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This paper investigates the energy consequences of determining the energy-optimal velocity profile and torque
distribution sequentially versus jointly in a battery electric vehicle (BEV) with two electric motors, one per axle.
Three optimization architectures are evaluated: a centralized architecture (CA), a de-centralized architecture
(DCA) and a refined de-centralized architecture (r-DCA). CA jointly optimizes the velocity trajectory and torque
distribution for minimal energy consumption in a predictive framework, while DCA solves these subproblems

hierarchically: velocity trajectory optimization is performed predictively, and torque distribution is computed
instantaneously. The joint optimization in CA leads to a reduction in energy consumption of 3.3% at low
velocities and 2.2% in an urban city cycle compared to DCA. To mitigate the energy consequences, the objective
function in the predictive layer of DCA is augmented with an aggregated power loss map of the powertrain
in r-DCA, which achieves energy savings close to CA.

1. Introduction

The urgency to reduce emissions has never been more critical than
it is today. To keep the global temperature rise within the limits set
by the Paris Agreement, unprecedented changes are required across
all sectors. Between 1990 and 2019, greenhouse gas (GHG) emissions
from transport increased by 33%, accounting for approximately one
quarter of the EU’s total GHG emissions in 2019, with passenger cars
contributing 43.9% [1]. It is identified that a significant increase in the
adoption of electric vehicles is needed to achieve these goals.

Although the battery electric vehicle (BEV) is considerably more
energy-efficient than its petrol-powered counterpart, factors such as
lower driving range, long charging times, and insufficient charging
infrastructure continue to affect BEV public acceptance negatively [2].
Measures that reduce the energy consumption of BEVs are therefore
highly desirable. Energy minimization can be pursued through several
research fields, including reducing aerodynamic drag [3], optimizing
cabin climate control [4], and improving thermal management of elec-
tric motors [5] etc. This paper focuses on how BEV energy consumption
is influenced by driving behavior, i.e., the vehicle’s motion, and by the
utilization of available actuators in generating that motion.

In a transport mission, a certain amount of energy is inevitably
required to overcome factors such as road grade and air drag. However,

the total energy consumption of the vehicle is higher due to additional
losses within the drivetrain and friction brakes. The driving style signif-
icantly influences energy use, where aggressive driving characterized
by harsh acceleration and deceleration increases consumption [6,7],
mainly due to losses related to frequent changes in kinetic energy.
Drivers have been encouraged to adopt eco-driving, i.e., an energy-
efficient driving style, to reduce the energy consumption. However,
increased connectivity and autonomy of vehicles allow for algorithms
to preview upcoming road segments and plan motion accordingly in an
energy-efficient manner.

To increase the range of BEVs, the authors in [8] develop an
eco-driving function that is experimentally evaluated in an urban en-
vironment, effectively leading to a 14.1% reduction in energy con-
sumption. In [9], a DP-generated velocity profile reduces the energy
consumption by 9.8% compared to the profile of the average driver.
The authors in [10] show, using DP, that energy-efficient driving for
BEVs may result in Pulse-and-Glide (PnG) at high frequencies, which is
a well-known eco-driving mechanism for ICE vehicles [11]. The energy
consumption is reduced significantly, with greater savings in the lower
speed range (< 20 km/h). The PnG strategy is also found in [12],
though at lower frequencies since minimizing the longitudinal jerk is
part of the objective function of the optimization problem.
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Further opportunities to reduce energy consumption emerge with
the electrification of vehicles and the integration of multiple actuators
within the powertrain. Previously, there was only one actuator to
generate the forward motion in a conventional vehicle — the internal
combustion engine (ICE). In BEVs, the powertrain commonly consists of
multiple actuators, i.e., electric motors, controlling the same degree of
freedom. A vehicle with such a powertrain is overactuated. In this case,
a longitudinal force request, corresponding to a request on forward
motion, can be fulfilled by an infinite number of torque distributions
between the motors. The redundancy of motors enable the pursuit of
secondary objectives, such as reducing the energy consumption, by
allocating torque to minimize the power losses in the drivetrain

One of the first studies regarding power-efficient torque distribution
for BEVs was put forward by [13], which identified that the common
method to penalize actuator effort to improve energy efficiency does
not necessarily result in minimal energy consumption, as it does not
consider actuator efficiencies. Instead, the objective was reformulated
to penalize the instantaneous power consumption of the actuators,
successfully leading to less energy consumption while fulfilling the
demand on vehicle motion. This study was the spark to a large body of
research that now exists on the topic [14-24]. The total torque demand
is derived from a reference velocity trajectory [25,26], such as a drive
cycle, or decided by a virtual driver [27,28]. Typically, the optimization
is instantaneous [27,29-32], i.e., power is minimized as opposed to
energy.

The joint optimization of torque distribution and velocity trajec-
tory can yield further energy savings in overactuated vehicles. For
example, [12] demonstrates that the joint optimization for an electric
powertrain with two motors reduces the energy consumption by 8.8%
compared to a single-motor configuration. In [33], the joint approach is
compared to only optimizing the torque distribution between ICE and
electric motor in a HEV. By allowing the velocity to deviate by 0.5 m/s
from the reference, the electric cost is reduced by 14.77%, compared
to strictly following the reference velocity while only optimizing the
power split.

