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 a b s t r a c t

Public transport electrification contributes to the net-zero goal in the transport sector. However, 
high-power bus charging during peak hours places additional strain on the grid, while under-
utilization of charging infrastructure limits its potential economic and social benefits. This study 
focuses on these challenges through integrated and shared optimization of battery electric buses 
(BEB) and shared micromobility systems (SMS) incorporating solar photovoltaic. We present a 
bi-level mixed-integer linear programming model (B-MILM) to jointly optimize BEB charging in-
frastructure, BEB charging schedules, solar PV installed capacity, and SMS charging schedule. The 
B-MILM is solved using a value-function-based exact approach. We derive a group of inequalities 
based on the problem characteristics to reduce solution time. A large-scale case study in Gothen-
burg, Sweden, demonstrates that solar photovoltaic and shared charging services yield annual cost 
savings 110% - 120% above investment costs for public transit agencies, even when the service 
fee revenue is excluded. Charging dispatching costs for e-scooter operators are reduced by up to 
54%, and daily BEB charging grid loads decrease by 3% to 34% across seasons. The greenhouse 
emissions from electricity consumption of BEBs and e-scooters are reduced by 3%. The results 
offer new insights for sustainable charging and energy infrastructure planning and management 
for electric public transit.

1.  Introduction

Substantial efforts are being made to electrify public transport (PT) to align with the net-zero goal (He et al., 2025). In 2022, nearly 
66,000 electric buses were sold globally (IEA, 2024). However, PT electrification faces two major challenges. First, the range anxiety 
associated with battery electric buses (BEBs) necessitates frequent high-power charging (McCabe et al., 2025), which stresses the 
power grid, particularly during peak-load hours. Second, since BEBs spend most of their time in service, the low charging infrastructure 
utilization restricts its potential economic and social benefits. Regarding these challenges, existing research has explored shared 
charging scheduling services by sharing BEB charging hubs for private cars (Ji et al., 2023; Jia et al., 2024) and ride-sourcing services 
(Cai et al., 2024). These studies commonly document increased benefits for involved stakeholders. Charging accessibility is improved 
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\begin {align}\min \sum _{j \in J_B} C_{PV} S_j + \sum _{j \in J_B} C_{CH} N_j + \sum _{h \in H} \theta _h \sum _{v \in V} \sum _{k \in K_v} \sum _{t_0 \in T^0} \lambda _{t_0} \sum _{t \in T^{sub}_{t_0}} r_{hvkt} \notag \\ - \sum _{h \in H} \theta _h \sum _{j \in J_B} \sum _{t_0 \in T^0} \lambda _{t_0} u_{hjt_0} \notag \\ - C_{fee}\sum _{h \in H} \theta _h \sum _{i \in I} \sum _{j \in J_B} \sum _{t_0 \in T^0} {o_{h,ij,t_0,B}} \label {eq:1}\end {align}


\begin {align}E_{h,v,k}{'} = E_{h,v,k-1}^{'} - e_{vkh} + \sum _{t \in T} r_{hvkt}, \forall h \in H, v \in V, k \in K_v \label {eq:3}\end {align}


\begin {align}E_{h,v,k-1}^{'} - e_{vkh} \geq SoC_{\min } C_v, \forall h \in H, v \in V, k \in K_v \label {eq:4}\end {align}


\begin {align}E_{h,v,k}^{'} \leq C_v, \forall h \in H, v \in V, k \in K_v \label {eq:5}\end {align}


\begin {align}E_{h,v,0}^{'} = C_v, \forall h \in H, v \in V \label {eq:6}\end {align}


\begin {align}E_{h,v,|K_v|}^{'} = C_v, \forall h \in H, v \in V \label {eq:7}\end {align}


\begin {align}r_{hvkt} \leq p \Delta _{vkt} z_{hvkt}, \forall h \in H, v \in V, k \in K_v, t \in T \label {eq:8}\end {align}


\begin {align}\sum _{v \in V} \sum _{k \in K_v} \delta _{vkjt} z_{hvkt} \leq N_j, \forall h \in H, j \in J_B, t \in T \label {eq:10}\end {align}


\begin {align}{u_{hjt_0}} \leq {\min \{{\sum _{v \in V, k \in K_v, t \in T^{sub}_{t_0}}} {\delta _{v k j t}} {r_{h v k t}} + e \sum _{i \in I} {d_{it_0}} {o_{h,ij,t_0,B}}, {g_{ht_0}} {S_j\}}}, \forall h \in H, j \in J_B, t_0 \in T^0 \label {eq:11}\end {align}


\begin {align}{0} \leq {S_j} \leq {S_{j,\max }}, \forall j \in J_B \label {eq:12}\end {align}


\begin {align}{0} \leq {N_j} \leq {N_{j,\max }}, N_j \in \mathbb {Z}, \forall j \in J_B \label {eq:13}\end {align}


\begin {align}{E_{h,v,k}'} \geq 0, \forall h \in H, v \in V, k \in K_v \label {eq:15}\end {align}


\begin {align}u_{hjt_0} \geq 0, \forall h \in H, j \in J_B, t_0 \in T^0 \label {eq:16}\end {align}


\begin {align}r_{hvkt} \geq 0, \forall h \in H, v \in V, k \in K_v, t \in T \label {eq:17}\end {align}


\begin {align}z_{hvkt} \in \{0,1\}, \forall h \in H, v \in V, k \in K_v, t \in T \label {eq:18}\end {align}
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\begin {align}\min \sum _{h \in H} \theta _{h} \sum _{i \in I} \sum _{j \in J_B} \sum _{t_0 \in T^0} 2 C_{ij} o_{h,ij,t_0,B} + \sum _{h \in H} \theta _{h} \sum _{i \in I} \sum _{j \in J_E} \sum _{t_0 \in T^0} 2 C_{ij} o_{h,ij,t_0,E} \label {eq:19}\end {align}


\begin {align}\sum _{j \in J_E} o_{h,ij,t_0,E} + \sum _{j \in J_B} o_{h,ij,t_0,B} \leq 1, \forall h \in H, i \in I, t_0 \in T^0 \label {eq:20}\end {align}


\begin {align}d_{it_0} (\sum _{j \in J_E} o_{h,ij,t_0,E} + \sum _{j \in J_B} o_{h,ij,t_0,B} - 1) \geq 0, \forall h \in H, i \in I, t_0 \in T^0 \label {eq:21}\end {align}


\begin {align}\sum _{j \in J_E} o_{h,ij,t_0,E} + \sum _{j \in J_B} o_{h,ij,t_0,B} \leq d_{it_0}, \forall h \in H, i \in I, t_0 \in T^0 \label {eq:22}\end {align}


\begin {align}e \sum _{i \in I} {d_{it_0}} {o_{h,ij,t_0,B}} \leq N_j p - & \sum _{v \in V} \sum _{k \in K_v} {\sum _{t \in T^{sub}_{t_0}}} {\delta _{vkj{t}}} {z_{hvk{t}}} p \Delta t, \notag \\ \forall h \in H, & j \in J_B, t_0 \in T^0 \label {eq:23}\end {align}


\begin {align}o_{h,ij,t_0,B} \in \{0,1\}, \forall h \in H, i \in I, j \in J_B, t_0 \in T^0 \label {eq:24}\end {align}


\begin {align}o_{h,ij,t_0,E} \in \{0,1\}, \forall h \in H, i \in I, j \in J_E, t_0 \in T^0 \label {eq:25}\end {align}
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\begin {align}{\chi _{HPP}} = \min \phi ^l{(x^l, x^f)}, \forall (x^l, x^f) \in \Omega \label {eq:26}\end {align}
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$w(x^f)$


\begin {align}w_{hjt_0}(x^f) = e \sum _{i \in I} d_{it} o_{h,ij,t_0,B}, \forall h \in H, j \in J_B, t_0 \in T^0 \label {eq:28}\end {align}


\begin {align}{\gamma }_{\hat {x}^f,hjt_0} = \lfloor {-w_{hjt_0}(\hat {x}^f)}\rfloor + 1, \forall \hat {x}^f \in y, h \in H, j \in J_B, t_0 \in T^0 \label {eq:29}\end {align}


\begin {align}B(\hat {x}^f,y) = \{(x^{'f},h,j,t_0)|{\gamma }_{x^{'f},hjt_0} \geq {\gamma }_{\hat {x}^{f},hjt_0}, x^{'f} \in y, h \in H, j \in J_B, t_0 \in T^0\} \label {eq:30}\end {align}
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\begin {align}{\chi }_{EHPP} = \min \phi ^l{(x^l, x^f)} \label {eq:31}\end {align}


\begin {align}g_{hjt_0}(x^l) \geq -M_{hjt_0}^{1} + \sum _{\hat {x}^f \in y} (M_{hjt_0}^{1} + \gamma _{\hat {x}^f,hjt_0}) \omega _{\hat {x}^f, hjt_0}, \forall h \in H, j \in J_B, t_0 \in T^0 \label {eq:32}\end {align}


\begin {align}{\phi ^f{(x^l, x^f)}} \leq \phi ^f{(x^l, \hat {x}^f)} + {M^2} \sum _{({x^{'f}}, h, j, t_0) \in B({\hat {x}^f}, y )} \omega _{x^{'f},hjt_0}, \forall \hat {x}^f \in y \label {eq:33}\end {align}


\begin {align}(x^l, x^f) \in \Omega \label {eq:34}\end {align}


\begin {align}{\omega }_{\hat {x}^f, hjt_0} \in \{0, 1\}, \forall \hat {x}^f \in y, h \in H, j \in J_B, t_0 \in T^0 \label {eq:35}\end {align}
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for users of private cars and ride-sourcing services, while PT operators can gain additional revenues from shared charging modes. 
Additionally, a growing body of research investigates BEB charging infrastructure planning integrated with solar photovoltaic (PV) 
energy (Liu et al., 2024; Ren et al., 2022; Luo et al., 2024). These studies show that integrating solar PV at bus charging hubs can 
reduce charging costs and grid loads. Besides, existing studies also focus on the integrated optimization of BEB charging infrastructure 
and schedules to lower investment and charging costs while responding to time-of-use prices (He et al., 2022; Wang et al., 2023; 
Zhou et al., 2023, 2022b).

As the complementary travel modes to PT, shared micromobility systems (SMS), such as shared e-scooters and e-bikes, are popular 
low-carbon travel modes in urban areas (Li et al., 2024a). In the US alone, the National Association of City Transportation Officials 
reported 136 million shared micromobility trips in 2019 (NACTO, 2020). In Europe, more than 240 million trips by shared e-scooters 
were recorded in 2022 across 515 cities (MMfE, 2023). In the SMS system, an SMS charging point refers to a depot where the batteries 
of shared micromobility vehicles are recharged, while an SMS zone denotes a geographical area in which SMS staff operate battery-
swapping trucks to transport depleted batteries to these charging points (Levy, 2024). Vehicle batteries are typically dispatched 
between SMS charging points and SMS zones, known as battery swapping. SMS charging points not only occupy urban land but also 
incur high battery dispatch costs, as urban planning frameworks limit the number of these points. Furthermore, the limited charging 
accessibility for SMS vehicles prevents timely battery charging, potentially reducing the level of service for customers due to concerns 
about riding range. Existing research has investigated battery swapping and vehicle re-balancing strategies for electric scooter sharing 
systems to improve the system service level (Lee et al., 2024; Osorio et al., 2021). Nevertheless, existing studies have not focused 
on the planning or operational challenges of sharing BEB charging hubs with SMS. Regarding integrating solar PV and bus charging 
infrastructure, the quantitative impacts still need to be understood in shared charging service modes. Therefore, this study aims to 
fill these gaps by investigating a BEB charging infrastructure planning and scheduling problem considering both SMS and solar PV 
adoption.

