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Abstract—Fast and accurate detection of various phys-
ical layer threats that target optical networks is key to
secure and reliable global communications. Conventional
monitoring methods often fail to detect subtle anoma-
lies, which requires advanced sensing techniques. Machine
Learning (ML) analysis of the State of Polarization (SOP)
of unmodulated signals was shown to successfully detect
such disturbances. However, real-world networks typically
operate with high-speed modulated signals, which may
alter SOP behavior and challenge the applicability of
ML techniques developed for unmodulated signals. This
paper investigates the implications of signal modulation
supporting high-data rates on the interpretability of SOP
signatures. We perform the first experimental compari-
son of anomaly detection approaches based on SOP for
Dual-Polarization 16-Quadrature Amplitude Modulation
(DP-16QAM) modulated and unmodulated optical signals
subjected to identical physical perturbations caused by
fiber tapping and vibrations. We analyze four represen-
tative events under both signal modalities and assess the
impact of modulation on SOP dynamics using a 63.4
km fiber link in a real-world metro network. We design
four datasets that isolate, merge, and jointly classify the
different signal modalities, and compare the performance
of ten best-performing supervised ML techniques in each
case. Our findings indicate that modulated signals tend
to exhibit smoother SOP trajectories, likely due to the
temporal averaging effects introduced by high symbol
rates, wherein rapid symbol transitions suppress high-
frequency polarization noise. Importantly, this smoothening
does not obscure the slower, event-induced polarization
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drifts observed during physical disturbances, allowing ML
models to reliably differentiate between different physical
events (e.g., bending, vibrations) and signal modalities
(modulated vs. unmodulated), achieving accuracy values
between 97.12% and 98.47%.

Index Terms—Stokes parameters, State of Polarization
(SOP), Modulation, Physical layer security, Machine Learn-
ing (ML), Vibrations, Fiber bending, Fiber sensing.

I. INTRODUCTION

OPTICAL fiber networks are the cornerstone of
global connectivity, enabling high-capacity and

low-latency communication for global internet services,
cloud computing, financial systems, and critical infras-
tructure. As these networks scale in speed and com-
plexity, their role in supporting critical services grows
accordingly. Vulnerability of optical fibers to various
threats, including mechanical stress, accidental damage,
and deliberate intrusions such as fiber tapping [1], poses
a risk of security violations and service disruptions.
Therefore, ensuring the integrity and security of optical
transmission networks is of paramount importance, par-
ticularly as cyber-physical security becomes a growing
concern in next-generation network deployments.

One of the key components of optical network security
management is the timely detection of physical-layer
anomalies. Techniques such as Optical Time Domain
Reflectometry (OTDR) are commonly used to identify
severe faults, like fiber cuts or sharp bends, by analyzing
Rayleigh backscattering [2]–[4]. They offer relatively
precise fault localization and are well established in
field deployments. However, their practical use is often
constrained by deployment cost and limited scalabil-
ity [5], and they typically lack the sensitivity needed to
detect more subtle disturbances, such as low vibrations
or small mechanical deformations. Other approaches,
including Distributed Fiber Optic Sensing (DFOS) for
intrusion monitoring [6], offer higher sensitivity but
require specialized hardware and complex processing,
which significantly increases the cost and complicates
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their adoption. State of Polarization (SOP) analysis has
emerged as a powerful tool for monitoring and secur-
ing optical fiber networks. The statistical and dynamic
properties of the SOP carry valuable information about
environmental disturbances and physical-layer threats
such as fiber tapping or mechanical perturbations. Un-
like traditional methods that rely on backscatter or
reflection signatures, SOP-based techniques exploit the
intrinsic polarization sensitivity of optical signals [7].
This enables the detection of subtle anomalies with
minimal modifications of the existing infrastructure. As
a result, SOP-based monitoring provides a cost-effective
and streamlined alternative, avoiding the hardware com-
plexity and deployment overhead associated with DFOS
and OTDR, albeit without the ability of event local-
ization along a fiber. SOP-based sensing in coherent
transmission systems can be implemented using either
an external polarization analyzer, as adopted in our
previous work [8], or by leveraging the internal Digital
Signal Processing (DSP) of a coherent receiver. While
external analyzers directly measure polarization fluctu-
ations without accessing signal data, coherent receivers
inherently estimate and compensate fiber birefringence
as part of their DSP pipeline. This internal tracking can
be exploited for polarization sensing, as demonstrated in
[9], where the authors compare DSP-based phase and
polarization sensing in a deployed metro network. No-
tably, this approach naturally resolves the low-Degree of
Polarization (DoP) limitation encountered by standalone
analyzers when observing rapidly modulated signals.

Accurate monitoring and detection of polarization
variations induced by external events is crucial for
identifying fiber disturbances and preserving network
reliability. Traditional SOP-based monitoring approaches
that depend on static thresholds or heuristic rules, such
as the one in [10] often fall short when facing com-
plex or evolving physical-layer threats [11]. To address
these limitations, recent research has turned increasingly
to data-driven methodologies. By leveraging Machine
Learning (ML), such approaches enable automated, scal-
able, and adaptive analysis of polarization behavior, em-
powering the system to recognize intricate disturbance
patterns directly from SOP data.