Other studies regarding overactuated BEVs address these two sub-
problems individually. The authors in [34], for example, divide the
problem in an upper layer, finding a velocity profile that minimizes
the battery power based on the total torque of the motors, and a
lower layer, finding an energy-optimal torque distribution. The layered
approach is also applied in [35], where the higher level determining the
speed profile penalizes the rate of change of the desired acceleration
to improve energy efficiency. Similar to previous work, the torque
distribution is addressed in a lower layer. The resulting hierarchical
function architecture is beneficial in terms of adaptability and flexibil-
ity for the automotive industry. New technologies and manufacturers
emerge rapidly, and increased autonomy and connectivity of cars put
tremendous demands on automotive manufacturers to reduce develop-
ment costs related to the control architecture of each new vehicle. If a
function could be reused when developing a new vehicle configuration,
development costs would be instantly reduced.

The energy consequences of this hierarchical approach has to the
knowledge of the authors not yet been assessed. In this work, the
simultaneous and sequential optimization of velocity trajectory and
torque distribution to minimize energy consumption is assessed for
an overactuated BEV. Two optimization architectures are analyzed:
a centralized architecture (CA), in which velocity profile and torque
distribution are optimized over a finite horizon, and a de-centralized
architecture (DCA), which adopts a hierarchical function architecture
where velocity profile is optimized predictively in an upper layer,
and torque distribution instantaneously in a lower layer. In DCA, the
optimization of velocity trajectory has no information about the motors’
efficiencies, only their combined capabilities. A third architecture is
proposed to mitigate the energy consequences while maintaining the
hierarchical approach: the refined de-centralized architecture (r-DCA).
The predictive layer is supplied with knowledge about the aggregated
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efficiency of the powertrain in the shape of an aggregated power loss
map. Similar to DCA, the torque distribution is optimized in the lower
instantaneous layer.

The architectures are evaluated in straight line driving including
three test cases: low-speed, high-speed, and the Artemis Urban Drive
Cycle. They are implemented and solved using the CasADi environment
in Matlab.

To summarize, the contribution of this work includes:

(1) Quantifying the effect on energy consumption of decoupling
the optimization of velocity profile and torque distribution by
comparing three different optimization architectures.

(2) Designing a novel, aggregated power loss map of the powertrain
based on the optimal torque distribution.

(3) Presenting a method to improve the decoupled problem that pro-
vides similar results as the coupled problem of energy-optimal
velocity planning and torque distribution.

The following limitations apply:

(1) Only longitudinal dynamics is considered.

(2) Ideal cooling of the motors is assumed, i.e., the power losses are
assumed to depend only on motor torque and rotational velocity.

(3) Only the power associated with the powertrain and motion of the
vehicle is considered. The power consumed by auxiliary systems
such as HVAC and thermal management of the powertrain and
battery is neglected.

(4) The only objective considered in the optimization is to re-
duce energy consumption. Multi-objective optimization includ-
ing, e.g., travel time and comfort is outside the scope of this
paper.

(5) Driving environment is assumed to be known at the start of the
transport mission.

The remainder of the paper is structured as follows. Section 2
presents the vehicle and powertrain configuration together with the
general optimal control problem for determining an energy-efficient
velocity profile. The three optimization architectures are derived in
Section 3. Section 4 describes the simulation environment and presents
the results, which are then discussed in Section 5 along with the
limitations of the study and directions for future work. Finally, the
conclusions are summarized in Section 6.

2. Definition of the optimization problem

The simultaneous optimization of velocity trajectory and torque
distribution is performed in a predictive optimization framework. It
is compared to a hierarchical approach, in which the optimization
is decoupled in a predictive layer for the velocity trajectory, and an
instantaneous layer for the torque distribution. This section presents the
vehicle configuration considered, as well as the general formulation of
the optimal control problem used in the predictive optimization. Since
the purpose is not real-time implementation but architecture concept
evaluation, the optimal control problem is constructed and solved once
for a road segment.

2.1. Vehicle and powertrain configuration

The vehicle analyzed in this study is a conventional SUV equipped
with two electric motors: an asynchronous motor (ASM) on the front
axle and a permanent magnet synchronous motor (PMSM) on the rear
axle. The powertrain configuration is shown in Fig. 1. Each motor
drives its respective wheels through a single-speed transmission and an
open differential.

Fig. 2 shows the combined efficiency of each electric motor and
its corresponding inverter. Assuming ideal motor cooling and nominal
battery voltage, power losses are considered to be dependent solely on
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l— ASM PMSM —|
Fig. 1. Powertrain configuration: asynchronous motor (ASM) in the front,
permanent magnet synchronous motors (PMSM) in the rear.

Table 1
Vehicle parameters.
Parameter Description Value Unit
m Vehicle mass 2519 kg
Iy Distance front axle to CoG 1.523 m
1, Distance rear axle to CoG 1.22 m
r Loaded tire radius 0.33 m
ny ASM gear ratio 8.55 -
n, PMSM gear ratio 9.8 -
C, Rolling resistance coefficient 0.02 -
A; Frontal area 2.29 m?
C, Aerodynamic drag coefficient 0.32 -
Joom Rotational inertia ASM 0.073 kg/m’
Jomsm Rotational inertia PMSM 0.073 kg/m*
v Rotational inertia wheel 2.46 kg/m’

motor torque and rotational speed. These losses are externally supplied
using simulations of high-fidelity motor models.

The PMSM offers higher maximum torque and speed and greater
efficiency across a wider operating range than the ASM. The braking
torque is assumed to be fully provided by the electric motors (100% re-
generative braking). The effects of brake-blending strategies on energy
consumption are not considered in this study.

The vehicle parameters are shown in Table 1.