The contribution of this study is summarized as follows. Unlike existing research, new challenges arise when a SMS operator is 
incorporated into a BEB charging optimization problem. First, the interests of PT and SMS operators are not completely aligned. 
PT operators aim to maximize charging service revenues from SMS operators, while SMS operators minimize operational costs by 
optimizing SMS battery dispatching. For example, given the fixed service fee, PT operators might prefer assigning SMS batteries 
to the available bus charging hub deployed solar PV systems, even if it is far from the SMS zones, to maximize their revenue. In 
contrast, SMS operators prefer assigning batteries to nearby charging hubs to reduce dispatching costs. Hence, we formulate the 
problem as a bi-level mixed integer linear model (B-MILM) to minimize the overall system costs for PT operators in the upper-level 
problem and the operational costs for SMS operators in the lower-level problem. For PT operators, the decision variables include 
the number of chargers, solar PV installed capacity, and BEB charging schedules. For SMS operators, the decision variables are the 
battery dispatching schedules. The computational challenge of applying the developed B-MILM to city-scale instances arises due to 
the problem’s complexity. To address this, we adopt a value-function-based exact approach. This approach iteratively solves the 
relaxation problem to obtain lower bounds and uncovers bilevel feasible solutions to obtain upper bounds (Lozano and Smith, 2017). 
We introduce variable-fixing strategies and additional inequalities derived from the problem’s characteristics to strengthen the model 
formulation. Numerical instances demonstrate the positive effects of these techniques on solution efficiency. Finally, a city-scale case 
study is conducted in Gothenburg, Sweden, involving 70 bus routes, 705 buses, 61 bus terminals, and 12,000 shared e-scooters.

The rest of this paper is organized as follows: Section 2 reviews existing studies on bus charging infrastructure planning problems. 
Section 3 describes and formulates the problem. Section 4 introduces the value-function-based exact approach. Section 5 presents the 
algorithm’s performance and a case study. Finally, Section 6 provides the conclusion and discusses future work.

2.  Literature review

2.1.  Related problem modeling

Given the mixed bus fleets (e.g., BEBs and diesel buses) at the early transition stage, studies focused on the bus charging infras-
tructure locations for mixed bus fleets (Li et al., 2021; Zhang et al., 2022; Cui et al., 2023). Mixed bus fleets involve heterogeneous 
refueling constraints and long-term bus fleet transition decisions. Li et al. (2021) presented a space-time-state (energy) network to 
formulate a two-stage stochastic programming model for optimizing bus charging hub locations and charging schedules. The bus 
service network in their study considers diesel buses and BEBs, including fixed bus schedules and ad hoc services. The case study 
in Hong Kong demonstrates the advantages of the space-time-state network formulation and reliability-based gradient algorithm. 
With the advancement of charging technologies, extensive studies investigated alternative charging technologies besides chargers, 
such as battery swapping (Huang et al., 2023), wireless charging infrastructure (Li et al., 2024b), and opportunity charging based on 
ultra chargers (Wang et al., 2023). This charging infrastructure requires problem modeling by incorporating bus charging scheduling 
at the single-vehicle level. For instance, Li et al. (2024b) investigated a bus charging infrastructure planning problem by introduc-
ing dynamic wireless charging technology. A mixed integer nonlinear programming model is formulated to minimize the sum of 
charging infrastructure, BEB battery, and BEB charging costs. The case study shows the economic benefits of deploying dynamic 
wireless charging infrastructure under specific assumptions and scenarios. Regarding the problem’s uncertain factors, such as energy 
consumption and travel time, two-stage robust stochastic optimization models could be established to minimize the total cost under 
uncertain conditions (Wang et al., 2024). In the first stage, deterministic decisions, such as charging infrastructure locations and 
capacity, are made, while the second stage determines bus charging schedules under uncertain conditions, which are captured by 
specific uncertainty sets. Another study presents a prediction and optimization framework to address the uncertainty in vehicle arrival 
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times and charging demand (Mahyari et al., 2023). In their work, a machine learning-based prediction model is incorporated into 
the optimization process, and the charging scheduling problem is solved using a rolling-horizon online optimization approach.

In recent years, a growing body of research has investigated integrating solar PV systems into bus charging infrastructure planning. 
Based on the bus charging hubs or bus depots, PV panels can be installed on the rooftops of buildings at or near the depots. To evaluate 
the potential of solar PV power outputs, a 3D-GIS-based framework can be used to estimate the solar PV power outputs by considering 
shading impacts (Ren et al., 2022). Additionally, one study proposed a two-stage stochastic optimization model to account for the 
uncertainty of solar PV power outputs (Liu et al., 2023b). To highlight the grid power degradation during extreme weather, a study 
develops a two-stage robust optimization model utilizing solar PV energy to offset the electricity needed for charging BEBs (Liu 
et al., 2023a). Jointly planning the PT system, energy network, and distributed solar PV offers a systemic solution for sustainable 
urban transportation. One study presented a three-level programming model for the coupled transportation and energy systems (Luo 
et al., 2024). Regarding optimizing the solar PV deployment across the entire bus network, Liu et al. (2024) proposed a data-driven 
optimization framework by integrating multiple datasets, such as bus GPS trajectory data, weather data, and bus depot building 
information. The original solar PV deployment problem is decomposed into independent sub-problems based on the single bus depot. 
The case study in Beijing shows that introducing solar PV could reduce the net grid loads of bus charging and yield obvious economic 
benefits.

2.2.  Related solution approaches

The solution approaches to the optimization models depend on the model structure and the types of objectives, constraints, and 
parameters. The nonlinear constraints could be reformulated as linear forms to solve the mixed integer programming models. For 
example, the approximated linear charging functions and battery degradation could be incorporated in the models (Zhou et al., 2022a). 
When vehicle-trip matching is integrated into the bus charging, the off-the-shelf solvers could solve small-scale instances directly. 
However, it could fail to solve the middle and large-scale instances directly using solvers. In this case, heuristics and surrogate-based 
optimization methods could be employed to find near-optimal solutions (Foda et al., 2023; Nath et al., 2024). When the optimization 
models involve uncertain parameters (e.g., energy consumption and travel time), robust or stochastic optimization models are usually 
required. Such optimization models could be transformed into deterministic formulations using robust or stochastic optimization 
techniques (e.g., budget uncertainty sets and progressive hedging) (Alwesabi et al., 2022; Esmaeilnejad et al., 2023). This study 
is different from the existing studies regarding problem modeling and solving. First, we present a bi-level mixed integer linear 
programming model considering the game process between PT and SMS operators. We also present a novel problem combination 
incorporating bus charging, SMS battery dispatching, shared charging mode, and solar PV. Regarding the solution approach, we adopt 
a value-function-based approach and present tailored inequalities to solve this complex problem exactly and effectively.

3.  Model formulation

This section first describes the problem and introduces the sets, parameters, and decision variables used in the model. Next, the 
details of the B-MILM are presented. Finally, variable-fixing strategies are proposed to strengthen the model formulation.

3.1.  Problem statement

In this problem, bus routes, bus terminals, bus schedules, SMS zones, SMS charging points, and SMS charging demand are defined 
and fixed as inputs. Bus schedules are derived from the information on the timetables, considering the number of buses used and their 
state-of-charge (SoC). Since this study focuses specifically on the problem of charging scheduling and infrastructure planning based on 
given bus schedules, the details of bus schedule generation are not presented in this paper. Bus terminals are designated as potential 
bus charging hubs equipped with chargers. In the following text, “bus terminal” consistently refers to “bus charging hub”. Solar PV 
systems can be deployed at these hubs, with their installed capacity determined within the model. SMS operators can dispatch SMS 
batteries using electric mini-trucks between SMS zones and SMS charging points or bus charging hubs. For simplicity, we refer to the 
PT operator as the leader and the SMS operator as the follower. The leader variables include the number of chargers, installed capacity 
of solar PV, and BEB charging schedules, while the follower variables are battery dispatching schedules. The follower must make 
decisions based on the leader’s decisions, and the leader must consider the follower’s response when making decisions. We assume 
that the electric mini-trucks have sufficient capacity to transport scheduled SMS batteries between SMS zones and the charging 
infrastructure. In each SMS zone, a SMS staff member operates an electric mini-truck. SMS batteries should be charged when their 
SoC falls below 20%. SMS charging demands can be estimated using SMS transaction data and must be met hourly within each SMS 
zone. We assume that each SMS charging event at bus charging hubs incurs a service fee. This fee includes only the charging-resource 
occupancy component and excludes the electricity cost associated with SMS charging at bus hubs. In addition, the PT operator receives 
payment for the electricity purchased by SMS at the utility market price, regardless of whether the electricity is supplied by the grid 
or by on-site solar PV. Consequently, the net profit from SMS charging for BEB operators has two components: (i) the service fee 
and (ii) the electricity-payment revenue corresponding to the portion of SMS charging demand supplied by on-site PV generation. In 
other words, SMS users pay for the full energy consumed at the utility market price, while the operator’s net revenue arises from the 
PV-supplied energy that does not need to be gained from the grid. Fig. 1 illustrates the cooperation relationship diagram between 
SMS and PT operators. Green lines indicate revenue or cost-saving flows, whereas red lines denote costs paid.

Transportation Research Part E 208 (2026) 104709 

3 



X. Liu et al.

Fig. 1. Cooperation relationship diagram between SMS and PT operators.

To assess the feasibility of sharing charging resources with SMS, it is essential to understand the charging patterns of electric 
buses. Electric buses typically employ two primary charging strategies: depot charging and opportunity charging (Jia et al., 2024). 
Depot charging involves recharging buses in centralized facilities during off-peak hours, often overnight, using a low charging rate. 
Therefore, the unoccupied charging capacity could be shared with SMS. Opportunity charging refers to the practice of recharging 
electric buses at bus charging stations with fast chargers during layover periods between trips. Based on GPS trajectory data from 
over 20,000 buses in Beijing, only 22% of the fleet are simultaneously stationed at depots during daytime hours (Liu et al., 2024). 
Therefore, there is potential to share bus charging capacities with SMS, even when employing an opportunity charging strategy.

We assume the presence of advanced SMS battery assembly systems capable of integrating multiple SMS battery modules into 
containerized units transportable by mini-trucks. These containers can be charged in parallel by exploiting the unused charging 
capacity at bus charging hubs. For instance, a container comprising 20 SMS batteries with an aggregate charging power of 22 kW 
could be fully charged within 30 minutes. Fully utilizing the residual charging capacity of bus charging hubs is thus crucial for system 
efficiency. Several SMS companies employ battery-swapping systems and utilize compact charging cabinets at their service points 
(Shared micromobility, 2021). Such cabinets can be integrated into trucks or installed at bus charging hubs, occupying as little as 
2m² of space.

Although several SMS companies have deployed some advanced SMS chargers (which integrate docking and charging functions 
for SMS vehicles) along streets in the SMS market, this type of charging and service model limits the feasibility of SMS. Table 1 
presents the sets, parameters, and decision variables used in the model.