Despite the proliferation of ML-based techniques for
accurate SOP monitoring, most existing studies use
simplified experimental setups with limited conditions,
i.e., the absence of signal modulation. This exclu-
sive reliance on unmodulated signals raises an impor-
tant question about the applicability of these methods
in practical, real-world systems. Modern optical net-
works predominantly operate with modulated signals,
particularly in coherent systems using modulation for-
mats like Quadrature Phase-Shift Keying (QPSK) or
Quadrature Amplitude Modulation (QAM). It should

be noted that the modulated signals considered in
this paper are coherent polarization-multiplexed 16-
ary Dual-Polarization 16-Quadrature Amplitude Mod-
ulation (DP-16QAM) channels generated and detected
using coherent transceivers. This is fundamentally dif-
ferent from Intensity-Modulated Direct-Detection (IM-
DD) systems, which typically employ Non-Return-to-
Zero (NRZ) modulation and exhibit nearly fully polar-
ized optical carriers (DoP ≈100% at 1 ms integration),
resulting in polarization behavior opposite to that of DP-
16QAM signals. Furthermore, existing studies lack a
direct experimental comparison between SOP signatures
of modulated and unmodulated signals under similar
physical and environmental conditions. Without such
comparison, it remains unclear whether the presence
of modulation fundamentally alters the SOP variations
in a way that impacts the effectiveness of monitoring
techniques like ML-based SOP fiber sensing.

Unmodulated signals maintain a nearly fixed SOP
apart from slow environmental drifts [12], which offer
the advantage of relatively clean polarization trajectories,
making them particularly amenable to DSP and ML-
based classification for anomaly detection. Unlike un-
modulated signals, a modulated data signal’s SOP can
fluctuate on sub-nanosecond timescales due to the rapid
symbol transitions at multi-Gbps rates. In effect, SOP is
no longer represented by a single, stable point on the
Poincaré sphere, but hops among a continuum of states
dictated by the bit sequence [13].

The fast polarization fluctuations in modulated signals
present new challenges for sensing and monitoring. They
can act as a high-frequency noise floor that masks the
more gradual SOP rotations caused by physical distur-
bances. Fiber bends, vibrations, or taps typically induce
SOP changes on the Hz-kHz scale, whereas symbol-rate
polarization changes occur at the GHz scale. When a
modulated channel is observed at a slower timescale than
its symbol rate, as is often the case with photodiode-
based or low-cost polarization analyzers, the rapidly
fluctuating SOP appears scrambled. The analyzer effec-
tively averages over many symbols, and this temporal
averaging reduces the measured DoP, resembling the
effect of a polarization scrambler [14]. This means that,
paradoxically, a high bit rate signal might exhibit a
smoother SOP trajectory when viewed in aggregate.

Namely, a slow polarimeter does not provide in-
stantaneous SOP values, but outputs a time-averaged
Stokes estimate S̄(t) = 1

T

∫ t+T/2

t−T/2
S(τ) dτ , where T

is the effective acquisition time. For high-baud-rate
polarization-multiplexed signals (e.g., ∼30 Gbaud DP-
16QAM), the SOP varies at (or above) the symbol rate,
i.e., much faster than 1/T . Therefore, the polarization-
dependent components largely cancel each other within
the averaging window and the reported DoP = |S̄(t)|/S̄0
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can approach zero. However, DoP ≈ 0 only indicates a
small mean Stokes vector magnitude on the polarimeter
time scale, without implying zero values of S̄1, S̄2, S̄3.
Instead, the polarimeter outputs noisy, time-averaged
Stokes samples with non-zero variance. When an ex-
ternal disturbance such as bending changes the fiber
birefringence, it introduces slow polarization rotations
that modulate the statistics of these time-averaged Stokes
estimates, yielding observable low-frequency excursions
even in the presence of strong modulation-induced fluc-
tuations.

Fig. 1. Temporal evolution of normalized Stokes parameters (S1, S2,
S3) under automated bending for three optical excitations: ASE, CW,
and DP-16QAM. The time axis corresponds to a controlled disturbance
sequence: fiber relaxed from 0–60 s, bent from 60–120 s, relaxed
from 120–180 s, and bent again from 180–200 s. The ASE signal
exhibits randomized Stokes fluctuations with no clear correlation to
the applied disturbance. The CW laser shows smooth and well-defined
Stokes trajectories that track the bending-induced polarization evolu-
tion. The DP-16QAM traces are substantially noisier, yet their low-
frequency evolution remains synchronized with the bending-induced
drift observed for the CW reference.

This effect is shown in Fig. 1, where the horizontal
axis represents the measurement time during a controlled
automated bending sequence: the fiber is relaxed from
0–60 s, bent from 60–120 s, relaxed again from 120–
180 s, and bent once more from 180–200 s. Com-
pared to the smooth CW laser traces, the DP-16QAM
Stokes components are substantially noisier (consistent
with DoP ≈ 0), yet their low-frequency evolution
remains synchronized with the bending-induced drift ob-
served for the CW reference, indicating that disturbance-
related polarization dynamics remain observable for
polarization-multiplexed coherent signals. The Amplified
Spontaneous Emission (ASE) signal shown in the figure
provides a contrasting baseline: its Stokes components
exhibit randomized fluctuations with no clear correspon-
dence to the applied disturbance, consistent with true
depolarization. The disparity between ASE and DP-
16QAM indicates that the observed disturbance-locked
drift is not a generic consequence of stochastic Stokes
fluctuations, but is instead linked to the presence of
a polarization-multiplexed coherent optical field with

a well-defined phase relationship between orthogonal
polarization components, which is absent in the ASE
case.