2.2. General optimal control problem

The goal of eco-driving is to find (and follow) a velocity profile that
minimizes the energy consumed for a given trip. It can be formulated as
an optimal control problem with the objective to travel from an initial
point s to a final point s, with minimum energy consumption,

min_ / :f Fyy(x(s), u(s))ds (1a)
st %(s) = f(x(s),u(s)) (1b)
x(s) €X 19

u(s) e U ad)

where x(s) is a vector containing the state variables, u(s) a vector
containing the control variables, F,,(-) is the total force generated by the
motors, f(-) describes the dynamics of the state variables, and X and
U are the feasible sets of the state and control variables respectively.
The total force in the objective function can be further divided into two
components,

F(x(5), u(s)) = F,(x(5), u(s)) + Fy j55(x(5), u(s)) @

where F,(-) denotes the longitudinal force contributing to the vehicle’s
motion, and F, ,(-) represents the force equivalent of the power
losses in the electric motors. In eco-driving studies for electric vehicles,
the electrochemical efficiency of the battery is typically simplified
or neglected [10,12,36]. Moreover, modern batteries exhibit lower
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internal resistance and higher operating voltage, resulting in improved
efficiency. Therefore, battery efficiency is neglected in this work. The
term F,, . is either included or set to zero in (1), depending on the
optimization architecture. Further details are provided in Section 3
where the different architecture concepts are presented.

The state vector is defined as x(s) = [t(s) K(s)]T

0y ()%

where #(s) is

time and K(s) = is kinetic energy normalized by mass. The
corresponding state dynamics are given by:

1
i) = 2O _ | VRS 3)
ds 0,(s)

A particle model is used according to Fig. 3 with the longitudinal
motion of the particle ,.(s) (assuming no lateral movement) is given
by,

Oy(s) = mi (Fy(8) = Fyp(s) = F(s) — Fy(s)) (©))

with F, = p,;,A;C,K(s), F,, = mgC,, cos¢(s) and F, = mgsin¢(s),
where p,,;, is the air density, A, the frontal area, C, the aerodynamic
drag coefficient, g the gravitational acceleration, C,, the rolling resis-
tance coefficient, ¢(s) the road slope and m, the sum of vehicle mass m
and equivalent mass of the rotating parts given by,

J
_ w asm 2 pmsm 9
ms—m+4—2+—2nf r—znr 5)
1 1 !
where J,, is the rotational inertia of the wheels, J,,, and J,,, the

rotational inertia of the ASM and PMSM, n, and #, the front and rear
gear ratio respectively. The dependence on s will be dropped from now
on for readability.

The feasible set of states, X, is defined by the trip parameters. The
kinetic energy is constrained by the velocity limits, v, i, and vy
while time is upper-bounded by the maximum allowable trip duration,
t7. In typical eco-driving studies, time is included in the objective
function. The focus of this paper, however, is not to explore the trade-
off between time and energy consumption, but rather to quantify
the differences in energy consumption between conceptually distinct
optimization architectures. Time is therefore deliberately chosen to be
loosely constrained, enabling a more flexible exploration of the energy-
optimal velocity profile. From a purely energy-efficiency standpoint,
the relevant metric is the energy required to travel a given distance.
If additional objectives, such as adherence to delivery schedules in
freight transport or public transit, are considered, travel time should
also be included in the optimization. This is particularly relevant in
cases where the cost per time unit (e.g., driver salary) is high relative to
the energy cost. The driving scenarios used in this study are described
in Section 4.1, where the simulation environment is presented.

Furthermore, the variables in the control vector, u(s), and the corre-
sponding feasible set, U, vary dependent on optimization architecture
which will be presented in Section 3.

3. Optimization architecture concepts

Three concepts of optimization architecture are described in this
section: a centralized (CA), a de-centralized (DCA) and a refined de-
centralized (r-DCA) architecture.

Fig. 4 provides an overview of the optimization architectures and
the interfaces between their respective layers. The CA architecture is
shown at the top of the figure. In CA, the individual motors’ power
losses are included in the objective function of the OCP (1), and the
motor torques serve as the control variables. In contrast, the OCP
in DCA, illustrated in the middle of the figure, does not account for
motor-related losses when determining the optimal velocity profile.
Consequently, only the motion resistance is minimized. The control
variable in this case is the total longitudinal force, while the motor
torques are optimized for minimum instantaneous power loss in a
lower layer, where the optimal longitudinal force from the OCP is
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Fig. 2. Efficiency of the electric motors.
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Fig. 3. Particle model with longitudinal dynamics.

implemented as an equality constraint. The architecture for r-DCA is
presented at the bottom of the figure. It can be interpreted as a hybrid
between CA and DCA: the control variable remains the longitudinal
force, but a force loss term associated with motor power losses is
included in the objective function. A detailed description of each
architecture is provided in the following subsections.

3.1. Centralized optimization architecture (CA)

In CA, the energy-optimal velocity profile and motor torque distri-
bution are found simultaneously in the OCP.

3.1.1. CA optimal control layer
There are two controlled variables; the torque request on the front
motor T,,, and torque request on the rear motor 7,,,:

(6)

wl

ucy =T, T,
The feasible set of the motor torques includes operational limits
and attainable friction force at the tires. The operational torque limit
is dependent on rotational velocity, and is piece-wise fitted with two
polynomials to be incorporated as inequality constraints in the OCP,

Tt 1im1 (@) = €7 p0@p s + Crp1 @)
Tog1im2(@p ) = chzwfnf + ch3cofnf + Cp 4@y + Crps 8)
T tim) (@) = CTr0@pyp + €11 9
T tim2 (@) = CT0®02 + O3 @+ Crpa@py + Crys (10)

where crso-cr s and er,-cr,s are coefficients of the polynomials for
the front and rear motors respectively. The polynomial constraints and
corresponding motor data are shown in Fig. 5.