3.2.  Bi-level mixed integer linear model

3.2.1.  Leader problem
The leader problem is formulated as a mixed integer linear programming model. The objective function and constraints are written 

as follows.
min

∑

𝑗∈𝐽𝐵

𝐶𝑃𝑉 𝑆𝑗 +
∑

𝑗∈𝐽𝐵

𝐶𝐶𝐻𝑁𝑗 +
∑

ℎ∈𝐻
𝜃ℎ

∑

𝑣∈𝑉

∑

𝑘∈𝐾𝑣

∑

𝑡0∈𝑇 0

𝜆𝑡0
∑

𝑡∈𝑇 𝑠𝑢𝑏
𝑡0

𝑟ℎ𝑣𝑘𝑡

−
∑

ℎ∈𝐻
𝜃ℎ

∑

𝑗∈𝐽𝐵

∑

𝑡0∈𝑇 0

𝜆𝑡0𝑢ℎ𝑗𝑡0

−𝐶𝑓𝑒𝑒
∑

ℎ∈𝐻
𝜃ℎ

∑

𝑖∈𝐼

∑

𝑗∈𝐽𝐵

∑

𝑡0∈𝑇 0

𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 (1)

𝐸ℎ,𝑣,𝑘
′ = 𝐸

′

ℎ,𝑣,𝑘−1 − 𝑒𝑣𝑘ℎ +
∑

𝑡∈𝑇
𝑟ℎ𝑣𝑘𝑡,∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉 , 𝑘 ∈ 𝐾𝑣 (2)

𝐸
′

ℎ,𝑣,𝑘−1 − 𝑒𝑣𝑘ℎ ≥ 𝑆𝑜𝐶min𝐶𝑣,∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉 , 𝑘 ∈ 𝐾𝑣 (3)

𝐸
′

ℎ,𝑣,𝑘 ≤ 𝐶𝑣,∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉 , 𝑘 ∈ 𝐾𝑣 (4)

𝐸
′

ℎ,𝑣,0 = 𝐶𝑣,∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉 (5)
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Table 1 
The model notions of sets, indices, parameters, and decision variables. 
Sets (indices) Description

𝑇  (𝑡) Sets of 20 minutes for a day.
𝑇 0 (𝑡0) Sets of hours for a day.
𝑇 𝑠𝑢𝑏
𝑡0

 (𝑡) Sets of 20 minutes in hour 𝑡0.
𝐻 (ℎ) Sets of seasonal scenarios regarding solar PV power outputs.
𝑉  (𝑣) Sets of BEBs in an electric PT network.
𝐾𝑣 (𝑘) Sets of daily trips of BEB 𝑣.
𝐽𝐵 (𝑗) Sets of bus terminals (Potential bus charging hubs).
𝐽𝐸 (𝑗) Sets of existing SMS charging hubs.
𝐼 (𝑖) Sets of SMS zones.
Parameters Description

𝐶𝑃𝑉 Annual investment for the unit installed capacity of solar PV (US$/kW).
𝐶𝐶𝐻 Annual investment of a charger (US$).
𝐶𝑓𝑒𝑒 Service fee charged by the PT operator to SMS for each battery charging event, corresponding to the charging-resource occupancy at a 

bus charging hub (US$).
𝜃ℎ Number of days in seasonal scenario ℎ.
𝜆𝑡0 Utility electricity price in hour 𝑡0 ∈ 𝑇 0 (US$/kWh).
𝑒𝑣𝑘ℎ Electricity consumption of BEB 𝑣 in trip 𝑘 in seasonal scenario ℎ (kWh).
𝑆𝑜𝐶min Minimum allowable SoC of BEBs (20% in this study).
𝐶𝑣 Battery capacity of BEB 𝑣 (kWh).
𝑝 Maximum charging power of a charger (kW).
Δ𝑣𝑘𝑡 Occupied layover time of BEB 𝑣 after trip 𝑘 in time interval 𝑡 ∈ 𝑇  (hour).
𝛿𝑣𝑘𝑗𝑡 1 if BEB 𝑣 after trip 𝑘 at bus terminal 𝑗 of time interval 𝑡 ∈ 𝑇  and 0 otherwise.
𝑒 Averaged charging demand of a SMS battery (kWh).
𝑑𝑖𝑡0 Number of SMS batteries needing to be charged in SMS zone 𝑖 in hour 𝑡0 ∈ 𝑇 0.
𝑔ℎ𝑡0 Solar PV power of scenario ℎ in hour 𝑡0 ∈ 𝑇 0 for the unit installed capacity (kW).
𝑆𝑗,max Maximum allowable installed capacity at bus terminal 𝑗 (kW).
𝑁𝑗,max Maximum allowable number of chargers deployed at bus terminal 𝑗.
𝐶𝑖𝑗 Operational cost of a SMS battery dispatching trip from 𝑖 to 𝑗 (including the electricity consumption cost of an electric mini-truck, labor 

cost, and half of the service fee) (US$).
Δ𝑡 Duration of time intervals for all 𝑡 belongs to 𝑇  (20 minutes in this study).
Leader variables Description

𝑆𝑗 Installed capacity of solar PV at bus terminal 𝑗 (kW).
𝑁𝑗 Number of chargers deployed at bus terminal 𝑗.
𝐸′

ℎ,𝑣,𝑘 SoC of BEB 𝑣 after trip 𝑘 and after possible charging and before the next trip in scenario ℎ (kWh).
𝑢ℎ𝑗𝑡0 Amount of used solar PV electricity at bus terminal 𝑗 in hour 𝑡0 ∈ 𝑇 0 in scenario ℎ (kWh).
𝑟ℎ𝑣𝑘𝑡 Electricity charged for BEB 𝑣 after trip 𝑘 in time interval 𝑡 ∈ 𝑇  in scenario ℎ (kWh).
𝑧ℎ𝑣𝑘𝑡 1 if BEB 𝑣 is charged after trip 𝑘 in time interval 𝑡 ∈ 𝑇  in scenario ℎ and 0 otherwise.
Follower variables Description

𝑜ℎ,𝑖𝑗,𝑡0 ,𝐸 1 if SMS batteries are dispatched from zone 𝑖 to SMS charging point 𝑗 in hour 𝑡0 ∈ 𝑇 0 in scenario ℎ and 0 otherwise.
𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 1 if SMS batteries are dispatched from zone 𝑖 to bus charging hub 𝑗 in hour 𝑡0 ∈ 𝑇 0 in scenario ℎ and 0 otherwise.

𝐸
′

ℎ,𝑣,|𝐾𝑣|
= 𝐶𝑣,∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉 (6)

𝑟ℎ𝑣𝑘𝑡 ≤ 𝑝Δ𝑣𝑘𝑡𝑧ℎ𝑣𝑘𝑡,∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉 , 𝑘 ∈ 𝐾𝑣, 𝑡 ∈ 𝑇 (7)

∑

𝑣∈𝑉

∑

𝑘∈𝐾𝑣

𝛿𝑣𝑘𝑗𝑡𝑧ℎ𝑣𝑘𝑡 ≤ 𝑁𝑗 ,∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽𝐵 , 𝑡 ∈ 𝑇 (8)

𝑢ℎ𝑗𝑡0 ≤ min{
∑

𝑣∈𝑉 ,𝑘∈𝐾𝑣 ,𝑡∈𝑇 𝑠𝑢𝑏
𝑡0

𝛿𝑣𝑘𝑗𝑡𝑟ℎ𝑣𝑘𝑡 + 𝑒
∑

𝑖∈𝐼
𝑑𝑖𝑡0𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 , 𝑔ℎ𝑡0𝑆𝑗},∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽𝐵 , 𝑡0 ∈ 𝑇 0 (9)

0 ≤ 𝑆𝑗 ≤ 𝑆𝑗,max,∀𝑗 ∈ 𝐽𝐵 (10)

0 ≤ 𝑁𝑗 ≤ 𝑁𝑗,max, 𝑁𝑗 ∈ ℤ,∀𝑗 ∈ 𝐽𝐵 (11)

𝐸′
ℎ,𝑣,𝑘 ≥ 0,∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉 , 𝑘 ∈ 𝐾𝑣 (12)

𝑢ℎ𝑗𝑡0 ≥ 0,∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽𝐵 , 𝑡0 ∈ 𝑇 0 (13)

𝑟ℎ𝑣𝑘𝑡 ≥ 0,∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉 , 𝑘 ∈ 𝐾𝑣, 𝑡 ∈ 𝑇 (14)
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𝑧ℎ𝑣𝑘𝑡 ∈ {0, 1},∀ℎ ∈ 𝐻, 𝑣 ∈ 𝑉 , 𝑘 ∈ 𝐾𝑣, 𝑡 ∈ 𝑇 (15)

Objective (1) minimizes the sum of the solar PV investment, charger investment, BEB charging costs, and charging revenues from 
SMS (treated as negative costs). Let 𝐶𝑃𝑉  and 𝐶𝐶𝐻  denote the annual investments for the installed solar PV unit capacity and per 
charger, respectively. Let 𝐶𝑓𝑒𝑒 denote the service fee charged by the PT to the SMS for a single battery charging event at a bus charging 
hub. We use 𝜃ℎ to denote the number of days in scenario ℎ. Let 𝜆𝑡0  denote the hourly utility electricity price in hour 𝑡0. Let 𝑆𝑗 indicate 
the installed capacity of solar PV at bus terminal 𝑗. Let 𝑁𝑗 denote the number of chargers deployed at bus terminal 𝑗. We use 𝑟ℎ𝑣𝑘𝑡
to denote the electricity charged for BEB 𝑣 after trip 𝑘 in time interval 𝑡 in scenario ℎ. Let 𝑢ℎ𝑗𝑡0  denote the amount of used solar PV 
electricity at bus terminal 𝑗 in hour 𝑡0 in scenario ℎ. Let 𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 denote a binary follower variable: 1 if SMS batteries are dispatched 
from zone 𝑖 to bus charging hub 𝑗 in hour 𝑡0 ∈ 𝑇 0 in scenario ℎ and 0 otherwise. Constraints (2)–(6) ensure the SoC of BEB batteries 
remains between 20% and 100%. Here, let 𝐸′

ℎ,𝑣,𝑘 represent the SoC of BEB 𝑣 after trip 𝑘 and after any possible charging and before 
the next trip in scenario ℎ. Let 𝑒𝑣𝑘ℎ denote the electricity consumption of BEB 𝑣 in trip 𝑘 in seasonal scenario ℎ. Let 𝑆𝑜𝐶min equal 20%, 
indicating the minimum allowable SoC of BEBs. 𝐶𝑣 denotes the battery capacity of BEB 𝑣. Constraint (7) reveals that the amount 
of charged electricity for BEBs does not exceed the electricity supply capacity, where 𝑝 represents the maximum charging power of 
chargers and Δ𝑣𝑘𝑡 indicates the occupied layover time of BEB 𝑣 after trip 𝑘 in time interval 𝑡. Each time interval has a duration of 20 
minutes. The time interval in this model represents only the periods during which charging resources are occupied or unoccupied. 
A duration of 20 minutes per interval is deemed appropriate for the desired modeling resolution. If the interval is too short, the 
computational time increases significantly. If it is too long, the charging resources may be underutilized. Constraint (7) also indicates 
that a charger will be occupied if a BEB is being charged at the bus charging hub. Let 𝑧ℎ𝑣𝑘𝑡 denote a binary variable: 1 if BEB 𝑣 is 
charged after trip 𝑘 in time interval 𝑡 in scenario ℎ and 0 otherwise. Constraint (8) guarantees that the number of chargers occupied 
at any given time does not exceed the number of chargers deployed. Let 𝛿𝑣𝑘𝑗𝑡 equal 1 if BEB 𝑣 after trip 𝑘 at bus terminal 𝑗 of time 
interval 𝑡 and otherwise 0. Constraint (9) ensures that the amount of solar PV electricity used does not exceed the combined charging 
demand of PT and SMS, nor does it exceed the solar PV energy production. We use 𝑒 to denote the averaged charging demand of a 
SMS battery. Let 𝑑𝑖𝑡0  denote the number of SMS batteries needing to be charged in SMS zone 𝑖 in hour 𝑡0. We use 𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 to indicate 
a binary variable: 1 if SMS batteries are dispatched from zone 𝑖 to bus charging hub 𝑗 in hour 𝑡0 in scenario ℎ and 0 otherwise. Let 
𝑔ℎ𝑡0  represent solar PV power of scenario ℎ in hour 𝑡0 for the unit installed capacity. In particular, we use 𝑡 ∈ 𝑇 𝑠𝑢𝑏

𝑡0
 in Constraint (9) to 

denote the index (𝑡) of the 20-minute intervals within hour 𝑡0. The aggregated 20-minute charging demand of the PT system in hour 
𝑡0 is then allocated to the hourly time resolution. Constraints (10)–(15) define the variable ranges. Let 𝑆𝑗,max denote the maximum 
allowable installed capacity at bus terminal 𝑗. We use 𝑁𝑗,max to indicate the maximum allowable number of chargers deployed at bus 
terminal 𝑗.

