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ABSTRACT Modern optical networks form the critical backbone of global communications, enabling high-speed
data transmission for a wide range of applications. Despite their inherent advantages in bandwidth and scalability,
these networks are not immune to physical-layer vulnerabilities. Mechanical disturbances, both accidental and
intentional, can compromise service quality or serve as gateways for more severe cyber-physical attacks. Thus,
there is a growing need for intelligent, real-time monitoring solutions capable of detecting and interpreting
subtle anomalies in optical fiber infrastructures. This paper presents a Machine Learning (ML)-based State of
Polarization (SOP) monitoring approach for the identification and classification of complex mechanical vibrations
in optical fiber networks. We address the real-world challenge of mixed-frequency and overlapping vibration
signatures, arising from benign activities, malicious attacks, or simultaneous events, by collecting 14 distinct
polarization signatures under various physical scenarios. A diverse set of supervised ML classifiers is evaluated,
with Histogram Gradient Boosting (HGB) achieving the highest performance at 88.33% accuracy.

Keywords: Optical Fiber Monitoring, Mechanical Vibrations, State of Polarization (SOP), Perturbation, Super-
vised Machine Learning (ML), Anomaly Detection, Eavesdropping, Classification.

1. INTRODUCTION

Optical networks constitute the core infrastructure for high-capacity and long-distance data transmission,
delivering low-loss and high-bandwidth connectivity that is essential to modern communication networks.
Their role is critical in a wide range of domains, including telecommunications, healthcare, defense, and data
center interconnects. Despite their physical robustness, optical fibers remain susceptible to external mechanical
disturbances that can degrade signal quality or compromise security. In particular, construction activities and
heavy machinery, such as excavators operating near buried cables, introduce a significant risk of accidental
fiber cuts. These machines generate a characteristic frequency spectrum with a dominant low-frequency base
tone, which can be detected to enable early warning and preventive action. More alarmingly, deliberate security
breaches such as covert eavesdropping, enabled by deliberately bending the fiber to a specific degree [1] to
extract optical signals, raise serious concerns about the confidentiality of transmitted information. Such acts
may go undetected without fine-grained monitoring.

In light of these vulnerabilities, recent real-world incidents involving sabotage and tampering of fiber-optic
infrastructure have underscored the urgent need for advanced threat detection mechanisms [2]. Parallel to
this, emerging research has demonstrated the potential of utilizing existing optical fiber infrastructure for
environmental sensing, with proven effectiveness in capturing both natural and human-induced activities [3].
A key enabler of such sensing is the State of Polarization (SOP), which is particularly effective in detecting
subtle and complex vibration patterns caused by physical tampering. SOP-based sensing offers key advantages
over traditional vibration detection methods due to its inherent sensitivity to minute physical perturbations in the
optical fiber. Unlike conventional methods, such as Distributed Acoustic Sensing (DAS) or Optical Time Domain
Reflectometry (OTDR), which often require specialized infrastructure, backscattering techniques, or high power
levels, SOP-based analysis leverages the intrinsic polarization variations of light propagating through standard
fiber [4]. Furthermore, when combined with Machine Learning (ML) techniques, SOP-based sensing enables
real-time classification and anomaly detection, offering a scalable and robust solution for protecting critical
optical communication infrastructure. Recent studies have extensively investigated ML-based analysis of SOP
variations induced by physical disturbances such as eavesdropping attempts and mechanical vibrations [5]-[11].
These works demonstrate the effectiveness of SOP for anomaly detection frameworks in reliably identifying
and characterizing disruptive events under experimental and real-world deployment scenarios. However, these
research works did not consider the challenge of overlapping or mixed-frequency vibration patterns.

In a real-life installation, a normal event such as traffic passing close to the installation causes signatures with
a broad-frequency spectrum content. This spectrum could be related to signatures caused by an eavesdropping
event, or it can be mixed with other broad-spectrum signatures from normal traffic or from a malicious excavator
threatening to cut the fiber optical cable. In order to avoid false alarms, it is therefore essential to classify and
separate the frequency spectrum contents from signatures representing potential harmful events. In practical
deployments, capturing clean and isolated signatures of real-world mechanical disturbances, such as those caused
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by heavy vehicles or trains passing near the installation, is a time-consuming and operationally challenging task.
These naturally occurring events often produce highly variable and overlapping vibration patterns that are difficult
to reproduce under controlled conditions. To address this, we simulate disturbance environments by generating
two complex vibration signatures. These synthetic signatures feature pseudo-random frequency content ranging
from O to 2000 Hz, effectively emulating the spectral characteristics observed in real-world disturbances. To
evaluate the classifier’s robustness in differentiating between benign and potentially malicious activities, we
further combine these complex vibration signatures with known attack scenarios, including fiber eavesdropping
and soft patch cable bending. This paper addresses the gap in the literature by proposing an ML classification
technique capable of separating and classifying complex, co-occurring mechanical signatures using SOP-based
signatures analysis.

