
BLAFS: A Bloat-Aware Container File System

Downloaded from: https://research.chalmers.se, 2026-02-09 03:22 UTC

Citation for the original published paper (version of record):
Zhang, H., Alhanahnah, M., Leitner, P. et al (2026). BLAFS: A Bloat-Aware Container File System.
Socc 2025 Proceedings of the 2025 ACM Symposium on Cloud Computing: 614-628.
http://dx.doi.org/10.1145/3772052.3772263

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology. It
covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004. research.chalmers.se is
administrated and maintained by Chalmers Library

(article starts on next page)

.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3772052.3772263
.

.

RESEARCH-ARTICLE

BLAFS: A Bloat-Aware Container File System

HUAIFENG ZHANG, Chalmers University of Technology, Gothenburg, Vastra Gotaland,
Sweden
.

MOHANNAD ALHANAHNAH, University of Wisconsin-Madison, Madison, WI, United
States
.

PHILIPP LEITNER, Chalmers University of Technology, Gothenburg, Vastra Gotaland,
Sweden
.

AHMED ALI-ELDIN, Chalmers University of Technology, Gothenburg, Vastra Gotaland,
Sweden
.

.

.

Open Access Support provided by:
.

University of Wisconsin-Madison
.

Chalmers University of Technology
.

PDF Download
3772052.3772263.pdf
05 February 2026
Total Citations: 0
Total Downloads: 47
.

.

Published: 19 November 2025
.

.

Citation in BibTeX format
.

.

SoCC '25: ACM Symposium on Cloud
Computing
November 19 - 21, 2025
Online, USA
.

.

Conference Sponsors:
SIGOPS
SIGMOD

SoCC '25: Proceedings of the 2025 ACM Symposium on Cloud Computing (November 2025)
hps://doi.org/10.1145/3772052.3772263

ISBN: 9798400722769

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3772052.3772263
https://dl.acm.org/doi/10.1145/3772052.3772263
https://dl.acm.org/doi/10.1145/contrib-99661117183
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/doi/10.1145/contrib-99659226824
https://dl.acm.org/doi/10.1145/institution-60032179
https://dl.acm.org/doi/10.1145/institution-60032179
https://dl.acm.org/doi/10.1145/contrib-81361597657
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/doi/10.1145/contrib-81488671203
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/doi/10.1145/institution-60000990
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60032179
https://dl.acm.org/doi/10.1145/institution-60000990
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3772052.3772263&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/mod
https://dl.acm.org/conference/mod
https://dl.acm.org/sig/sigops
https://dl.acm.org/sig/sigmod
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3772052.3772263&domain=pdf&date_stamp=2026-01-13

BLAFS: A Bloat-Aware Container File System
Huaifeng Zhang

Chalmers University of Technology and

University of Gothenburg

Gothenburg, Sweden

huaifeng@chalmers.se

Mohannad Alhanahnah

University of Wisconsin-Madison

Madison, USA

mohannad.alhanahnah@gmail.com

Philipp Leitner

Chalmers University of Technology and

University of Gothenburg

Gothenburg, Sweden

philipp.leitner@chalmers.se

Ahmed Ali-Eldin

Chalmers University of Technology and

University of Gothenburg

Gothenburg, Sweden

ahmed.hassan@chalmers.se

Abstract

Containers have become the standard for deploying applications

in many cloud systems due to its convenience. However, this con-

venience leads to significant container bloat, i.e., unused files that

inflate container image sizes, increase provisioning times, waste

resources and introduce security vulnerabilities. Bloat is partic-

ularly problematic in serverless and edge computing scenarios,

where resources are constrained, and performance is critical, and

for microservice applications where rapid scaling is key to meet

performance targets. However, existing container debloating tools

are often limited in both effectiveness and robustness. In this paper,

we propose BLAFS, a bloat-aware container filesystem that removes

bloat while guaranteeing the correct operation of the debloated con-

tainers. BLAFS addresses bloat at the filesystem level by introducing

new layers in the filesystem to enable debloating. During runtime,

accessed files are moved to the debloating layers, and then similar

to garbage collection mechanisms, BLAFS removes files that are not

accessed during runtime. An optional reloading layer fetches files

from a remote cloud cache on-demand if the files are mistakenly re-

moved. We discuss how BLAFS can be used in different deployment

scenarios and for different use-cases including container security-

hardened and a dynamic deployment mode where the target is

improved provisioning performance. We evaluate BLAFS perfor-

mance using the top 20 downloaded containers from DockerHub,

four ML containers, and SEBS, a Serverless Benchmark containing

10 serverless functions and compare its performance against two

state-of-the-art debloating tools. Our evaluation shows that BLAFS

reduces container sizes by up to 95% and cold-starts by up to 68%.

In the security-hardened mode, BLAFS removes up to 89% of CVEs

while the two state-of-the-art debloating tools fail on most of the

workloads. We identify their limitations, and show how BLAFS

provides a more principled approach to debloating. Additionally,

when combined with lazy-loading snapshotters, BLAFS improves

provisioning efficiency, reducing conversion times by up to 93%

and provisioning times by up to 19%.

This work is licensed under a Creative Commons Attribution 4.0 International License.

SoCC ’25, Online, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2276-9/2025/11

https://doi.org/10.1145/3772052.3772263

CCS Concepts

• Software and its engineering→ Software evolution.

Keywords

Software Bloat, Cloud Computing, Serverless Computing, Con-

tainer, File System

ACM Reference Format:

Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-

Eldin. 2025. BLAFS: A Bloat-Aware Container File System. In ACM Sympo-
sium on Cloud Computing (SoCC ’25), November 19–21, 2025, Online, USA.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3772052.3772263

1 Introduction

Containers have become the main deployment model for cloud

workloads including traditional workloads [11, 42], machine learn-

ing [24, 31], serverless functions [9, 18], and edge deployments [14].

Container’s popularity is driven by how the technology simplifies

deployments. Containerized applications are distributed as con-

tainer images, composed of compact, and shareable “layers” of files.

These images are then stored in centralized registries, such as Dock-

erHub [20]. A user pulls a container from a registry, and then can

deploy, update, or create a new image based on the pulled image

Despite their advantages, container images have become exces-

sively large [51, 55]. For example, it has been shown that most con-

tainer images often package unnecessary files and libraries [51, 55].

This is commonly referred to as software or container bloat. Con-

tainer bloat is a result of software development practices that

favor rapid feature integration and dependency inclusion, even

when these components are only marginally useful to end users [8,

54]. Container bloat leads to performance degradation [45], in-

creased provisioning times [14], wasted storage and network band-

width [54], and an expanded attack surface [13, 30].

To address these inefficiencies, prior work proposed optimiza-

tions for storage reduction [26], faster provisioning [14, 16], and

improved security [23, 32]. However, most of these solutions do not

address the root-cause of the problem, container bloat. For example,

lazy-loading snapshotters [14, 16] speed up container startup by

converting the container images into a lazy-loading format which

enables the container to start before all the layers are pulled from

the registry or source. However, when a container image is bloated,

converting it into a lazy-loading format becomes costly, in many

614

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3772052.3772263
https://doi.org/10.1145/3772052.3772263

SoCC ’25, November 19–21, 2025, Online, USA Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

cases, offsetting performance benefits. In addition, snapshotters

transfer the entire container, only lazily. Hence, they do not funda-

mentally remove the bloat.

Another less studied solution is container debloating, i.e., re-

moving unused files from containers. For example, Cimplifier [44]

and SlimToolKit [21], rely on file-tracing tools, such as ptrace or
strace [5, 7], to identify and remove unused files. However, they

lack awareness of the underlying filesystem structure, which limits

their ability to handle more complex bloat scenarios and often result

in broken debloated containers that do not function [27]. These

limitations are inherent in these tools as we describe later.

We argue that the root cause of bloat is the container layered
filesystem architecture itself; Containers are built on top of other

containers often referred to as base container images. To facilitate

this, containers rely on layered filesystems such as the UnionFS [43],

the OverlayFS [38], or the Btrfs [46]. In a layered filesystem, a

container inherits all the filesystem layers of its base image, creating

a new layer on topwith its own files. Any files (and bloat) in the base

image is inherited in the new container, with possibly new bloat

added with each new layer added. As a result, bloat compounds

across layers and propagates transitively.

To solve this filesystem bloat, in this paper we introduce BLAFS,

a Bloat-Aware container F ile System that leverages the layered

structure of container filesystems to debloat containers during

runtime. BLAFS introduces two new types of layers to container

filesystems: a debloating layer and a reloading layer. BLAFS converts
a container image to a BLAFS-image by inserting a combination of

these new layers to the container image.

At runtime, BLAFS transparently migrates any accessed files

from the original filesystem layers to the debloating layers. Sub-

sequently, the original layer is pruned by removing files that re-

main unaccessed, effectively identifying and eliminating bloat. De-

bloating layers serve as composable primitives enabling a flexible

container filesystem architecture that can be tailored to different

deployment scenarios. Based on where and how many debloating

layers are added, BLAFS supports two layer-sharing modes: (1) no-
sharing mode for minimal per-container size where no layers are

shared across containers on the same host; (2) fully-sharing mode
which optimizes aggregate storage across containers, enabling all

containers on the same host to share their common image layers.

The reloading layer is designed to address one key weakness of

debloating tools; their inability to generalize a debloated container.

If a file is removed and is later needed, the debloated container will

fail [53]. To solve this issue, BLAFS introduces an optional reloading

layer that enables containers to remote-fetch a file that is missing

from the debloated container in case it is needed after debloating.

Thus, debloating can be done repetitively, adapting to any workload

changes that were not captured previously. Hence, in addition to

the layer-sharing modes enabled by the flexibility of the debloating

layers, the reloading layer enables two more deployment modes

that can be combined with the layer-sharing modes; (1) security-
hardened mode where containers are only allowed to access files

in a debloated version that encompass all the functionalities the

container is allowed to do, failing in case any other files that are not

in the security-hardened debloated version are accessed (or raising

an error sent to the operator). In this mode, the reloading layer is

disabled; (2) dynamic deployment mode where the reloading layer

is used to fetch any missing files from a remote file caching service,

allowing for load changes during runtime.

We anticipate four main use cases for BLAFS: (1) Serverless

functions that can be profiled and debloated prior to deployment,

reducing storage, cold start latency, and cost; (2) Serverless plat-

forms that can monitor file access in production and debloat mature

containers with stable access patterns, improving efficiency and

performance at scale; (3) Micro-service based applications where

the application’s workflow and functionality are stable; (4) Edge

computing deployments where the resources are constrained. In

building BLAFS, we make the following contributions:

• We design a flexible and effective filesystem-level container

debloating approach. We show the flexibility of BLAFS to

accommodate different scenarios. We open source BLAFS
1
.

• We evaluate BLAFS with 22 popular container images and

a serverless benchmarks running on OpenWhisk under dif-

ferent scenarios. We demonstrate reductions in container

provisioning times, CVEs, and storage requirements. We also

show how BLAFS reduces cold start latencies of serverless

functions by up to 68%.

