, Douglas Thain, Mohamed Mo- tensorflow-training 1 _

hamed, Dimitrios Skourtis, Amit S Warke, and Dean Hildebrand. Wharf: Sharing ..
pytorch-training 1 -

docker images in a distributed file system. In Proceedings of the ACM Symposium
on Cloud Computing, pages 174185, 2018.

1'We categorized the features into workloads. Each work-
load may involve multiple features. For example, the
test_index_operations workload for the mysql:9.1
. involves creating a table, inserting data, creating an index,
A App endix and querying the data. For the details of the workloads,

A.1 Container File Systems please refer https://github.com/negativa-ai/BLAFS

Figure 12 shows an example of a container filesystem.

Table 8: Debloating results for BLAFS for the all 22
containers sorted by the reduction percentage.

_ Container Cy Container Cy Container C's Ie . Original Debloated Red .
C(()r'::;r:je-(,\ll_;ie;rs ‘ Container Layer ‘ ‘ Container Layer ‘ ‘ Container Layer ‘ ontainer (MB) (MB) eduction
| I ‘ httpd:2.4 141 7 95%
nginx:1.27.2 183 12 93%
'(";ied'-gmf)s memca}i:hed.:l.632 y 82; ) 902 :z%
pytorch-train 3 s %
tensorflow-train 10,952 1,695 85%
mysql:9.1 574 99 83%
Figure 12: An example of a container filesystem. postgres:17 415 85 79%
ghost:5.101.3 547 121 78%
redis:7.4.1 112 27 75%
haproxy:3.0.6 98 27 72%
mongo:8.0 815 233 71%
solr:9.7.0 561 195 65%
rabbitmq:4.0 209 73 65%
A.2 Containers Evaluated maven:3.9.9 >0 195 61%
. . . . elasticsearch:8.16.0 1,241 479 61%
Table 7 shows the details of all 22 containers evaluated in this paper. eclipse-mosquitto:2.0.20 14 7 519
telegraf:1.30 435 223 49%
nextcloud:28.0.12 1,200 761 37%
sonarqube:9.9.7 576 428 26%
A.3 BLAFS Debloating Results registry:2.8.3 24 18 25%
Table 8 shows the debloating results for BLAFS for all 22 containers consul:1.15.4 148 137 7%
traefik:v3.2.0 176 169 4%

evaluated in this paper.

627


https://en.wikipedia.org/wiki/Unix_file_types
https://github.com/negativa-ai/BLAFS

BLAFS: A Bloat-Aware Container File System SoCC 25, November 19-21, 2025, Online, USA

A.4 Cimplifier Debloating Results A.6 Unobserved Workloads for the ML
Table 9 shows the debloating results for Cimplifier. containers
The following list shows the description of the unobserved work-
loads of two debloated ML containers. For the code of each work-
loads, please refer to https://github.com/aws/deep-learning-containers/
tree/master/test/dlc_tests/container_tests/bin

e Torchdata: Torchdata S3 IO datapipe tests.

Table 9: Cimplifier Debloating Results of the top 20
most downloaded containers from DockerHub. Con-
tainers failed to debloat are not included in the table.
Results are sorted by the reduction percentage.

Container Original ~ Debloated | . .~ e PytorchRegression: Training linear regression model using
(MB) (MB) PyTorch.
httpd:2.4 141 7 95% o PyTorchwithInductor: Training BertForMaskedLM using Py-
nginx:1.27.2 183 12 93% Torch dynamo and inductor backend.
eclipse-mosquitto:2.0.20 14 7 51% e Torchaudio: Torchaudio integration datapipe tests.
telegraf:1.30 435 223 49% e TensorBoard: Test TensorBoard.
neX_tCIOud:ZS'O'IZ 1,200 761 37% e TFAddons: Tensorflow addons layers normalizations exam-
registry:2.8.3 24 18 25%
traefik:v3.2.0 176 169 4% ple. ) )
o TFKerasHVDFP32: Train a CNN model using FP32 type on
Horovod.
A.5 SlimToolKit Debloating Results e TFKerasHVDFAMP: Train a CNN model using AMP type on
Table 10 shows the debloating results for SlimToolKit. Horovod.

Table 10: SlimToolKit Debloating Results of the top 20
most downloaded containers from DockerHub. Con-
tainers failed to debloat are not included in the table.
Results are sorted by the reduction percentage.

Original ~Debloated

Container (MB) (MB) Reduction
nginx:1.27.2 183 13 93%
memcached:1.6.32 81 9 89%
haproxy:3.0.6 98 27 72%
maven:3.9.9 505 199 61%
telegraf:1.30 435 223 49%
eclipse-mosquitto:2.0.20 14 7 49%
registry:2.8.3 24 19 24%
traefik:v3.2.0 176 170 4%

628


https://github.com/aws/deep-learning-containers/tree/master/test/dlc_tests/container_tests/bin
https://github.com/aws/deep-learning-containers/tree/master/test/dlc_tests/container_tests/bin

	Abstract
	1 Introduction
	2 Background
	2.1 Container File Systems
	2.2 Container Debloating
	2.3 Lazy-Loading Snapshotters
	2.4 Containers Cold-Starts

	3 BLAFS Design
	3.1 The Debloating Layer
	3.2 The Reloading Layer
	3.3 The Converter
	3.4 Layer-Sharing Mode Selection Strategy
	3.5 Package-Dependency-Based Expansion

	4 Evaluation
	4.1 Comparing to Debloaters
	4.2 BLAFS for Serverless Computing
	4.3 Evaluation of Security Impact
	4.4 Evaluation of Mode Selection Strategy
	4.5 Comparing to Lazy-Loading
	4.6 Combining BLAFS with Lazy-Loading
	4.7 Evaluation of PDBE
	4.8 Debloating and Reloading Overheads

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Container File Systems
	A.2 Containers Evaluated
	A.3 BLAFS Debloating Results
	A.4 Cimplifier Debloating Results
	A.5 SlimToolKit Debloating Results
	A.6 Unobserved Workloads for the ML containers