The torque limit based on friction force is derived assuming road-

tire friction coefficient 4 = 1 and a static normal load for each
axle,
"
T iim3 = (WFp)— an
I’lf
ry
Tmr,[im3 = (”Fzr)n_ (12)
r

where F, ., F,, are the static normal loads for the front and rear axle,
and r, is the loaded wheel radius. The motor torques are limited by the
minimum of these three constraints for each axle respectively.

The power losses associated with the motors are included in the
objective function. A polynomial approximation of the simulated power
loss data, dependent on T,, (propulsive and braking) and w,,, is obtained
using the cftool in MATLAB with the linear least-squares method. The
polynomial order in both variables is increased until the fitting error
is minimized. To improve accuracy in specific regions, particularly
around zero torque as low torque demands occur more frequently
during everyday driving, selected data points are weighted accordingly.
The resulting polynomial expressions are given by,

5 4
Ploss,f(wmf’Tmf): Zzpf,ij(wmf)i(Tmf)j (13)
i=0 j=0
5 4
Pluss,r(wmr’ Tmr) = Z z pr,ij<wmr)l(Tmr)J (14)
i=0 j=0

where p;; and p, ;; are coefficients of the polynomials for the front and
rear motor respectively.

The objective function in (2) is rewritten in terms of the defined
state and control variables for CA with,

1
F(x.ucy) = (Tpns +T,n,) P (15)
n
Fx.[o.rs(x’uCA) = ; (PIoss,f ( v 2K_f’Tm/'> + Ploss,r < v 2[(&’Tmr>)
V2K "I "
(16)

Incorporating the derived constraints and the objective function, the
resulting OCP is found.

sy 1
i T, T, —
)?;llir} '/sU <( mfy + mrnr) r’+

—n
; <Plasx,f < 2I<_f’Tmr"> + le'w < 2K&’Tmr>>> ds (173-)
V2K r ry

2
L
st. x= [\ﬂ] (17b)
UX
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0CP »
min J (FGTm) + Frtoss (%, T )) ds
im Js, *
CA | T,y=arg s.t. x=f(x,u) — Ty, = [T’ff ]
x€X mr
Tp€ Ur,
_______________ 1
OCP Sf I Instantancous |
minJ. F(x,E.,)ds 3
%k Jg, * ol | n;:"n Pioss (X, Ton) | . 771)‘
DEA F=arg| s.t. x=f(xF) 1 Tm=arg| st E=f(Tw) | T =
x€X | T,€ Uy, |
F, € Ug, I I
b s e i e 2t
e T T 1
ocp sf | Tnstantaneous I
min [ (PGB + Friass( ) ds | min Pioss (¥, Tm) |
Fx Jsy E* Tm T
-DCA | Ff =arg s.t. &= f(x,F) ——— Tn=arg| st Er=f(T,) :—> Th = [T’Z‘f }
x€eX | Tn€ [UT,,, | mr
F €Ug, I I
S R S S
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Fig. 5. Torque capabilities.

. 1 1 .
b= <(Tmf"f +T,,.n,) - PuirA;CyK — mgC,, cos ¢ — mgsin d))
s 1

(17¢)
n n
|T,,s| — min [Tmf,liml < V ZKr—f> s Tog tim2 ( V 2Kr_f> ’Tmf.limS] <0
1 I
17d)
T, — min [Tmr,lfml ( \ 2Kﬂ> s T im2 < v 2K&> iz | 0 (17€)
ry T
%U,zr,mm S K S %U)Zc.max (17f)
1
K(s9) — Euio =0 17g
1
K(s;)— Euif =0 (17h)
ts;)—t; <0 (17i)

where v,, and v,, are the initial and final velocity, and ¢, the
maximum travel time specified in Section 4.1.

3.2. De-centralized optimization architecture (DCA)

DCA consists of an OCP solving for the energy optimal velocity
trajectory and longitudinal force request, and a instantaneous layer

solving for the power optimal distribution of motor torque between the
ASM and PMSM such that the optimal longitudinal force demand from
the OCP is met.

3.2.1. DCA optimal control layer

In DCA, the OCP has only one controlled variable: total longitudinal
force F,,
upcy = [Fy 18)

The feasible set of uj, is defined by the combined capability of
the motors given by,

1 Oyl Wyl
Fx,lim(vx) = "_/ <Tmf,lim (T) nf +Tmr,lim < 'Z" ) nr) (19)

r

The longitudinal force limit is piece-wise fitted with two polynomials
in the same way as the torque limits in CA,

Fx,liml(vx) = CFx0Vx + CFx1 (20)
3 2
F1im2(Ux) = CpeaUy + Cpaaly + CragUx + Cpys @D

where cp,o-cpys are coefficients of the polynomials. The longitudinal
force is also limited by the available friction force. Since F, is the
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total longitudinal force of the vehicle, the total static normal load is
considered,

F <u(F +F,) (22)

Proceeding from the OCP defined in (1), removing F, ;.. from the
objective function and incorporating limits for F,, the OCP for DCA is
obtained,

Sf
min / F.ds (23a)
XUpca Js,
L
st x= [\/ﬁ ] (23b)
UY
0, = 1 (F, - PairAyCyK — mgC,, cos ¢ — mgsin ) (230)
mY
|Fx| — min [Fx,liml( v ZK)’ Fx,limZ( v 2K)*Er,lim3] <0 (23d)
%U)z:,min S K S %Ui,max (236)
12
K(s0) = 503 =0 (230
Lo _
K(sp) =503, =0 (238)
t(sp)—1,<0 (23h)

3.2.2. DCA instantaneous optimization layer
In the instantaneous optimization problem, the electric power losses
are minimized in every iteration. It is formulated as:

n
. ! n
TrrIfol’l—[I:lmr <Ploss,f <er_I!Tmf> + P/o:s,r (er_l,’Tmr>>

.1
s.t. F;=r—[(rmfnf+r,,,,n,)

(24a)

(24b)
. ny ny
|T,,;| — min [Tf.liml <Ux?> Ts tim2 <Ux?> ’Tf,lim3:| <0 (249

. n n
|Tmr| — min [Tr,liml <er_:> ’ Tr,lim2 <er_:> ’Tr,lim3] <0 (24d)

The optimal longitudinal force request, F;, from the predictive
optimization layer is treated as an equality constraint, and the mo-
tor capabilities are represented by inequality constraints defined by
(7)-(10) and available friction force (11). The implementation of the
instantaneous optimization problem and its interface with the OCP is
presented together with the simulation environment in Section 4.1.

