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Abstract

Language models (LMs) can make a correct
prediction based on many possible signals in
a prompt, not all corresponding to recall of
factual associations. However, current interpre-
tations of LMs fail to take this into account.
For example, given the query “Astrid Lindgren
was born in” with the corresponding comple-
tion “Sweden”, no difference is made between
whether the prediction was based on knowing
where the author was born or assuming that
a person with a Swedish-sounding name was
born in Sweden. In this paper, we present a
model-specific recipe — PRISM — for construct-
ing datasets with examples of four different
prediction scenarios: generic language model-
ing, guesswork, heuristics recall and exact fact
recall. We apply two popular interpretability
methods to the scenarios: causal tracing (CT)
and information flow analysis. We find that
both yield distinct results for each scenario. Re-
sults for exact fact recall and generic language
modeling scenarios confirm previous conclu-
sions about the importance of mid-range MLP
sublayers for fact recall, while results for guess-
work and heuristics indicate a critical role of
late last token position MLP sublayers. In sum-
mary, we contribute resources for a more ex-
tensive and granular study of fact completion
in LMs, together with analyses that provide a
more nuanced understanding of how LMs pro-
cess fact-related queries.

1 Introduction

Language models (LMs) trained on large corpora
have been found to store significant amounts of fac-
tual information (Petroni et al., 2019). While there
are many research results documenting the fact pro-
ficiency of LMs (Kandpal et al., 2023; Mallen et al.,
2023), our understanding of how these models per-
form fact completion is still under development.
Mechanistic interpretability is a growing area of
research aiming to explain model behavior (Elhage
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Figure 1: Prediction scenarios and corresponding
prompt completion examples. Each scenario yields dis-
tinct interpretability results.

et al., 2021; Geiger et al., 2021), and has already
yielded insights into where LMs store and process
factual information (Meng et al., 2022; Geva et al.,
2023; Haviv et al., 2023).

While this body of work has broken new ground
and provided us with interpretations of fact com-
pletion in LMs, it is limited to studies of only one
type of scenario. More specifically, in Meng et al.
(2022) and Geva et al. (2023), the studies are lim-
ited to correct predictions, and it is assumed that
the model recalls facts for these. We hypothesize
that this scenario in reality is a blend of multiple
more fine-grained scenarios, as it is well known
that LMs can make correct predictions based on
many different signals in the prompt, not all corre-
sponding to exact fact recall. For example, LMs
may pick up on spurious correlations to “solve
the dataset” rather than the task exemplified by it
(Zellers et al., 2019; Niven and Kao, 2019; McCoy
et al., 2019), and fact completion situations are no
exception to this (Poerner et al., 2020; Cao et al.,
2021; Ladhak et al., 2023). In bringing this dis-
tinction forward, we also ground our work in more
formal studies of knowledge, where most scholars
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agree that guesswork should be accounted for and
excluded in order to consider a model as having
“bona fide knowledge” (Fierro et al., 2024).

In this work, we disentangle and detail four dif-
ferent prediction scenarios for which LMs can be
expected to show distinct behaviors (see Figure 1).
The scenarios are: 1) Generic language modeling,
when the model does not respond with facts, such
as when generating a story. 2) Guesswork, when
the model responds with a fact but is uncertain.
3) Heuristics recall, when the model uses shallow
heuristics, e.g. that people with Korean-sounding
names are more likely to live in Korea. 4) Exact
fact recall, when the model has indeed memorized
the correct answer and recalls it for the prediction.
We show how interpretations of LMs can be ex-
tended to these scenarios and how each scenario
yields distinct interpretability results.

In particular, this work makes three main con-
tributions. First, we propose a method, PRISM,
for creating a diagnostic dataset with distinct test
cases to enable more extensive and precise inter-
pretations of fact completion in LMs (§3). We
create and release PRISM datasets for GPT-2 XL,
Llama 2 7B and Llama 2 13B, respectively. Second,
our experiments with the interpretability method of
causal tracing (CT) show that the models exhibit
a complex behavior on the PRISM scenarios not
captured by previous results (§4.1). Third, our in-
depth analysis of information flow confirms that
models employ distinct inference mechanisms for
the PRISM scenarios. For example, we observe
contrasting results for exact fact recall compared to
generic language modeling samples (§4.2). Taken
together, our work expands on the scenarios that
can be analyzed for interpretations of LMs for fact
completion and yield new interpretations of LMs. !

2 Background

This section provides a brief background on fact
completion and mechanistic interpretability topics
relevant to our work.

2.1 LMs and memorization

A large body of interpretability work for fact com-
pletion situations is concerned with whether a
model has memorized? some fact or not, and where

'Dataset and code are available at https:
//github.com/dsaynova/lm_interpretation_
fact_completion.

Note that the type of memorization referred to here is of
an abstracted representation of the fact rather than, as studied

that fact is stored in the model parameters, also
referred to as the parametric memory. Mallen et al.
(2023); Kandpal et al. (2023) observe that queries
asking for fact tuples rarely found in the LM train-
ing data are less likely to be known by the model.
Mallen et al. (2023) take this one step further and
use fact popularity (measured as Wikipedia page
views) as a proxy for training data frequency to
estimate the probability of a model knowing a fact.
Conversely, Liu et al. (2023); Basmov et al. (2024)
use synthesized facts to simulate a training data
frequency of O to study model behavior in the face
of the unknown.

2.2 LMs and heuristics

Research into model performance on factual bench-
marks has identified different factors affecting a
model prediction. Accurate fact completions may
stem from superficial cues and learned shallow
heuristics, such as lexical overlap, person name
bias? or prompt bias* (Poerner et al., 2020; Ladhak
et al., 2023; Cao et al., 2021).

While shallow heuristics are a natural by-product
of the way LMs are trained and may provide a short-
cut solution for some samples, they rely on dis-
putable and overgeneralizing assumptions. There-
fore, LMs relying on shallow heuristics in a fact
prediction setting is generally undesirable (McCoy
et al., 2019). For example, Ladhak et al. (2023)
found that name bias leads to hallucinations and
factually incorrect summaries by LMs.

2.3 LMs and random guesswork

Feng et al. (2024) claim that reliable LMs need to
be able to abstain from generating low-confidence
outputs. Meanwhile, most open-source LMs are as
of yet not equipped with the ability to abstain and,
while there is a large body of research on this, there
is no final verdict on the best method for measuring
model confidence (Jiang et al., 2021; Vasudevan
et al., 2019; Burns et al., 2023; Yoshikawa and
Okazaki, 2023; Zhao et al., 2024).

2.4 Interpretability and fact completion

Recent work by Meng et al. (2022); Geva et al.
(2023); Haviv et al. (2023) has focused on the infer-
ence process of LMs for fact completion for simple

in some literature, of exact string memorization.

3E.g., predicting Kye Ji-Su to be a citizen of South Korea
due to the form of the name.

*E.g., predicting London for “Adam Doe was born in” due
to the training data showing strong correlations between Lon-
don and “was born in”, disregarding the subject Adam Doe.
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(subject, relation, object) fact tuples, such as sub-
ject Tokyo, relation capital-of and object Japan,
illustrated in Figure 1. This body of work hypothe-
sizes that LMs follow a distinct process when pro-
ducing accurate fact completions. This hypothesis
was originally posed by Meng et al. (2022) based
on aggregations of CT results, which revealed a de-
cisive role of MLP modules at (last subject token,
mid layer) positions for accurate fact completion
predictions. This was reasoned to indicate that
these modules recall fact associations for a subject.
Later results by e.g. Geva et al. (2023) support the
same conclusion.

2.5 Causal tracing

Causal tracing is a mechanistic interpretability
method that has provided many interpretations of
LMs (Stolfo et al., 2023; Monea et al., 2024). It
was introduced by Meng et al. (2022) and relies on
the study of indirect causal effects. By corrupting
and restoring corrupted representations at different
(token, layer) positions in a LM it is possible to
infer what parts of the network are important for
assigning a high probability to the predicted token
with respect to the subject. The measured signal
of model component importance is referred to as
indirect effect.