• We further show that BLAFS can be effectively combined

with other container optimization techniques, such as lazy-

loading snapshotters to enhance their performance, signifi-

cantly reducing conversion time by up to 93% and provision-

ing time by up to 19%.

2 Background

2.1 Container File Systems

In essence, a container is a process running on the host operating

system isolated via operating system primitives such as cgroups

and namespaces. Containers typically use union filesystems such

as OverlayFS [38], BTRFS [46] or similar filesystems [48, 56]. A

container filesystem can be thought of as a container layer on the

top and a list of (inherited or shared) image layers, as illustrated
in Figure 12 in the appendix. The container layer handles all write

requests from the container in a copy-on-write manner with all files

created or modified by a container stored in its container layer. The

image layers on the other hand are read-only. When a container

accesses a file, the filesystem first looks up the file in the container

layer, then in the image layers one by one, top to bottom, until the

file is found, or an error is raised.

The image layers can be shared across many containers, with

the container layer allowing each container to have its isolated

filesystem. This approach greatly reduces disk space requirements

for each container. However, this architecture is also a major source

of bloat [21, 44, 49]. Most containers are built on top of a base

container image, where a container inherits all the filesystem layers

of the base container image. Any bloat in the base image is inherited

in the new container, with new bloat possibly added with each layer

added to the filesystem.

2.2 Container Debloating

Bloated containers consume unneeded disk space and network

bandwidth, while increasing the provisioning time of containerized

1
https://github.com/negativa-ai/BLAFS

615

https://github.com/negativa-ai/BLAFS

BLAFS: A Bloat-Aware Container File System SoCC ’25, November 19–21, 2025, Online, USA

applications [28, 47, 54]. For serverless, this leads to unnecessary

longer cold start times [34, 36, 50]. In addition, large containers

often include unnecessary dependencies, libraries, and applications

that can introduce and increase security vulnerabilities. Container

debloating tools remove bloat from container image layers to reduce

their size and improve their security and performance.

One example of such tools is Cimplifier [44]. Cimplifier uses

dynamic analysis to slim and partition containers to provide better

privilege separation across applications. SlimToolKit [21] is another

open-source container debloating tool that also relies on dynamic

analysis to generate Seccomp profiles and remove unnecessary files

from containers. Different to these tools, some container debloating

tools do not aim to reduce the size of containers but instead focus

on restricting the system calls available to them, reducing the attack

surface of these containers [23, 32].

All container debloating tools, sometimes referred to as de-

bloaters, we are aware off suffer from one or several of the following

three key limitations:

• All debloaters available today rely on tracing with some

sample workloads. This requires users to know beforehand

the exact workload that will run, otherwise, the generated

containers will fail.

• Current tracing methods fail to capture some file accesses.

For example, Cimplifier [44] and SlimToolKit [21] start trac-

ing after the container has started. Hence, they do not cap-

ture files accessed during the startup phase. This is especially

problematic for containers that utilize resources at startup,

such as CUDA libraries in machine learning containers. Re-

moval of these files can lead to the containers failing to start.

• Existing container debloaters trace files inside the container

without awareness of the layered filesystem. As a result, they

break the layered structure, eliminating layer sharing across

containers deployed on the same host. In practice, this can

cause the sum of debloated containers to be larger than the

sum of the original non-debloated containers on the host due

to redundant files being kept in each debloated container.

2.3 Lazy-Loading Snapshotters

To improve container provisioning time, there are solutions that

use the containerd snapshotter plugin [15] to enable container

lazy-loading. Snapshotter techniques need to convert the origi-

nal container image to the snapshotter format. Starlight [14] is an

accelerator for container provisioning that redesigns the container

provisioning protocol, filesystem, and storage format. Starlight ini-

tially identifies the essential files needed for container start-up.

When a container is pulled, these essential files are retrieved first

allowing for a quick start-up. The remaining files are then pulled

in the background.

eStargz [16] is another open-source snapshotter. eStargz esti-

mates the order of use of files in the image layers of a container

and presorts the files in each compressed layer according to the

estimation. When a container starts and opens a file that has not

been transferred yet, eStargz pauses the container start-up and re-

quests the file from the registry. Similar to Starlight, the remaining

files of the container are pulled in the background, resulting in the

deployment of the fully bloated container.

While container debloating and lazy-loading snapshotters are or-

thogonal techniques that can be effectively combined to further en-

hance the performance of containerized applications, lazy-loading

has some fundamental limitations as they require every container to

be converted to the snapshotter format. The image format conver-

sion time can be significant, taking several minutes even for simple

containers, as we show later in our evaluation. Automating this

process for every container can prove challenging in production.

2.4 Containers Cold-Starts

The large size of containers affect their cold-starts. This is espe-

cially problematic for serverless computing. Serverless functions

are widely deployed using containers in order to provide an isolated

and consistent environment for function execution [4, 6, 19]. A cold

start occurs when a serverless function is invoked for the first time,

or after a period of inactivity, requiring the serverless platform

to provision the execution environment [29]. This process typi-

cally involves downloading the container image from the registry,

initializing the runtime environment, and executing the function,

all of which contribute to latency [34, 36, 50]. Serverless function

containers are bloated, which exacerbates the cold start latency

problem. For instance, on AWS Lambda, a widely used serverless

computing platform [6], a simple serverless function that prints

"Hello World" can require a container image as large as 530 MB [3].

3 BLAFS Design

The limitations of existing tools to deal with container bloat are

fundamental and hence, to the best of our knowledge, limits their

usage in production cloud systems. To solve these limitations, we

take a radically different approach to debloating in designing BLAFS,

where we seamlessly integrate debloating in the existing container

filesystems with no added overheads. For production systems, this

requires no-changes in the container provisioning pipeline from a

user or operator perspective.

From production requirements, we identify three key design

goals that BLAFS must satisfy:

• Effectiveness. BLAFS should remove unnecessary files in

containers with no impacts on container performance.

• Flexibility. BLAFS should be flexible to run on different

cloud, edge, and container systems accommodating different

production use-cases.

• Transparency. BLAFS should be transparent with no spe-

cial requirements to work with the existing container tools

minimizing impact on existing infrastructure management

and deployment processes.

BLAFS consists of the following components: A debloating layer
that detects accessed files at the filesystem level (§3.1); An optional

reloading layer that fetches missing files on demand to ensure the

robustness of debloated containers (§3.2); A converter that composes

the debloating and reloading layers with the original image layers

in different configurations, enabling multiple operational modes for

various use cases (§3.3); a mode selection strategy to help to select

the deployment mode (§3.4); and finally an optional module that

uses package dependency analysis to expand the set of retained

files, improving the robustness of debloated containers (§3.5).

616

SoCC ’25, November 19–21, 2025, Online, USA Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

Read

Debloating Layer Image Layer

Figure 1: An example of debloating layers.

3.1 The Debloating Layer

When a container reads a file, the original container filesystem first

tries to open the file from the top image layer down to the bottom

layer and then reads from the file descriptor. Debloating layers are

inserted above the original container filesystem layers to detect

used files. A debloating layer 𝐷 has a list of image layers as its child

layers (𝐷.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛). When reading a file from a debloating layer,

the file is moved from the child layers to the added debloating layer.

In doing so, the debloating layer only includes used files.

Figure 1 shows an example where the original container filesys-

tem has two image layers, with each layer having two files. In this

example, we add a debloating layer to the filesystem such that the

two original image layers are now child layers to the debloating

layer. When the container reads files 𝑓1 and 𝑓3, the two files are

moved to the debloating layer from the image layers. The two used

files are now in the debloating layer, while the other two unused

files stay in the image layers. If we delete the image layers, the

container will be debloated containing only the two used files.

Algorithm 1 shows the details of the debloating process. We

denote a file to be read as 𝑝 . We use the notation 𝐷/𝑝 to denote

concatenating the path of layer 𝐷 with path 𝑝 . The algorithm first

opens 𝑝 in 𝐷 . If 𝑝 exists in 𝐷 , it returns its file descriptor (𝑓 𝑑 . −1).
Otherwise, BLAFS tries to open 𝑝 from the child layers. If 𝑝 exists

in layer 𝑙 , the file is moved from 𝑙 to 𝐷 . If 𝑝 does not exist in the

child layers, -1 is returned to indicate that the file does not exist

in 𝐷 , and that the file should be fetched from lower debloating

layers if they exist. The lower debloating layers try to fetch the file

from their child layer(s) similarly. This enables BLAFS to have a

hierarchy of debloating layers. If no other debloating layers exist,

and the reloading layer is enabled, then the file is remotely fetched

as we describe later.

Implementation. The debloating layer of BLAFS is developed

in C++ with 1k+ lines of code, reimplementing all file-related in-

terface, such as open, read, opendir, etc.. To insert a debloating

layer into the container’s filesystem, BLAFS first parses the con-

tainer configuration to retrieve the list of image layers and their

corresponding locations on the host filesystem. For each debloating

layer, BLAFS creates a new directory on the host, which serves

as a mount point for the BLAFS filesystem. This mount point acts

as the debloating layer and accepts a list of directories, which are

the locations of container’s image layers—as its child layers. While

the original container filesystem is linear-layered where the layers

are stacked sequentially, BLAFS is a tree-layered filesystem due to

the debloating layers mounting the original layers as child layers.

BLAFS then modifies the container’s configuration to change the

original images layer paths to this new mount point. As a result,

when the container starts, all file accesses are transparently routed

through BLAFS’s mount point. Any file access is handled according

Algorithm 1 Pseudo-code of function DOPEN

Input: Debloating layer 𝐷 ; file path 𝑝

Output: File descriptor

1: function dopen(𝐷 ,𝑝)

2: 𝑓 𝑑 ← open(𝐷/𝑝)
3: if 𝑓 𝑑 . −1 then
4: return 𝑓 𝑑

5: end if

6: for 𝑙 in 𝐷.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do ⊲ from top to bottom

7: 𝑓 𝑑 ← open(𝑙/𝑝)
8: if 𝑓 𝑑 . −1 then
9: move(𝑙/𝑝,𝐷/𝑝)
10: return open(𝐷/𝑝)
11: end if

12: end for

13: return −1
14: end function

to the logic defined in Algorithm 1, enabling separation of accessed

and unaccessed files during execution.

Layer-sharing modes. Depending on the number and posi-

tion of the added layers, BLAFS enables two layer sharing modes,

namely, no-sharing and fully-sharing modes. Operating in the no-

sharing mode results in a container with maximum per-container

size reduction, while operating in the fully-sharing mode results in

multiple containers with maximum total size reduction. We now

describe the details of these two modes.