Any anomaly detection scheme must ensure that the
residual fast SOP variations in modulated signals do not
trigger false alarms or confound true event signatures.
To address the gap in the literature, we perform a com-
prehensive experimental comparison between modulated
and unmodulated optical signals under similar physical
and environmental conditions. We systematically eval-
uate the impact of modulation on SOP dynamics and
assess its implications for ML-based anomaly detection.
The main contributions include detailed statistical anal-
yses comparing the behavior of polarization signatures
in modulated and unmodulated signals, offering quanti-
tative evidence of how modulation affects polarization
dynamics. We collect a real-world experimental dataset
from a 63.4 km fiber link in the HEAnet [15] metro net-
work, capturing eight representative polarization event
signatures: relaxed fiber, soft bending, eavesdropping
attempt, and 80 Hz vibration, each recorded for mod-
ulated and unmodulated signal conditions. These events
were selected to represent a diverse mix of normal (e.g.,
relaxed, soft bending) and potentially harmful or ma-
licious (e.g., eavesdropping, vibration) fiber conditions
commonly encountered in operational environments and
security-sensitive scenarios. We then evaluate the perfor-
mance of a range of supervised ML classifiers for these
events and for different signal modalities. We analyze
four scenarios, each corresponding to a distinct dataset
(i.e., separated, mixed, and joint modality classification),
assessing the impact of modulation on the ability of
ML models to learn and separate polarization signatures
corresponding to modulated and unmodulated signals.

The remainder of the paper is organized as follows.
Section II reviews prior work on SOP analysis for
modulated and unmodulated signals. Section III presents
the experimental testbed and data collection process.
Section IV details the events used for SOP signature
analysis and a statistical comparison of modulated vs.
unmodulated signals. Section V introduces the dataset
configurations and preprocessing. Section VI reports ex-
perimental results, and Section VII concludes the paper.

II. RELATED WORK

A wide spectrum of ML approaches has been de-
veloped to enhance the interpretability and adaptability
of SOP-based monitoring. Supervised Learning (SL)
techniques are often applied to detect and classify
known physical disturbances and malicious activities
such as fiber tapping and mechanical intrusions with
high accuracy [8], [16]–[20]. Unsupervised Learning
(USL) methods, such as clustering and outlier detection,
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allow the identification of previously unseen or emerg-
ing anomalies in SOP trajectories without requiring
labeled data [21]–[24]. Semi-supervised Learning (SSL)
approaches strike a balance by leveraging a small set
of labeled normal data along with abundant unlabeled
samples, including unknown disturbances, to improve
generalization under sparse annotation scenarios [24],
[25]. The majority of ML-driven SOP analyses rely on
CW light sources, particularly unmodulated Continuous
Wave Distributed Feedback (CW-DFB) lasers to simplify
the polarization behavior and avoid the complexities
introduced by high-speed modulation [7], [8], [18],
[19], [26], [27]. The review of polarization-based fiber
sensing methods and anomaly detection algorithms [7]
demonstrated that polarization measurements from a
CW source, obtained via a polarimeter, reflect only the
disturbance-induced SOP changes, whereas modulated
signals introduce additional SOP estimation noise, con-
firming that unmodulated light yields clean polarization
signatures that can be readily interpreted for anomaly
detection. Our prior experimental studies [8], [19], [28]
demonstrated successful use of supervised ML tech-
niques to detect and classify disturbances like harmful
vibrations and eavesdropping in controlled setups with
unmodulated signals, with the impact of noise in real-
world environments considered in [18], [26].

Modulation-induced polarization effects have received
comparatively little attention, primarily approached from
the communications perspective. Recent work by Karls-
son et al. demonstrated SOP-based event detection using
coherent transceivers in live networks. A real-time mon-
itoring system detected polarization precursors before
a cable break [29]. Follow-up analysis showed that
mechanical disturbances produce distinct SOP patterns
separable from noise [30]. In coherent communica-
tions, polarization tracking algorithms follow the time-
varying SOP of a high-speed modulated signal so that
the receiver can correctly demultiplex the polarization-
multiplexed channels. For instance, a stochastic polar-
ization drift model that treats the SOP evolution as
a random walk on the Poincaré sphere can be found
in [31]. Empirical studies have shown that environmental
factors can indeed induce rapid SOP changes in deployed
systems. SOP fluctuations on ms time scale in aerial
fibers under varying climatic conditions were reported
in [32], while cyclic SOP oscillations in overhead fiber
cables caused by wind gusts and power-line electro-
magnetic interference were observed in [33]. Lightning-
induced abrupt, fast polarization rotations, were shown
to necessitate sub-ms reaction times in coherent re-
ceivers [34]. Real-time polarization tracking in modern
coherent transceivers’ DSP, e.g., the adaptive filters that
continuously correct for polarization rotation and mode
dispersion, allowing the receiver to lock on the signal’s

SOP [35], [36], treat polarization fluctuations purely as
impairments to be corrected, rather than indicators of
physical network disturbances. The effect of modulation
on polarization sensing has not been explicitly addressed,
and existing research lacks a systematic investigation of
how modulated signals compare to unmodulated lights
in terms of polarization disturbance detectability. In this
work, our objective is to identify statistically meaningful
patterns in SOP dynamics that correlate with external
disturbances, which is key to understanding the role of
ML-based polarization monitoring as a sensing tool.