3.3. Refined de-centralized optimization architecture (r-DCA)

The objective function of the OCP in DCA is augmented with aggre-
gated power losses of the motors, referred to as an aggregated power
loss map (APLM). The requirement on the APLM is that it should be a
function of the optimization variables in DCA, as it should not introduce
additional variables to the predictive layer.

3.3.1. Generation of the aggregated power loss map (APLM)

The APLM represents power losses of the entire powertrain, consist-
ing of one or more electric motors, from the perspective of longitudinal
vehicle operation, effectively serving as the equivalent of an electric
motor’s operational map but for the complete vehicle. It is defined by
the total longitudinal force and forward velocity, F, and v,. The APLM
exhibits infinite variability due to overactuation. In other words, for
each operating point, defined by one combination of F, and v,, there
are countless possible motor torque distributions, requiring a prede-
fined allocation. To achieve the most power-efficient map, the torque
distribution is optimized for each operating point to minimize power
losses in the powertrain, and the corresponding losses are recorded.
This means that the torque distribution could vary for different oper-
ating points in the APLM. The generation of the APLM is performed in
the following way for the considered powertrain configuration:
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(1) Define the domain dictated by the capabilities of the combined
powertrain: Fy € [Fy ip» Fx max] and vy, € [0, 0y 4]

n
f n
Fx.min = max (r_[Tmf,min’ MFZfO) + max <r_:Tmr4,min= ”Fzr0>

n
. f . n
Fx,max = min <r_ITmf,max7 _”sz0> + min <r_[rTmr,max’ _”Fzr0>

Uy pax = Min <—wf’max s M) r
’ ny n,
where n, and n, represent the front and rear transmission ratios,
Ty f min a0d T, ;,, the lower operational torque limit on the front
and rear motor, F,, and F,, the static normal load on the
front and rear axle, T,/ .« and T, ., the upper operational
torque limit on the front and rear motor, and @ ., and @, 4,
the maximum rotational speed for the front and rear motor,
respectively.
(2) Grid the domain into a number of operating points. Here:
Np, =200
N, =100
(3) Step through each operating point, find the optimal torque
distribution through optimization and corresponding combined

power losses.

v

.e 1 1
if: Fx > (Tmf,maxnf + Tmr,maxnr) Z or Fx < (Tmf,mmnf + Tmr,minnr) Z

then: Force request exceeds powertrain capabilities. Re-
turn NaN.

else:  (a) Find optimal torque distribution through the in-
stantaneous optimization problem (24), here for-
mulated as a non-linear program and solved using
fmincon in Matlab.

(b) Use optimal torque distribution to find the com-
bined powertrain losses through interpolation of
the original power loss data for the motors. Store
power losses in a look-up table.

(c) Calculate the optimal combined powertrain effi-
ciency, n. Store efficiency in a look-up table.

The corresponding aggregated efficiency map is shown in Fig. 6a
and the optimal torque distribution can be seen in Fig. 6b. The effi-
ciency is only used for visualization, while the power losses are used
in the objective function of the OCP. The powertrain is most efficient
for low to medium longitudinal force requests at 15-40 m/s, and the
efficiency decreases quite rapidly for velocities below 15 m/s. The
power optimal torque distribution in Fig. 6b is predominantly biased
towards the rear motor with 65%-80% of the total torque request. At
very high longitudinal force requests, the distribution is closer to equal
between the motors.

3.3.2. r-DCA optimal control layer
Similar to DCA, the OCP in r-DCA has only one controlled variable:
total longitudinal force F,,

u.pcs = [Fy] (25)

The aggregated power loss map is fitted with a bivariate polynomial
dependent on vehicle velocity and longitudinal force,
5 2
Pross.r, W F) = D0 Y hyy(0,) (FY (26)
i=0 j=0
where h;; are coefficients of the polynomial. The power loss polynomial
is added to the objective function in the predictive optimization layer
of r-DCA. The OCP is then formulated accordingly,

5
xinin / (Fx + L loss.F, (V 2K, Fx)> ds
UrpCA 50 V2K

(27a)
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Fig. 6. Powertrain optimal efficiency and distribution.

1
st x=| VK (27b)
UX
|Fx| — min [Fx.liml( V2K), Fx,limZ( V2K), Fx,lim3] <0 (27¢)
1, 15
zvx,min S K S va,max (27d)
1
K(sp) = 503 =0 (27¢)
)
K(sp)= 50, =0 @79
H(sp)—1,<0 (27g)

3.3.3. r-DCA instantaneous optimization layer
The instantaneous optimization problem is formulated in the same
way as for DCA, see (24) in Section 3.2.2.

4. Simulation results in straight driving

Two test cases are considered in this work: a simple case to explore
the differences between low- and high-speed driving scenarios, and the
Artemis urban drive cycle to evaluate performance in a more dynamic
environment.