(1) No-sharing Mode. In this mode, BLAFS guarantees the min-

imum possible size of a container by removing files that are not

used by the container without considering any other containers

sharing the same host. Given a container with 𝑛 image layers, the

no-sharing mode inserts one debloating layer, which has all the 𝑛
original image layers as its child layers. The debloated container

contains only files needed by the container’s workloads. This mode

is equivalent to existing container debloaters, such as Cimplifier and

SlimToolKit, i.e., it flattens the layers of the container file system to

be a single layer. The no-sharing BLAFS is effective in producing

debloated containers with a minimum size per container, but dupli-

cate files among multiple debloated containers on the same host

can result in the total size of the debloated containers being larger

than the total size of the original containers which share filesystem

layers. We note that all existing container debloaters have this flaw

(or feature). To give an example, Figure 2 displays an example of

no-sharing BLAFS. The two containers, 𝐶1 and 𝐶2, share the same

image layers, which include two layers and four files 𝑓1, 𝑓2, 𝑓3 and 𝑓4
whose sizes are 1MB, 2MB, 3MB, and 4MB respectively. Thus, both

𝐶1 and𝐶2 are 10MB. When using BLAFS,𝐶1 reads 𝑓1 and 𝑓2, so both

are moved to the debloating layer from the image layer. Similarly,

𝑓2 and 𝑓3 are moved to the debloating layer of 𝐶2. After debloating,

𝐶1 has one debloating layer, which contains 𝑓1 and 𝑓2, while 𝐶2’s

debloating layer contains 𝑓2 and 𝑓3. As a result, the sizes of 𝐶1 and

𝐶2 are reduced to 3MB and 5MB. However, 𝑓2 is duplicated in both

debloated containers.

(2) Fully-sharing mode. This mode allows sharing of common

files across multiple debloated containers located on the same host.

Given a container with 𝑛 image layers, BLAFS inserts 𝑛 debloating

617

BLAFS: A Bloat-Aware Container File System SoCC ’25, November 19–21, 2025, Online, USA

Debloating Layer Image Layer

Convert

Convert

Profile:
 reads
 reads

Profile:
 reads
 reads

Export

Export

Figure 2: Example for no-sharing BLAFS

Debloating Layer Image Layer

Convert
Profile:
 reads
 reads

Profile:
 reads
 reads Export

Figure 3: Example for fully-sharing BLAFS

layers, each of which has one image layer as its child layer. This

means that layers shared among different containers on the same

host can still be shared among their debloated versions, with the

added debloating layers having the superset of all the files used

by all the containers sharing the same layer. Compared with the

no-sharing mode, this can lead to a larger size for each container,

but the total storage used is reduced since the layers can be shared.

Figure 3 shows an example with the fully-sharing mode. The input

container 𝐶1 and 𝐶2 and the workloads are the same as in Figure 2.

First, two debloating layers are inserted for each image layer, with

the image layer converted to be their child layers. The inserted

debloating layers are shared by 𝐶1 and 𝐶2. After conversion, the

debloated versions of 𝐶1 and 𝐶2 share the two debloating layers.

Therefore, the sizes of 𝐶1 and 𝐶2 are the same, which is 6MB. The

size is larger than the sizes of 3MB and 5MB generated by the no-

sharing BLAFS, because each container consists of an unnecessary

file (𝑓3 for 𝐶1,𝑓1 for 𝐶2). However, unlike no-sharing BLAFS, the

debloating layers are shared by the two debloated containers. So

the total size of 𝐶1 and 𝐶2 is 6MB, which is smaller than the size of

8MB generated by no-sharing BLAFS.

3.2 The Reloading Layer

The reloading layer can be used to fetch files missing in a debloated

container in case these files were mistakenly removed or if the

workload dynamics change. Figure 4 shows an example of the

reloading layer in-action. The reloading layer is appended as the

bottom layer in the file system, below all the other image layers.

When a container accesses a file, it searches top-to-bottom across

the filesystem layers of the layered filesystem. Thus, if a file request

reaches the reloading layer, it indicates that the file was not found

in any of the preceding layers. The reloading layer intercepts the

request for the file and connects to a remote file caching service that

can be either the container registry itself, or a cheap cold storage

such as AWS S3 [1]. The reloading layer is optional and is used

depending on the mode BLAFS is running in as we explain later.

Read

Reloading
Layer

Image
Layer

Cloud
Cache

Download

Figure 4: An example of reloading layers.

Algorithm 2 presents the pseudo-code of this reloading process.

𝑀 is a mapping of the absolute file paths of files expected to exist in

the image layers of the container, to their corresponding file types

defined by UNIX file system [52].𝑀 is populated by analyzing the

file system of container 𝐶 before debloating. If file 𝑝 is not in 𝑀 ,

it implies that 𝑝 does not exist in the original file system. So −1 is
returned to signify that 𝑝 does not exist. BLAFS tries to open 𝑝 from

𝑅. If 𝑝 does not exist in 𝑅(𝑓 𝑑 ≡ −1), BLAFS downloads 𝑝 from the

cloud cache and saves it to 𝑅. Then it opens 𝑝 from 𝑅. Finally, the file

descriptor is returned. The reloading layers are usually appended to

the end of the image layers, to avoid unnecessary file downloading.

Algorithm 2 Pseudo-code of function ROPEN

Input: Reloading layer 𝑅; file path 𝑝

Output: File descriptor

1: function ropen(𝑅,𝑝)

2: if 𝑝 not in𝑀 then

3: return −1
4: end if

5: 𝑓 𝑑 ← open(𝑅/𝑝)
6: if 𝑓 𝑑 ≡ −1 then
7: download(𝑅,𝑝)
8: 𝑓 𝑑 ← open(𝑅/𝑝)
9: end if

10: return 𝑓 𝑑

11: end function

Implementation. The reloading layer component of BLAFS

is developed in C++ with another 1k+ lines of code. We use AWS

S3 [1] as a prototype of a remote caching service. The reloading

layer employs the AWS S3 C++ SDK [2] to retrieve from remote

caching service on demand.

Reloading modes. BLAFS provides two reloading modes that

either enable or disable the reloading layer. When enabled, the dy-
namic deployment mode enables the reloading layer with a remote

cache, guaranteeing that containers never fail; even if a file is miss-

ing, it is remotely fetched. This would enable operators to enable

repetitive debloating, where file removal is run periodically. The

security-hardened mode disables the reloading layer for container
image hardening [25], enabling users to set the container to only

run allowed workloads based on which the container is debloated.

3.3 The Converter

The third main component of BLAFS is the image converter. The

image converter converts the original container file system to a

BLAFS file system by adding debloating layers and reloading layers.

Users or operators can choose one of the different BLAFS modes to

618

SoCC ’25, November 19–21, 2025, Online, USA Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

convert the original filesystem to, i.e., no-sharing security-hardened,
fully-sharing security-hardened, no-sharing dynamic deployment,
and fully-sharing dynamic deployment. Since the converter only

adds the layers based on the configuration, the total conversion

time are several seconds.

Converter Implementation: The converter extracts the layer

information of containers and add the debloating and reloading

layer to create a BLAFS filesystem. It is implemented in Golang

with 1.7k+ lines of code.

3.4 Layer-Sharing Mode Selection Strategy

Since many cloud applications run colocated on the same host, we

implement a heuristic-based tool that determines which mode is

better for the containers running on a given host between the two

sharing modes. During runtime, and given 𝑛 containers 𝐶1, 𝐶2, · · · ,
𝐶𝑛 running on the same host, our tool calculates the debloated size

of each container using the no-sharing mode based on their running

workloads 𝑠1, 𝑠2, · · · , 𝑠𝑛 . We denote the total disk size required by

the debloated containers as 𝑡 . BLAFS then computes the sizes of

these containers if debloated with the fully-sharing BLAFS, 𝑠′
1
, 𝑠′

2
,

· · · , 𝑠′𝑛 , respectively. The total size of the debloated containers in

this mode is 𝑡 ′. Let 𝛼 denote the size of duplicated files in 𝑠𝑖 because

of no-sharing; 𝛽 denotes the size of unnecessary files in 𝑠′𝑖 because
of fully-sharing. 𝛼 is calculated by Equation 1,

𝛼 =
∑︁𝑛

1

𝑠𝑖 − 𝑡 ′ (1)

𝛽 can be obtained using Equation 2,

𝛽 =
∑︁𝑛

1

(𝑠′𝑖 − 𝑠𝑖) (2)

Here we define 𝜃 as shown in Equation 3,

𝜃 =
𝛼

𝛽
=

∑𝑛
1
𝑠𝑖 − 𝑡 ′∑𝑛

1
(𝑠′
𝑖
− 𝑠𝑖)

(3)

If 𝜃 is small, it means there are very few files that can be shared

between the debloated containers (𝛼 is small), and many unnec-

essary files will be packed with each container if fully-sharing(𝛽

is large). If 𝜃 is large, then many files can be shared between the

debloated containers (𝛼 is large); and fewer unnecessary files will

be incurred if using the fully-sharing BLAFS (𝛽 is small). In our

deployments, we set 1 as a threshold for 𝜃 . No-sharing BLAFS is

more appropriate for debloating if 𝜃 < 1; otherwise, fully-sharing

BLAFS is used.

3.5 Package-Dependency-Based Expansion

Traditional container debloaters rely on profiling sample workloads

to identify files to be retained. However, these sample workloads

may not cover all possible workload variations. To mitigate the

risk of removing files that may be accessed by unobserved work-

loads, BLAFS employs a Package-Dependency-Based Expansion

algorithm, PDBE, to expand the files to be retained in the debloated

containers. BLAFS first analyzes the packages installed in the con-

tainers and the files included in each package. Then for each pack-

age, BLAFS calculates the necessity degree of this package(𝑑𝑝),

which is defined as follows:

𝑑𝑝 =
size(𝐹𝑝 ∩ 𝐹𝑐′)

size(𝐹𝑝)

where 𝐹𝑝 is the set of files included in package 𝑝 . 𝐹𝑐′ are accessed

files by profiling workloads. A package of 𝑑𝑝 > 0 is considered a

likely needed package since at least some of its files are used by the

observed workloads. To account for potential unseen workloads,

all files within such packages are also retained in the debloated

container. Two key rules are used to expand likely needed packages:

R0: If a package is a likely needed package, then all files within

it will be retained.

R1: If a package is a likely needed package, its dependent pack-

ages are also likely needed packages.

Based on the above two rules, PDBE first creates a package depen-

dency graph. Packages with a necessity degree greater than zero

are selected as starting points. The package dependency graph is

traversed from these starting points to find all the dependencies

(R1). The result is a sub-graph that only contains likely needed

packages. All the files included in the likely needed packages will

be retained in the debloated container(R0).

An alternative strategy for handling files from likely needed

packages is to serve them through a cloud-based caching service

instead of retaining them in the debloated container, allowing the

reloading layer to fetch them on demand.

Implementation.We implement PDBE for Python packages;

We use pipreqdeb to scan the packages installed in a container

and pip to identify files included in a package. Support for other

package types is left for future work.

4 Evaluation

We compare BLAFS with debloaters and lazy-loading snapshotters

on the top 20 most downloaded containers fromDockerHub, several

ML containers, and a serverless function benchmark. In addition,

we evaluate the security hardening benefits of BLAFS by measuring

the number of vulnerabilities in the debloated containers. We also

evaluate the mode selection strategy, the effectiveness of PDBE,

and the overheads incurred by the debloating and reloading layers.