Notably, we model BEB charging using a 20-minute time resolution in this study. Although prior studies have addressed related 
problems using a 1-minute resolution (Abdelwahed et al., 2020; Caustur et al., 2025), adopting such a fine granularity within our bi-
level framework would lead to a computational burden. In general, increasing the time resolution enlarges the feasible solution space 
and can improve model accuracy, but it also imposes an exponentially growing computational burden. In this study, we consider 
both the battery capacity of BEBs and the charging power of fast chargers. Balancing the trade-off between model accuracy and 
computational complexity, we adopt a 20-minute time resolution, as it typically corresponds to an average charging duration under 
realistic battery capacities and charging power levels.

3.2.2.  Follower problem
The follower problem is formulated as a binary linear programming model. The objective function and the constraints are presented 

below. 
min

∑

ℎ∈𝐻
𝜃ℎ

∑

𝑖∈𝐼

∑

𝑗∈𝐽𝐵

∑

𝑡0∈𝑇 0

2𝐶𝑖𝑗𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 +
∑

ℎ∈𝐻
𝜃ℎ

∑

𝑖∈𝐼

∑

𝑗∈𝐽𝐸

∑

𝑡0∈𝑇 0

2𝐶𝑖𝑗𝑜ℎ,𝑖𝑗,𝑡0 ,𝐸 (16)

∑

𝑗∈𝐽𝐸

𝑜ℎ,𝑖𝑗,𝑡0 ,𝐸 +
∑

𝑗∈𝐽𝐵

𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 ≤ 1,∀ℎ ∈ 𝐻, 𝑖 ∈ 𝐼, 𝑡0 ∈ 𝑇 0 (17)

𝑑𝑖𝑡0 (
∑

𝑗∈𝐽𝐸

𝑜ℎ,𝑖𝑗,𝑡0 ,𝐸 +
∑

𝑗∈𝐽𝐵

𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 − 1) ≥ 0,∀ℎ ∈ 𝐻, 𝑖 ∈ 𝐼, 𝑡0 ∈ 𝑇 0 (18)

∑

𝑗∈𝐽𝐸

𝑜ℎ,𝑖𝑗,𝑡0 ,𝐸 +
∑

𝑗∈𝐽𝐵

𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 ≤ 𝑑𝑖𝑡0 ,∀ℎ ∈ 𝐻, 𝑖 ∈ 𝐼, 𝑡0 ∈ 𝑇 0 (19)

𝑒
∑

𝑖∈𝐼
𝑑𝑖𝑡0𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 ≤ 𝑁𝑗𝑝−

∑

𝑣∈𝑉

∑

𝑘∈𝐾𝑣

∑

𝑡∈𝑇 𝑠𝑢𝑏
𝑡0

𝛿𝑣𝑘𝑗𝑡𝑧ℎ𝑣𝑘𝑡𝑝Δ𝑡,

∀ℎ ∈ 𝐻,𝑗 ∈ 𝐽𝐵 , 𝑡0 ∈ 𝑇 0 (20)

𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 ∈ {0, 1},∀ℎ ∈ 𝐻, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝐵 , 𝑡0 ∈ 𝑇 0 (21)

𝑜ℎ,𝑖𝑗,𝑡0 ,𝐸 ∈ {0, 1},∀ℎ ∈ 𝐻, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽𝐸 , 𝑡0 ∈ 𝑇 0 (22)
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Objective (16) minimizes the SMS battery dispatching cost, where 𝐶𝑖𝑗 represents the operational cost (involving the electricity con-
sumption cost of an electric mini-truck, labor cost, and half of the service fee) of a SMS battery dispatching trip from 𝑖 to 𝑗. We use 
𝑜ℎ,𝑖𝑗,𝑡0 ,𝐸 to indicate a binary variable: 1 if SMS batteries are dispatched from zone 𝑖 to SMS charging point 𝑗 in hour 𝑡0 in scenario ℎ
and 0 otherwise. The coefficient of 2 in the second term represents the costs of round-trip trips between SMS zones and charging sites. 
Constraint (17) ensures that SMS batteries are dispatched by no more than one electric mini-truck to a single charging location per 
hour for each SMS zone. Constraints (18) and (19) specify that SMS batteries must be dispatched and charged if there is a charging 
need; otherwise, they should not be dispatched. Constraint (20) reveals that SMS batteries should be charged using idle chargers at 
the bus charging hubs. Here, we use Δ𝑡 to denote a fixed time interval of 20 minutes. We also use 𝑡 ∈ 𝑇 𝑠𝑢𝑏

𝑡0
 to denote the index (𝑡) 

of the 20-minute intervals within hour 𝑡0. The aggregated 20-minute charging demand of the PT system in hour 𝑡0 is then allocated 
to the hourly time resolution. Thus, SMS batteries should not be dispatched to bus charging hubs where the charging supply cannot 
meet the SMS charging demands. Constraints (21) and (22) define binary follower variables.

3.2.3.  Variable fixing
The number of follower variables increases with the number of bus charging hubs, SMS charging points, and SMS zones. Con-

sequently, applying the B-MILM to city-scale instances will result in significant computational burdens. To address this concern, a 
variable-fixing strategy is employed to reduce the feasible solution space of follower variables. For SMS zone 𝑖, only SMS charging 
points with minimum cost coefficients could be retained as the feasible SMS charging points. Additionally, for SMS zone 𝑖, any bus 
charging hub with a cost coefficient exceeding the minimum cost coefficient among the SMS charging points is considered an infeasi-
ble dispatching option for that zone. Our model assumption is reasonable under real-world conditions. We focus on the bus charging 
infrastructure planning problem within a context where SMS charging points are already well-established. Consequently, each SMS 
charging point must meet the charging demands of the nearby zones. Therefore, this study does not consider the power capacity 
issues for SMS charging points.

4.  Value-function-based exact solution approach

4.1.  Extended high point problem

For simplicity, we use 𝜙𝑙(𝑥𝑙 , 𝑥𝑓 ) to denote objective function (1) where 𝑥𝑙 and 𝑥𝑓  represent the leader and follower variables, 
respectively. We also use 𝜙𝑓 (𝑥𝑙 , 𝑥𝑓 ) denote objective function (16). Let Ω = {(𝑥𝑙 , 𝑥𝑓 )} indicate the feasible set of (𝑥𝑙 , 𝑥𝑓 ) regarding 
Constraints (2)–(15) and (17)–(22). Here, we define a high-point problem as follows. 

𝜒𝐻𝑃𝑃 = min𝜙𝑙(𝑥𝑙 , 𝑥𝑓 ),∀(𝑥𝑙 , 𝑥𝑓 ) ∈ Ω (23)

The solution to HPP provides a lower bound of the original problem. Given 𝑥𝑙, we define 𝑦(𝑥𝑙) = {𝑥𝑓 }, which meets Constraints
(17)–(22). The value-function-based solution approach reformulates the original model as an extended high point problem (EHPP). 
The EHPP extends the HPP by introducing new constraints. The new constraints can enforce the bilevel feasibility conditions, meaning 
that the leader’s decisions must be made with respect to the optimal response from followers. To achieve this, for every 𝑥̂𝑓  in 𝑦, the 
leader should either choose a (𝑥𝑙 , 𝑥𝑓 ) such that 𝜙𝑓 (𝑥𝑙 , 𝑥𝑓 ) ≤ 𝜙𝑓 (𝑥𝑙 , 𝑥̂𝑓 ) where 𝑥̂𝑓 ∈ 𝑦(𝑥𝑙), or block 𝑥̂𝑓  to belong to 𝑦(𝑥𝑙) by selecting 
such a 𝑥𝑙. Obviously, if 𝑥̂𝑓  does not belong to 𝑦(𝑥𝑙), it is not necessary to ensure 𝜙𝑓 (𝑥𝑙 , 𝑥𝑓 ) ≤ 𝜙𝑓 (𝑥𝑙 , 𝑥̂𝑓 ). Let 𝑔(𝑥𝑙) denote the terms 
associated with the leader variables in Constraint (20) below. 

𝑔ℎ𝑗𝑡0 (𝑥
𝑙) = −𝑁𝑗𝑝 +

∑

𝑣∈𝑉

∑

𝑘∈𝐾𝑣

∑

𝑡∈𝑇 𝑠𝑢𝑏
𝑡0

𝛿𝑣𝑘𝑗𝑡𝑧ℎ𝑣𝑘𝑡𝑝Δ𝑡,∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽𝐵 , 𝑡0 ∈ 𝑇 0 (24)

Let 𝑤(𝑥𝑓 ) denote the terms associated with the follower variables in Constraint (20) as follows. 
𝑤ℎ𝑗𝑡0 (𝑥

𝑓 ) = 𝑒
∑

𝑖∈𝐼
𝑑𝑖𝑡𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵 ,∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽𝐵 , 𝑡0 ∈ 𝑇 0 (25)

To write the EHPP explicitly, we introduce the following auxiliary parameters and sets. 
𝛾𝑥̂𝑓 ,ℎ𝑗𝑡0 = ⌊−𝑤ℎ𝑗𝑡0 (𝑥̂

𝑓 )⌋ + 1,∀𝑥̂𝑓 ∈ 𝑦, ℎ ∈ 𝐻, 𝑗 ∈ 𝐽𝐵 , 𝑡0 ∈ 𝑇 0 (26)

𝐵(𝑥̂𝑓 , 𝑦) = {(𝑥
′𝑓 , ℎ, 𝑗, 𝑡0)|𝛾𝑥′𝑓 ,ℎ𝑗𝑡0 ≥ 𝛾𝑥̂𝑓 ,ℎ𝑗𝑡0 , 𝑥

′𝑓 ∈ 𝑦, ℎ ∈ 𝐻, 𝑗 ∈ 𝐽𝐵 , 𝑡0 ∈ 𝑇 0} (27)

The leader can block 𝑥̂𝑓  to belong to 𝑦(𝑥𝑙) by Constraint (20) associated with ℎ, 𝑗, and 𝑡0 if and only if 𝑔ℎ𝑗𝑡0 (𝑥𝑙) ≥ 𝛾𝑥̂𝑓 ,ℎ𝑗𝑡0 . For 
detailed proof, readers can reference Proposition 2 in Lozano and Smith’s study (Lozano and Smith, 2017). The set 𝐵(𝑥̂𝑓 , 𝑦) includes 
all ordered tuples (𝑥′𝑓 , ℎ, 𝑗, 𝑡0) such that if a 𝑥𝑙 blocks a 𝑥

′𝑓 ∈ 𝑦(𝑥𝑙) by Constraint (20) associated with ℎ, 𝑗, and 𝑡0, then this 𝑥𝑙 also 
blocks 𝑥̂𝑓 ∈ 𝑦(𝑥𝑙). Based on the introduced auxiliary parameters and sets, the EHPP is formulated as follows. 