Meng et al. (2022) also developed the Counter-
Fact dataset. Their conclusion is based on the 1,209
known samples from CounterFact for which GPT-
2 XL is accurate. By now, it has been frequently
used for the interpretation of LMs performing fact
completion (Geva et al., 2023).

2.6 Studies of information flow

Geva et al. (2023) analyze information flow in LMs
for fact-related queries from CounterFact to under-
stand how information is retrieved internally during
inference. We mainly focus on their methods of
attention knockout to study from what (token posi-
tion, layer) state critical information flows for the
prediction and logit lens to investigate attribute ex-
traction in intermediate MLP and multi-head self-
attention (MHSA) states. Using these methods,
Geva et al. (2023) find three main ways in which in-
formation flows in LMs for fact-related predictions:

SThese knowledge localization efforts are somewhat or-
thogonal to work on model editing. While localization results
from CT may not identify the optimal parameters for knowl-
edge editing, this does not mean that CT is inaccurate for
knowledge localization. It simply means that “localization
analysis might answer a different question than the question
answered by model editing” (Hase et al., 2023).

generic language modelling

guesswork

o heuristics recall
no heuristics used?

exact fact recall

Figure 2: Diagnostic criteria (in green) for defining the
four prediction scenarios (in black).

1) critical information flows from middle-upper
subject position layers to the final token state corre-
sponding to the prediction (“attribute extraction”),
2) critical information flows from early non-subject
position layers (“relation propagation”) and 3) the
subject position state is enriched with attributes by
MLP layers before the attribute extraction takes
place (“subject enrichment”).

3 PRISM datasets for precise studies of
prediction scenarios

We develop PRISM (Precise Identification of Sce-
narios for Model behavior) datasets to separate the
different prediction scenarios in Figure 1. This
is motivated by an inspection of the 1,209 Coun-
terFact samples which reveals 510 samples likely
to rely on heuristics and 365 samples unlikely to
have been memorized due to low popularity scores
(see Appendix F). We argue that these issues make
the CounterFact dataset unable to support precise
and comprehensive interpretations of LMs, missing
out on important distinctions and valuable insights
into the workings of LMs. PRISM is developed to
address these shortcomings.

PRISM datasets are created by the identifica-
tion and generation of samples corresponding to
each of the four prediction scenarios in Figure 1.
The process relies on three diagnostic test criteria
(Figure 2). Note that PRISM datasets are model-
specific since they depend on model biases and
parametric memories, which differ between LMs.

We develop PRISM datasets for GPT-2 XL (Rad-
ford et al., 2019), Llama 2 7B and Llama 2 13B.
(Touvron et al., 2023), respectively. General statis-
tics for the datasets can be found in Table 1 and ex-
amples corresponding to each prediction scenario
can be found in Appendix E. The samples and our
subsequent analysis is focused on the English lan-
guage. Further details on the implementation of the
datasets can be found in Appendix D.
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GPT-2 XL Llama 2 7B Llama 2 13B
Scenario #samples (#fact tuples)  #samples (#fact tuples) #samples (#fact tuples)
Generic LM 1,000 (-) 1,000 (-) 1,000 (-)
Guesswork 3,282 (3,181) 2,917 (2,846) 2,822 (2,220)
Heuristics 8,352 (1,868) 8,414 (1,960) 9,224 (2,062)
Exact fact 1,322 (191) 5,481 (580) 5,995 (601)

Table 1: Statistics for the PRISM datasets for each LM considered in our study.

3.1 Diagnostic criteria

To create the PRISM datasets we propose three
necessary and comprehensive diagnostic criteria
for which we define measurements (see Figure 2):
(1) Does the prediction represent fact completion
rather than generic language modeling? (2) Is the
prediction confident and robust to insignificant sig-
nals in the prompt? (3) Is the prediction based
on the exact factual information expressed in the
query or on heuristics triggered by surface-level
cues? These criteria provide a more fine-grained
testing setup compared to using a single accuracy-
focused criterion, as in previous work.

Fact completion Our first criterion is fact com-
pletion — whether a prompt and the model’s pre-
diction correspond to the setting of a model com-
pleting a fact. By making sure the model is studied
only in fact completion situations, interpretations
can be assumed to elucidate some fact processing
behavior. This as opposed to, for example, the
LM generating a story about unicorns, for which a
different model behavior is assumed to take place.
This criterion is already implicitly used in previous
research on interpretations of LMs for fact comple-
tion (Petroni et al., 2019; Meng et al., 2022; Geva
et al., 2023), we simply make it explicit.

Following this body of work, for fact completion
we limit ourselves to simple queries that express
an incomplete fact (subject and relation), with the
intent to let the LM generate the object as the next
token. We use ParaRel query templates to collect
samples of fact completion (Elazar et al., 2021).
These are a set of rephrased expressions of a rela-
tion, where a different subject X can be substituted
at the first position and an object Y is expected as
the next token to be generated. For example, for
the relation “born-in”” we have templates such as
“[X]was born in [Y]” or “[X] is originally from [Y]”
(see Appendix C for a full list). In total, 7 different
relations are used, each with at least 5 different
templates for query variations.

We define the measurement for fact completion

as: If a query expresses an incomplete fact (subject
and relation) and the prediction corresponds to an
entity or concept that has a valid type (e.g. a place
name when asking about location). This excludes
predictions such as “the”, “a” and “with”.

Confident prediction Our second criterion is
confident prediction — whether the prediction can
be considered confident, e.g. by being robust across
insignificant perturbations to the query. Since most
LMs by default cannot abstain from answering, we
may end up in situations when a LM makes the cor-
rect prediction by chance while it randomly selects
a token of the correct type (e.g. a city when asked
for a birthplace) but has no relevant parametric
knowledge of the specific fact.

For the collection of PRISM samples, we opt
for a definition of confidence grounded in desir-
able model behavior. We proxy model confidence
by consistency in the face of semantically equiva-
lent queries (Elazar et al., 2021; Portillo Wightman
et al., 2023; Zhao et al., 2024) and measure it as
the agreement across paraphrases from the ParaRel
dataset (Elazar et al., 2021).

We define the measurement for confident predic-
tion as: If a prediction occurs among the top 3 pre-
dictions for at least 5 paraphrased queries. A pre-
diction that only appears for one of the rephrased
queries is deemed unconfident. The thresholds
were based on manual inspection to ensure ade-
quate sampling of confident and unconfident sam-
ples. Since we use several tests to establish the
type of prediction, we believe a slight variation of
these threshold values will not lead to a substantial
difference in the examples generated. Moreover, as
observed in Section 2, there is no clear definition of
confident prediction, why we opted for creating our
own. Other work may propose alternative defini-
tions of confidence, PRISM can easily be adapted
to these as well.

Usage of heuristics Our third and final criterion
is no dependence on heuristics — indicating if the
prediction is based on the exact factual informa-
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tion expressed in the prompt (subject and rela-
tion) rather than only on partial signals, i.e. heuris-
tics. Predictions depending on heuristics indicate
an over-reliance on unintended correlations in the
training dataset based on surface forms of names
or prompts, and are therefore unreliable (Cao et al.,
2021; McCoy et al., 2019; Biran et al., 2024).

For the collection of PRISM samples we use
two indicators: presence of surface-level cues and
memorization estimation. If a model indicates it
has learned a heuristic related to the prediction, it is
likely this is used for completing the query. Addi-
tionally, if we know that the LM does not know the
fact requested by a prompt but it still makes a confi-
dent prediction, we can assume that the prediction
corresponds to some form of heuristics recall.

We use three types of filters for the detection of
heuristics: Lexical overlap (between subject and
prediction), person name bias and prompt bias fil-
ters. The two former filters are from Poerner et al.
(2020) and the latter is based on the findings by
Cao et al. (2021) (Appendix D.5). We use fact pop-
ularity to estimate model knowledge, proxied by
Wikipedia page views for the year 2019%, based on
work by Mallen et al. (2023), where the authors
find a strong correlation between popularity and
memorization.

We define the measurement for usage of heuris-
tics as: If a prediction is not based on memorization
and the query contains surface-level cues.