4.1 Comparing to Debloaters

We start our experiments by comparing the effectiveness of BLAFS

against two state-of-the-art container debloaters, Cimplifier and

SlimToolKit. For these experiments, we ran with the no-sharing

security-hardened mode as this is similar to what these debloaters

provide. We select the top 20 downloaded containers from Dock-

erHub, focusing exclusively on application containers rather than

general-purpose operating system containers. For each selected con-

tainer, we manually identified representative workloads to cover

as many relevant use-cases as possible. The number of identified

workloads for each container ranges from 2 to 7. We used these

as our debloating container. Each workload may include multiple

functionalities. The details of the selected containers are shown

in Table 7 in the appendix. Additionally, we evaluate two machine

learning (ML) training containers sourced from AWS Deep Learn-

ing Containers (DLC) [12], which offer pre-built environments for

model training and inference. For these containers, we use the same

training workloads from AWS DLC for debloating.

Table 1 summarizes the debloating results for successfully de-

bloated containers. While BLAFS successfully debloated all 22 con-

tainers, Cimplifier and SlimToolKit successfully debloated 7 and 8

619

BLAFS: A Bloat-Aware Container File System SoCC ’25, November 19–21, 2025, Online, USA

containers, respectively, producing broken containers for the re-

maining containers. The results also reveal significant bloat across

most of the containers, with average size reductions of 59%.

Table 1: Number of successfully debloated containers and

the average, minimum, and maximum size reduction.

Debloater #Containers Avg. Min. Max.

Cimplifier 7 51% 4% 95%

SlimToolKit 8 55% 4% 93%

BLAFS 22 59% 4% 95%

Table 8 in the appendix lists the detailed debloating results for

all 22 containers using BLAFS, sorted by the reduction percentage.

The results for Cimplifier and SlimToolKit are detailed in Tables 9

and 10 in the appendix. The original container sizes ranged from

14 MB to 16,822 MB, with size reductions varying between 4% and

95%. We note that 16 out of the 22 containers had size reductions

more than 50%, and only two had a size reduction of less than

10%. Furthermore, for the two ML containers, tensorflow-train
and pytorch-train, their original sizes are much larger than the

other containers, with sizes of 10,952 MB and 16,822 MB. BLAFS

successfully reduce their sizes by 85% and 83%, respectively. Our

findings show the effectiveness of BLAFS in debloating containers.

It also shows the significant bloat present in these widely-used

containers.

Summary. BLAFS successfully debloats all 22 containers,

while Cimplifier and SlimToolKit only succeed on 7 and 8

containers, respectively. The container size reduction of

BLAFS ranges from 4% to 95%, with an average of 59%.

4.2 BLAFS for Serverless Computing

In this set of experiments, we evaluate BLAFS with realistic server-

less function containers in both open-source and commercial server-

less platforms. We test BLAFS with nine serverless containers of

the Serverless Benchmark [17]. One of the containers in the bench-

mark requires special configuration on the serverless platform was

excluded from the evaluation. We evaluate cold start latency im-

provements by deploying the function containers on two serverless

Table 2: Container size and cold start latency of original and

debloated function containers onOpenWhisk. Percentages in

parentheses are reductions. Ori.=Original, Deb.=Debloated.

Function

Size/MB Latency/ms

Ori. Deb. Ori. Deb.

dynamic-html 1,085 (96%) 49 18,192 (68%) 5,839

uploader 1,084 (95%) 49 18,682 (68%) 6,029

thumbnailer 1,099 (95%) 55 18,854 (68%) 6,017

video-proc. 1,339 (91%) 125 21,737 (67%) 7,244

compression 1,084 (96%) 49 19,206 (67%) 6,335

image-recog. 1,802 (66%) 619 28,283 (46%) 15,392

graph-page. 1,093 (95%) 60 18,619 (62%) 7,158

graph-mst 1,093 (95%) 60 18,869 (67%) 6,162

graph-bfs 1,093 (95%) 60 18,682 (68%) 5,975

Table 3: Container size and memory usage of function con-

tainers on AWS Lambda. The percentage in parentheses is

the reduction.

Function Container Size/MB Memory Usage/MB

dynamic-html 537 (72%) 40 (2%)

uploader 535 (67%) 79 (3%)

thumbnailer 564 (68%) 93 (2%)

video-proc. 789 (68%) 321 (0%)

compression 535 (67%) 101 (1%)

image-recog. 1,893(61%) 681 (1%)

graph-page. 553 (72%) 41 (2%)

graph-mst 553 (72%) 41 (2%)

graph-bfs 553 (72%) 41 (2%)

platforms: an open-source serverless platform, OpenWhisk [19],

and a commercial serverless platform, AWS Lambda [6].

Evaluation on OpenWhisk We first evaluate the performance

improvement of the debloated serverless functions using Open-

Whisk. The framework was deployed on a machine with 16 CPUs

and 64GB of memory. We use DockerHub as the container registry.

We run the functions using the no-sharing mode. Since serverless

functions are supposed to be modular, we also use the security-

hardened mode. For each original and debloated container, we

enforce cold starts 50 times and record the cold start latency. The

results, summarized in Table 2, include the container sizes and

medians of the cold start latency of the original and debloated

containers. The debloated container sizes are much smaller, with

reductions ranging from 66% to 96%. Similarly, cold start latencies

also decrease, with reductions between 46% and 68%. The standard

deviation of the cold start latency was less than 6%.

Evaluation on AWS Lambda.We perform the same evaluation

on a commercial serverless platform, AWS Lambda. We again eval-

uate the no-sharing mode of BLAFS using the same workload we

used with OpenWhisk. The results of our experiments are summa-

rized in Table 3. The evaluation focuses on two metrics provided by

the AWS Lambda platform: memory usage and cold start latency.

Memory usage measures the amount of memory consumed by the

function during execution. We use the billed duration reported by

the benchmark as the cold start latencymetric, which represents the

time from when the function begins executing until it terminates,

rounded up to the nearest millisecond. Table 3 shows the original

container size, memory usage and their reductions after debloat-

ing. For AWS Lambda function containers, the container sizes are

reduced by 61% to 72%. Since AWS Lambda hosts containers in its

registry, smaller container sizes can further reduce costs associated

with storage and network bandwidth. Besides the container size

reduction, the memory usage is also reduced by 0% to 3%.

Figure 5 shows the cold start latency of the original and de-

bloated containers for each function. For all functions, the de-

bloated containers show lower cold start latency compared to

the original containers. We calculate the relative improvement

of the cold start latency using the median values. The functions

dynamic-html, graph-mst and graph-bfs achieve the highest im-

provements, with reductions of 14% in cold start latency. The mini-

mal improvement of 1% was observed for the video-processing
and image-recognition. While the median cold start latencies

620

SoCC ’25, November 19–21, 2025, Online, USA Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

show modest improvements, the tail cold start latency shows a re-

duction of up to 35%. We believe this is because AWS Lambda

already employs certain lazy-loading techniques—such as lazy-

loading snapshotters—to accelerate cold starts. Nevertheless, BLAFS

provides additional performance gains. We further demonstrate

how BLAFS can complement lazy-loading snapshotters to achieve

greater improvements in § 4.6.

Original Debloated

200

250

300

L
at

en
cy

(m
s)

(a) dynamic-html

Original Debloated

800

900

1000

1100

L
at

en
cy

(m
s)

(b) uploader

Original Debloated

1000

1100

1200

L
at

en
cy

(m
s)

(c) thumbnailer

Original Debloated
4500

4750

5000

5250

L
at

en
cy

(m
s)

(d) video-processing

Original Debloated

3400

3600

3800

L
at

en
cy

(m
s)

(e) compression

Original Debloated
5500

6000

L
at

en
cy

(m
s)

(f) image-recognition

Original Debloated

200

250

300

L
at

en
cy

(m
s)

(g) graph-pagerank

Original Debloated
200

250

300

L
at

en
cy

(m
s)

(h) graph-mst

Original Debloated
200

250

300

350

L
at

en
cy

(m
s)

(i) graph-bfs

Figure 5: Cold start latency of the original and debloated

containers for each function on AWS Lambda.

Summary. For serverless function containers in Open-

Whisk and AWS Lambda, BLAFS reduces container sizes

by up to 96% and 72%, and cold start latencies by up to 68%

and 14%, respectively.

4.3 Evaluation of Security Impact

To better understand the security benefits of debloating, we use

Grype [10], a popular container scanning tool to scan the vulnera-

bilities in a set of 10 debloated versus the original containers. For

this experiment, we opted to use slightly older versions of the con-

tainers that are widely used in production today. We debloated

these containers using the no-sharing security-hardened mode.

Table 4 displays the number of CVEs at each severity level found

in the original containers and debloated containers. As can be

seen, BLAFS significantly reduces the number of CVEs, with re-

duction percentages ranging from 20% to 97%. For mysql:8.0.23,
redis:6.2.1, golang:1.16.2 and python:3.9.3, the critical level
CVEs are also reduced considerably. The number of CVEs found in

the debloated containers is considerably lower than that in the orig-

inal containers, indicating that debloating can effectively reduce

the security risks associated with production containers.

O
rig

in
al

N
o-

sh
ar

in
g

Fu
lly

-s
ha

rin
g

0

250

500

750

1000

1250

S
iz

es
(M

B
)

534

204 220

858

244 245

1310

448 443

maven:3.9.9 & mongo:8.0

Size of maven:3.9.9

Size of mongo:8.0

Total Size

O
rig

in
al

N
o-

sh
ar

in
g

Fu
lly

-s
ha

rin
g

0

100

200

300

400

500

600

700

S
iz

es
(M

B
)

578

159
185

576

184 184

578

343

185

dynamic-html & uploader

Size of dynamic-html

Size of uploader

Total Size

O
rig

in
al

N
o-

sh
ar

in
g

Fu
lly

-s
ha

rin
g

0

25

50

75

100

125

150

S
iz

es
(M

B
)

64

43 43

70

49 49

75

92

54

layer-sharing-a & layer-sharing-b

Size of layer-sharing-a

Size of layer-sharing-b

Total Size

Figure 6: Container sizes under different modes.

Summary. For a set of 10 widely-used containers, BLAFS

reduces the number of CVEs significantly, with reductions

ranging from 20% to 97%.

4.4 Evaluation of Mode Selection Strategy

To evaluate themode selection strategy of BLAFS, we select two con-

tainers with shared layers, maven:3.9.9 and mongo:8.0, and two

AWS Lambda function containers dynamic-html and uploader.
We also manually created two containers layer-sharing-a and

layer-sharing-b with shared layers. These two created contain-

ers have a large overlap in their layers and the files they access.

We debloated these containers using no-sharing and fully-sharing

BLAFS. The results are presented in Figure 6.

For containers maven:3.9.9 and mongo:8.0, originally sized at

534MB and 858MB (totaling 1,310MB due to shared layers), debloat-

ing with no-sharing BLAFS results in a significant size reduction,

bringing the total size down to 448MB. When debloated using fully-

sharing BLAFS, while the total size of both containers is slightly

smaller, individual container sizes are slightly larger than their

no-sharing counterparts. The 𝜃 value of these two containers is 0.3.

This means that debloating these two containers using fully-sharing

BLAFS will cause each container to include more unneeded files.

Therefore, no-sharing BLAFS for these containers is more suitable.