III. EXPERIMENTAL SETUP

A. Network topology and setup

To evaluate the effects of optical signal modula-
tion on the behavior of polarization signatures under
a realistic noisy environment, we use the experimental
setup in Fig. 2, illustrating the 63.4 km test channel
route of the HEAnet Dublin metro ring, connected to
the OpenIreland [37] testbed infrastructure. The route
traverses six Reconfigurable Optical Add-Drop Multi-
plexers (ROADMs) in sequence: TCD-1 (Lloyd Institute,
Trinity College Dublin (TCD)), UCD-2 and UCD-1
(two nodes located at University College Dublin (UCD),
Belfield Campus), CWT-2 (Citywest), PW-2 (Park West),
and TCD-2 (Pearse Street, TCD), with the corresponding
fiber segment lengths indicated in Fig. 2. The optical
signal is added at TCD-1 and dropped at TCD-2 before
returning to the OpenIreland Lab via a cross-campus
fiber patch, where controlled disturbances are applied.
The HEAnet ring is lightly loaded, and the experiment
runs over a 400 GHz Optical Spectrum as a Service
(OSaaS) window in the C-band (192.8–193.2 THz). The
SOP sensing is carried out over two wavelength channels
injected from a Lumentum ROADM in OpenIreland into
the HEAnet entry ROADM. The first channel (λm, cen-
tered at 193 THz) is a coherent DP-16QAM 200 Gbps
channel generated by an Adtran Teraflex transceiver,
while the other (λu, centered at 193.1 THz) is an un-
modulated signal generated by an External Cavity Laser
(ECL) source. The two channels are within the same
400 GHz OSaaS window, allowing for a fair comparison
focusing on the impact of modulation. Only one of the
two signals is active at a time.

The signals traverse the same path, which ensures
that both unmodulated and modulated channels experi-
ence similar propagation conditions. Here, the signals
are exposed to controlled physical disturbances while
traveling on a fiber patch that is part of the equipment
shown in Fig. 2, including soft bending, eavesdropping
by bending the fiber, and 80 Hz vibrations, which
are introduced to evaluate the impact on polarization
signatures. The signals are then demultiplexed by a
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Fig. 2. Schematic of the experimental and analytical setup used to
investigate the impact of signal modalities on SOP dynamics under
controlled perturbations.

second Lumentum ROADM (DEMUX) and sent to the
polarization analyzer. Our polarization analyzer instru-
ment is a commercial polarization sensing module [8]
(a “black box”) capable of measuring all three Stokes
polarization components (S1, S2, S3) variations. This
device uses a carefully designed arrangement of passive
optical components to project the signal onto different
polarization bases. The complete processing pipeline,
including additional optical analyzer components and
analysis stages, is described in the following subsection.

B. Data Collection Process

Upon transmission over the same path and exposure to
similar physical disturbances, each optical signal is di-
rected to the optical analyzer. This analyzer implements a
structured processing pipeline for extracting and analyz-
ing the Normalized numerical Polarization State Varia-
tion (NPSV) data and generating SOP signatures for each
disturbance event and signal modality. In the first stage of
processing, the optical polarization analyzer captures the
temporal evolution of the SOP variations by projecting
the received signal onto the Poincaré sphere. For each
experimental run, the signal is continuously sampled for
15 minutes at 0.5 ms intervals, resulting in approximately
1.8 million NPSV samples per experiment. At each time
slot t, the value NPSVt serves as a scalar indicator of
the magnitude of SOP variation between two adjacent
sampling points, i.e., during the interval [t − 1, t]. To
quantify this, we define the polarization intensity (the
norm of the Stokes vector) at time instance τ i.e S0,τ as
S0,τ =

√
S2
1(τ) + S2

2(τ) + S2
3(τ), where S1, S2, and S3

are the normalized Stokes parameters corresponding to
the horizontal/vertical, diagonal/anti-diagonal, and right-
/left-handed circular polarization components, respec-
tively. The normalized polarization magnitude at time
t is then given by

At =
S2
1(t) + S2

2(t) + S2
3(t)

S0,t
(1)

Fig. 3. Data collection and DSP processing pipeline, from raw NPSV
data to the SOP signature used for ML classification.

and likewise for the previous sample:

At−1 =
S2
1(t− 1) + S2

2(t− 1) + S2
3(t− 1)

S0,t−1
(2)

The resulting normalized polarization state variation is
computed as

NPSVt = At −At−1. (3)

Although the 200 Gbps Dual-Polarization (DP)-16-
Quadrature Amplitude Modulation (16QAM) modulated
signal exhibits rapid polarization fluctuations at the sym-
bol rate (tens of GHz), these are effectively averaged out
by our optical analyzer, which operates at a sampling
rate of 2 ksamples/s and bandwidth of 1–2 kHz. As a
result, our measurements isolate only the slow SOP drifts
caused by environmental or mechanical disturbances
below 5 kHz. These low-frequency effects are preserved
and comparable in both modulated and unmodulated
channels. In both cases, these vibrations cause a rotation
of the polarization state along the fiber, causing again a
movement of the NPSV SOP state, which we can detect
using the variation of S1, S2 and S3 parameters, which
are measured by our device.

To analyze the spectral features of the SOP vari-
ations and transfer the signal from the time to the
frequency domain, each 0.5-second segment (comprising
500 NPSV values) undergoes Fast Fourier Transform
(FFT) processing with a Hamming window [38]. Each
FFT generates 512 frequency components. This results
in a time-frequency representation of size 3,600× 512,
where each row corresponds to a 0.5-second time slot
and each column to a specific frequency bin. These spec-
tral profiles form what we refer to as SOP signatures.
Fig. 3 summarizes this data-processing pipeline, illus-
trating the transformation from raw NPSV measurements
(1.8 million samples) into 3,600 time segments, followed
by FFT-based spectral decomposition with 512 frequency
bins. The resulting 3,600×512 dataset captures the spec-
tral magnitude of polarization variations over time and
constitutes the final SOP signature used in the analysis.