4.1. Simulation environment

The OCPs defined in previous sections (3.1, 3.2 and 3.3) are im-
plemented in the CasADi [37] environment in Matlab. They are trans-
formed into non-linear programs (NLPs) using multiple-shooting and
the Runge—Kutta 4 integrator with four steps per interval and 2500
discretization points N. Road slope is treated as a known constant
that changes for every step. The NLPs are then solved using the IPOPT
solver.

The resulting optimal control vector (consisting of [Tj‘n f,Tj‘nr]T for
CA and [F7] for DCA/r-DCA) for the given segment is forwarded to a
first-order particle model with a static powertrain in Matlab Simulink.
The particle dynamics is given by,

. 1 1 .
by =—- ((Tmfnf +T,,n,) o PairA;CyK — mgC,, cos ¢ — mg sin ¢>
s

(28)

A simple model is chosen as opposed to a high fidelity model as it
is deemed sufficient for the conceptual study of energy consumption
in this paper. For implementation of the derived algorithms, a more
refined vehicle dynamics and powertrain model is required to capture

possible oscillations and stability issues caused by the redistribution of
torque.

For DCA and r-DCA, the instantaneous torque distribution optimiza-
tion is solved online using the MATLAB function fmincon. Fig. 7
provides an overview of how DCA and r-DCA are integrated into the
simulation environment.

The OCP is run offline and provides the optimal control trajectory
F’, for the prediction horizon N. For each time step k € {1, N}, F} (k)
in the instantaneous optimization problem is updated and the optimal
torque distribution is determined. The resulting front and rear axle
torques are then provided to the particle model, which computes the
corresponding vehicle velocity v, and energy consumption using the
original power loss data. In the case of CA, the optimal motor torques
obtained from the OCP are forwarded directly to the particle model.

4.2. Simple test case

The simple test case consists of a 2500 m road segment with a hill
reaching a peak altitude of 40 m at its midpoint. Two speed scenarios
are analyzed to represent typical driving conditions: a low-speed case
at 15 km/h and a high-speed case at 90 km/h. The purpose of these
scenarios is to define representative operating regions and investigate
where electric vehicles may benefit from speed planning. The specified
velocities are not used as reference trajectories but instead constrain
the maximum travel time, 7, to 600 s for the low-speed case and 100 s
for the high-speed case. Consequently, they correspond to two average
minimum velocities: v,yg i, = 15 km/h and v, = 90 km/h. The
vehicle may therefore complete the segment in less time than ¢,. The
initial and final velocities, v, and v, are set to v, The vehicle
velocity is further constrained to v, € [1,200] km/h.

g.min*

4.2.1. Low-speed driving scenario, vy, iy = 15 km/h.

The trajectories of velocity, longitudinal force, motor torque, and
energy consumption for the low-speed scenario are presented in Fig. 8.

From Fig. 8(a), it can be observed that CA and r-DCA result in
increasing velocity profiles, whereas DCA maintains a constant velocity.
In the OCP of DCA, the only resistance that can be minimized is
the aerodynamic drag, which increases quadratically with velocity.
Therefore, the optimal solution is to maintain the lowest possible
velocity, limited here by the maximum allowed travel time. When
the powertrain losses are included, as in CA and r-DCA, the resulting
velocity profile varies according to the combined efficient operating
regions of the electric motors.
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[
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min Pj,s5(x(k), T (k) :Tm - [Trﬁi(k)] Fl)
E: (k) = f(Tom (k) | O_O

T, (k) € Ur,,

Fig. 7. Simulation environment for DCA and r-DCA.

The influence of road topography on the velocity profile is also
evident, with higher velocities before and after the hill and lower
velocity at the crest. The longitudinal force, shown in Fig. 8(b), exhibits
similar behavior among the architectures, except at the beginning and
end of the maneuver, where CA and r-DCA accelerate to and decelerate
from higher velocities. Notably, no coasting or PnG events occur where
the motor torques are zero. This behavior likely arises because power
losses are not assumed to be zero at zero motor torque. As shown in
Fig. 8(c), all three architectures allocate more torque to the rear motor,
which is expected since the rear PMSM operates more efficiently in this
region of the traction diagram (see Fig. 2).

From Fig. 8(d), which illustrates the energy consumption, it can be
observed that CA and r-DCA consume more energy than DCA at the
beginning of the segment. Around 1250 m, the energy consumption
of CA aligns with that of DCA, while r-DCA maintains a higher level
throughout most of the distance. Both CA and r-DCA recover more
energy at the end of the trip due to regenerative braking.

The trajectories of longitudinal force and velocity in the power-
optimal traction diagram are shown in Fig. 8(e), where CA and r-DCA
operate in more efficient regions at higher velocities compared to DCA.
Examining the power efficiency contours, it is evident that efficiency
increases with both velocity and longitudinal force within this operat-
ing region. However, higher powertrain efficiency does not necessarily
lead to lower overall energy consumption, since the velocity-dependent
driving resistances, such as aerodynamic drag, also increase. Thus,
increasing velocity to access a higher-efficiency region only reduces
total energy consumption if the reduction in power losses outweighs
the additional driving resistance.

=90 km/h.

The trajectories of velocity, longitudinal force, motor torque, and
energy consumption for the high-speed scenario are presented in Fig.
9.

4.2.2. High-speed driving scenario, v

avg.min

In Fig. 9(a), it can be observed that DCA again maintains a con-
stant velocity, whereas CA and r-DCA exhibit a sinusoidal-like velocity
profile that varies with the road topography. The pattern is similar to
that of the low-speed scenario, with the main difference being a smaller
velocity variation of approximately +0.5 m/s from DCA.