𝜒𝐸𝐻𝑃𝑃 = min𝜙𝑙(𝑥𝑙 , 𝑥𝑓 ) (28)

𝑔ℎ𝑗𝑡0 (𝑥
𝑙) ≥ −𝑀1

ℎ𝑗𝑡0
+

∑

𝑥̂𝑓∈𝑦

(𝑀1
ℎ𝑗𝑡0

+ 𝛾𝑥̂𝑓 ,ℎ𝑗𝑡0 )𝜔𝑥̂𝑓 ,ℎ𝑗𝑡0 ,∀ℎ ∈ 𝐻, 𝑗 ∈ 𝐽𝐵 , 𝑡0 ∈ 𝑇 0 (29)

Transportation Research Part E 208 (2026) 104709 

7 



X. Liu et al.

𝜙𝑓 (𝑥𝑙 , 𝑥𝑓 ) ≤ 𝜙𝑓 (𝑥𝑙 , 𝑥̂𝑓 ) +𝑀2
∑

(𝑥′𝑓 ,ℎ,𝑗,𝑡0)∈𝐵(𝑥̂𝑓 ,𝑦)

𝜔𝑥′𝑓 ,ℎ𝑗𝑡0
,∀𝑥̂𝑓 ∈ 𝑦 (30)

(𝑥𝑙 , 𝑥𝑓 ) ∈ Ω (31)

𝜔𝑥̂𝑓 ,ℎ𝑗𝑡0 ∈ {0, 1},∀𝑥̂𝑓 ∈ 𝑦, ℎ ∈ 𝐻, 𝑗 ∈ 𝐽𝐵 , 𝑡0 ∈ 𝑇 0 (32)

Objective (28) aligns with Objective (1) in the leader problem. Constraints (29) and (30) use binary auxiliary variable 𝜔𝑥̂𝑓 ,ℎ𝑗𝑡0  to ensure 
bi-level feasibility condition, where 𝜔𝑥̂𝑓 ,ℎ𝑗𝑡0 = 1 if Constraint (29) associated with ℎ, 𝑗, and 𝑡0 blocks 𝑥̂𝑓 ∈ 𝑦(𝑥𝑙) and 0 otherwise. In 
particular, Constraint (29) is responsible for blocking the follower variables, while Constraint (30) ensure that 𝜙𝑓 (𝑥𝑙 , 𝑥𝑓 ) ≤ 𝜙𝑓 (𝑥𝑙 , 𝑥̂𝑓 )
unless 𝑥̂𝑓  is blocked. According to Eq.  (24), 𝑔ℎ𝑗𝑡0 (𝑥𝑙) is no less than −𝑁𝑗𝑝. This implies that 𝑀1

ℎ𝑗𝑡0
 can be set to the estimated number 

of chargers required multiplied by the power 𝑝. In this way, we can first determine the optimal number of chargers at the bus charging 
station without considering the SMS. Then, we set the estimated number of chargers to the optimal value augmented by an appropriate 
margin. Constraint (30) indicates that 𝑀2 can be set to the maximum value of the objective function in the follower problem. The 
EHPP is equivalent to the B-MILM. For detailed proof, readers can reference Propositions 1, 2, and 3 in Lozano and Smith (2017). 
Appendix A presents the detailed description of EHPP.

4.2.  Algorithm and convergence

In EHPP, enumerating all 𝑥̂𝑓 ∈ 𝑦 in Constraints (29) and (30) is impractical due to the curse of dimensionality. Even if all 𝑥̂𝑓 ∈ 𝑦
are enumerated, the binary auxiliary variable 𝜔𝑥̂𝑓 ,ℎ𝑗𝑡0  associated with 𝑥̂𝑓  could increase the computational burdens largely. Therefore, 
the EHPP is solved exactly using an iteration-based algorithm. The iteration-based algorithm starts with solving the HPP and extends 
the HPP to a restricted extended high point problem (REHPP) using the samples of 𝑥̂𝑓 . The number of samples increases as optimal 
follower solutions are included iteratively.

It should be noted that there are three assumptions that guarantee the exactness and convergence of the proposed algorithm 
by Lozano and Smith (2017). The first assumption states that both the upper- and lower-level feasible regions are compact sets. 
Obviously, the variables in our proposed model meet this assumption and have optimal solutions. The second assumption is that the 
terms involved leader variables in the follower problem should be integer valued. In our model, given the duration of the interval (20 
minutes in this study), this assumption could be guaranteed if the maximum charging power is divisible by 3. The third assumption 
states that all leader variables are integer-valued. In our model, some of the leader variables are continuous, but the leader variables 
involved in the follower problem are integers. Proposition 1 will show that Algorithm 1 provides an optimal solution to the B-MILM 
within a finite number of iterations.

Algorithm 1 An iteration-based exact algorithm for the proposed B-MILM.
Require: Let 𝜏 = 0. Let the sample set 𝑦𝜏 equals Φ. Initialize upper bound (𝑈𝐵𝜏 ) to be +∞ and lower bound (𝐿𝐵𝜏 ) to be 𝜒𝜏,𝐻𝑃𝑃 .
Ensure: The optimal solution.
1: while 𝐿𝐵𝜏 ≤ 𝑈𝐵𝜏 do
2:  𝜏 = 𝜏 + 1
3:  Obtain an optimal solution (𝑥𝑙𝜏 , 𝑥𝑓𝜏 ) to REHPP(𝑦𝜏 ), and set 𝐿𝐵𝜏 = 𝜒𝜏,𝑅𝐸𝐻𝑃𝑃

4:  Obtain an optimal solution 𝑥𝑓,𝐹𝑂𝐿𝐿
𝜏  to the follower problem, and set 𝑦𝜏 = 𝑦𝜏 ∪ 𝑥𝑓,𝐹𝑂𝐿𝐿

𝜏 .
5:  if 𝜙𝑓 (𝑥𝑙𝜏 , 𝑥

𝑓,𝐹𝑂𝐿𝐿
𝜏 ) = 𝜙𝑓 (𝑥𝑙𝜏 , 𝑥

𝑓
𝜏 ) then

6:  Update 𝑈𝐵𝜏 = 𝐿𝐵𝜏 , and the optimal solution to the proposed B-MILM is obtained.
7:  else
8:  Let 𝑢ℎ𝑗𝑡0 ,𝜏 = min(

∑

𝑣∈𝑉
∑

𝑘∈𝐾𝑣

∑

𝑡∈𝑇 𝑠𝑢𝑏
𝑡0

𝛿𝑣𝑘𝑗𝑡𝑟ℎ𝑣𝑘𝑡,𝜏 + 𝑒
∑

𝑖∈𝐼𝑑𝑖𝑡0𝑜
𝐹𝑂𝐿𝐿
ℎ,𝑖𝑗,𝑡0 ,𝐵,𝜏

, 𝑔ℎ𝑡0𝑆𝑗,𝜏 ) to adjust 𝑥𝑙𝜏 . Let 𝑈𝐵𝜏 =

min(𝑈𝐵𝜏−1, 𝜙𝑙(𝑥𝑙 , 𝑥𝑓,𝐹𝑂𝐿𝐿
𝜏 )).

9:  end if
10: end while

Proposition 1. Algorithm 1 terminates and provides an optimal solution to the B-MILM within a finite number of iterations. 
Proof.  The optimal solution of the current REHPP in Algorithm 1 represents a current lower bound of EHPP. When Algorithm 1 
terminates, it indicates that the current lower bound of EHPP reaches its upper bound. Thus, under this condition, Algorithm 1 finds 
an optimal solution to EHPP. Since the two problems are equivalent, the optimal solution to the EHPP must also be the optimal 
solution to the B-MILM. Now, we show that Algorithm 1 terminates within a finite number of iterations. Observe that only 𝑁𝑗 and 
𝑧ℎ𝑣𝑘𝑡 are involved in the follower problem. The space of 𝑁𝑗 and 𝑧ℎ𝑣𝑘𝑡 must be finite because they are discrete variables and are 
limited by the given bounds. Suppose that Algorithm 1 terminates after |Ω(𝑁, 𝑧)| + 1 iterations. There must be two iterations 𝜏 and 
𝜏′, where 1 ≤ 𝜏 ≤ 𝜏′ ≤ |Ω(𝑁, 𝑧)| + 1, such that (𝑁𝜏 , 𝑧𝜏 ) = (𝑁𝜏′ , 𝑧𝜏′ ). In line 4 of Algorithm 1, we obtain an optimal follower response 
𝑥𝑓,𝐹𝑂𝐿𝐿
𝜏 . Since 𝜏 < 𝜏′, we have 𝑥𝑓,𝐹𝑂𝐿𝐿

𝜏 ∈ 𝑦𝜏′ . Since 𝑥𝑓,𝐹𝑂𝐿𝐿
𝜏  represents the optimal solution to the follower problem given (𝑁𝜏 , 𝑧𝜏 )

and 𝑥𝑓,𝐹𝑂𝐿𝐿
𝜏 ∈ 𝑦𝜏′ , Constraint (30) guarantees that 𝜙𝑓 (𝑥𝑙𝜏′ , 𝑥

𝑓
𝜏′ ) ≤ 𝜙𝑓 (𝑥𝑙𝜏′ , 𝑥

𝑓,𝐹𝑂𝐿𝐿
𝜏′ ), and we also have (𝑁𝜏 , 𝑧𝜏 ) = (𝑁𝜏′ , 𝑧𝜏′ ). This implies 

that 𝑥𝑓𝜏′  must be the optimal solution to the follower problem given (𝑁𝜏′ , 𝑧𝜏′ ), and Algorithm 1 reaches line 6 and terminates. Since 
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there must be two iterations 𝜏 and 𝜏′ such that (𝑁𝜏 , 𝑧𝜏 ) = (𝑁𝜏′ , 𝑧𝜏′ ) within |Ω(𝑁, 𝑧)| + 1 iterations, Algorithm 1 always terminates 
within a finite number of iterations. ∎

4.3.  Strengthening the REHPP formulation

Proposition 1 shows that Algorithm 1 can terminate within |Ω(𝑁, 𝑧)| + 1 iterations. However, |Ω(𝑁, 𝑧)| is extremely huge when 
the problem scale is at the city level. For each iteration, solving REHPP is also time-consuming. Therefore, it is necessary to accelerate 
the iteration procedure of Algorithm 1. There are two ways to accelerate the iteration procedure. The first way is to improve the 
solution efficiency for the REHPP by modifying or reformulating the REHPP. The second way is to find the two iterations 𝜏 and 𝜏′
such that (𝑁𝜏 , 𝑧𝜏 ) = (𝑁𝜏′ , 𝑧𝜏′ ) within a small number of iterations by strengthening the REHPP formulation. This paper focuses on the 
second way to accelerate the iteration procedure.
Definition 1. The inequalities are considered super valid if they can exclude some feasible or even optimal solutions for the current 
REHPP, while maintaining bi-level feasibility and optimality for the B-MILM. 
Observation 1.  For the optimal follower’s response, given the leader’s decisions, the follower always assigns SMS batteries from a zone to 
either the SMS charging points or bus charging hubs with the least cost, provided that the available infrastructure can meet the SMS charging 
demand from this SMS zone. 

Observation 1 is straightforward and serves as a necessary condition for an optimal follower’s response. Let 𝐼0 represent the set 
of SMS zones where there exists at least one bus charging hub with lower operational costs for dispatching SMS batteries between 
the SMS zone and the bus charging hub compared with SMS charging points. Let 𝐽𝐵,𝑖0  denote the set of bus charging hubs with lower 
operational costs for SMS zone 𝑖0 ∈ 𝐼0 for dispatching SMS batteries between the SMS zone and the bus charging hub compared with 
SMS charging points. For SMS zone 𝑖0 ∈ 𝐼0 and bus charging hub 𝑗 ∈ 𝐽𝐵,𝑖0 , let 𝑈 (𝑖0, 𝑗) denote the set of bus charging hubs where 
the charging hub belongs to 𝐽𝐵,𝑖0  and the operational cost between SMS zone 𝑖0 ∈ 𝐼0 and this bus charging hub is higher than that 
associated with bus charging hub 𝑗 ∈ 𝐽𝐵,𝑖0 . Let 𝑗𝑖0 ,𝐸 denote the SMS charging point with the lowest operational cost for SMS zone 
𝑖0 ∈ 𝐼0. We introduce a binary auxiliary variable 𝜋ℎ𝑖0𝑗𝑡0  to linearize the logic relationship. In Constraint (33), 𝑀3 could be set to 𝑁𝑗𝑝. 
According to Constraint (17), the minimum value of the left side of Constraint (34) should be -1. Hence, we set 𝑀4 to 1.