3.2 Dataset creation

Using the above criteria, we build PRISM datasets
of (query, prediction) samples representative of
each of four potential prediction scenarios: 1)
generic language modeling, 2) random guesswork,
3) heuristics recall and 4) exact fact recall. In this
section, we introduce definitions of the prediction
scenarios based on our diagnostic criteria, illus-
trated in Figure 2, and our method for producing
the PRISM samples. Our goal is to create splits that
contain a single prediction scenario rather than to
identify all samples that correspond to that scenario.
As such, we opt for stricter thresholds when needed
to ensure high precision samples. Our approach
is not intended to classify every instance into one
of the four scenarios, but to produce high-quality
examples of each one.

For the collection of PRISM samples, we con-
sider the top 3 model predictions. By looking at

®Using the Pageview APL

multiple top tokens we break the over-reliance of
previous work on accuracy of the top prediction
and account for a larger portion of the LM output
distribution.

Generic language modeling We define samples
corresponding to (fact completion: False) as repre-
sentative of a generic language modeling scenario.
Generic language modeling samples are re-
trieved from Wikipedia.” We follow an approach
similar to that of Haviv et al. (2023) to ensure that
we only collect samples corresponding to generic
language modeling and not fact completion. The
extraction is done by sampling sentences that start
with the subject of the article in order to comply
with the causal nature of the models and to allow
for causal interventions on the subject. We discard
the sentence if its natural continuation begins with
a capital letter or a number (indicating this could
be an entity and thus potentially fact completion).

Random guesswork We define samples corre-
sponding to (fact completion: True, confident pre-
diction: False) as representative of a random guess-
work scenario.

For the collection of random guesswork samples,
we first populate ParaRel templates with subjects
and objects from LAMA (Petroni et al., 2019). We
retain (query, prediction) samples for which the
prediction is a valid object from LAMA (e.g. a city
when asked for birthplaces) but unconfident (i.e. it
does not occur among the top 3 predictions for at
least 5 paraphrased queries).

Heuristics recall We define samples correspond-
ing to (fact completion: True, confident prediction:
True, no usage of heuristics: False) as representa-
tive of a heuristics recall scenario.

We collect these samples by populating ParaRel
templates with synthetic fact tuples from a name
generator (more details can be found in Ap-
pendix D.3). Since the subjects are synthetic, facts
about them cannot have been memorized by the
model (Liu et al., 2023; Basmov et al., 2024). Fil-
tering confident predictions of valid objects for
which a single type of bias is identified forms our
heuristics recall samples.

Exact fact recall We define samples correspond-
ing to (fact completion: True, confident prediction:

"We use 20220301 . en from HuggingFace at https:
//huggingface.co/datasets/wikipedia
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True, no usage of heuristics: True) as representa-
tive of an exact fact recall scenario. The exact fact
recall scenario corresponds to situations for which
the LM can be expected to have memorized the full
fact tuple expressed by the query and fetches this
from memory for the prediction.

To obtain samples representative of exact fact
recall, we again use the LAMA fact tuples. We col-
lect predictions that are 1) confident, 2) not labeled
as corresponding to any bias, 3) corresponding to a
fact memorized by the LM, and 4) correct.

4 Interpretability and PRISM

We apply two mechanistic interpretability ap-
proaches — CT and information flow analysis — to
test their sensitivity to each prediction scenario in
PRISM.® This allows us to evaluate the validity of
previous interpretability results.

4.1 Causal tracing

First, we investigate the sensitivity of CT to the
PRISM scenarios. We aim to address the question
Do CT results and the corresponding conclusions
change with the underlying prediction scenario(s)?
CT measures the importance of different (token,
layer) positions for a certain prediction. In line
with Meng et al. (2022), we analyze the averaged
indirect effects (AIE) per (token, layer) position,
binning the input tokens into the following cate-
gories: first, middle, and last subject token; first
subsequent token; further tokens; last token.

To adjust for differences in absolute values of
the probability of the predicted token, we take in-
spiration from Hase et al. (2023) and normalize
results by how much the output token probability
was reduced when corrupting the subject informa-
tion. This measures the percentage of recoverable
probability that was restored by patching a model
state. For a detailed discussion of the effects of
normalization, see Appendix G.

Figure 3 shows averaged normalized indirect
effects of model states in GPT-2 XL for 1000 sam-
ples corresponding to each prediction scenario of
PRISM in isolation as well as a combined plot
of the 3 fact completion cases (exact fact recall,
heuristics recall, and guesswork). The correspond-
ing results for Llama 2 7B and Llama 2 13B can
be found in Appendix H.1 — they support the same
conclusions as reached for GPT-2 XL.

8We use the same hyperparameters as the original studies.

Prediction scenarios in isolation Results for the
generic language modeling samples in Figure 3a
indicate no critical role of last subject token posi-
tion MLP states (used to indicate memory access).
This further supports the original hypothesis that
mid-layer MLP states act as memory storage, since
they do not engage for samples that do not require
memorization.

We also observe how last token states in late
layers are decisive for generic language modeling
and guesswork. Meng et al. (2022) recorded a
similar peak in their results, while there is no clear
hypothesis as to what information is processed here.
We also note that the magnitude of the peak is much
smaller for exact fact recall, indicating that this
peak and the computations it corresponds to may
signify a lack of exact fact recall.

The results for the heuristics recall samples in
Figure 3c show no decisive role of any particular to-
ken position state, while we note that it corresponds
to a higher importance of last subject token states
compared to generic language modeling, indicating
that some memorized information is in use.

Results for exact fact recall samples (Figure 3d)
are fundamentally different from those of the other
isolated scenarios. The exact fact recall results
show a clear peak in AIE in (last subject token,
mid layer) MLP states. This is the only prediction
scenario that clearly supports the same conclusion
as previous work in that (last subject token, mid
layer) MLP states are decisive. This provides addi-
tional support for the hypothesis proposed by Meng
et al. (2022), as the exact fact recall samples further
emphasize the pattern interpreted to indicate the
memory storage role of mid MLP layers.

Aggregations of prediction scenarios To test
the effects of analyzing mixed samples, we produce
results for a mixture of fact completion scenarios.
The combined plot of exact fact recall, heuristics
recall, and guesswork samples in Figure 3e gener-
ally reproduces the same CT results as observed
in previous work, and thereby supports the same
conclusion, i.e. (last subject token, mid layer) MLP
states are decisive (Meng et al., 2022). This indi-
cates that model interpretations over samples mix-
ing prediction scenarios are misleading as they may
be dominated by the characteristics of the exact fact
recall scenario. Potentially, this could be due to the
exact fact recall samples generally corresponding
to higher prediction confidences.

This supports our hypothesis that previous in-
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Figure 3: CT results for PRISM GPT-2 XL data. 1000 samples for each scenario in isolation. As well as 1000
combined samples (330 exact fact recall, 340 heuristics recall, 330 guesswork). Shaded regions indicate 95%
confidence intervals.
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Figure 4: Relative change in the prediction probability when intervening on attention edges to the last position for
window sizes of 9 layers in GPT-2 XL on PRISM data. Shaded regions indicate 95% confidence intervals.

—MHSA —— MLP
()
] Nl
= A A
50.2- A 0.2 0.5 1 [ 021
B '/ \ il
© N I“l
£ e l
3 0.0 - ; 0.0 4 el | 0.0 4 . — 0.0 4
0 20 40 0 20 40 0 20 40 0
layer layer layer layer

(a) Generic language modeling (b) Guesswork (¢) Heuristics recall (d) Exact fact recall

Figure 5: Attribute extraction rates across layers measured for PRISM GPT-2 XL data. MHSA and MLP indicate
attribution extraction rates (top £ = 1) for multi-head self-attention states and multilayer perceptron states,
respectively. Note the change in upper y axis limit from 0.35 to 0.9 for heuristics recall in (c). Shaded regions
indicate 95% confidence intervals.

terpretability results may have been recorded over
mixtures of prediction scenarios, as we can repro-
duce their results with a mixture. We do not use
this as proof that these results are based on mix-
tures (see Appendix F). We rather wish to show
how, without precise testing data, we can reach
conclusions that are not supported by a large part
of the studied sample (67%).