As shown in Fig. 9(b), CA and r-DCA generally operate with lower
longitudinal force magnitudes, except at the beginning of the maneu-
ver. Similar to the low-speed scenario, the torque distribution is biased
towards the rear motor, as seen in Fig. 9(c). Examining the traction
diagram in Fig. 9(e), it is less apparent that CA and r-DCA operate
in more efficient regions compared to the low-speed scenario. How-
ever, efficiency varies primarily with longitudinal force and remains
relatively constant with velocity, indicating that increasing velocity
provides limited additional benefit in terms of energy efficiency for the
powertrain.

Table 2
Time and energy consumption of CA, DCA and r-DCA for the simple test case.
Negative numbers indicate a reduction in energy consumption.

Vv min Strategy Time [s] Energy cons., E [kWh] AE
cA 323.8 0.4371 -3.3%

15 km/h DCA 600 0.4520 ref
-DCA 294.1 0.4390 ~2.9%
ca 100 0.5962 ~0.1%

90 km/h DCA 100 0.5969 ref
r-DCA 100 0.5962 ~0.1%

4.2.3. Energy consumption and time

The final travel time and energy consumption for the two speed
scenarios are summarized in Table 2. In the low-speed scenario, CA
and r-DCA complete the trip in nearly half the time required by
DCA. The energy consumption of CA is reduced by 3.3% compared
to DCA, while r-DCA achieves a similar reduction of 2.9%. For the
high-speed scenario, the reduction in energy consumption is relatively
small, if not negligible, with all three architectures completing the trip
in approximately the same time.

4.3. Real world driving cycle: Artemis urban cycle (AUC)

In the simple test case, the velocity was loosely constrained, except
for the initial and final velocities. While this flexible setup is useful
for exploring energy-efficient velocity profiles, the resulting dynamic
profiles for CA and r-DCA, for example, the increased speed in the low-
speed scenario, are rarely feasible in practice. To evaluate the effects
of decoupling under more realistic conditions, an additional driving
scenario is required. For this purpose, the Artemis Urban Cycle (AUC)
is employed. The velocity profile defined by this drive cycle serves as
the reference velocity, v,,,, and the solution is allowed to deviate by
up to 10% from it.

090,y v, 110, (29)

Furthermore, the lower bound on the reference velocity is set to
10 km/h, as the OCP in its current design cannot handle velocities
reaching zero, as in the original AUC.

Fig. 10 presents the velocity profiles of CA, DCA, and r-DCA along-
side the reference velocity. The velocity profile of DCA closely follows
the lower velocity limit throughout the drive cycle, consistent with the
behavior observed in previous scenarios. As in earlier cases, CA and
r-DCA exhibit similar velocity profiles, avoiding rapid fluctuations and
approaching the upper velocity limit when the reference velocity is low.

The energy consumption results are summarized in Table 3. CA con-
sumes 2.2% less energy than DCA, while r-DCA achieves approximately
the same energy efficiency as CA. Following the reference velocity
profile of the AUC, v, = v,,,, increases energy consumption by 2.0%.
Again, DCA requires the longest time to complete the cycle.
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Fig. 8. Results from v,,,, .,

5. Discussion and future work
5.1. Discussion of results

The results presented in Table 2 indicate that including both the
velocity profile and torque distribution in the OCP, as in CA, reduces en-
ergy consumption by 3.3% for low-speed driving but only by 0.1% for
high-speed driving. Examining the efficiency contours in Fig. 2 reveals
that efficiency varies primarily with velocity in the low-speed region

=15 km/h.

and with longitudinal force in the high-speed region. Consequently,
varying the velocity profile at higher speeds provides little additional
benefit in terms of energy consumption.

Interestingly, CA and r-DCA adopt higher velocities in the low-
speed scenario, which contradicts the common eco-driving guideline
of maintaining a low and constant speed. The OCPs in CA and r-
DCA predict that the reduction in motor power losses outweighs the
increase in aerodynamic drag, leading to increased velocities. However,
achieving the full 3.3% energy reduction requires a velocity increase of
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Fig. 9. Results from v, ,;, = 90 km/h.

4-5 m/s, approximately twice the initial and final speed, an increase
that may be unrealistic in practical low-speed scenarios such as city
driving. In this study, such deviations are considered acceptable since
the primary objective is to evaluate different optimization architectures
in terms of energy consumption rather than to develop an immediately
implementable control strategy. Nevertheless, a rapid increase in ve-
locity could potentially cause discomfort for vehicle occupants. From
the longitudinal force shown in Fig. 9(b), and using the vehicle mass

10

specified in Table 1, the corresponding longitudinal acceleration can
be estimated to approximately 1 m/s?, which is well within a comfort-
able range for passengers. In addition, the maximum longitudinal jerk
produced by any of the three architectures is approximately 0.02 m/s?,
which is well below the comfort threshold [38].

Furthermore, the travel time for CA and r-DCA is significantly
shorter than for DCA, which could raise concerns about the fairness
of the comparison. As noted earlier, the objective of this paper is to
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Fig. 10. Velocity profiles for Artemis urban drive cycle: reference, CA, DCA,
and r-DCA.

Table 3
Energy consumption of CA, DCA and r-DCA for the Artemis Urban City Cycle.
Negative numbers indicate a reduction in energy consumption.

U,y [km/h] Strategy Time [s] E [kWh] AE
Uy = Uyef 813.2 0.9668 2.0%
AUC CA 802.3 0.9267 —2.2%
DCA 903.3 0.9472 ref
r-DCA 798.8 0.9268 -2.2%

quantify the differences in energy consumption between the three opti-
mization architectures. To minimize restrictions on the solution, travel
time is not penalized in the objective function but is only constrained
by a maximum value. The comparison remains fair because all three
architectures share the same boundary conditions and state constraints.
Notably, the results show that energy consumption can be reduced by
3.3% while completing the trip in approximately half the time, which
contradicts the common assumption that lower velocities always yield
lower energy consumption.