Now, we propose the super-valid inequalities according to Observation 1.
Proposition 2. The following inequalities are super valid according to Definition 1. 

𝑁𝑗𝑝 −
∑

𝑣∈𝑉

∑

𝑘∈𝐾𝑣

∑

𝑡∈𝑇 𝑠𝑢𝑏
𝑡0

𝛿𝑣𝑘𝑗𝑡𝑧ℎ𝑣𝑘𝑡𝑝Δ𝑡 − 𝑒(𝑑𝑖0𝑡0 +
∑

𝑖∈𝐼⧵𝑖0
𝑑𝑖𝑡0𝑜ℎ,𝑖𝑗,𝑡0 ,𝐵) ≤ 𝑀3𝜋ℎ𝑖0𝑗𝑡0 ,

∀ℎ ∈ 𝐻, 𝑖0 ∈ 𝐼0,𝑗 ∈ 𝐽𝐵,𝑖0 , 𝑡0 ∈ 𝑇 0 (33)

𝑜ℎ,𝑖0𝑗,𝑡0 ,𝐵 − (𝑜ℎ,𝑖0𝑗𝑖0 ,𝐸 ,𝑡0 ,𝐸 +
∑

𝑗′∈𝑈 (𝑖0 ,𝑗)

𝑜ℎ,𝑖0𝑗′ ,𝑡0 ,𝐵) ≥ −𝑀4(1 − 𝜋ℎ𝑖0𝑗𝑡0 ),

∀ℎ ∈ 𝐻, 𝑖0 ∈ 𝐼0, 𝑗 ∈ 𝐽𝐵,𝑖0 ,𝑡0 ∈ 𝑇 0 (34)

Proof.  The left side of Constraints (33) indicates the remaining available charging capacity at bus charging hub 𝑗 ∈ 𝐽𝐵,𝑖0  if the 
charging demand of SMS zone 𝑖0 ∈ 𝐼0 is mandatorily assigned to this charging hub. If the left side of Constraints (33) does not exceed 
zero, bus charging hub 𝑗 ∈ 𝐽𝐵,𝑖0  may fail to support the charging demand of SMS zone 𝑖0 ∈ 𝐼0. In this case, suppose that 𝜋ℎ𝑖0𝑗𝑡0  can 
be zero or one. If 𝜋ℎ𝑖0𝑗𝑡0  is zero, Constraint (34) is invalid. If 𝜋ℎ𝑖0𝑗𝑡0  is one, Constraint (34) indicates that the charging demand of SMS 
zone 𝑖0 ∈ 𝐼0 must be met by bus charging hub 𝑗 ∈ 𝐽𝐵,𝑖0 . If that, however, it will violate Constraint (20). Therefore, 𝜋ℎ𝑖0𝑗𝑡0  must be 
zero if the left side of constraints (33) is less than zero. If the left side of Constraints (33) is more than zero, 𝜋ℎ𝑖0𝑗𝑡0  must be one. In 
this case, Constraint (34) ensures that the charging demand of SMS zone 𝑖0 ∈ 𝐼0 must be met by bus charging hub 𝑗 ∈ 𝐽𝐵,𝑖0 , implying 
that some feasible or optimal solutions for the current REHPP are excluded. According to Observation 1, Constraint (34) does not 
break the optimality of solutions to the follower problem. Therefore, Constraints (33) and (34) are super valid inequalities. ∎

Next, an example illustrates how to manually write Constraints (33) and (34). Suppose there is one SMS zone, one SMS charging 
point, and three bus charging hubs, as shown in Fig. 2. The operational costs are 10, 4, 5, and 6 for dispatching SMS batteries to 
SMS charging 1 and bus charging hubs 1, 2, and 3, respectively. We remove the indices of 𝑣, 𝑘, ℎ, and 𝑡 for simplicity. We use 𝑄 to 
represent the first two terms on the left side of Constraint (33). Then, Constraints (33) and (34) can be written as follows.

⎧

⎪

⎨

⎪

⎩

𝑄𝑗=1 − 𝑒𝑑𝑖0=1 ≤ 𝑀4𝜋𝑖0=1,𝑗=1
𝑄𝑗=2 − 𝑒𝑑𝑖0=1 ≤ 𝑀4𝜋𝑖0=1,𝑗=2
𝑄𝑗=3 − 𝑒𝑑𝑖0=1 ≤ 𝑀4𝜋𝑖0=1,𝑗=3

(35)

⎧

⎪

⎨

⎪

⎩

𝑜𝑖0=1,𝑗=1,𝐵 − (𝑜𝑖0=1,𝑗=1,𝐸 +
∑

𝑗∈{2,3}𝑜𝑖0=1,𝑗′ ,𝐵) ≥ 𝑀4(1 − 𝜋𝑖0=1,𝑗=1)
𝑜𝑖0=1,𝑗=2,𝐵 − (𝑜𝑖0=1,𝑗=1,𝐸 +

∑

𝑗∈{3}𝑜𝑖0=1,𝑗′ ,𝐵) ≥ 𝑀4(1 − 𝜋𝑖0=1,𝑗=2)
𝑜𝑖0=1,𝑗=3,𝐵 − 𝑜𝑖0=1,𝑗=1,𝐸 ≥ 𝑀4(1 − 𝜋𝑖0=1,𝑗=3)

(36)

Transportation Research Part E 208 (2026) 104709 

9 



X. Liu et al.

Fig. 2. An illustration of Constraints (33) and (34).

According to Constraints (35) and (36), suppose that 𝑄𝑗 − 𝑒𝑑𝑖0=1 > 0 for 𝑗 = 1, 2, 3. Then, 𝜋𝑖0=1,𝑗 = 1 for 𝑗 = 1, 2, 3. The optimal 
solution must be 𝑜𝑖0=1,𝑗=1,𝐵 = 1, 𝑜𝑖0=1,𝑗=1,𝐸 = 0, 𝑜𝑖0=1,𝑗=2,𝐵 = 0, and 𝑜𝑖0=1,𝑗=3,𝐵 = 0 because each SMS zone can be assigned to only one 
charging point or bus charging hub each time. Suppose that 𝑄𝑗 − 𝑒𝑑𝑖0=1 > 0 for 𝑗 = 2 and 𝑄𝑗 − 𝑒𝑑𝑖0=1 < 0 for 𝑗 = 1, 3. Then, the optimal 
solution must be 𝑜𝑖0=1,𝑗=1,𝐵 = 0, 𝑜𝑖0=1,𝑗=1,𝐸 = 0, 𝑜𝑖0=1,𝑗=2,𝐵 = 1, and 𝑜𝑖0=1,𝑗=3,𝐵 = 0. Suppose that 𝑄𝑗 − 𝑒𝑑𝑖0=1 < 0 for 𝑗 = 1, 2, 3. Then, the 
optimal solution must be 𝑜𝑖0=1,𝑗=1,𝐵 = 0, 𝑜𝑖0=1,𝑗=1,𝐸 = 1, 𝑜𝑖0=1,𝑗=2,𝐵 = 0, and 𝑜𝑖0=1,𝑗=3,𝐵 = 0.

5.  Case study

This section presents a case study conducted in Gothenburg, Sweden, involving 70 bus routes, 705 buses, 61 bus terminals, and 
charging demands for over 12,000 e-scooters. Initially, we assess the algorithm’s performance using numerical instances derived 
from this case study. Subsequently, we present the case study’s results and evaluate them from PT operators, SMS operators, and 
sustainability.

5.1.  Data collection

Västtrafik is the agency responsible for PT services, including buses, ferries, trains, and trams, in Gothenburg, Sweden (Wikipedia, 
2024). The timetables of bus routes are available from Västtrafik’s website (Västtrafik, 2024). We estimate the task-based electricity 
consumption of BEBs by considering their electricity consumption per kilometer and the length of each bus route. Here, we assume 
that the BEB electricity consumption per kilometer is 0.7 kWh (Doulgeris et al., 2024). Subsequently, we use a simulation-based 
approach to assign bus tasks to BEBs, ensuring the SoC for each bus remains between 20% and 100% without taking the charging 
capacity at bus terminals into account. In this step, we implement an opportunity-based charging strategy, where BEBs are charged 
at bus terminals between successive tasks. This process allows us to determine the specific task assignments for each BEB. Assume the 
maximum charging power of a charger is 450 kW and the BEB battery capacity is 300 kWh. The annual investment cost for a charger 
of 450 kW (𝐶𝐶𝐻 ) is US$5700 (Liu et al., 2021), and the annual investment for each kilowatt of installed solar PV capacity (𝐶𝑃𝑉 ) is 
US$25 (Liu et al., 2024). The service fee ranges from US$0 to US$2 for sensitivity analysis.

We divide the year into four seasons: spring, summer, autumn, and winter. The solar power outputs per kW in Gothenburg are 
collected for each season (ProfileSOLAR, 2024). The time-of-use electricity prices (Fig. 3) are obtained from the utility department in 
Gothenburg (NordPool, 2024). The average charging demand for an e-scooter battery is 0.63 kWh. The number of e-scooters requiring 
charging each hour in Gothenburg is derived from the transaction data of TIER and VOI. The e-scooter zones are divided based on 
user activity characteristics, as shown in Fig. 4. The sizes of the e-scooter zones are 500m x 1000m (red), 1000m x 1000m (orange), 
2000m x 2000m (yellow), and 3000m x 3000m (blue). As Fig. 4 shows, we also assume there are four existing e-scooter charging 
points. The operational hourly cost of a battery dispatching trip includes both labor and electricity consumption costs and is calculated 
to be US$20.29 per hour in Sweden. Accordingly, the operational cost excluding service fee of an SMS battery dispatching trip from 
𝑖 to 𝑗 is obtained by multiplying the trip duration by this hourly operational cost, assuming an average travel speed of 20 km/h. The 
maximum allowable installed capacity at a bus terminal can be determined by the available rooftop area of the surrounding buildings. 
Assuming each PV module occupies 1.62m² and has a rated power of 0.327 kW (SunPower, 2017), the maximum capacity is obtained 
by calculating the number of modules that can be installed within the available area. The maximum number of chargers installed at 
a bus charging hub is set to 20. In Appendix B, we provide the detailed parameter settings and the case study setup.

5.2.  Algorithm performance

We show the number of iterations and solution times of different numerical instances in Table 2 to evaluate the algorithm’s 
performance. These instances are constructed using parameters from the case study. We adjust the number of bus routes and bus 
terminals included in the optimization model to vary the instance scales. Notably, the last instance corresponds to the scale of the 
case study. In Table 2, the ‘Instance’ column uses the notation ‘xx-yy’ to denote the inclusion of xx buses and yy bus terminals in the 
optimization model. As the number of buses and bus terminals increases, e-scooter operators have more options for scheduling battery 
charging, leading to an exponential increase in bi-level feasible solutions to the B-MILM. For the first five instances, the number of 
iterations is two, both with and without super-valid inequalities. This indicates that Algorithm 1 could reach the termination condition 
after only two iterations (including the initial solution-finding step). When the number of buses and bus terminals is small, the e-
scooter operator has limited options for scheduling battery charging, and the PT operator has few opportunities to maximize benefits 
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Fig. 3. The time-of-use electricity prices used in this case study.