In the case of containers dynamic-html and uploader, with
original sizes of 578MB and 576MB, no-sharing BLAFS reduces the

total size to 343MB while layer-sharing BLAFS markedly decreases

the total size to 185MB. This significant size reduction, supported

by a 𝜃 value of 6, indicates a clear advantage of fully-sharing BLAFS

for these containers.

The experiment with layer-sharing-a and layer-sharing-b
reveals an intriguing aspect of container debloating. The original

total size of two containers is 75MB, debloating with no-sharing

BLAFS, however, increases their total size to 92MB. This issue, that

the total size of debloated containers can exceed that of the original

ones, is faced by all state-of-the-art debloating tools like Cimplifier

and SlimToolKit. These tools break the layer-sharing feature of

container filesystems. However, fully-sharing BLAFS utilizes the

layer-sharing feature and effectively reduce their total size to 54MB.

A remarkably high 𝜃 value of 380,000 in this scenario indicates that

fully-sharing BLAFS is more suitable.

Summary. The mode selection strategy of BLAFS effec-

tively selects the appropriate debloating mode for contain-

ers with shared layers, leading to optimal size reductions.

621

BLAFS: A Bloat-Aware Container File System SoCC ’25, November 19–21, 2025, Online, USA

Table 4: Number of CVEs at each severity level found in the original containers and debloated containers. Numbers in the

parenthesis represent the numbers of CVEs found in the debloated containers.

Container Critical High Medium Low Negligible Total Reduction

mysql:8.0.23 26 (3) 71 (7) 44 (5) 34 (3) 90 (11) 265(29) 89%

redis:6.2.1 20 (2) 67 (12) 32 (6) 25 (3) 60 (3) 204 (26) 87%

ghost:3.42.5-alpine 14 (12) 129 (108) 67 (46) 7 (7) 63 (2) 217 (173) 20%

registry:2.7.0 4 (3) 46 (37) 9 (7) 0 (0) 0 (0) 59(43) 27%

golang:1.16.2 63 (2) 376 (19) 314 (5) 80 (3) 499 (5) 1332(34) 97%

python:3.9.3 145 (15) 863 (47) 1048 (34) 418 (3) 898 (10) 3372 (109) 20%

bert_tf2:latest
*

38 (26) 358 (256) 1426 (452) 549 (210) 57 (3) 2428 (947) 61%

nvidia_mrcnn_tf2:latest
*

38 (26) 358 (225) 1445 (451) 558 (210) 57 (3) 2456 (945) 62%

merlin-pytorch-training:22.04
*

47(46) 166(127) 902(134) 317(15) 70(3) 1502(325) 78%

merlin-tensorflow-training:22.04
*

15(14) 109(76) 939(222) 304(34) 56(3) 1423(349) 75%

*
These machine learning containers are collected from NVIDIA NGC services [37].

4.5 Comparing to Lazy-Loading

Lazy-loading snapshotters are used to improve container provi-

sioning time. They rely on the containerd snapshotter plugin as

discussed earlier. In this experiment, we compare BLAFS with three

state-of-the-art container provisioning approaches: the containerd

baseline [15], and two lazy-loading snapshotters; eStargz [16] and

Starlight [14]. We deployed an image registry on a t3.large in-

stance, with ten different images using the no-sharing mode. We

then pulled the containers from a g4dn.2xlarge instance acting

as an emulated edge server. We compare deploying the debloated

image (including pulling, creating and starting) to the baseline of

using a containerd container and the two lazy-loading snapshotters.

To run this experiment, the original containers were converted

to the eStargz and Starlight format. In addition, Starlight requires

a proxy server for mediating between Starlight workers and the

registry server, which we set up in the same AWS instance as the

registry server. We pulled the container 30 times with each of the

approaches on two different network settings, namely a network

connection with 4Gbps bandwidth and 10ms latency, and another

network connection with 100Mbps bandwidth and 200ms latency.

To compare the speed-ups of the different approaches, we divide

the average provisioning time of each approach with the aver-

age provisioning time of containerd original file-system. Figure 7

presents the average speed-up of provisioning time using the three

approaches. We note that for six containers, Starlight produces non-

functional containers
2
. For these containers, we do not plot any

result for Starlight. Figure 7 shows that for the 4Gbps bandwidth and

10ms latency network configuration, BLAFS outperforms eStargz

for 4 out of 10 containers. For golang:1.16.2 and python:3.9.3,
BLAFS and eStargz have similar performance. BLAFS outperforms

Starlight for 3 out of 4 containers. Under the 100Mbps bandwidth

and 200ms latency configuration, BLAFS has higher performance

compared to eStargz for eight containers, having a slightly worse

performance for two (nvidia_mrcnn_tf2 and mysql). Comparing

BLAFS with Starlight, BLAFS outperforms Starlight for only one

out of four Starlight working containers (golang:1.16.2).
We finally note that when containers are converted using eS-

targz and Starlight, their compressed sizes are slightly larger than

the original containers, requiring larger space on (the constrained

edge) host. This is a limitation that all state-of-the-art lazy-loading

2
We reported our findings to the paper authors, and they are investigating the reason.

go
la

ng
:1

.1
6.

2
re

di
s:

6.
2.

1
m

ys
ql

:8
.0

.2
3

re
gi

st
ry

:2
.7

.0
py

th
on

:3
.9

.3

gh
os

t:
3.

42
.5

-a
lp

in
e

be
rt

tf
2:

la
te

st

nv
id

ia
m

rc
nn

tf
2:

la
te

st

m
er

lin
-p

yt
or

ch
-t

ra
in

in
g:

22
.0

4

m
er

lin
-t

en
so

rfl
ow

-t
ra

in
in

g:
22

.0
4

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

A
ve

ra
ge

P
ro

v
is

io
n

T
im

e 4Gbps, 10ms

go
la

ng
:1

.1
6.

2
re

di
s:

6.
2.

1
m

ys
ql

:8
.0

.2
3

re
gi

st
ry

:2
.7

.0
py

th
on

:3
.9

.3

gh
os

t:
3.

42
.5

-a
lp

in
e

be
rt

tf
2:

la
te

st

nv
id

ia
m

rc
nn

tf
2:

la
te

st

m
er

lin
-p

yt
or

ch
-t

ra
in

in
g:

22
.0

4

m
er

lin
-t

en
so

rfl
ow

-t
ra

in
in

g:
22

.0
4

0.00

0.25

0.50

0.75

1.00

1.25
100Mbps, 200ms

baseline BLAFS eStargz Starlight

Figure 7: Provision time speed-up under different network

connections. The lower, the better the provision performance

is. For python:3.9.3 to merlin-tensroflow-training:22.04,

Starlight fails to generate functional containers and their

results are not plotted.

snapshotters, to the best of our knowledge, have. For example, SOCI,

another state-of-the-art snapshotter based on eStargz, deployed

in AWS Fargate only provides benefits for containers larger than

250MB [41]. For small container images, SOCI can even slow down

the time taken to launch AWS Fargate Tasks.

Summary. Compared to eStargz and Starlight, BLAFS

achieves comparable container provisioning performance,

while also reducing container sizes significantly.

4.6 Combining BLAFS with Lazy-Loading

BLAFS can be combined with lazy-loading snapshotters to further

enhance provision performance. Lazy-loading snapshotters first

convert container images into a lazy-loading format, a process that

can be time-consuming [14]. This conversion latency can lead to

delays in updating serverless functions. Once converted, the im-

age is pushed to and stored in a registry. During container startup,

622

SoCC ’25, November 19–21, 2025, Online, USA Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

only the essential files for startup are immediately pulled, while

the remaining files are fetched in the background. This mechanism

allows the container to start faster. We evaluate whether debloating

can improve two key metrics of lazy-loading snapshotters:(1) Image

format conversion time and (2) Container pull time. We combined

BLAFS with two lazy-loading snapshotters, eStargz and Starlight.

We used the same nine OpenWhisk serverless containers, debloat-

ing them using the no-sharing mode. The full-sharing modes is not

used, as lazy-loading snapshotters do not rely on a base image to

start the container. Then we convert both the original and debloated

containers into a lazy-loading format using eStargz and Starlight.

The time required to convert each container is measured, and we

display the results in Table 5. Both eStargz and Starlight exhibit sig-

nificant reductions in conversion time for debloated containers. For

eStargz, the conversion time is reduced by 28% to 79%. For Starlight,

the reduction range from 45% to 93%. The standard deviation of the

conversion time is less than 3%. These results demonstrate that de-

bloating significantly reduces the time needed to convert container

images into a lazy-loading format.

Table 5: The conversion time of eStargz and Starlight. Per-

centages in parentheses are reductions. Time is in seconds.

Function eStargz Starlight

dynamic-html 73s (79%) 114s (93%)

uploader 67s (77%) 113s (93%)

thumbnailer 68s (77%) 114s (93%)

video-proc. 70s (70%) 115s (92%)

compression 67s (77%) 114s (93%)

image-recog. 111s (28%) 117s (45%)

graph-page. 68s (77%) 113s (93%)

graph-mst 63s (76%) 112s (93%)

graph-bfs 65s (76%) 114s (93%)

Original Debloated
500

600

700

800

P
ro

v
is

io
n

T
im

e
(m

s)

(a) dynamic-html

Original Debloated
500

600

700

800

P
ro

v
is

io
n

T
im

e
(m

s)

(b) uploader

Original Debloated
500

600

700

800

P
ro

v
is

io
n

T
im

e
(m

s)

(c) thumbnailer

Original Debloated
500

600

700

800

P
ro

v
is

io
n

T
im

e
(m

s)

(d) video-processing

Original Debloated
500

600

700

800

P
ro

v
is

io
n

T
im

e
(m

s)

(e) compression

Original Debloated
500

600

700

800

P
ro

v
is

io
n

T
im

e
(m

s)

(f) image-recognition

Original Debloated
500

600

700

800

P
ro

v
is

io
n

T
im

e
(m

s)

(g) graph-pagerank

Original Debloated
500

600

700

800

P
ro

v
is

io
n

T
im

e
(m

s)

(h) graph-mst

Original Debloated
500

600

700

800

P
ro

v
is

io
n

T
im

e
(m

s)

(i) graph-bfs

Figure 8: Provision time of the original and debloated con-

tainers for each function using eStargz.

0 20 40 60 80 100 120

Relative Size Increase(%)

dynamic-html

uploader

thumbnailer

video-processing

compression

image-recognition

graph-pagerank

graph-mst

graph-bfs

pytorch

tensorflow

4.6

3.9

8.2

2.7

3.9

21.7

4.5

4.5

4.5

63.8

54.4

0 20 40 60 80 100
#Expanded Packages

3

1

2

1

1

11

3

3

3

90

68

#Expanded Packages

Relative Size Increase

Figure 9: Relative size increase and number of expanded

packages using PDBE.

Figure 8 presents the provisioning times for both the original and

debloated containers. Starlight is excluded from this evaluation, as

it failed to start the containers. The results show that with eStargz,

the average provisioning times for debloated containers is reduced

by 13% to 19%. However, the tail is reduced by up to 40% for the

compression function. These findings confirm that container de-

bloating can complement lazy-loading snapshotters, reducing the

time required for format conversion and container provisioning,

and thereby improving the overall performance of lazy-loading

snapshotters. We note that running with AWS Lambda function

containers had similar results.