Predictive potential We also investigate the po-
tential for developing predictive systems based on
our taxonomy and internal model states. We train
a single-layer neural network with 50 neurons on

a balanced four-way classification task. CT out-
puts AIE for each (token, layer) position, thus for
each token, we obtain a vector of AIE values (for
all model layers), similar to the ones in Figure 3.
Models are trained to predict the scenario based on
the AIE vectors for the first and last subject token
as well as the last prompt token (found to be most
distinct between scenarios). The models achieve
an accuracy of 0.72 for GPT-2 XL, 0.78 for Llama
2 7B, and 0.74 for Llama 2 13B (Appendix I). We
take this to indicate high correlations between in-
ternal model states and prediction scenarios, illus-
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trating a potential of developing novel methods for
disambiguating types of model behavior.

4.2 Information flow

In our second experiment we investigate the sensi-
tivity of information flow analysis to the PRISM
scenarios. Specifically, we leverage information
flow localization via attention knockout and at-
tribute extraction via logit lens (Geva et al., 2023).

Figure 4 shows the results from the attention
knockout experiments and Figure 5 the attribute
extraction results. Similarly to the CT results in
Section 4.1, each prediction scenario corresponds
to a unique information flow and extraction rate pat-
tern. This further supports our claim that PRISM
samples can be used to study LM behaviors for
different prediction scenarios. A deeper analysis of
the results is structured around two main questions:

Do our results support the same conclusions as
reached in previous work? We focus on the two
conclusions from Geva et al. (2023) related to 1)
critical information flows from middle-upper sub-
ject position layers corresponding to a prediction
probability decrease of 60% and 2) critical informa-
tion flows from early non-subject position layers
corresponding to a probability decrease of 45%.
The results for the exact fact recall samples in
Figure 4d support conclusion (1). We even mea-
sure a stronger impact of subject attention connec-
tions (80%) and higher extraction rates in Figure 5d
compared to previous results. We also measure a
significant impact of subject attention connections
for guesswork samples (40%), while the generic
language modeling samples show very little im-
pact of any subject position layers (7%), further
supporting conclusion (1). However, conclusion
(2) is not supported by the results on the exact
fact recall samples as information from early non-
subject position layers is less important for exact
fact recall (15% to 45%). High importance of non-
subject positions information is instead observed
for the guesswork samples (50%) and generic lan-
guage modeling samples (50%). This indicates
that the conclusions reached by Geva et al. (2023)
largely are valid, while they seemingly average
across guesswork and exact fact recall scenarios.

What inference process takes place for each pre-
diction scenario? For the exact fact recall sce-
nario, we have already noted how the inference
process heavily relies on information from subject
position layers and less on relation (non-subject)

information. This is also supported by the clear
importance of mid layer last subject position MLP
states in Figure 3d.

For the generic language modeling scenario, we
note that only information from early non-subject
position layers is critical for the final prediction
in Figure 4a. We also record high extraction rates
from the late MLP states in Figure 5a and a clear
importance of late MLP states in Figure 3a. Based
on these results, we propose that generic language
modeling predictions mainly stem from late MLP
computations solely based on the preceding tokens,
with little notion of the subject under consideration.

For the guesswork scenario, we measure a flow
quite similar to what was measured by Geva et al.
(2023) (Figure 4b), with the exception of the early
subject and non-subject position layer states being
more important than late subject position states for
guesswork. The extraction rates in Figure 5b are
much lower compared to those measured for the
CounterFact and exact fact recall samples, however.
A deeper analysis of the extraction rates including
the top k = 3 and top k£ = 10 prediction extrac-
tion rates in Appendix J reveal that the predicted at-
tribute seemingly is extracted, while it is not among
the top-3 predictions in the model. Taken together
with the results in Figure 3b, we hypothesize that
no top-3 prediction extraction takes place, instead
the probability of the final prediction is raised in
the model via late last position MLP layer compu-
tations based on relation and subject information.
While this conclusion potentially is not surprising,
it confirms the quality of the generic modeling sce-
nario and shows how it can be used as a baseline
for non-fact recall behavior.

For the heuristics recall scenario, we observe
distinct patterns for both the information flow in
Figure 4c and extraction rates in Figure 5c. We
reason that as the model has no notion of the given
subject, little to no information can be extracted
from “memory” in the subject position MLP lay-
ers, thus no probability drop from cutting attention
to subject tokens. Therefore, the most critical in-
formation is transferred for early-mid non-relation
position layers (20%). Seemingly, the final predic-
tion is extracted from the MLP layers at the last
token position, leveraging some previous informa-
tion and information about the latest token. A more
fine-grained study that separates the heuristics mak-
ing up the heuristics recall scenarios (prompt bias
and person name bias) can be found in Appendix K.
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5 Conclusion

We identify four prediction scenarios that are funda-
mentally different and of differing reliability. These
are exact fact recall, heuristics recall, guesswork
and generic language modeling. We show that
previous interpretability work for fact completion
situations treat many of these as equivalent by us-
ing accuracy as the sole criterion for differentiating
between different types of inference processes. To
facilitate precise interpretations of LMs, we present
a method for creating PRISM datasets with sam-
ples that represent each of our identified prediction
scenarios. We create PRISM datasets for GPT-2
XL, Llama 2 7B and Llama 2 13B, and use them to
test the sensitivity of two influential interpretability
methods, causal tracing and information flow anal-
ysis, to prediction scenario. We find that different
prediction scenarios yield distinct interpretability
results if studied in isolation. Taken together, our
paper expands on and delineates fact completion
scenarios for which we can interpret LMs. Our
results highlight the importance of studying these
scenarios in isolation and provide nuanced insights
with respect to how LMs process information in
fact completion situations.

Limitations

Similarly to previous interpretability work, our
results are limited to auto-regressive models and
subject-first template queries. Using the methods
described in this paper, PRISM datasets can be con-
structed for other types of LMs, such as encoder-
based models, while we leave this for future work.

Moreover, the heuristics filters used for our
dataset creation can only reveal the possibility of
shallow heuristics being used by the LM. We also
observe some questionable samples that go unde-
tected by the filters, indicating that the filters are
leaky. Furthermore, we find signs of name-based
heuristics for non-person subjects for which we
have no applicable filters. The detection of these
cases would rely on more advanced detection meth-
ods and is left for future work. By complementing
our dataset creation with knowledge estimations
and sampling of synthetic fact tuples, we should
avoid most filter failures, while we cannot com-
pletely rule out the possibility of there being some
problematic samples with PRISM.

Even though we partition the PRISM samples
based on whether the prediction is confident, we
find that our results are sensitive to whether we

investigate predictions with high or low probabil-
ities from each partition. This indicates room for
improvement for our method of detecting confident
predictions, for which we already have noted a lack
of comprehensive studies of model confidence met-
rics. Alternatively, this could be indicating a more
fundamental issue with a qualitative difference in
how models behave in low and high probability
cases.

Ethical considerations

Interpretability methods for fact completion situ-
ations are not directly associated with any ethical
concerns. Neither is the LAMA dataset or synthetic
fact tuples used in this work.
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A Computational resources

Experiments in this work are done on T4, A40 and
A100 NVIDIA GPUs. Models used are GPT-2 XL
(1.5B parameters), Llama 2 7B (7B parameters),
and Llama 2 13B (13B parameters).

B Selection process of LAMA relations

The LAMA relations included in our PRISM
dataset have been selected based on the following
criteria:

1. We only include relations that have multiple
templates for which 1) the object comes last
in order to fit the autoregressive setting and 2)
the subject comes first in order to simplify the
causal reasoning of intervening on the subject;

2. We exclude relations with a lot of overlap be-
tween the subject and object and relations for
which the answers are highly imbalanced to-
ward only a few alternatives.

This corresponds to the relations P19 place of birth,
P20 place of death, P27 country of citizenship,
P101 field of work, P495 country of origin, P740
location of formation and P1376 capital of.

C ParaRel templates

We use the templates as described in Table 2 for
the creation of PRISM queries.