Fig. 4. E-scooter zones, charging points, and bus routes in this case study.

from the e-scooter operators. Consequently, Algorithm 1 can quickly reach the termination condition. For the first five instances, 
the solution time of the algorithm without super valid inequalities is shorter than with them because the super valid inequalities 
complicate model constraints, thereby requiring additional computational time for the solver when the number of iterations is the 
same. For the last seven instances, the number of iterations is two with super valid inequalities, while Algorithm 1 does not reach the 
termination condition within 86,400 seconds. The results of these numerical instances demonstrate that the algorithm incorporating 
super valid inequalities can effectively solve large-scale instances of the B-MILM. Table 3 shows the upper bound (UB), lower bound 
(LB), and optimality gap across different numerical instances. Under the imposed time limit, the optimality gap is at least 1% when 
the number of buses is 100 or more, if super valid inequalities are not used.

5.3.  Economic impacts of solar PV and shared charging service

With the service fee set to zero, we compare the infrastructure investment and operational costs of PT and e-scooter operators 
under three scenarios: solar PV and shared charging service (Sharing + Solar PV), solar PV, and business as usual (BAU). Table 4 
presents the economic impacts of solar PV and shared charging services on the PT operator. We calculate the investment efficiency 
under the Sharing + Solar PV and Solar PV scenarios as follows. 

Investment efficiency =
Total cost𝐵𝐴𝑈 − Total cost𝑠

Infrastructure investment𝑠 − Infrastructure investment𝐵𝐴𝑈
(37)
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Table 2 
Number of iterations and solution time of different numerical instances.

 With super valid inequalities  Without super valid inequalities
 Instances  Number of iterations  Time (s)  Number of iterations  Time (s)
 10-2  2  608  2  417
 20-2  2  642  2  379
 30-4  2  657  2  532
 40-6  2  841  2  598
 50-6  2  571  2  639
 100-11  2  1138 > 24  86,400
 200-17  2  4096 > 20  86,400
 300-25  2  8999 > 18  86,400
 400-37  2  12,636 > 17  86,400
 500-51  2  13,280 > 13  86,400
 600-56  2  18,239 > 11  86,400
 705-61  2  22,394 > 11  86,400

Table 3 
Upper bound (UB), lower bound (LB), and optimality gap of different numerical 
instances. 

 With super valid inequalities  Without super valid inequalities
 Instances  UB  LB  Gap  UB  LB  Gap
 10–2  34,396  34,396  0%  34,396  34,396  0%
 20–2  57,933  57,933  0%  57,933  57,933  0%
 30–4  79,083  79,083  0%  79,083  79,083  0%
 40–6  116,659  116,659  0%  116,659  116,659  0%
 50–6  144,838  144,838  0%  144,838  144,838  0%
 100–11  272,094  272,094  0%  272,891  272,007  0.3%
 200–17  483,020  483,020  0%  485,121  482,402  0.6%
 300–25  660,430  660,430  0%  666,702  659,758  1%
 400–37  960,896  960,896  0%  968,675  959,084  1%
 500–51  1,073,272  1,073,272  0%  1,082,146  1,071,432  1%
 600–56  1,167,315  1,167,304  0.001%  1,178,587  1,165,436  1.1%
 705–61  1,370,900  1,370,886  0.001%  1,382,656  1,368,967  1%

Table 4 
Economic impacts of solar PV and shared charging service on the PT operator. 

 Annual cost  Sharing + Solar PV (US$)  Solar PV (US$)  BAU (US$)
 Infrastructure investment  589,920  588,670  535,800
 Operational cost  780,980  788,830  899,800
 Total  1,370,900  1,377,500  1,435,600
 Investment efficiency  120%  110%  NA

As shown in Table 4, the investment efficiency under the Sharing + Solar PV and Solar PV scenarios is 120% and 110%, re-
spectively. Compared to the Solar PV scenario, the increased investment efficiency in the Sharing + Solar PV scenario is attributed 
to the increased electricity cost savings achieved by using solar PV power for charging SMS batteries. When the shared charging 
service is introduced, the infrastructure investment in solar PV installed capacity increases slightly. Compared to the BAU scenario, 
introducing solar PV can reduce operational costs (charging costs of BEBs) by substituting a portion of electricity purchases with 
solar-generated electricity. Notably, the utilization of solar PV remains consistent across all seasons, with nearly 100% utilization 
year-round. This suggests that energy storage deployment at bus charging hubs is unnecessary, as optimal solar PV deployment can 
maximize utilization without storage. Additionally, the current high cost of energy storage further supports this conclusion. For the 
e-scooter operator, introducing a shared charging service can reduce the annual operational costs (including electricity consumption 
for electric mini-trucks and labor costs) from $176,680 to $80,903, achieving a 54% reduction. In this case study, the number of 
location options for charging e-scooter batteries increases from 4 to 28 due to the introduction of the shared charging service mode.

We present the operational details of both the SMS and PT systems to explain the underlying reasons for these benefits further. 
Fig. 5 shows the number of SMS battery dispatching events from SMS zones to bus charging hubs and SMS charging points throughout 
the working hours of the day in Spring. 75.6% of the dispatching events are allocated to bus charging hubs to minimize trip costs. 
Fig. 6 illustrates the total charging demand of SMS batteries at bus charging hubs and SMS charging points.

Finally, we conduct a sensitivity analysis on the service fee, which ranges from US$0 to US$2. Under the sharing + Solar PV 
scenario, Fig. 7 shows the annual cost savings in SMS and PT systems as the service fee increases. In particular, the annual cost 
savings in PT are calculated by comparing the Solar PV scenario. The annual cost savings for PT show a nonlinear trend, while those 
for SMS exhibit a consistent downward trend. The maximum annual cost reduction for PT is US$45,441 when the service fee is 
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Fig. 5. The number of SMS battery dispatching events from SMS zones to bus charging hubs and SMS charging points.

Fig. 6. The total SMS battery charging demands at bus charging hubs and SMS charging points.

Fig. 7. The annual cost savings in SMS and PT.

US$1.4. The sensitivity analysis indicates that collaboration between SMS and PT can yield substantial benefits through the use of 
service fee signals as a control mechanism.

5.4.  Impacts of solar PV on the grid

The impacts on the grid are primarily due to BEB charging, as the charging power and demand for e-scooter batteries are relatively 
minor. We compare the BEB charging demand and grid supply under the solar PV and BAU scenarios. Notably, under the BAU scenario, 
the BEB charging demand is entirely met by the grid, as no solar PV electricity is available. Fig. 8 depicts the daily BEB charging 
demand and grid load during spring, summer, autumn, and winter under the solar PV and BAU scenarios. In the BAU scenario, there 
is almost no BEB charging demand between 4:00 and 17:00 due to higher electricity prices (Fig. 3). Under the solar PV scenario, 
the distribution of BEB charging demands aligns with the distribution of solar PV generation. This is because shifting BEB charging 
demands from nighttime to daytime reduces charging costs by utilizing solar PV electricity. Compared to the BAU scenario, the net 
BEB charging loads on the grid decrease on average by 20%, 34%, 8%, and 3% in spring, summer, autumn, and winter, respectively. 
The results reveal that the seasonal impact of solar PV on the grid is obvious, corresponding to the varying solar PV power outputs 
in Gothenburg.
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Fig. 8. Daily BEB charging demand and grid load in spring, summer, autumn, and winter.

Table 5 
Number of chargers and installed capacity of solar PV under the three sce-
narios.

 Charging infrastructure  Sharing + Solar PV  Solar PV  BAU
 Number of chargers  94  94  94
 Installed capacity of solar PV (kW)  2151  2101  NA

5.5.  Impacts of solar PV and shared charging service on charging infrastructure planning

With the service fee set to zero, Table 5 presents the number of chargers and the installed capacity of solar PV under the three 
scenarios, illustrating the impacts of solar PV and shared charging services on charging infrastructure planning. The number of 
chargers required at bus charging hubs remains consistent across all three scenarios. Fig. 9 displays a histogram of the number 
of chargers deployed at bus charging hubs under each scenario. We find that 68% of bus terminals deploy one or zero chargers. 
Introducing solar PV at bus charging hubs alters the distribution of charging demands while keeping the total BEB charging demand 
unchanged. After implementing the shared charging service model, the investment in chargers does not increase, as the revenue from 
e-scooters does not offset the additional investment. However, the installed capacity of solar PV increases slightly under the shared 
charging service mode to boost revenue from e-scooters. Fig. 10 illustrates the spatial distribution of chargers and solar PV installations 
at bus terminals. The numbers indicate the required number of chargers at each terminal. Red and green colors represent the presence 
and absence of solar PV deployment, respectively. Finally, as the service fee increases, the total installed solar PV capacity exhibits 
only a slight variation, remaining within the range of 0–50 kW.

5.6.  Impacts of solar PV on the greenhouse gas GHG emission

Battery-powered electric vehicles offer the advantage of zero emissions. However, the electricity consumed by these vehicles 
involves carbon emissions during its production and transmission. Although Sweden’s power sector has the lowest greenhouse gas 
(GHG) emission intensity (8 gCO2e/kWh in 2022) in Europe (EuropeanEnvironmentAgency, 2024), the GHG intensity of electricity 
production differs significantly across different countries. We calculate the average value of GHG emission intensity of 28 countries in 
Europe is 253 gCO2e/kWh in 2022 (EuropeanEnvironmentAgency, 2024). We explore the impacts of solar PV on the GHG emissions 
for PT and shared e-scooter systems. The annual GHG emission is calculated on the basis of the total consumed electricity from the 
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Fig. 9. The histogram of the number of chargers deployed at bus charging hubs under the three scenarios.

Fig. 10. The spatial distribution of chargers and solar PV at bus terminals.

Table 6 
Number of chargers and installed capacity of solar PV under the three sce-
narios.

 Annual GHG emission (t)  Sharing + Solar PV  Solar PV  BAU
 PT and shared e-scooter systems  16,358  16,368  16,883

power grid and the corresponding GHG intensity of electricity production. Table 6 shows the annual GHG emissionsmodes of PT and 
shared e-scooter systems under the three scenarios. Under the BAU scenario, the annual GHG emissions of PT and shared e-scooter 
systems amount to 16,883 t. Introducing solar PV reduces the annual GHG emissions by 515 t (3%). Furthermore, implementing the 
shared charging service model reduces the annual GHG emissions by an additional 10 t compared to the Solar PV scenario.

6.  Discussion and conclusions

This study presents a bus charging infrastructure planning problem incorporating shared micromobility and the adoption of solar 
photovoltaic. The purpose is to mitigate the adverse effects of rapid transportation electrification in urban areas, such as grid load, 
low charging service efficiency, and the limited mobility of shared micro-mobility systems, by highlighting the introduction of solar 
photovoltaic and shared charging service mode. The problem is formulated as a bi-level mixed-integer linear programming model 
to address the differing interests and interactive decision-making processes. To tackle the computational challenges, particularly for 
city-scale instances, we employ a value-function-based approach incorporating super valid inequalities. The super valid inequalities 
handle the necessary condition of the optimal solutions to shared micromobility operators. We add the super valid inequalities into 
the restricted extended high point problem during the iteration-based algorithm to accelerate the algorithm convergence speed.
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Numerical results demonstrate that leveraging super valid inequalities reduces solution time by at least 98% for the large-scale 
instances. Our proposed optimization model and solution approaches can be applied to various shared micromobility systems, such as 
the e-scooters investigated in the case study, e-bikes, and even e-freight systems. In these shared micromobility or e-freight systems, 
charging demand can be inferred from transaction or operational data. The constraints of follower problems can be slightly adjusted 
to accommodate different scenarios. However, the objective of follower problems remains consistent: to minimize the charging 
dispatching costs between service zones and charging infrastructure. Therefore, similar super valid inequalities can be derived via 
the idea in this study.