Summary. Combining BLAFS with lazy-loading snapshot-

ters significantly reduces the time required for image for-

mat conversion (by up to 93%) and container provisioning

(by up to 19%).

4.7 Evaluation of PDBE

Table 6: Execution results of unobserved workloads for the

two ML containers.

pytorch-train tensorflow-train

Workloads
*

BLAFS BLAFS +PDBE Workloads
*

BLAFS BLAFS +PDBE

Torchdata ✗ ✓ TensorBoard ✓ ✓

PytorchRegression ✓ ✓ TFAddons ✓ ✓

PyTorchwithInductor ✗ ✓ TFKerasHVDFP32 ✗ ✓

Torchaudio ✗ ✓ TFKerasHVDFAMP ✗ ✓

*
Please refer to the appendix §A.6 for the details of the workloads.

PDBE is designed to mitigate the risk of removing necessary files

by expanding the set of retained files based on package dependency

analysis. While this improves coverage, it also increases the size

of the debloated containers. To evaluate this trade-off, we focus on

623

BLAFS: A Bloat-Aware Container File System SoCC ’25, November 19–21, 2025, Online, USA

AWS serverless function containers and two ML containers, all of

which use Python packages—the package type currently supported

by PDBE. We compare two configurations in no-sharing mode:

debloating containers with or without PDBE. Figure 9 presents the

relative size increase compared to the debloated containers and the

number of expanded packages across the containers. As expected,

all containers show a size increase due to the additional retained

files introduced by PDBE, ranging from 2.7% to 63.8%. Notably,

the two ML containers exhibit the most size increases (63.8% and

54.4%), as PDBE expanded the largest number of packages for these

containers (90 and 68).

We further evaluate whether PDBE improves the robustness of

debloated containers against unobserved workloads. The two ML

containers (pytorch-train and tensorflow-train) are selected
for this evaluation, as they are designed to perform more various

workloads than the serverless function containers. The two ML

containers were debloated using training workloads for a CNN

model, representative of their core functionality. To test robustness,

we use four additional ML workloads drawn from publicly available

samples [12]. These workloads serve as unobserved workloads to

evaluate robustness of the debloated containers. Table 6 summarizes

the results for the two containers. Containers debloated with only

BLAFS show partial success—some workloads execute successfully,

while others fail due to missing files. In contrast, containers de-

bloated with BLAFS + PDBE successfully execute all four workloads.

It is important to note that this does not imply PDBE guarantees
robustness, for that the reloading layer should be used. However,

the results demonstrate that PDBE can meaningfully improve the
robustness of debloated containers.

Summary. PDBE effectively enhances the robustness of

debloated containers against unobserved workloads, but

at the cost of increased container size.

4.8 Debloating and Reloading Overheads

Our final set of experiments aim to show how running with both

layer sharing and dynamic mode introduces overheads. We note

that our previous evaluations did not evaluate the dynamic sharing

mode since it does not affect any aspects of the BLAFS performance

except by adding an extra overhead to fetch the file remotely. All

our previous results thus hold for the reloading layer, except for

the overheads added.

Overhead of the debloating layer. To measure the perfor-

mance overhead of BLAFS, we run disk benchmarks [39] using the

Phoronix test suite [40]. Herewe use the fully-sharingmode as it has

more layers compared to the original file system. We first run the

disk benchmarks in a container with the original container filesys-

tem. Then we convert the filesystem into fully-sharing BLAFS and

run the same disk benchmarks in the converted container. The Flex-

ible IO Tester of the disk benchmark was executed in the container.

Only read operations were measured as BLAFS does not affect the

writing layer of a container. Both random read and sequential read

operations were measured with block sizes of 4KB and 2MB, and

the bandwidth and I/O per second (IOPS) were recorded. Then we

compare the performance metrics of the original container with the

0.0 0.2 0.4 0.6 0.8 1.0
Relative Overhead

Random Read, 2MB, Bandwidth

Random Read, 2MB, IOPS

Random Read, 4KB, Bandwidth

Random Read, 4KB, IOPS

Sequential Read, 2MB, Bandwidth

Sequential Read, 2MB, IOPS

Sequential Read, 4KB, Bandwidth

Sequential Read, 4KB, IOPS

1.00

1.01

1.03

1.03

1.00

1.00

1.04

1.04

Figure 10: Relative overhead of file-system read operations.

Lower is better.

Original File-missing

102

R
es

p
on

se
T

im
e

(m
s)

1MB

Original File-missing

103

2× 102

3× 102

4× 102

6× 102

10MB

Original File-missing

103

4× 102

6× 102

2× 103

30MB

Original File-missing

103

2× 103

3× 103

R
es

p
on

se
T

im
e

(m
s)

50MB

Original File-missing

104

2× 103

3× 103

4× 103

6× 103

100MB

Original File-missing

104

3× 103

4× 103

6× 103

200MB

Figure 11: Violin plots of the response time distribution (in

milliseconds) of file retrievals. The horizontal line in the

shade indicates the mean value of the response time.

container of BLAFS. The performance metrics of the container of

BLAFS were divided by the samemetrics of the original container to

obtain the relative overhead. Figure 10 shows the relative overhead

(x-axis) of the read operations of BLAFS. The results show that all

the metrics are around 1, indicating that the performance of BLAFS

and the original container filesystem are similar. The debloating

layer does not incur much performance overhead. Although we

show the results for the fully-sharing BLAFS, the no-sharing BLAFS

achieves similar performance.

Overhead of the reloading layer. In this experiment, we com-

bine the no-sharing mode with the dynamic deployment mode,

i.e., with enabled reloading layer and remote cache service. The

reloading layer incurs overhead when a file needs to be fetched on

demand. In order to test the performance overhead of the reloading

layer, we simulate the case when a file is missing using a Nginx

server serving data from six files with sizes of 1MB, 10MB, 30MB,

50MB, 100MB and 200MB inside the container. In this experiment,

we removed the files from the containers manually, triggering the

reloading layer when the first time the file is accessed. While un-

realistic, we choose this scenario to be able to control the size of

the file-misses. We used Locust [35] for request generation. The

experiment ran for 3 minutes with a locust spawn rate of 10 users

per second. In total, the 1MB file was downloaded over 77000 times,

and over 440 times for the 200MB file, with the other sizes having

their download times in-between these two numbers. We compare

the response time of file retrievals in the file-missing container with

that of the original container. We used AWS S3 Standard storage as

624

SoCC ’25, November 19–21, 2025, Online, USA Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

the remote file caching service, while the containers are deployed

on g4dn.2xlarge instances.
Figure 11 shows the distribution of response times when re-

questing files from both the original container and the file-missing

container.We notice that the file-missing container exhibits a longer

tail towards higher response times for all file sizes compared to the

original container. This outcome is anticipated since the reloading

layer must dynamically load files when they are absent before they

can be served, resulting in a significant performance overhead for

the initial few requests. Nevertheless, the distributions of the orig-

inal container and the file-missing container display comparable

spreads around the mean, suggesting that the performance over-

head imposed by the reloading layer occurs only occasionally. Once

the missing files are loaded, the file-missing container’s perfor-

mance aligns with that of the original container, leading to nearly

identical mean values.

Summary. The debloating layer incurs negligible perfor-

mance overhead, while the reloading layer incurs overhead

only when files are fetched on demand, with performance

similar to the original container once files are loaded.

5 Discussion

Limitations. Our current implementation of reloading layer fetches

files individually, while loading a bloated container fetches all files

at once, often with compression. This design of the reloading layer

can lead to decreased fetching performance, leading to reloading

consuming more bandwidth as reloading layer cannot batch or

compress multiple files in a single transfer. However, this overhead

is mostly mitigated by the fact that fewer files are fetched in total,

since it is unlikely that all removed files will be accessed. In many

cases, even a change of workload does not lead to significant file

misses. To further address this issue for fault-tolerant or horizon-

tally scaled services, where multiple instances of the same service

coexist, a practical approach is to maintain one bloated instance to

which any missing-file requests can be redirected, while deploying

additional instances using the debloated container. Although this

strategy slightly increases the overall cost, the savings remain sub-

stantial due to the large number of replicas typically involved, and

scaling or provisioning operations continue to be fast.

Integration with Existing Systems.. BLAFS can be integrated

into existing CI/CD pipelines. After the container image is built,

BLAFS can be used to debloat the image based on profiling work-

loads. The debloated image can then be pushed to a container

registry for deployment. This process can optionally generate a

Software Bill of Materials (SBOM) listing accessed and removed files

for auditing and compliance. In production environments, BLAFS

can continuously monitor file accesses and dynamically remove

unused content based on actual workloads. This enables automatic

adaptation to evolving execution patterns, maintaining efficiency

without requiring manually crafted profiling workloads.

6 Related Work

The problem of container bloat has been well studied from both

academia and industry. Apart from the lazy-loading snapshotters

discussed in §2, many other techniques have been proposed to ad-

dress the effects of container bloat. CNTR [49] introduces the con-

cept of a slim and a fat container image. The three main use cases

for CNTR are: Container to container debugging in production;

Host to container debugging; and Container to host administration.

Both the slim and fat containers run on the same host, and there

are no space or bandwidth savings. Slacker [26] is a Docker storage

driver designed to optimize fast container startup and reduce the

time it takes to provision a container. It provisions the container

quickly using backend clones and minimizes startup latency by

lazily fetching container data. DADI [33] is a block-level image

service for increased agility and elasticity in deploying applications

by providing fine-grained on-demand transfer of remote images.

FAASNET [51] is a middle-ware system designed for highly scal-

able container provisioning in serverless platforms, which enables

scalable container provisioning via a lightweight, adaptive func-

tion tree structure and uses an on-demand fetching mechanism to

reduce provisioning costs. Gear [22] is a new image format that

reduces container deployment time and storage size of the image

registry by separating the index that describes the filesystem struc-

ture from the files that are required for running an application.

We argue that these optimizations only solve the symptoms of the

problem, but not the root cause. We believe that the root cause of

long provisioning time and increased resource usage is container

bloat, and BLAFS can be combined with them to provide further

improvements.

7 Conclusion

This paper addresses the issue of container bloat, which impacts pro-

visioning times, resource utilization, overall system performance

and security. We demonstrate that container bloat is widespread,

with over 50% of the top 20 containers in DockerHub containing

more than 60% of bloat. Existing debloating tools have several inher-

ent limitations, such as breaking the layered structure of container

filesystems. To overcome these limitations, we introduced BLAFS, a

bloat-aware filesystem that preserves container functionality while

significantly reducing container bloat. BLAFS supports multiple

modes, including no-sharing, fully-sharing, security-hardened and

dynamic deployment, making it adaptable to diverse use cases. Our

evaluations show that BLAFS reduces cold start latency of server-

less functions by up to 68% and, when integrated with lazy-loading

snapshotters, enhances container provisioning performance by re-

ducing conversion times by 93% and provisioning times by 19%.

Under the security-hardened mode, BLAFS effectively reduces the

number of CVEs in containers by up to 89%. BLAFS provides an

effective and flexible solution to container debloating that balances

the trade-off between container convenience and efficiency.