The generated SOP signatures are forwarded to the
ML analyzer for event and signal modality classification.
The ML analysis is conducted in two stages. First, a data
pre-processing pipeline aggregates and prepares the input
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SOP signatures for ML investigation, including partition-
ing of the dataset into training and testing subsets. In
the second stage, a suite of supervised ML classification
algorithms, ranging from ensemble methods to kernel-
based and linear models, is evaluated to identify the
most suitable classifier for each dataset. The selection is
based on the highest classification accuracy and overall
performance across precision, recall, and F1-score, as
detailed in Section VI. The top-performing model is then
used to infer the class of unseen samples and compute
the corresponding performance metrics.

IV. EXPERIMENTAL SCENARIOS

A. Types of Disturbances

Using the described experimental setup, we collect
SOP signatures for eight types of events encompass-
ing normal operating conditions and abnormal, harmful
events. We consider two classes of normal fiber activity:
relaxed fiber (rlx) and soft bending (sbd). The relaxed
condition serves as a baseline reference, capturing only
routine background noise in the absence of any deliberate
physical disturbances. In contrast, soft bending reflects
benign mechanical interactions that are typically encoun-
tered during routine handling and maintenance of fiber
installations. To simulate such conditions typically found
in patch panels, a fiber segment was gently bent by hand
to a curvature radius of approximately 2 cm. This action
was repeated at 10-second intervals, mimicking handling
behavior commonly exhibited by data center technicians.

The abnormal events we consider encompass eaves-
dropping attempts and potentially harmful vibrations.
To simulate an eavesdropping attempt (eav), we adopt
the mechanical interaction described in [39], where an
attacker breaches the outer layer of a standard G.652
fiber and introduces a controlled bend in the internal core
with a curvature radius of 4 mm and a bending angle of
25 degree. This controlled deformation enables signal
leakage suitable for covert interception. This configura-
tion allows for successful signal tapping while remaining
nearly undetectable under standard power monitoring.

To simulate harmful vibrations, we introduce a me-
chanical disturbance at 80 Hz (80vb), which is equivalent
to a frequency commonly associated with heavy machin-
ery such as excavators. These machines present a tangi-
ble threat to optical fiber infrastructure, as their activity
may unintentionally damage or sever fiber cables. The
dominant vibration frequency stems from the rotational
speed of the engine, which typically operates at around
4,800 Revolutions Per Minute (RPM), equivalent to 80
Hz. To replicate this real-world scenario in a controlled
environment, we positioned a loudspeaker 2 to 4 cm
away from the fiber under test and generated an 80
Hz acoustic signal. The signal’s intensity corresponds

TABLE I
STATISTICAL PROPERTIES OF NPSV OBTAINED FOR MODULATED

AND UNMODULATED SIGNALS IN DIFFERENT SCENARIOS.

Event Mean (µ) Standard
Deviation (σ)

Skewness
(γ)

Kurtosis
(κ)

rlxu 3.77 18.38 -9.64 276.24
rlxm 4.01 3.60 -0.29 -0.59
eavu 3.93 11.00 -4.97 232.43
eavm 4.03 2.53 -0.12 0.13
sbdu -58.12 144.54 -2.52 5.59
sbdm 4.00 3.01 0.10 -0.14
80vbu 3.90 19.20 -0.08 0.98
80vbm 4.00 3.23 0.01 -0.50

to normal human conversation and is a conservative ap-
proximation, considering that actual excavators generate
significantly higher vibration amplitudes. The goal of
this setup is to evaluate the system’s ability to detect
early-stage mechanical interference before it escalates
into service disruption.

B. Statistical Analysis of the SOP Signatures of Unmod-
ulated vs. Modulated Signals

To evaluate the effect of signal modulation on the sta-
tistical behavior of polarization signatures, we perform
a comparative analysis of the four collected signatures
for unmodulated (denoted by rlxu, eavu, sbdu, 80vbu)
and modulated (denoted by rlxm, eavm, sbdm, 80vbm)
signal configurations. We analyze the NPSV distribution
for each event and extract four key statistical parameters
from these distributions: the mean, standard deviation,
skewness, and kurtosis, which offer a comprehensive
description of the shape and dynamics of the distribu-
tion. The mean µ quantifies the average magnitude of
variation and serves as a measure of the central tendency
of the distribution. The standard deviation σ captures
the extent of dispersion around the mean, reflecting
the variability in polarization dynamics. Skewness γ
describes the asymmetry of the distribution; negative
values indicate a longer tail on the low NPSV values
(i.e., more frequent low-magnitude deviations), while
positive values suggest a longer tail on high NPSV
values. Finally, kurtosis κ describes how sharply peaked
a distribution is and how often extreme values occur.
It measures the tendency of a distribution to produce
outliers by describing the heaviness of its tails relative
to a normal distribution (κ = 0). High kurtosis value
means that the distribution has a sharp peak and more
values far from the average (i.e., more outliers). Low
or negative kurtosis value means that the distribution is
flatter, with fewer extreme values.

Table I summarizes the statistical characteristics of
the NPSV distributions for the modulated and unmod-
ulated signal modalities under the four collected event
signatures. In all conditions, the modulated signals con-
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sistently exhibit markedly lower standard deviations,
reduced kurtosis, and skewness values closer to zero
than those of the unmodulated counterpart. These pat-
terns suggest that modulation plays a significant role in
suppressing stochastic polarization fluctuations, yielding
more symmetric and approximately Gaussian-like NPSV
distributions. This suppression effect is not a conse-
quence of intrinsic polarization behavior, but rather stems
from limitations in the resolution of the polarization
analyzer. The mechanical disturbances investigated in
this paper, such as fiber bending and vibrations, induce
SOP variations at much lower frequencies at rates in
the kHz, which is a very slow variation compared to
the 200 Gbps high-speed modulation scheme of DP-
16QAM. As a result, modulation indirectly contributes
to the reduction of apparent stochasticity by decorre-
lating slowly varying polarization states and leading to
smoother NPSV signatures in this case.