The case study demonstrates our proposed optimization model at the city level using 70 bus routes, 705 buses, 61 bus terminals, 
and charging demands for over 12,000 e-scooters in Gothenburg, Sweden. The economic benefits of solar photovoltaic are evident, 
and the investment efficiency ranges between 110% and 120%, even when the service fee is excluded. Notably, this study does not 
integrate energy storage into solar photovoltaic because it is necessary to understand the economic benefits of solar photovoltaic 
without energy storage under the current high investment costs of energy storage. However, our model can be easily extended to 
include energy storage considerations. In general, the shared charging service offers greater economic benefits for shared e-scooter 
operators than for public transport operators, given the service fee ranging from US$0 to US$2. It can achieve up to 54% reduction 
in electricity consumption for electric mini-trucks and labor costs for the e-scooter operators. Opening bus charging hubs to e-scooter 
operators provides them with more charging location options and reduces dispatching distances. Consequently, this integration not 
only lowers operational costs for e-scooter operators but also ensures timely and sufficient battery power for e-scooters, enhancing 
e-scooter mobility. Integrating solar photovoltaic can reduce daily grid loads for electric bus charging by 3% to 34% across different 
seasons. This significant seasonal impact corresponds to the varying solar photovoltaic power outputs in Gothenburg. Compared 
with existing studies (Liu et al., 2024; Ren et al., 2022), we find that the characteristics of solar resources in different countries and 
regions significantly influence grid performance. Under the average greenhouse gas emission intensity in Europe, introducing solar 
photovoltaic reduces annual greenhouse gas emissions by 3%. Integrating a shared charging service further increases this reduction 
to 3.1%.

Future research can extend the current study in two key areas. First, dynamic electricity markets and infrastructure resilience 
affected by climate change should be considered at the planning stage. Second, the vehicle routing problem of shared micromobility 
systems can be integrated into the joint charging scheduling optimization for electric buses and shared micromobility vehicles.
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Appendix A.  The description of EHPP

First, we define a generalized bi-level program as follows. Notably, the mathematical notation used in this appendix is independent 
of that in the main text. 

𝑧∗ = min
(𝑥,𝑦)

𝜙𝑙(𝑥, 𝑦) (A.1)

𝑥 ≥ 0, 𝑥 ∈ ℤ (A.2)

𝑔1𝑗 (𝑥) + ℎ1𝑗 (𝑦) ≤ 𝑏1𝑗 ,∀𝑗 = 1,… , 𝑚1 (A.3)
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𝑦 ∈ argmin
𝑦𝑓

{𝜙𝑙(𝑥, 𝑦𝑓 )|𝑔2𝑗 (𝑥) + ℎ2𝑗 (𝑦
𝑓 ) ≤ 𝑏2𝑗 ,∀𝑗 = 1,… , 𝑚2, 𝑦

𝑓 ≥ 0, 𝑦𝑓 ∈ ℤ} (A.4)

Here, 𝜙𝑙(𝑥, 𝑦) is the objective function of the leader problem, where 𝑥 presents the leader variables and 𝑦 denotes the optimal 
follower variables given 𝑥. 𝑥 and 𝑦 are non-negative integers. But we have shown that, in our problem, it suffices to require that 
the leader variables appearing in the follower problem are non-negative integers, which guarantees convergence (see Proposition 1). 
Constraint (A.3) is the constraint for the leader problem. Eq.  (A.4) presents the optimal solution of 𝑦𝑓  given 𝑥. Actually, Eq. (A.4) 
indicates the follower problem. 𝑔2𝑗 (𝑥) + ℎ2𝑗 (𝑦

𝑓 ) ≤ 𝑏2𝑗  is the follower constraint.
The corresponding HPP is formulated as follows. 

𝑧𝐻𝑃𝑃 = min
(𝑥,𝑦)∈Ω

𝜙𝑙(𝑥, 𝑦) (A.5)

Where 𝑥 and 𝑦 represent the leader and follower variables, respectively. Let Ω denote the set of all feasible (𝑥, 𝑦) satisfying the 
defined original constraints. In the HPP, the follower’s optimality is relaxed, and the corresponding constraints are incorporated into 
the leader problem, thereby converting the bi-level formulation into a single-level problem. We do not have to ensure 𝑦 is optimal 
given the 𝑥 in the HPP, so 𝑧𝐻𝑃𝑃  must be a lower bound for 𝑧∗.

To give the EHPP, we first introduce the following propositions.
Proposition A1 (Lozano and Smith, 2017). Let 𝑌  denote the set of feasible follower variables related to all feasible leader variables. 

Define 𝛾𝑦̂,𝑗 = ⌊𝑏2𝑗 − ℎ2𝑗 (𝑦̂)⌋ + 1 for every 𝑦̂ ∈ 𝑌 , 𝑗 = 1,… , 𝑚2. Here, ⌊⌋ is the floor operator, and it rounds a value down to the nearest integer. 
The leader blocks the solution 𝑦̂ ∈ 𝑌  by constraint 𝑗 if and only if 𝑔2𝑗 (𝑥) ≥ 𝛾𝑦̂,𝑗 .

Proposition A2 (Lozano and Smith, 2017). Define 𝐵(𝑦̂, 𝑌 ) = {(𝑦′ , 𝑞)|𝛾𝑦′ ,𝑞 ≥ 𝛾𝑦̂,𝑞 , 𝑦
′ ∈ 𝑌 , 𝑞 = 1,… , 𝑚2}. This set represents all ordered 

pairs (𝑦′ , 𝑞), such that if 𝑥 blocks 𝑦′ ∈ 𝑌  by constraint 𝑞, then 𝑥 also blocks 𝑦̂ by constraint 𝑞.
Then, the EHPP can be formulated as follows. 

min
(𝑥,𝑦)

𝜙𝑙(𝑥, 𝑦) (A.6)

𝑔2𝑗 (𝑥) ≥ −𝑀1
𝑗 +

∑

𝑦̂∈𝑌
(𝑀1

𝑗 + 𝛾𝑦̂,𝑗 )𝜔𝑦̂,𝑗 ,∀𝑗 = 1,… , 𝑚2 (A.7)

𝜙𝑓 (𝑥, 𝑦) ≤ 𝜙𝑓 (𝑥, 𝑦̂) +𝑀2
𝑦̂

∑

(𝑦′ ,𝑞)∈𝐵(𝑦̂,𝑌 )

𝜔𝑦′ ,𝑞 ,∀𝑦̂ ∈ 𝑌 (A.8)

(𝑥, 𝑦) ∈ Ω (A.9)

𝜔𝑦̂,𝑗 ∈ {0, 1}, 𝑦̂ ∈ 𝑌 , 𝑗 = 1,… , 𝑚2 (A.10)

Where 𝑀1
𝑗  and 𝑀2

𝑦̂  sufficiently large numbers. 𝜙𝑓 (𝑥, 𝑦) denote the objective function of the follower problem. Let 𝜔𝑦̂,𝑗 denote 
a binary variable: 1 if constraint 𝑗 blocks 𝑦̂, otherwise 0. Let Ω denote the set of all feasible (𝑥, 𝑦) satisfying the defined original 
constraints. Next, the following proposition shows that the EHPP is equivalent to the generalized bi-level program.

Proposition A3 (Lozano and Smith, 2017). The EHPP is equivalent to the generalized bi-level program.
Now, we return to the problem considered in this study. Clearly, the proposed formulation is a bi-level program that satisfies the 

conditions required to transform it into the EHPP. Moreover, we have shown that it suffices to require the leader variables appearing 
in the follower problem to be non-negative integers, which guarantees convergence (see Proposition 1).

Appendix B.  Case study setup

Table B.7 presents key parameters and data sources for the case study. The BEB energy consumption for a given trip is estimated 
as the product of the energy consumption rate and the trip distance. Trip distances are obtained from the website reporting bus routes 
and timetables in Gothenburg. Given the installed PV capacity, the solar PV power output is estimated by multiplying the hourly PV 
output per unit of installed capacity by the installed capacity. In Gothenburg, the hourly PV output per unit capacity is provided as 
four seasonal profiles corresponding to the four seasons of the year. Given the maximum available area for deploying PV panels at 
bus charging hubs, we compute the maximum installable PV capacity based on the rated power and footprint area of the PV modules. 
Based on the bus routes and timetables in Gothenburg, we identify the relationships between routes and bus terminals and construct 
the corresponding bus network.
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Table B.7 
Key parameters and data sources for the case study.
Parameters Values Explanation

Number of SMS zones 20 500m × 1000m: 2; 1000m × 1000m: 5; 
2000m × 2000m: 9; 3000m × 3000m: 4

Number of SMS batteries needing to be charged See Appendix C Per hour per zone.
Averaged charging demand of an SMS battery 0.63 kWh Data source: https://www.ewheels.se/

elsparkcykel/e2s-urban-max/?code=10916.
BEB energy consumption rate 0.7 kWh/km (Doulgeris et al., 2024).
BEB energy consumption per trip 0.7× (trip distance) Computed as (energy consumption rate) × (trip 

distance).
BEB battery capacity 300 kWh
BEB charging power 450 kW
Annual investment cost of a charger US$5,700 (Liu et al., 2021).
Annual investment cost of solar PV US$25/kW (Liu et al., 2024).
Hourly PV power outputs per kW See the website Retrieved from https://profilesolar.com/

locations/Sweden/Gothenburg/.
Hourly PV power outputs (Installed PV capacity)×(Hourly 

PV output per kW)
Computed as installed PV capacity multiplied by 
hourly PV output per kW.

Maximum number of chargers installed at a bus charging 
hub

20

PV module area 1.62m2 (SunPower, 2017).
Rated power of a PV module 0.327 kW (SunPower, 2017).
Maximum area for deploying PV panels at bus charging 
hubs

– Obtained from Google Maps.

Current bus routes and timetables See the website (Västtrafik, 2024).
Time-of-use electricity price See Fig. 3 (NordPool, 2024).
Travel speed of electric trucks carrying SMS batteries 20 km/h
Operational hourly cost of a battery dispatching trip US$20.2948/hour Including both labor and electricity consumption 

costs. Data source: https://www.salaryexpert.
com/salary/job/video-editor/sweden.

Appendix C.  Number of SMS batteries needing to be charged

Table C.8 presents the number of SMS batteries needing to be charged per hour per zone. The column of Zone_ID represents the 
ID of SMS zones. The columns of H1–H24 present the hour index.
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Appendix D.  An example to illustrate the algorithm

We present an illustrative example of the proposed algorithm. We consider an instance with 100 buses and 11 bus terminals. 
Table D.9 reports the solution statistics across iterations, including the UB, LB, the follower objective value in the REHPP, and 
the optimal follower objective (given the leader decisions). In the first iteration, the algorithm has not converged, as indicated by a 
nonzero UB–LB gap and by the discrepancy between the follower objective in the REHPP and its optimal value under the corresponding 
leader decisions. The discrepancy between the follower objective in the REHPP and its optimal value under the corresponding leader 
decisions indicates that the current REHPP does not satisfy bi-level optimality, as it violates the follower’s optimality condition. In 
contrast, in the second iteration, with the aid of the super valid inequalities and the added cutting-plane constraints, the follower 
optimality condition is enforced, and bi-level optimality is achieved.

Fig. D.11 shows the cumulative number of battery dispatching events between the SMS zones and bus charging hubs in the first 
and second iterations. The follower decisions differ markedly between the two iterations. After the second iteration, the follower 
decisions reach the optimal solution, enabled by the super valid inequalities and the added cutting-plane constraints.

Table D.9 
Solution statistics across iterations.

 Iteration  UB  LB  Follower objective value in the REHPP  Optimal follower objective
 1  273,102  271,974  135,153  116,267
 2  272,094  272,094  119,246  119,246

Fig. D.11. Cumulative number of battery dispatching events between the SMS zones and bus charging hubs in the first and second iterations.
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