By refining DCA with an aggregated powertrain efficiency map,
as in r-DCA, energy consumption is reduced by approximately 2.9%
compared to DCA. This demonstrates that the OCP for determining an
energy-optimal velocity profile and torque distribution can be divided
into two separate optimization problems, provided that aggregated
information about the powertrain efficiency is available in the velocity
planning layer. Consequently, the number of optimization variables in
the OCP is reduced, as the torque distribution between the motors
is not handled in this layer but instead represented by a single total
longitudinal force request. In other words, the number of controlled
variables in the OCP is decreased, which could lower the computational
effort. The instantaneous optimization in r-DCA could be considered
redundant, as the torque distribution has already been optimized to
generate the aggregated power loss map. A lookup table dependent
on longitudinal force and velocity could therefore be used instead,
simplifying implementation in a real vehicle.

5.2. Limitations and future work

The work presented in this paper has analyzed the separation of ve-
locity trajectory optimization and torque distribution within a limited
scope. Several factors remain to be explored to extend this analysis. One
such factor is the inclusion of lateral dynamics. Road curvature imposes
an upper bound on velocity to maintain vehicle stability and occupant
comfort, which is not captured when only longitudinal dynamics are
considered. Additionally, the preferred torque distribution on which

11
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the aggregated power loss map is based may not be feasible in practice
due to stability issues caused by combined slip. This could be addressed
by augmenting the map with information on road curvature or lateral
acceleration. Furthermore, future work should include sensitivity anal-
yses to assess the effects of varying vehicle load, different topography
profiles, alternative electric motor types, and other relevant parameters
on the overall energy savings of the different architectures.

The possibility of electrically switching off the ASM or mechanically
disconnecting the PMSM from the wheels has not been investigated in
this work. Including this option could potentially enable PnG operation,
as observed in other studies on electric vehicles [10,12]. In the present
study, the electric motors are not assumed to have zero losses at zero
torque or speed, meaning that allowing the motors to rotate with the
wheels without providing torque (i.e., coasting) is not ‘free’ in terms
of energy. Representing the option to connect or disconnect the motors
would require integer decision variables in the optimization problem,
which significantly increases the computational complexity of solving
the OCP efficiently.

A simple simulation model is used instead of a high-fidelity model
because the current study does not involve fast dynamics. While pitch
and roll dynamics, as well as load transfer, are important for comfort
and stability, they have little effect on energy consumption in passenger
vehicles. Powertrain dynamics, however, are critical for implementing
torque distribution algorithms, as rapid redistribution of torque can
induce oscillations in the powertrain that may compromise comfort and
stability. The interaction with existing stability systems must also be
considered. In situations where vehicle stability is threatened, energy
efficiency is no longer the primary objective; instead, a transition from
the energy-efficient algorithm to the stability system could occur when
thresholds for yaw rate or vehicle sideslip are exceeded.

Finally, the derived algorithms are not intended for real-time ve-
hicle implementation. The control strategy employed is open-loop,
meaning that no feedback from the vehicle is used to verify whether the
target velocity is achieved through the applied torque requests. Future
work should investigate real-time implementation methods, such as
model predictive control, which incorporate closed-loop feedback. Al-
though the algorithms are not optimized for computational efficiency,
notable differences in computation time were observed during the
Artemis Urban Cycle. Specifically, DCA and r-DCA were more than
twice as fast as CA (CA: 22.875 s, DCA: 2.267 s, r-DCA: 8.667 s),
measured on a standard laptop equipped with an Intel i7 3.00 GHz
processor. To accurately assess computational effort, the algorithms
should first be optimized for convergence and then compared under
consistent conditions.

6. Conclusions

The aim of this work was to evaluate the impact of separating
velocity trajectory optimization and motor torque distribution into
two smaller optimization problems on energy consumption in electric
vehicles. Specifically, the study focused on whether torque distribution
can be managed instantaneously without compromising the potential
for reducing total energy consumption.

Three optimization architectures are presented: a centralized (CA),
a de-centralized (DCA), and a refined de-centralized architecture (r-
DCA). In the centralized architecture, a single optimal control problem
is formulated that simultaneously optimizes both the velocity profile
and motor torque distribution. The objective function includes total
energy consumption, accounting for losses in the electric motors. In
the de-centralized architecture, the optimal control problem optimizes
only the velocity profile, without incorporating powertrain efficiency
in the objective function. Instead, motor power losses are minimized
instantaneously while satisfying the resulting longitudinal force corre-
sponding to the optimal velocity profile. In the refined de-centralized
architecture, a novel aggregated power loss map of the electric motors
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is derived and incorporated into the objective function, while torque
distribution is still optimized instantaneously.

The three architectures were evaluated in a simple test case with
varying topography at low and high speeds, as well as in the Artemis
Urban City Cycle (AUC), representing a more realistic driving sce-
nario. Comparing the centralized and de-centralized architectures, it
was found that simultaneously optimizing the velocity trajectory and
torque distribution reduces energy consumption by 3.3% in the low-
speed scenario, compared to optimizing the two tasks sequentially. The
refined de-centralized architecture further reduces energy consumption
by 2.9% relative to the de-centralized architecture. For the high-speed
scenario, the difference in energy consumption between the architec-
tures was very small, if not negligible. In the AUC, both the centralized
and refined de-centralized architectures reduce energy consumption
by 2.2% compared to the de-centralized architecture. These results
indicate that separating the optimization of velocity profile and motor
torque distribution has minimal impact on potential energy savings,
provided that the objective function in the optimal control problem
incorporates aggregated power loss information for the powertrain.
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