Acknowledgments

This project is supported by the Knut and Alice Wallenberg Foun-

dation via a Wallenberg AI, Autonomous Systems and Software

Program PhD grant and an SSF future research leaders grant. Mo-

hannad was funded by the Office of Naval Research (ONR) under

Contracts N68335-17-C-0558 and N00014-24-1-2049.

625

BLAFS: A Bloat-Aware Container File System SoCC ’25, November 19–21, 2025, Online, USA

References

[1] Amazon S3 - Cloud Object Storage - AWS — aws.amazon.com. https://aws.

amazon.com/s3/, 2025. [Accessed 2025-07-10].

[2] AWS SDK for C++ — aws.amazon.com. https://aws.amazon.com/sdk-for-cpp/,

2025. [Accessed 2025-07-10].

[3] Deploy Python Lambda functions with container images - AWS Lambda —

docs.aws.amazon.com. https://docs.aws.amazon.com/lambda/latest/dg/python-

image.html#python-image-instructions, 2025. [Accessed 2025-07-10].

[4] GitHub - openfaas/faas: OpenFaaS - Serverless Functions Made Simple —

github.com. https://github.com/openfaas/faas, 2025. [Accessed 2025-07-10].

[5] ptrace(2) - Linux manual page — man7.org. https://man7.org/linux/man-pages/

man2/ptrace.2.html, 2025. [Accessed 2025-07-10].

[6] Serverless Function, FaaS Serverless - AWS Lambda - AWS — aws.amazon.com.

https://aws.amazon.com/lambda/, 2025. [Accessed 2025-07-10].

[7] strace(1) - Linux manual page — man7.org. https://man7.org/linux/man-pages/

man1/strace.1.html, 2025. [Accessed 2025-07-10].

[8] Ioannis Agadakos, Nicholas Demarinis, Di Jin, Kent Williams-King, Jearson

Alfajardo, Benjamin Shteinfeld, David Williams-King, Vasileios P Kemerlis, and

Georgios Portokalidis. Large-scale debloating of binary shared libraries. Digital
Threats: Research and Practice, 1(4):1–28, 2020.

[9] Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke,

Andre Beck, Paarijaat Aditya, and Volker Hilt. {SAND}: Towards {High-
Performance} serverless computing. In 2018 Usenix Annual Technical Conference
(USENIX ATC 18), pages 923–935, 2018.

[10] Anchore. Grype. https://github.com/anchore/grype, 2025. [Online; accessed

2025-07-10].

[11] Ali Anwar, MohamedMohamed, Vasily Tarasov,Michael Littley, Lukas Rupprecht,

Yue Cheng, Nannan Zhao, Dimitrios Skourtis, Amit S Warke, Heiko Ludwig, et al.

Improving docker registry design based on production workload analysis. In

16th {USENIX} Conference on File and Storage Technologies ({FAST} 18), pages
265–278, 2018.

[12] AWS. Aws deep learning containers. https://github.com/aws/deep-learning-

containers, 2025. [Online; accessed 2025-07-10].

[13] Michael D Brown, Adam Meily, Brian Fairservice, Akshay Sood, Jonathan Dorn,

Eric Kilmer, and Ronald Eytchison. A broad comparative evaluation of software

debloating tools. In 33rd USENIX Security Symposium (USENIX Security 24), pages
3927–3943, 2024.

[14] Jun Lin Chen, Daniyal Liaqat, Moshe Gabel, and Eyal de Lara. Starlight: Fast

container provisioning on the edge and over theWAN. In 19th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 22), Renton, WA, April

2022. USENIX Association.

[15] containerd. Containerd. https://github.com/containerd/containerd, 2025. [Online;

accessed 2025-07-10].

[16] containerd. Stargz snapshotter. https://github.com/containerd/stargz-

snapshotter, 2025. [Online; accessed 2025-07-10].

[17] Marcin Copik, Grzegorz Kwasniewski, Maciej Besta, Michal Podstawski, and

Torsten Hoefler. Sebs: A serverless benchmark suite for function-as-a-service

computing. In Proceedings of the 22nd International Middleware Conference,
Middleware ’21, page 64–78, NewYork, NY, USA, 2021. Association for Computing

Machinery.

[18] Lazar Cvetković, François Costa, Mihajlo Djokic, Michal Friedman, and Ana

Klimovic. Dirigent: Lightweight serverless orchestration. In Proceedings of the
ACM SIGOPS 30th Symposium on Operating Systems Principles, pages 369–384,
2024.

[19] Karim Djemame, Matthew Parker, and Daniel Datsev. Open-source serverless

architectures: an evaluation of apache openwhisk. In 2020 ieee/acm 13th inter-
national conference on utility and cloud computing (ucc), pages 329–335. IEEE,
2020.

[20] Docker. Dockerhub. https://github.com/libfuse/libfuse, 2025. [Online; accessed

2025-07-10].

[21] Slimtoolkit. https://slimtoolkit.org/, 2025. [Online; accessed 2025-07-10].

[22] Hao Fan, Shengwei Bian, Song Wu, Song Jiang, Shadi Ibrahim, and Hai Jin. Gear:

Enable efficient container storage and deployment with a new image format. In

2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS),
pages 115–125. IEEE, 2021.

[23] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and Michalis Poly-

chronakis. Confine: Automated system call policy generation for container

attack surface reduction. In 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), pages 443–458, 2020.

[24] Runsheng Guo, Victor Guo, Antonio Kim, Josh Hildred, and Khuzaima Daud-

jee. Hydrozoa: Dynamic hybrid-parallel dnn training on serverless containers.

Proceedings of Machine Learning and Systems, 4:779–794, 2022.
[25] Md Sadun Haq, Thien Duc Nguyen, Ali Şaman Tosun, Franziska Vollmer, Tur-

gay Korkmaz, and Ahmad-Reza Sadeghi. Sok: A comprehensive analysis and

evaluation of docker container attack and defense mechanisms. In 2024 IEEE
Symposium on Security and Privacy (SP), pages 4573–4590. IEEE, 2024.

[26] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau, and Remzi H

Arpaci-Dusseau. Slacker: Fast distribution with lazy docker containers. In

14th {USENIX} Conference on File and Storage Technologies ({FAST} 16), pages
181–195, 2016.

[27] Muhammad Hassan, Talha Tahir, Muhammad Farrukh, Abdullah Naveed, Anas

Naeem, Fareed Zaffar, Fahad Shaon, Ashish Gehani, and Sazzadur Rahaman.

Evaluating container debloaters. In 2023 IEEE Secure Development Conference
(SecDev), pages 88–98. IEEE, 2023.

[28] Shihong Hu,Weisong Shi, and Guanghui Li. Cec: A containerized edge computing

framework for dynamic resource provisioning. IEEE Transactions on Mobile
Computing, 22(7):3840–3854, 2023.

[29] Artjom Joosen, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Luke Darlow,

Jianfeng Wang, Qiwen Deng, and Adam Barker. Serverless cold starts and where

to find them. In Proceedings of the Twentieth European Conference on Computer
Systems, EuroSys ’25, page 938–953, New York, NY, USA, 2025. Association for

Computing Machinery.

[30] Hsuan-Chi Kuo, Jianyan Chen, Sibin Mohan, and Tianyin Xu. Set the config-

uration for the heart of the os: On the practicality of operating system kernel

debloating. Proceedings of the ACM on Measurement and Analysis of Computing
Systems, 4(1):1–27, 2020.

[31] Yunseong Lee, Alberto Scolari, Byung-GonChun,MarcoDomenico Santambrogio,

Markus Weimer, and Matteo Interlandi. {PRETZEL}: Opening the black box of

machine learning prediction serving systems. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), pages 611–626, 2018.

[32] Lingguang Lei, Jianhua Sun, Kun Sun, Chris Shenefiel, Rui Ma, YuewuWang, and

Qi Li. Speaker: Split-phase execution of application containers. In Detection of
Intrusions and Malware, and Vulnerability Assessment: 14th International Confer-
ence, DIMVA 2017, Bonn, Germany, July 6-7, 2017, Proceedings 14, pages 230–251.
Springer, 2017.

[33] Huiba Li, Yifan Yuan, Rui Du, Kai Ma, Lanzheng Liu, and Windsor Hsu. Dadi:

Block-level image service for agile and elastic application deployment. In Pro-
ceedings of the 2020 USENIX Conference on Usenix Annual Technical Conference,
pages 727–740, 2020.

[34] Zijun Li, Linsong Guo, Quan Chen, Jiagan Cheng, Chuhao Xu, Deze Zeng, Zhuo

Song, Tao Ma, Yong Yang, Chao Li, and Minyi Guo. Help rather than recycle:

Alleviating cold startup in serverless computing through Inter-Function container

sharing. In 2022 USENIX Annual Technical Conference (USENIX ATC 22), pages
69–84, Carlsbad, CA, July 2022. USENIX Association.

[35] Locust. An open source load testing tool. https://www.locust.io/, 2025. [Online;

accessed 2025-07-10].

[36] Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti, Naren Nayak,

and Vadim Sukhomlinov. Agile cold starts for scalable serverless. In 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19), Renton, WA, July

2019. USENIX Association.

[37] NVidia. Nvidia NGC containers. https://catalog.ngc.nvidia.com/containers, 2025.

[Online; accessed 2025-07-10].

[38] Overlay filesystem. https://docs.kernel.org/filesystems/overlayfs.html, 2025. [On-

line; accessed 2025-07-10].

[39] Phoronix. Disk test suite. https://openbenchmarking.org/suite/pts/disk, 2025.

[Online; accessed 2025-07-10].

[40] Phoronix. Phoronix test suite 10.8.4. https://github.com/phoronix-test-suite/

phoronix-test-suite, 2025. [Online; accessed 2025-07-10].

[41] Olly Pomeroy and Vaibhav Khunger. Under the hood: Lazy load-

ing container images with seekable oci and aws fargate. https:

//aws.amazon.com/blogs/containers/under-the-hood-lazy-loading-container-

images-with-seekable-oci-and-aws-fargate/, 2025. [Online; accessed 2025-07-

10].

[42] Haoran Qiu, Subho S Banerjee, Saurabh Jha, Zbigniew T Kalbarczyk, and Rav-

ishankar K Iyer. {FIRM}: An intelligent fine-grained resource management

framework for {SLO-Oriented} microservices. In 14th USENIX symposium on
operating systems design and implementation (OSDI 20), pages 805–825, 2020.

[43] David Quigley, Josef Sipek, Charles P Wright, and Erez Zadok. Unionfs: User-and

community-oriented development of a unification filesystem. In Proceedings of
the 2006 Linux Symposium, volume 2, pages 349–362, 2006.

[44] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick

McDaniel. Cimplifier: Automatically debloating containers. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017,

page 476–486, New York, NY, USA, 2017. Association for Computing Machinery.

[45] Yuxin Ren, Kang Zhou, Jianhai Luan, Yunfeng Ye, Shiyuan Hu, Xu Wu, Wenqin

Zheng, Wenfeng Zhang, and Xinwei Hu. From dynamic loading to extensible

transformation: An infrastructure for dynamic library transformation. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22),
pages 649–666, 2022.