In the relaxed condition, the unmodulated signal dis-
plays considerable variability (σ = 18.38) and an ex-
tremely peaked and heavy-tailed (κ = 276.24), indicat-
ing heavy tails and the presence of rare, large deviations
from the mean. In contrast, the modulated counterpart is
significantly more stable (σ = 3.60) and near-Gaussian
(κ = –0.59), with a slightly elevated mean (µ = 4.01
vs. 3.77). Similar stabilizing effects of modulation are
observed in the eavesdropping and 80 Hz vibration
scenarios, where modulation reduces standard deviation
by approximately 77% and 83%, respectively.

The soft bending event reveals the most striking
contrast. The unmodulated signal exhibits a dramatically
negative mean (µ = −58.12) and very high dispersion
(σ = 144.54), reflecting intense and irregular polar-
ization disturbances. Conversely, the modulated case
maintains a stable distribution with a baseline mean (µ =
4.00) and low variance (σ = 3.01), closely resembling
the relaxed condition. However, this superficial similarity
in statistics can be misleading: while the modulated
signal appears stable in terms of mean and variance, the
full polarization trajectory may still contain subtle but
relevant temporal patterns.

Fig. 4 illustrates the statistical trends discussed in
Table I by showing the NPSV histograms and their Gaus-
sian fits for modulated and unmodulated signals under
the four events. The plot has been scaled uniformly in
the two axis to allow for a comparative analysis. In each
subplot, the unmodulated distributions exhibit broader,
often asymmetric profiles with heavier tails. By contrast,
the modulated signal distributions are consistently nar-
rower, more symmetric, and closely aligned with their
Gaussian approximations, indicating reduced variability
and improved stability in capturing polarization behavior.
These visual observations support the numerical findings
in Table I and highlight the benefits of modulation
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Fig. 4. NPSV histograms and Gaussian fits for unmodulated and mod-
ulated conditions in four event types: (a) relaxed, (b) eavesdropping,
(c) soft bending, and (d) 80 Hz vibration.
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Fig. 5. The four datasets for evaluating ML-based classification of
SOP signatures in modulated and unmodulated signals.

in achieving consistent polarization signature profiles,
indicating that it might be more suitable for anomaly
detection.

V. DATASET DEFINITION AND PRE-PROCESSING

This section introduces four systematically designed
datasets, each developed to investigate a distinct aspect
of ML-driven classification for SOP-based optical fiber
monitoring. The goal is to assess how signal modulation
influences the effectiveness of ML techniques in dis-
tinguishing physical events, learning polarization-based
features, and generalizing for different signal modalities.
The datasets are constructed to evaluate the performance
of the ML classification task: from separated analysis of
signal types, to mixed-modality configuration, and finally
to a fully discriminative and signal-aware framework.
For each dataset, a corresponding data pre-processing
pipeline is implemented to support its specific structure
and objective. The four dataset configurations are illus-
trated in Fig. 5 and are described as follows.



8

A. Datasets 1 and 2: Separate Signal Modalities

Datasets 1 (DS1) and 2 (DS2) represent a scenario
where the modulated and unmodulated optical signals
are analyzed separately. Each dataset contains four SOP
event signatures. This separation enables a direct com-
parison of how signal modulation influences the discrim-
inability of physical disturbances in the SOP signatures
and the learnability of their spectral patterns by ML
models. The research question we address with these
datasets is: Do the inherent differences in polarization
dynamics between modulated and unmodulated signals
lead to measurable variations in the performance of ML-
based classification of SOP signatures?

An identical pre-processing pipeline was applied sep-
arately to the modulated and unmodulated signal sets.
As detailed in Section III-B, each signature comprises
3,600 samples per event, with each sample correspond-
ing to 0.5 ms of SOP variations and represented by
512 frequency-domain features derived from spectral
analysis. This results in 14,400 samples for each signal
type. The two datasets were independently shuffled and
partitioned using an 80/20 split, yielding 11,520 training
samples and 2,880 testing samples per set.

B. Dataset 3: Mixed Signal Modalities

Dataset 3 (DS3) extends the scope of the classification
pipeline by combining modulated and unmodulated po-
larization signatures into a unified dataset. In this setup,
the model is trained and assessed on a combined scenario
comprising all eight collected SOP signatures, grouped
into four distinct event classes, each defined by the union
of its modulated and unmodulated instances.

Unlike DS1 and DS2, DS3 introduces mixed signal
modalities during training and inference, i.e., equivalent
classes from the modulated and unmodulated scenarios
are merged into a single class. The goal is to evaluate
whether a unified classifier can effectively learn class
boundaries from both signal types, regardless of their
underlying characteristics. This mixed modality setup
reflects practical deployment scenarios where the signal
format may vary or be unknown. The research question
we aim to address by models trained with DS3 is: Can
a single ML model accurately classify SOP signatures
when modulated and unmodulated signals are present
during training and inference? The results of a model
trained with this dataset will provide insights into the
performance of ML-driven SOP-based fiber sensing in
heterogeneous signal environments.