Relation Template

P19 [X] was born in [Y]
[X] is originally from [Y]
[X] was originally from [Y]
[X] originated from [Y]
[X] originates from [Y]

P20 [X] died in [Y]
[X] died at [Y]
[X] passed away in [Y]
[X] passed away at [Y]
[X] expired at [Y]
[X] lost their life at [Y]
[X]’s life ended in [Y]
[X] succumbed at [Y]

P27 [X] is a citizen of [Y]
[X], a citizen of [Y]
[X], who is a citizen of [Y]
[X] holds a citizenship of [Y]

[MED YL A B

[X], who has a citizenship of [Y]

P101

[X] works in the field of [Y]

[X] specializes in [Y]

The expertise of [X] is [Y]

The domain of activity of [X] is [Y]
The domain of work of [X] is [Y]
[X]’s area of work is [Y]

[X]’s domain of work is [Y]

[X]’s domain of activity is [Y]
[X]’s expertise is [Y]

[X] works in the area of [Y]

P495

[X] was created in [Y]

[X], that was created in [Y]
[X], created in [Y]

[X], that originated in [Y]

[X] originated in [Y]

[X] formed in [Y]

[X] was formed in [Y]

[X], that was formed in [Y]
[X] was formulated in [Y]
[X], formulated in [Y]

[X], that was formulated in [Y]
[X] was from [Y]

[X], from [Y]

[X], that was developed in [Y]
[X] was developed in [Y]

[X], developed in [Y]

P740

[X] was founded in [Y]
[X], founded in [Y]

[X] that was founded in [Y]
[X], that was started in [Y]
[X] started in [Y]

[X] was started in [Y]

[X], that was created in [Y]
[X], created in [Y]

[X] was created in [Y]

[X], that originated in [Y]
[X] originated in [Y]

[X] formed in [Y]

[X] was formed in [Y]

[X], that was formed in [Y]

P1376

[X] is the capital of [Y]

[X] is the capital city of [Y]

[X], the capital of [Y]

[X], the capital city of [Y]

[X], that is the capital of [Y]
[X], that is the capital city of [Y]

[X] has a citizenship of [Y]
[X], who holds a citizenship of [Y]

Table 2: ParaRel templates used for all LAMA relations
in our dataset creation.
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D Creation process for PRISM

D.1 Generic language modeling samples

Data is sampled from Wikipedia extraction
20220301 .en from HuggingFace at https: //
huggingface.co/datasets/wikipedia.
This extraction contains around 6.5M pre-cleaned
English Wikipedia articles. We perform the
following steps:

1. Select an entry (Wikipedia page) from the
data. E.g.: the page for “John Doyle (Irish
artist)”

2. Select a single sentence from the page that
begins with any part of the page title (i.e. it
could be the surname, if the subject is a per-
son). E.g.: “Doyle continued to exhibit minia-
tures until 1835, but by then he was experienc-
ing greater success with his political cartoons,
printed using the new reproductive medium of
lithography, beginning in 1827.”

3. We discard the sentence if it is: 1) shorter
than 5 words, 2) with more than 3 capital-
ized words (likely to be section headings).
E.g.: “Early life and family”

4. We cap the sentence at 10 words.E.g.: “Doyle
continued to exhibit miniatures until 1835, but
by [then]”

5. We discard the sentence if its natural continu-
ation begins with a capital or number (indicat-
ing this could be an entity and thus potentially
fact completion). E.g.: “Doyle won a gold
medal in [1805].”

We repeat this until we have 1000 datapoints (for
1000 unique entries in the data). For CT experi-
ments, we trace the next token, freely predicted by
the model.

D.2

To get examples of guesswork, we follow a process
as described below and apply it to all fact tuples
from LAMA? corresponding to the relations P19
place of birth, P20 place of death, P27 country
of citizenship, P101 field of work, P495 country
of origin, P740 location of formation and P1376
capital of and the corresponding ParaRel templates
for these relations:

Guesswork samples

‘https://github.com/facebookresearch/
LAMA

for each relation r (e.g. “P740” location of
formation):

for each LAMA subject s for relation r (e.g.
“Sonar Kollektiv”):

if popularity score for s > 1000 then dis-
card all examples for the subject (likely
to have been memorized)

else create empty list L for the tuple re-
sults

for each ParaRel template ¢ for relation 7 (e.g.
“[X] originated in [Y]):

predictions = top 3 predictions for (s, t)
(e.g. “Sonar Kollektiv originated in”)

for each p in predictions:

if p is trivial (e.g. “the”) then discard
tuple (s, t,p)
else add (s,t,p) to L

end for each p
end for each ¢

if count(s, *,p) in L = 1 then add (s, t,p) to
guesswork sample (that is, if a particular an-
swer p occurs within the top 3 predictions for
only one template it is considered guesswork)

end for each s

end for each r

We measure popularity score proxied by Wikipedia
page views for year 2019'° following (Mallen et al.,
2023). We label a prediction as “likely to be memo-
rized” if it corresponds to an average page view rate
above 1000, as queries with lower popularity scores
are unlikely to have been memorized (Mallen et al.,
2023).

We determine if a prediction is trivial by only ac-
cepting a prediction as non-trivial if it’s the correct
answer for at least one data point in LAMA (for
the same relation).

D.3 Heuristics recall samples

We create heuristics recall samples following a sim-
ilar algorithm as for exact fact recall. Rather than
starting from LAMA subject-object data points we
produce a set of synthetic (non-existent) entities to

10Using the Pageview API.
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populate the ParaRel templates to simulate a popu-
larity score of O (not present in training data) and
thus ensure no memorization.

Sampling procedure

We create the synthetic data by following the steps
for each relation in (P19, P20, P27, P101, P495,
P740 and P1376):

1. Identify subject type distributions for the se-
lected relations. E.g. For relations P19, P20,
P27 and P101, based on the “subject type
constraint” from Wikidata the only allowed
subject type is person.

2. Generate subjects of the re-
quired types using
fantasynamegenerators.com. FE.g.
For person subjects, we generate a mixture
of DND human, Russian, French, German,
Korean, and Japanese names

3. Perform de-duplication and check against
Wikidata that no subject corresponds to a real
entity.!! The Wikidata check is done on a la-
bel level, since the generated names are pure
strings. This limits our ability to check for a
subject’s existence, as we can only find exact
matches.

For the collected synthetic samples we apply the
following algorithm:

for each relation r (e.g. “P19” place of birth):

for each synthetic subject s for relation r (e.g.
“Serok Nuvrome”):

create empty list L for the tuple results
for each ParaRel template ¢ for relation r (e.g.
“[X] was born in [Y]”):

predictions = top 3 predictions for (s, )

(e.g. “Serok Nuvrome was born in”)

for each p in predictions:
if p is trivial (e.g. “the”) then discard
tuple (s, t,p)
if p is based on a single type of heuristics
then add (s,¢,p) to L

else discard tuple (s, t,p)
end for each p

""'The code for automatically querying Wikidata for real
entities is provided as part of our code.

https://www.

end for each ¢

if count(s, %, p) in L > 5 then add all (s, x, p)
tuples to heuristic recall sample (that is, if a
particular answer p occurs within the top 3
predictions for at least 5 templates it is consid-
ered confident)

end for each s
end for each r

We identify if a prediction is trivial by the following
set of rules: If the object type is a named entity (e.g.
place names), we allow any generation beginning
with a capital letter. This covers all relations apart
from P101. For P101, we query Wikidata — we
check if there exist any (s,r,0) Wikidata entry where
the object label matches the generated token.

We measure if a prediction is based on heuristics
by applying 3 filters explained in more detail in
Appendix D.5.

Distribution of generated subject types

To approximate realistic data distributions, we gen-
erate subjects based on the LAMA subject types.

For relations P19, P20, P27, P101, only al-
lowed subject is person, so we generate 1000 fan-
tasy (Dungeons and Dragon human) names and
200 of each German, Korean, Russian, French,
and Japanese synthetic names. For P1376 (cap-
ital of), we generate 100 of each Central Africa,
Central America, Central Asia, East Asia, East Eu-
rope, Middle Eastern, West Europe sounding town
names.