2. EXPERIMENTAL SETUP

Our experimental setup, depicted in Figure 1, is designed to generate and analyze polarization signatures
resulting from mechanical perturbations applied to an optical fiber transmission line. A stabilized 1310 nm
Continuous Wave Distributed Feedback (CW-DFB) laser serves as the optical source, injecting constant polarized
light into a 1 km coupling fiber. This coupling fiber connects to the central sensing region, where deliberate
physical manipulations are applied to either a bare fiber or a patch cable segment. The perturbed signal then
propagates through a 20 km fiber spool, bringing the total optical transmission length to 21 km and emulating a
real-world long-distance deployment. Mechanical perturbations acting on the fiber installation induce measurable
SOP variations, whose magnitude and frequency content are characteristic of the specific external activity,
resulting in distinct polarization signatures. To simulate realistic and challenging monitoring conditions in this
research work, we introduce two complex vibration patterns, referred to as complex vibration A (A) and complex
vibration B (B), each lasting over 10 and 20 minutes, respectively. These patterns are composed of pseudo-
random frequency components spanning the 0-2000 Hz range, mimicking naturally occurring disturbances such
as persistent background noise generated by heavy traffic or trains passing near fiber installations. To simulate
overlapping effects, we mix complex vibration A and complex vibration B with known events like eavesdropping,
soft bending, and potentially harmful vibrations.
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Figure 1: Schematic of the experimental testbed used for polarization signature analysis. Mechanical disturbances
are applied between the 1 km coupling fiber and the 20 km fiber spool.

To analyze the impact of mechanical disturbances and generate distinct SOP variation signatures, we follow
the approach introduced in [7]. As illustrated in Figure 1, an optical analyzer computes the numerical variation
of the SOP, referred to as Numerical Polarization State Variation (NPSV), as time-sequenced samples on the
Poincaré sphere at 0.5 ms intervals over 10-minute and 20-minute durations for complex vibrations A and
B, respectively, yielding approximately 1.2 million and 2.4 million data points per event. The NPSV is then
segmented into windows of 1000 samples and transformed into the frequency domain via an Fast Fourier
Transform (FFT) with 512 bins. This results in a time-frequency data matrix (SOP signature) with the shape
[1200, 512] for events containing complex vibrations A and [2400, 512] for complex vibrations B, forming the
basis of our ML analysis.

The ML analysis is grounded in a comprehensive dataset generated through controlled combinations of
complex vibrations and targeted mechanical perturbations applied to both bare fiber and patch cable segments.
We consider three representative tampering scenarios: soft bending (sb), eavesdropping (eav), and malicious
vibrations at 80 Hz (80vb). The sb condition emulates benign maintenance activity, where fibers are gently bent
to a radius of approximately 2 cm at 10-second intervals. The eav scenario simulates intentional tapping by
introducing a 4 mm-radius, 25-degree bend using a precision coupler, as described in [12]. The 80vb scenario



replicates ground-borne vibrations from nearby excavation equipment, modeled by applying an 80 Hz, 60 dBA
sinusoidal tone from a loudspeaker placed 5 cm from the fiber. These events are overlaid with either complex
vibration A or B to emulate challenging real-world environments.

3. SIGNATURES AND DATA COLLECTION

We collected the following 14 distinct SOP signature involving two types of complex mechanical vibrations,
denoted as A and B, applied to both bare fiber and patch cable under various tampering conditions:

o Complex A/B on bare fiber: Ay, Bp,

o Complex A/B on bare fiber + eavesdropping: Ap,+eavs Bbr+eay

o Complex A/B on bare fiber + 80 Hz vibration: Ap;+80v6, Bbr+8ovh

o Complex A/B on bare fiber + soft bending: Ap,+sp, Bpr+sp

« Complex A/B on patch cable: Ay, By,

« Complex A/B on patch cable + soft bending: Apcisp, Bpessh

« Complex A/B on patch cable + eavesdropping: Apcieavs Bpeseav

The ML analyzer, illustrated in Figure 1, comprises three main stages: data preprocessing, classification, and
anomaly detection. In the preprocessing phase, the 14 collected signatures are merged to construct training and
testing datasets. Each event involving complex vibration A consists of 1,200 points (8,400 in total across seven
scenarios), while those involving vibration B yield 2,400 points (16,800 total). An 80/20 split is applied to each
class, resulting in 960 training and 240 testing points per A scenario, and 1,920 training and 480 testing points
per B scenario. After aggregation, the final dataset comprises 20,160 training points and 5,040 testing points.
This dataset is then analyzed using supervised ML models to detect anomalies indicative of potentially harmful
or malicious events, enabling robust identification of overlapping and complex disturbances in real-world optical
fiber installations.