[46] Ohad Rodeh, Josef Bacik, and Chris Mason. Btrfs: The linux b-tree filesystem.

ACM Transactions on Storage (TOS), 9(3):1–32, 2013.
[47] Deepa Rajendra Sangolli, Nagthej Manangi Ravindrarao, Priyanka Chidambar

Patil, Thrishna Palissery, and Kaikai Liu. Enabling high availability edge comput-

ing platform. In 2019 7th IEEE International Conference onMobile Cloud Computing,

626

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/sdk-for-cpp/
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html#python-image-instructions
https://docs.aws.amazon.com/lambda/latest/dg/python-image.html#python-image-instructions
https://github.com/openfaas/faas
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://man7.org/linux/man-pages/man2/ptrace.2.html
https://aws.amazon.com/lambda/
https://man7.org/linux/man-pages/man1/strace.1.html
https://man7.org/linux/man-pages/man1/strace.1.html
https://github.com/anchore/grype
https://github.com/aws/deep-learning-containers
https://github.com/aws/deep-learning-containers
https://github.com/containerd/containerd
https://github.com/containerd/stargz-snapshotter
https://github.com/containerd/stargz-snapshotter
https://github.com/libfuse/libfuse
https://slimtoolkit.org/
https://www.locust.io/
https://catalog.ngc.nvidia.com/containers
https://docs.kernel.org/filesystems/overlayfs.html
https://openbenchmarking.org/suite/pts/disk
https://github.com/phoronix-test-suite/phoronix-test-suite
https://github.com/phoronix-test-suite/phoronix-test-suite
https://aws.amazon.com/blogs/containers/under-the-hood-lazy-loading-container-images-with-seekable-oci-and-aws-fargate/
https://aws.amazon.com/blogs/containers/under-the-hood-lazy-loading-container-images-with-seekable-oci-and-aws-fargate/
https://aws.amazon.com/blogs/containers/under-the-hood-lazy-loading-container-images-with-seekable-oci-and-aws-fargate/

SoCC ’25, November 19–21, 2025, Online, USA Huaifeng Zhang, Mohannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin

Services, and Engineering (MobileCloud), pages 85–92, 2019.
[48] Yu Sun, Jiaxin Lei, Seunghee Shin, and Hui Lu. Baoverlay: a block-accessible

overlay file system for fast and efficient container storage. In Proceedings of the
11th ACM Symposium on Cloud Computing, pages 90–104, 2020.

[49] Jörg Thalheim, Pramod Bhatotia, Pedro Fonseca, and Baris Kasikci. Cntr:

Lightweight {OS} containers. In 2018 {USENIX} Annual Technical Conference
({USENIX}{ATC} 18), pages 199–212, 2018.

[50] Parichehr Vahidinia, Bahar Farahani, and Fereidoon Shams Aliee. Cold start

in serverless computing: Current trends and mitigation strategies. In 2020 In-
ternational Conference on Omni-layer Intelligent Systems (COINS), pages 1–7,
2020.

[51] Ao Wang, Shuai Chang, Huangshi Tian, Hongqi Wang, Haoran Yang, Huiba

Li, Rui Du, and Yue Cheng. Faasnet: Scalable and fast provisioning of custom

serverless container runtimes at alibaba cloud function compute. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021.

[52] Wikipedia. Unix file types. https://en.wikipedia.org/wiki/Unix_file_types, 2025.

[Online; accessed 2025-07-10].

[53] Qi Xin, Qirun Zhang, and Alessandro Orso. Studying and understanding the

tradeoffs between generality and reduction in software debloating. In 37th
IEEE/ACM International Conference on Automated Software Engineering, pages
1–13, 2022.

[54] Huaifeng Zhang, Fahmi Abdulqadir Ahmed, Dyako Fatih, Akayou Kitessa, Mo-

hannad Alhanahnah, Philipp Leitner, and Ahmed Ali-Eldin. Machine learning

containers are bloated and vulnerable. arXiv preprint arXiv:2212.09437, 2022.
[55] Nannan Zhao, Vasily Tarasov, Hadeel Albahar, Ali Anwar, Lukas Rupprecht,

Dimitrios Skourtis, Amit S Warke, Mohamed Mohamed, and Ali R Butt. Large-

scale analysis of the docker hub dataset. In 2019 IEEE International Conference on
Cluster Computing (CLUSTER), pages 1–10. IEEE, 2019.

[56] Chao Zheng, Lukas Rupprecht, Vasily Tarasov, Douglas Thain, Mohamed Mo-

hamed, Dimitrios Skourtis, Amit S Warke, and Dean Hildebrand. Wharf: Sharing

docker images in a distributed file system. In Proceedings of the ACM Symposium
on Cloud Computing, pages 174–185, 2018.

A Appendix

A.1 Container File Systems

Figure 12 shows an example of a container filesystem.

Container Layer

Container

Container Layer

Container
...

Container Layer

Container

Image Layer 2

Image Layer 1

Image Layer 3

Image Layers
(Read-Only)

Container Layers
(Read-Write)

Figure 12: An example of a container filesystem.

A.2 Containers Evaluated

Table 7 shows the details of all 22 containers evaluated in this paper.

A.3 BLAFS Debloating Results

Table 8 shows the debloating results for BLAFS for all 22 containers

evaluated in this paper.

Table 7: Details of containers evaluated.

Container #Workloads
1

Pull Times

httpd:2.4 4 1B+

nginx:1.27.2 4 1B+

memcached:1.6.32 6 500M+

mysql:9.1 7 1B+

postgres:17 4 1B+

ghost:5.101.3 5 500M+

redis:7.4.1 4 1B+

haproxy:3.0.6 4 1B+

mongo:8.0 7 1B+

solr:9.7.0 4 100M+

rabbitmq:4.0 4 1B+

maven:3.9.9 3 500M+

elasticsearch:8.16.0 4 500M+

eclipse-mosquitto:2.0.20 5 500M+

telegraf:1.30 3 500M+

nextcloud:28.0.12 2 500M+

sonarqube:9.9.7 3 1B+

registry:2.8.3 4 1B+

consul:1.15.4 4 1B+

traefik:v3.2.0 3 1B+

tensorflow-training 1 -

pytorch-training 1 -

1
We categorized the features into workloads. Each work-

load may involve multiple features. For example, the

test_index_operations workload for the mysql:9.1
involves creating a table, inserting data, creating an index,

and querying the data. For the details of the workloads,

please refer https://github.com/negativa-ai/BLAFS

Table 8: Debloating results for BLAFS for the all 22

containers sorted by the reduction percentage.

Container

Original

(MB)

Debloated

(MB)

Reduction

httpd:2.4 141 7 95%

nginx:1.27.2 183 12 93%

memcached:1.6.32 81 9 89%

pytorch-train 16,822 2,902 83%

tensorflow-train 10,952 1,695 85%

mysql:9.1 574 99 83%

postgres:17 415 85 79%

ghost:5.101.3 547 121 78%

redis:7.4.1 112 27 75%

haproxy:3.0.6 98 27 72%

mongo:8.0 815 233 71%

solr:9.7.0 561 195 65%

rabbitmq:4.0 209 73 65%

maven:3.9.9 505 195 61%

elasticsearch:8.16.0 1,241 479 61%

eclipse-mosquitto:2.0.20 14 7 51%

telegraf:1.30 435 223 49%

nextcloud:28.0.12 1,200 761 37%

sonarqube:9.9.7 576 428 26%

registry:2.8.3 24 18 25%

consul:1.15.4 148 137 7%

traefik:v3.2.0 176 169 4%

627

https://en.wikipedia.org/wiki/Unix_file_types
https://github.com/negativa-ai/BLAFS

BLAFS: A Bloat-Aware Container File System SoCC ’25, November 19–21, 2025, Online, USA

A.4 Cimplifier Debloating Results

Table 9 shows the debloating results for Cimplifier.

Table 9: Cimplifier Debloating Results of the top 20

most downloaded containers from DockerHub. Con-

tainers failed to debloat are not included in the table.

Results are sorted by the reduction percentage.

Container

Original

(MB)

Debloated

(MB)

Reduction

httpd:2.4 141 7 95%

nginx:1.27.2 183 12 93%

eclipse-mosquitto:2.0.20 14 7 51%

telegraf:1.30 435 223 49%

nextcloud:28.0.12 1,200 761 37%

registry:2.8.3 24 18 25%

traefik:v3.2.0 176 169 4%

A.5 SlimToolKit Debloating Results

Table 10 shows the debloating results for SlimToolKit.

Table 10: SlimToolKit Debloating Results of the top 20

most downloaded containers from DockerHub. Con-

tainers failed to debloat are not included in the table.

Results are sorted by the reduction percentage.

Container

Original

(MB)

Debloated

(MB)

Reduction

nginx:1.27.2 183 13 93%

memcached:1.6.32 81 9 89%

haproxy:3.0.6 98 27 72%

maven:3.9.9 505 199 61%

telegraf:1.30 435 223 49%

eclipse-mosquitto:2.0.20 14 7 49%

registry:2.8.3 24 19 24%

traefik:v3.2.0 176 170 4%

A.6 Unobserved Workloads for the ML

containers

The following list shows the description of the unobserved work-

loads of two debloated ML containers. For the code of each work-

loads, please refer to https://github.com/aws/deep-learning-containers/

tree/master/test/dlc_tests/container_tests/bin

• Torchdata: Torchdata S3 IO datapipe tests.

• PytorchRegression: Training linear regression model using

PyTorch.

• PyTorchwithInductor: Training BertForMaskedLM using Py-

Torch dynamo and inductor backend.

• Torchaudio: Torchaudio integration datapipe tests.

• TensorBoard: Test TensorBoard.

• TFAddons: Tensorflow addons layers normalizations exam-

ple.

• TFKerasHVDFP32: Train a CNN model using FP32 type on

Horovod.

• TFKerasHVDFAMP: Train a CNN model using AMP type on

Horovod.

628

https://github.com/aws/deep-learning-containers/tree/master/test/dlc_tests/container_tests/bin
https://github.com/aws/deep-learning-containers/tree/master/test/dlc_tests/container_tests/bin

	Abstract
	1 Introduction
	2 Background
	2.1 Container File Systems
	2.2 Container Debloating
	2.3 Lazy-Loading Snapshotters
	2.4 Containers Cold-Starts

	3 BLAFS Design
	3.1 The Debloating Layer
	3.2 The Reloading Layer
	3.3 The Converter
	3.4 Layer-Sharing Mode Selection Strategy
	3.5 Package-Dependency-Based Expansion

	4 Evaluation
	4.1 Comparing to Debloaters
	4.2 BLAFS for Serverless Computing
	4.3 Evaluation of Security Impact
	4.4 Evaluation of Mode Selection Strategy
	4.5 Comparing to Lazy-Loading
	4.6 Combining BLAFS with Lazy-Loading
	4.7 Evaluation of PDBE
	4.8 Debloating and Reloading Overheads

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Container File Systems
	A.2 Containers Evaluated
	A.3 BLAFS Debloating Results
	A.4 Cimplifier Debloating Results
	A.5 SlimToolKit Debloating Results
	A.6 Unobserved Workloads for the ML containers