Relation P740 (location of formation) has a mix-
ture of subject types (top 5 categories are shown in
Table 3). Based on this, we generate 500 musical
groups and 500 company names.

type frequency
musical group 505
business 105
public company 52

rock band 29

human 20

other 225

Table 3: Top 5 categories of subjects from LAMA for
relation P740. The category “other” contains 102 differ-
ent entity types with less than 15 instances each.

Relation P495 (country of origin) has a diverse
set of media and entertainment related subjects
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in LAMA (see Table 4). We generate 500 music
groups and 100 of each anime and manga, book,
newspaper, and magazine names.

type frequency
television 175
magazine 23

music 145

film 225
anime, comic, manga 48

not found 65

other 228

Table 4: Top 5 categories of subjects from LAMA for
relation P495. The category “other” contains 103 differ-
ent entity types with less than 13 instances each.

Analysis of the heuristics recall samples in
PRISM

Our heuristics recall analysis identifies samples
that are confident, but for which no bias is detected.
This can be counter-intuitive, as we do not expect
the model to be able to make confident prediction
when it has no bias to guide it. These examples
are excluded from the PRISM samples, but we
perform a deeper analysis of the 1,771 cases from
GPT-2 XL.

6 instances identify the location of formation
(P740) of “Oasis of Prejudice” as “London” (not
identified as prompt bias, since the prompt bias
check produces mostly years, indicating time to
be the more natural interpretation of the queries).
9 instances from P101 (field of work) show the
model potentially ignoring part of the query, by con-
necting “Nina Schopenhauer” with “philosophy”
(potentially conflated with the philosopher Arthur
Schopenhauer) and “Roch Chagnon” with “anthro-
pology” (potentially conflated with the anthropolo-
gist Napoleon Chagnon). 23 examples of relation
P495 show association of 5 fictional entities with
Japan (3 of these contain the word “Berserk” — a
possible conflating pattern with the manga of the
same name). Further 790 examples come from re-
lations P19 (born in) and P27 (citizen of). Some
of these could be examples of a stronger associa-
tion overwriting the expressed tuple (e.g. “Adolphe
Trudeau” associated with “Quebec”), others may
point to weaknesses of our name bias detection
method. Finally, the most represented relation is
P1376 (capital of) with 938 examples. This rela-
tion does not lend itself to our subject name bias

filter, however, we suspect a linguistic correlation
between city names and countries may exist and
those surface level signals can potentially explain
some of the predictions.

This analysis confirms our concerns related to
the coverage of the implemented heuristics recall
filters. Evidently, there are some heuristics that go
undetected by our filters. This is why we supple-
ment the bias identification filters with memoriza-
tion: For heuristic recall we simulate no memo-
rization by using synthetic data and for exact fact
recall we filter on high subject popularity (found
to correlate well with memorization (Mallen et al.,
2023)).

D.4 Exact fact recall samples

To get queries for which the LM performs exact fact
recall, we follow a process as described below and
apply it to all fact tuples from LAMA!? correspond-
ing to the relations P19 place of birth, P20 place
of death, P27 country of citizenship, P101 field of
work, P495 country of origin, P740 location of for-
mation and P1376 capital of and the corresponding
ParaRel templates for these relations:

for each relation r (e.g. “P19” place of birth):

for each LAMA subject s for relation r (e.g.
“Thomas Ong”):

if popularity score for s < 1000 then dis-
card all examples for the subject

else create empty list L for the tuple re-
sults

for each ParaRel template ¢ for relation r (e.g.
“[X] was born in [Y]”):
predictions = top 3 predictions for (s, t)

(e.g. “Thomas Ong was born in”)

for each p in predictions:

if p is based on heuristics then discard
tuple (s,t,p)

if p is incorrect then discard tuple
(s,t,p)

else add (s,t,p) to L

end for each p

end for each ¢

Phttps://github.com/facebookresearch/
LAMA
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if count(s, %, p) in L > 5 then add all (s, *, p)
tuples to exact fact recall sample (that is, if
a particular answer p occurs within the top 3
predictions for at least 5 templates it is consid-
ered confident)

end for each s
end for each r

We measure popularity score proxied by Wikipedia
page views for year 2019'3 following (Mallen et al.,
2023).

We measure if a prediction is based on heuristics
by applying 3 filters explained in more detail in
Appendix D.5.

We categorize the predictions into “correct” or
“incorrect” using the LAMA gold labels. For Llama
2 models we categorize a prediction as “correct” if
it has more than 3 characters and fully matches the
start of the gold label. This is necessary since the
tokenizers for these model are more prone to split
the gold labels into small tokens.

D.5 Detection filters for heuristics

Our detection of heuristics is based on 3 filters.

Lexical overlap Dependence on this heuristic
is considered plausible if there is a string match
between the prediction and the subject. E.g. “San
Salcos, the capital of [Sal]”

Name bias We based this on model predictions
for prompts expressing only a part of the requested
fact. We query with the following prompts: “[X] is
a common name in the following city:” and “[X] is
a common name in the following country:”. Where
X is replaced with the subject name to check for
bias. If any of the top 10 token predictions for these
queries matches the model prediction for the full
fact query, we mark that (query, prediction) pair as
corresponding to person name bias. We can detect
person name bias for relations P19, P20, P27, used
in PRISM and additionally for P103 and P1412,
present in CounterFact.

Prompt bias We use the original prompt tem-
plates as defined by ParaRel and replace the sub-
ject placeholder with generic substitutions. We use
the substitutions described in Table 5 for each re-
lation. We also remedy basic capitalization and
grammar errors that might surface from this auto-
mated prompt creation. An example of a prompt

3Using the Pageview APL.

for detecting prompt bias for “Tokyo is the capital
city of [Y]” is “It is the capital city of [Y]”. If the
top prediction for the former query is found among
the top 10 token predictions for the latter query,
the former query and corresponding prediction is
marked as based on prompt bias.

Relation  Subject substitutions
P19 [He, She]

P20 [He, She]

P27 [He, She]

P101 [He, She]

P495 [1t]

P740 [It, The organisation]
P1376 [It, The city]

Table 5: Subject substitutions used for constructing
prompts to detect prompt bias.

E Examples from PRISM

Here, we include a few examples to illustrate the
content of PRISM for different prediction scenar-
ios. See Tables 6 to 10.
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Scenario Prompt Prediction Gold label Conf Pop Bias
generic LM Nara also enjoyed success in the singles - - -
generic LM Benjamin later joined a number of  other clubs - - -
guesswork  Sonar Kollektiv originated in Russia Berlin 1 215 -
guesswork  Joseph Clay was originally from Ohio Philadelphia 1 273 -
heuristics Serok Nuvrome, a citizen of Ukraine - 6 0 name
heuristics Balo Windhair has a citizenship of Canada - 5 0 prompt
exact fact Thomas Ong is a citizen of Singapore  Singapore 7 1418 none
exact fact Shibuya-kei, that was created in Japan Japan 8 5933 none

Table 6: Samples from PRISM for GPT-2 XL designed to trigger different prediction scenarios. Conf(idence)
measures how often the prediction was made, pop(ularity) measures page view rate and bias indicates detected bias

when applicable.

Model Query Prediction Subject popularity  Gold label

GPT-2 XLL  Thomas Ong is a citizen of Singapore 1418 Singapore
Shibuya-kei, that was created in  Japan 5933 Japan
Palermo is the capital of Sicily 34273 Sicily

Llama 2 7B Disco Biscuits was created in Philadelphia 3719 Philadelphia
Don Broco, that was started in Bed 6984 Bedford
Nikephoros III Botaneiates Constantin 1859 Constantinople

passed away in

Table 7: (query, prediction) exact fact recall samples from PRISM for GPT-2 XL and Llama 2 7B.

Prediction Rank Gold label

Model Query

GPT-2 XL Sonar Kollektiv originated in Russia
Haydn Bendall is originally from England
Joseph Clay was originally from Ohio

Llama2 7B Jean Trembley originated from France
Dansez pentru tine, that originated in  France
Milton Wright is originally from Chicago

[NST \S I NS \S I (9]

Berlin
Essex
Philadelphia
Geneva
Romania
Georgia

Table 8: (query, prediction) random guesswork samples from PRISM for GPT-2 XL and Llama 2 7B.