4. RESULTS

We conduct a comprehensive evaluation of multiple supervised ML classifiers to identify the most suitable
model for detecting and categorizing mechanical vibration signatures in optical fibers. A diverse range of classi-
fiers from the Scikit-learn library is evaluated, including ensemble-based methods (Histogram Gradient Boosting
(HGB), eXtreme Gradient Boosting (XGBoost), Random Forest (RF), Extra Trees Classifier (ETC)), kernel-
based models (Support Vector Machine (SVM)), linear models (Logistic Regression (LR), Linear Discriminant
Analysis (LDA)), instance-based learning (k-Nearest Neighbors (KNN)), and Decision Tree (DT). These models
are selected for their proven applicability in similar time-frequency classification tasks.

TABLE I: Performance comparison of various ML classifiers

Classifier Name Accuracy Precision Recall Fl-score Training Time (s) Inference Time (s)
Hist Gradient Boosting 0.8833 0.8856 0.8833 0.8828 47.1555 0.1349
XGBoost 0.8724 0.8741 0.8724 0.8716 24.9517 0.0368
Random Forest 0.8387 0.8450 0.8387 0.8363 41.6140 0.0859
Gradient Boosting 0.8171 0.8211 0.8171 0.8157 3640.1562 0.1015
SVM Classifier 0.8163 0.8289 0.8163 0.8151 36.5793 25.3881
Extra Trees Classifier 0.7972 0.8076 0.7972 0.7906 7.6353 0.1281
Logistic Regression 0.7014 0.6992 0.7014 0.6991 53.7773 0.0183
K-Nearest Neighbors 0.6671 0.7297 0.6671 0.6467 0.0187 0.5907
Linear Discriminant Analysis 0.6609 0.6586 0.6609 0.6517 1.0038 0.0062
Decision Tree 0.6583 0.6592 0.6583 0.6585 16.2349 0.0041

Table I presents a detailed comparison of classifier performance in terms of accuracy, precision, recall, F1-
score, training time, and inference latency. The HGB classifier delivers the highest overall performance, achieving
an accuracy of 88.33% and an F1-score of 0.8828. It also offers a favorable trade-off between predictive accuracy
and computational efficiency. XGBoost and RF also demonstrate good performance, with accuracies of 87.24%
and 83.87%, respectively. Although SVM yields comparable accuracy (81.63%), its inference time of over 25
seconds makes it impractical for real-time applications. Meanwhile, Gradient Boosting (GB), despite being
conceptually robust, requires a substantially longer training time (over 3,600 seconds) without a corresponding
performance gain. Simpler classifiers such as LR, KNN, LDA, and DT show significantly lower accuracy and
are less effective at capturing the complex patterns inherent in SOP-based vibration signatures.

The confusion matrix in Figure 2 further illustrates the effectiveness of the HGB classifier in accurately
identifying the 14 mechanical disturbance scenarios. The perfect and near-perfect classification was achieved
for Apr+sovp and Bprisovy (100.0% and 99.4%), with similarly strong results for baseline scenarios such as



Apr (95.4%) and By, (99.4%). Some misclassifications occurred in scenarios involving overlapping signatures,
particularly those with sb or eav. For instance, Bjy4cqy Showed confusion with Byceqy, and both Apeygp and By
were misclassified as related scenarios such as Apcqeqy and Bp,ig. These results are not unexpected. Signatures
collected from bare fiber (br) exhibit a higher signal-to-noise ratio because the fiber is directly exposed to
mechanical disturbances, allowing clearer SOP variations. In contrast, the patch cable (pc) structure dampens
the mechanical vibrations before they reach the fiber core, resulting in weaker SOP signatures. Additionally,
sb events introduce strong, repetitive SOP fluctuations at consistent time intervals—often stronger than the
underlying complex vibration (A or B) present in the signal. This can cause the classifier to prioritize features
of the sb over the background disturbance, leading to occasional misclassifications between sb and related classes.
Despite these challenges, the classifier consistently preserved the dominant spectral cues that distinguish each
class, confirming its strong effectiveness in SOP-based ML classification for recognizing subtle and overlapping
disturbances in optical network environments.
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Figure 2: Results of Confusion Matrix for Histogram Gradient Boosting classifier

5. CONCLUSION

This paper proposed an ML-based classification of SOP signatures analysis for identifying and categorizing
complex mechanical disturbances in optical fiber networks. Considering that real-world optical infrastructures
are increasingly exposed to both benign and malicious mechanical activities, often occurring simultaneously
and with overlapping spectral characteristics, we proposed a robust sensing approach leveraging SOP sensitivity
and advanced supervised ML classification. A comprehensive dataset comprising 14 distinct SOP signatures
was collected under controlled experimental conditions. Multiple supervised ML classifiers were evaluated for
their performance in classifying these events, with Histogram Gradient Boosting (HGB) emerging as the most
accurate and computationally efficient model, achieving an accuracy of 88.33%. Overall, the results validate the
effectiveness of SOP-based spectral analysis combined with ML in accurately distinguishing and categorizing
co-occurring mechanical disturbances, paving the way for robust monitoring and threat detection in future optical
communication networks.
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