To prepare DS3, each of the eight collected SOP sig-
natures was first independently partitioned into training
and testing subsets using an 80/20 split. This yielded
2,880 training samples and 720 testing samples per
signature. After splitting, samples from modulated and

unmodulated signals were merged within each event type
to form four final event classes, each comprising 5,760
training samples and 1,440 testing samples. This results
in a unified dataset containing 23,040 training samples
and 5,760 testing samples.

C. Dataset 4: Joint Signal Modalities
Dataset 4 (DS4) contains eight classes, where each

collected SOP signature is treated as a distinct class,
explicitly distinguishing both the event type and its
associated signal modality in the class. Unlike the DS3,
which merges modulated and unmodulated variants of
the same event into a single class, DS4 should capture
fine-grained distinctions between signatures influenced
by signal modality. This structure reflects a deployment
scenario where both the nature of the event and the
signal type are relevant and unknown thereby requir-
ing classification. The central research question to be
answered by training a model with DS4 is: Can an
ML model simultaneously distinguish both event type
and signal modality when polarization signatures from
both domains are presented as separate classes? This
approach will allow for a detailed investigation into the
model’s ability to distinguish event variations introduced
by modulation effects.

To prepare DS4, the eight collected SOP signa-
tures were partitioned individually using the same pre-
processing pipeline of DS1 and DS2where each signature
was partitioned into training and testing subsets using
an 80/20 split, yielding 2,880 training samples and 720
testing samples per class. In total, the dataset contains
23,040 training and 5,760 testing samples.

VI. RESULTS

This section presents the evaluation results for four
scenarios trained with the datasets introduced in Sec-
tion V. To identify the most suitable classification al-
gorithm for each scenario, we conduct a comprehensive
benchmarking of ten supervised ML classifiers available
in the Scikit-learn library. The evaluated methods span a
diverse range of learning paradigms, including ensemble
learners: Random Forest (RF), Extra Trees Classifier
(ETC), Histogram Gradient Boosting (HGB), eXtreme
Gradient Boosting (XGBoost), Gradient Boosting (GB);
kernel-based models: Support Vector Machine (SVM);
linear classifiers: Logistic Regression (LR), Linear Dis-
criminant Analysis (LDA); distance-based techniques:
k-Nearest Neighbors (KNN); and tree-based learners:
Decision Tree (DT). These classifiers are selected based
on their previously documented performance in time-
frequency domain tasks and their compatibility with the
spectral representations extracted from the SOP data. For
each dataset, the classifiers were trained and tested inde-
pendently using 5-fold cross-validation to ensure robust
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Fig. 6. Classification accuracy on separated signal modalities scenario
for the top three performing models: eXtreme Gradient Boosting (XG-
Boost), Histogram Gradient Boosting (HGB), and Gradient Boosting
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Fig. 7. Confusion matrices of the eXtreme Gradient Boosting (XG-
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performance assessment. The ML classifier yielding the
highest test accuracy was selected as the representative
classifier for that dataset, and its confusion matrix is
reported in the corresponding subsection.

A. Scenarios 1 and 2: Classification Performance for
Separated Signal Modalities (DS1 and DS2)

Scenarios 1 and 2 evaluate the performance of ML-
based SOP classification when polarization signatures
are analyzed separately for modulated and unmodulated
signals. Independent classifiers were trained using their
default hyperparameters for DS1 and DS2. Fig. 6 shows
the classification accuracy in the test set for the three ML
classifiers that achieve the highest accuracy across both
DS1 and DS2: XGBoost, HGB, and GB. Among them,
XGBoost demonstrates superior performance, attaining
an accuracy of 97.12% for unmodulated and 98.47% for
modulated signals. A deeper insight into the performance
of XGBoost is offered by the confusion matrices in
Fig. 7. In both cases, the classifiers exhibit strong class
separability with minimal confusion. Few misclassifica-
tions were observed primarily between the sbd and 80vb
events. Nonetheless, the impact of these errors on overall
detection reliability is negligible.

These results indicate that signal modulation, such as
the DP-16QAM 200 Gbps signal used in the experiment,
does not hinder the ability of ML classifiers to distin-
guish between SOP signatures associated with different
physical events. In fact, modulated signals in this study
exhibited more stable SOP behavior than their unmod-
ulated counterparts, contributing to consistently high
classification performance. While modulated signals are
often associated with higher structural complexity at the
symbol level, their temporal averaging effect appears to
suppress high-frequency polarization noise, leading to
smoother SOP trajectories. Consequently, low-frequency
SOP variations caused by external disturbances remain
clearly distinguishable. These findings reinforce the fea-
sibility of ML-based SOP analysis for anomaly detection
in coherent optical networks, where modulation is an
inherent aspect of system operation.

B. Scenario 3: Classification Performance for Event
Classification in Mixed Signal Modalities (DS3)

Scenario 3 investigates the performance of ML classi-
fiers in a unified classification task where both modulated
and unmodulated signals are included for each physical
event class. Table II summarizes the performance of the
tested classifiers in terms of accuracy, precision, recall,
F1-score, and computational cost (training and inference
times). The classifiers are sorted in descending order
of accuracy. Compared to the other models, HGB and
XGBoost achieved the two highest accuracy values of
98.09% and 97.93%, respectively. The confusion matrix
of the best-performing HGB is shown in Fig. 8. The
model achieves excellent class separability for all four
event types. The relaxed (rlx) and eavesdropping (eav)
classes are recognized with near-perfect accuracy (98.8%
and 99.0%, respectively). Minor confusion is observed
between soft bending (sbd) and 80 Hz vibration (80vb),
with at most 2.2% of misclassified samples.