Model Query Prediction Bias

GPT-2 XL  Hirashima Hideyoshi, who has a citizenship of Japan name
Balo Windhair has a citizenship of Canada prompt
Olre Hellspirit was originally from Hell lexical

Llama2 7B Ha Songmin, who has a citizenship of South (Korea) name
Wanda Hagel holds a citizenship of Canada prompt
Limanaga, the capital city of Lim lexical

Table 9: (query, prediction) heuristics recall samples from PRISM for GPT-2 XL and Llama 2 7B.
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Model Query Prediction  Gold label

GPT-2 XL  Dexmedetomidine is notable for its ability to provide sedation and without
Solomon also defended the network’s choice of games to air broadcast
Walker added an immense amount of material to the book collections

Llama2 7B Dexmedetomidine is notable for its ability to provide sedation and without
Solomon also defended the network’s choice of games to air broadcast
Walker added an immense amount of material to the original collections

Table 10: (query, prediction) generic language samples from PRISM for GPT-2 XL and Llama 2 7B.
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F Inspection of CounterFact

In this section we assess the applicability of using
the 1,209 known CounterFact samples for interpret-
ing LMs in fact completion situations. First, we
investigate what prediction scenarios are found for
GPT-2 XL for the collection of the (query, predic-
tion) samples (Appendix F.1). We find samples
in the dataset likely to correspond to heuristics re-
call (510 samples) as opposed to exact fact recall
(478 samples). Second, we inspect the total ef-
fects measured with the causal tracing approach for
the dataset to find quality issues (Appendix F.2).
Last, we observe a set of problematic samples with
negated queries in CounterFact (Appendix F.3).
Taken together, our results show that the dataset
struggles to support precise and accurate interpre-
tations of LMs. Our proposed PRISM dataset does
not suffer from the aforementioned limitations.

F.1 Prediction scenarios

We inspect the CounterFact dataset for three of four
prediction scenarios. The baseline prediction sce-
nario corresponding to generic language modeling
is skipped for the analysis as the dataset should
not trigger this scenario by virtue of its creation
process.

Random guesswork We cannot detect samples
in CounterFact corresponding to random guess-
work as our implementation of the confidence cri-
terion is incompatible with the dataset. The dataset
only provides one prompt per fact, while we re-
quire multiple prompt variations per fact to esti-
mate confidence. This does not mean that there
are no samples in the CounterFact dataset corre-
sponding to random guesswork, it only means that
we are unable to detect them. As a result, some
of the samples below identified to correspond to
heuristics recall or exact fact recall may actually
correspond to random guesswork, as we are unable
to separate these samples beforehand.

Heuristics recall We check for predictions based
on shallow heuristics for the known CounterFact
samples produced using GPT-2 XL.. We find a total
of 510 samples that may correspond to heuristics
recall, of which 335 samples correspond to prompt
bias, 155 to name bias and 20 to both name and
prompt bias.'* No lexical overlap between sam-

"There are a total of 205 samples corresponding to person
names for which we can check for name bias, meaning that
we detect name bias in 92.5% of all cases.

ple subject and object is found. Some examples
marked for bias can be found in Table 11.

Using fact popularity, we also evaluate the
known CounterFact samples through the lens of
LM knowledge estimation. Table 12 lists the pop-
ularity scores distribution for the dataset. We find
approximately 365 known CounterFact samples
with popularity scores below 1000. These are un-
likely to have been memorized by the model and
are therefore unlikely to correspond to exact fact
recall. Moreover, we find that around 50% of these
samples (172 samples) have been detected by our
heuristics filters, indicating that the remaining sam-
ples may also contain surface level signals not de-
tected by our filters. This supports our claim that
popularity metadata can serve as a complement for
separating exact fact recall samples from heuristics
recall samples.

Exact fact recall A total of 816 samples in Coun-
terFact are found to have popularity scores above
1000, and are thus more likely to have been memo-
rized by the model. We detect the potential usage of
heuristics for 338 of these samples, meaning that
approximately 478 samples in CounterFact may
correspond to exact fact recall.

F.2 Total effects

Apart from the analysis described above, we also
scrutinize the known CounterFact samples with re-
spect to the total effect of perturbing the subject.
We measure the total effect on the probability of
the output prediction. This provides an alternative
way of checking for signs of lack of exact fact re-
call. The method was introduced by Meng et al.
(2022) and used to find model states important for
the model prediction. By adding noise to the word
embeddings corresponding to the subject of the
query, the subject is perturbed. The idea is that the
perturbation of the query makes the model inca-
pable of performing the necessary recall of factual
associations that resulted in the original prediction,
thus lowering the model probability for the original
prediction. We hypothesize that samples for which
the added perturbation does not sufficiently lower
the corresponding prediction probability are less
likely to correspond to exact fact recall.

Method The total effect is measured as TE(0) =
Piean(0) — Proised (0), where Peean (0) denotes the
probability of emitting token o for a clean run and
Phoised(0) denotes the probability of emitting to-
ken o when the subject has been perturbed. For all
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Query

Prediction Bias type

MacApp, a product created by
Giuseppe Angeli, who has a citizenship of

The original language of La Fontaine’s Fables is a mixture of French

Apple Prompt
Italy Person name
Prompt

Table 11: Examples of queries and predictions from the known CounterFact dataset that potentially correspond to
bias. The predictions and analysis has been performed for GPT-2 XL.

Popularity score ~ # of samples

(0,100] 61

(100, 1000] 304
(1000, 10000] 379
(10000, 1176235] 437

Table 12: The popularity scores for the known Counter-
Fact samples. The maximum popularity score measured
was 1,176,235.

our investigations, o is given by the prediction cor-
responding to the query stored in the dataset. We
note that negative total effects imply that the per-
turbation of the subject increased the probability of
the original prediction and that low positive effects
potentially indicate that perturbing the subject had
a small effect on the model prediction.

Similarly to Meng et al. (2022) we perturb the
subject embeddings with noise € ~ N(0, ) where
v is set to be 3 times larger than the empirical stan-
dard deviation of all embeddings corresponding to
the subjects of the dataset. We measure total effects
for the known CounterFact samples as the average
total effect of 10 runs with perturbed subjects.

TE results For the 1209 known CounterFact sam-
ples we find 22 samples with negative total effects,
i.e. perturbing the subject increased the prediction
probability, of which 18 potentially correspond to
prompt bias and 2 to name bias. Inspection of the
samples marked for prompt bias reveal prompt pat-
terns such as “In [X], the language spoken is a
mixture of” where the corresponding prediction is
“English” or “German”. Another pattern we detect
is “[X] is affiliated with the religion of”” for which
the prediction always is “Islam”. We hypothesize
that some prompts reveal the correct prediction
even when the subject is occluded, resulting in neg-
ative TE values.

Deeper study of TE results A deeper study of
the TE values reveal an additional 37 samples for
which the perturbation of the query subject de-

creased the original probability by less than 40%.
For some of these samples we identify queries
that potentially reveal the correct prediction even
when the subject is perturbed. Two identified sam-
ples are “[X] professionally plays the sport of ice
[hockey]” or “[X]’s expertise is in the field of quan-
tum [physics]”. Prompt bias was detected for all
of these queries. We measure a spearman correla-
tion of -0.41 between normalized TE (Equation (1))
and the binary prompt bias metric over all known
CounterFact samples. It is clear that the effect of
perturbing the subject is smaller when the predic-
tion is likely based on prompt bias, versus when it
is not.

Pclean(o) — PnOised(O)
Pclean(o)

TEnorm(O) = (1)

F.3 Negated queries

We identify a total of 8 problematic samples in the
dataset that contain the word “not” in the query.
Two examples are “The language used by Louis
Bonaparte is not the language of the [French]” or
“The expertise of medical association is not in the
field of [medicine]”. These samples are problem-
atic as they are marked as correct since they contain
the correct label, while they express the opposite of
the fact represented by the data sample. This prob-
lem is a consequence of the sampling technique
used by Meng et al. (2022) in letting the LM gen-
erate a fluent continuation to a given query before
making the prediction for the missing object. For
the majority of the known CounterFact samples
this leads to more fluent queries for which the LM
might work better, but for some samples it results
in reversed or revealing prompts.