These results demonstrate that ML models are able
to learn discriminative features of both unmodulated
and modulated signals. This supports the feasibility of
deploying signal-agnostic SOP-based ML monitoring
systems in network environments with unmodulated and
modulated signals.

C. Scenario 4: Classification Performance for Joint Sig-
nal Modalities (DS4)

Scenario 4 evaluates the classification performance in
a fine-grained, eight-class scenario, where each unique
event-modality combination (e.g., rlxu, rlxm) is treated
as a distinct class. Table III presents the performance
of all evaluated classifiers for this setup. Among the
tested models, XGBoost achieved the highest overall ac-
curacy, followed closely by HGB, and GB. In addition to
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TABLE II
PERFORMANCE BENCHMARKING OF SUPERVISED ML CLASSIFIERS FOR SCENARIO 3 (MIXED SIGNAL MODALITIES CLASSIFICATION).

Classifier Accuracy Precision Recall F1-score Training Time (s) Inference Time (s)
Histogram Gradient Boosting 0.9809 0.9809 0.9809 0.9809 18.38 0.057
XGBoost 0.9793 0.9794 0.9793 0.9793 7.87 0.024
Gradient Boosting 0.9641 0.9640 0.9641 0.9640 1555.49 0.042
Random Forest 0.9616 0.9617 0.9616 0.9615 40.46 0.066
Extra Trees Classifier 0.9498 0.9509 0.9498 0.9490 7.29 0.109
SVM Classifier 0.9479 0.9477 0.9479 0.9476 55.99 17.99
Decision Tree 0.9028 0.9030 0.9028 0.9028 18.89 0.005
K-Nearest Neighbors 0.8365 0.8417 0.8365 0.8298 0.023 0.655
Logistic Regression 0.8193 0.8194 0.8193 0.8193 40.51 0.021
Linear Discriminant Analysis 0.7814 0.7813 0.7814 0.7810 1.70 0.012

TABLE III
PERFORMANCE BENCHMARKING OF SUPERVISED ML CLASSIFIERS FOR SCENARIO 4 (JOINT SIGNAL MODALITIES CLASSIFICATION).

Classifier Name Accuracy Precision Recall F1-score Training Time (s) Inference Time (s)
XGBoost 0.9804 0.9804 0.9804 0.9804 13.0668 0.0401
Histogram Gradient Boosting 0.9793 0.9794 0.9793 0.9793 21.8151 0.0631
Gradient Boosting 0.9688 0.9687 0.9688 0.9687 2394.0043 0.0598
Random Forest 0.9658 0.9661 0.9658 0.9658 39.8580 0.0678
SVM Classifier 0.9483 0.9483 0.9483 0.9481 24.5029 17.2565
Extra Trees Classifier 0.9467 0.9488 0.9467 0.9462 7.4505 0.1216
Decision Tree 0.9057 0.9057 0.9057 0.9056 17.8165 0.0053
Linear Discriminant Analysis 0.8807 0.8817 0.8807 0.8794 1.0988 0.0115
Logistic Regression 0.8806 0.8807 0.8806 0.8805 56.5408 0.0043
K-Nearest Neighbors 0.8365 0.8458 0.8365 0.8300 0.0272 0.8149
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Fig. 8. Confusion matrix of the Histogram Gradient Boosting (HGB)
classifier for mixed signal modalities classification scenario.

delivering the best classification performance, XGBoost
maintained a relatively modest computational footprint,
requiring 13.07 s for training and only 0.04 s for
inference. The confusion matrix of XGBoost is shown
in Fig. 9. XGBoost achieves high discrimination for
nearly all classes. The modulated signature classes have
near-perfect accuracy above 98.9%, with 100% accuracy
for the rlxm class. The worst-case misclassification in
the unmodulated signals is observed for the sbdu class,
where 3.6% of samples are incorrectly labeled as rlxu.
In the modulated signal, the highest confusion occurs
between sbdm and 80vbm, with a misclassification rate of
2.4%. These errors indicate strong class separability even
when both signal modality and event type are jointly
classified. Interestingly, there is no confusion between
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Fig. 9. Confusion matrix for scenario 4 showing classification perfor-
mance using the eXtreme Gradient Boosting (XGBoost) classifier.

unmodulated and modulated signals (100% accuracy),
i.e., misclassification is only observed within the same
modality. These results confirm that it is possible for
a classifier to accurately classify both modality and
physical events simultaneously. The findings reinforce
the conclusion that modulation does not significantly
affect the performance of ML-based classifiers.

VII. CONCLUSIONS

This paper investigates the impact of optical signal
modulation on ML classification of harmful events by us-
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ing SOP signatures. While prior studies have largely fo-
cused on unmodulated light sources, our work addresses
the critical gap of evaluating SOP-based monitoring
under practical, high-speed modulated conditions. Using
a real-world experimental setup on a metro network,
we collected polarization signatures from modulated and
unmodulated signals subjected to identical physical dis-
turbances. Statistical analysis revealed that modulation
stabilizes the SOP distribution by suppressing fluctua-
tions. A suite of classifiers was assessed on four datasets
with separated, mixed, and joint modalities. The assessed
ML algorithms consistently achieved high classification
accuracy in benign and malicious events, confirming
that the spectral features extracted from SOP dynam-
ics remain distinguishable by ML algorithms regard-
less of modulation effects. While real-world deployment
challenges like large-scale polarization data acquisition,
modulation diversity, and ML control-plane integration
remain, our results show that accurate anomaly classifi-
cation is feasible under realistic traffic conditions.
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