G Normalization effects on causal tracing
results

Since these results are dependent on the absolute
values of the probability of the traced (predicted) to-
ken, we hypothesize that the result could be driven
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by a few high-probability samples and not repre-
sentative of the low-probability ! strata of the data.

To test this, we take inspiration from work by
Hase et al. (2023) and compare the IE results to
their normalized counterpart. We define the nor-
malized indirect effect as

B hﬁ”,patched(o) ~ Phoisca(0)
|Pclean (0) - Pnoised(0)|

NIE, i (0) = )

where Pejean (0) — Proised (0) is the total effect (TE)
defined as the difference between the clean and
the noised runs. The normalized IE measures the
percentage of recoverable probability that was re-
covered by patching state hgl).

For some samples, predominantly low-
probability predictions, the division by the TE
may result in unnatural NIE, ) (o) values above

1 or below -1. The state patcfling should not be
able to restore more than the clean run probability
and we therefore cap the NIE, () (0) to a range of

[—1, 1]. With this approach, each sample is valued
on the same scale. Plots for homogeneous datasets
should therefore yield normalized CT results that
are similar to their non-normalized counterparts.

Are aggregated CT results representative of
each studied sample? The non-normalized re-
sults for combined samples seen in Figure 8 are
dominated by the exact fact recall samples. The
exact fact recall samples clearly lead to the deci-
sive role conclusion and the same holds for the
non-normalized results, even though subsets of the
included data (heuristics recall and guesswork sam-
ples) do not lead to the same conclusion with as
high certainty.

For the normalized results we find that equal
weights for all evaluated samples yield a slightly
different pattern compared to the non-normalized
results, with a weaker peak for the last subject
token. We conclude that aggregations of CT re-
sults across multiple prediction scenarios are not
representative of each studied sample. Also, com-
parisons between non-normalized and normalized
results may reveal nonhomogeneous datasets with
respect to prediction scenario.

SWith probability, we here refer to the probability corre-
sponding to the clean run prediction.

H Additional results from the CT
sensitivity analysis

This section contains additional results from the
causal tracing analysis of PRISM.

H.1 Llama 2 7B and 13B results

The results in Figures 6 and 7 correspond to the
results in Figure 3 but here for Llama 2 7B and
13B instead of GPT-2 XL. We find that the Llama
results essentially support the same conclusions as
the results for GPT-2 XL.

H.2 Non-normalized results

To allow for comparisons with previous work that
employed the CT method without normalization
we present the non-normalized CT results for the
combined samples in Figure 8.

H.3 Low-probability split

The results in Figures 3, 6 and 7 correspond to a
sample of top-ranked prediction probabilities. The
results in Figures 9 and 10 correspond to a sam-
ple of bottom-ranked prediction probabilities. We
observe qualitative differences between the two
figure pairs, where bottom-ranked probability set
corresponds to larger effects for the last token state.

H.4 Deeper study of heuristics recall

We analyze the CT results of each of the main
heuristics recall categories, prompt bias and person
name bias, in separation for GPT-2 XL and Llama 2
7B. The corresponding results can be found in Fig-
ure 11. These results suggest a higher importance
of the last token state, compared to the last subject
token state, for the prompt bias subset compared to
the person name bias subset. Potentially, it makes
sense that prompt biased predictions that should be
less sensitive to subject information attribute less
importance to states corresponding to the subject.

I CT-based classifier for prediction
scenario

Our classifier is trained on 750 examples of each
scenario (3000 data points in total) and perfor-
mance is measured on a held out set of 1000 data
points (150 of each scenario). We train a one-layer
50 -neuron neural network, with Adam optimizer,
0.0001 L2 regularization, 0.001 learning rate and a
stopping tolerance of 1e-4. All models are trained
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Figure 6: CT results for PRISM Llama 2 7B data. 1000 samples for each scenario in isolation. As well as 1000
combined samples (330 exact fact recall, 340 heuristics recall, 330 guesswork). Shaded regions indicate 95%

confidence intervals.

until converging. Table 13 shows overall perfor-
mance and Tables 14, 15 and 16 show the respective
confusion matrices.

Data Accuracy
PRISM GPT2-XL 0.73
PRISM Llama2 7B 0.78
PRISM Llama 3 13B  0.74

Table 13: Performance of a neural network classifier for
predicting scenarios based on CT results.

0 1 2 3

0 180 52 15 3

1 28 184 29 9

2 15 51 138 46
3 2 11 10 227

Table 14: Confusion matrix for performance on PRISM
GPT2-XL. Rows indicate true label, columns — predic-
tions. 0 = exact fact recall; 1 = heuristics; 2 = guesswork;
3 = generic LM

0 1 2 3

0 218 17 12 3

1 23 165 30 32
2 25 29 161 35
3 1 8 7 234

Table 15: Confusion matrix for performance on PRISM
Llama 2 7B. Rows indicate true label, columns — predic-
tions. 0 = exact fact recall; 1 = heuristics; 2 = guesswork;
3 = generic LM

J Additional results from the attribute
extraction analysis for guesswork
samples

Additional attribute extraction rate results for guess-
work samples can be found in Figure 12.

K Additional information flow results for
heuristics recall samples

Additional information flow and attribute extrac-
tion results for prompt and person name bias sam-
ples that make out the heuristics recall samples can
be found in Figures 13 and 14.

The results reveal similar extraction rate and
information flow results for both heuristic types,
while attention knockout to subject position states
clearly increases the prediction probability on
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Figure 7: CT results for PRISM Llama 2 13B data. 1000 samples for each scenario in isolation. As well as 1000
combined samples (330 exact fact recall, 340 heuristics recall, 330 guesswork). Shaded regions indicate 95%
confidence intervals.

0 1 2 3

202 12 31 5
15 167 35 33
49 26 158 17
5 19 13 213

W N = O

Table 16: Confusion matrix for performance on PRISM
Llama 2 13B. Rows indicate true label, columns — pre-
dictions. 0 = exact fact recall; 1 = heuristics; 2 = guess-
work; 3 = generic LM

prompt bias samples and slightly decreases the
probability on person name bias samples. These re-
sults make sense, as prompt bias predictions should
be independent from information about the subject,
while a deeper analysis is necessary to better ex-
plain the low amplitudes measured in Figures 4c,
13 and 14.
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Figure 8: Non-normalized CT results for the combined samples from PRISM for each of our studied models.
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(c) 400 exact recall samples. (d) 400 heuristics recall samples. (e) 200 guesswork samples.
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Figure 9: CT results on 1000 low-probability samples from PRISM of which 330 samples correspond to exact fact
recall, 340 to heuristics recall and 330 to guesswork. These are the results for GPT-2 XL.
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Figure 10: CT results on 1000 low-probability samples from PRISM of which 330 samples correspond to exact fact
recall, 340 to heuristics recall and 330 to guesswork. These are the results for Llama 2 7B.
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(c) Person name bias for GPT-2 XL. (d) Person name bias for Llama 2 7B.

Figure 11: Normalized CT results for sets of 1000 samples designed to exemplify each of the two main categories
of the heuristics recall scenario.
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Figure 12: Attribute extraction rates across layers measured for PRISM GPT-2 XL guesswork samples. MHSA
and MLP indicate attribution extraction rates (top k = 3 and top k£ = 10) for multi-head self-attention states and
multilayer perceptron states, respectively. Shaded regions indicate 95% confidence intervals.
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% change in p

Figure 13: Relative change in the prediction probability when intervening on attention edges to the last position
for window sizes of 9 layers in GPT-2 XL on prompt and person name bias samples. Shaded regions indicate 95%
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Figure 14: Attribute extraction rates across layers measured for PRISM GPT-2 XL prompt and person name bias
samples. MHSA and MLP indicate attribution extraction rates (top k = 1) for multi-head self-attention states and
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multilayer perceptron states, respectively. Shaded regions indicate 95% confidence intervals.
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