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Abstract: The controlled motion of a new structure of manipulator robot is under

study. In comparison with the well-known SCARA robot the proposed robotic

system has the following new features: in addition to powered drives it comprises

several unpowered (passive) spring-damper-like drives. An additional link has also

been incorporated into the structure that gives the possibility to obtain a semi-

passively actuated closed-loop chain robot. Special emphasis is put on a study of

the interaction between the controlling stimuli of the powered drives and the torques

exerted by the unpowered drives needed to provide the energy-optimal motion of

the robot. Computer simulations have demonstrated the numerical e�ciency of the

developed algorithms and have proved several advantages of the considered semi-

passively actuated closed-loop robot.

1. INTRODUCTION

The development of new robotic systems with

closed-loop chains and di�erent types of actuation

is currently one of the main activities of many

research institutions and industrial manufactur-

ers (Tran and Kehl, 1998). Potential applications

of closed-loop chain manipulators arise whenever

there is a need for large structural sti�ness or

high performance dynamics and when it is desir-

able to bring the actuators as close as possible

to the base (Nakamura and Ghodoussi, 1989);

(Gosselin, 1996). If a closed-loop robot has more

actuated joints than its degree-of-freedom the

joint torques are no longer uniquely determined.

Such kind of robot is called an overactuated robot

in the sense that there are more actuators than

necessary. To design an e�ective control law for

overactuated closed-loop chain manipulators it

seems reasonable to explore the inherent dynamics

of the mechanical structure of the system and the

optimal interaction between di�erent kind of ac-

tuators (Zhang et al., 1999). Previously (Berbyuk

et al., 1998) have proposed an optimization ap-

proach for the design of rotational spring-damper

passive drives providing the programmed motion

of a bipedal walking robot. The problem was for-

mulated as an approximation procedure for the

controlling torque acting at the joints of the robot

during its optimal motion. The motion and the re-

spective torques were determined by the solution

of the optimal control problem for the dynamical

system model of the robot (Berbyuk et al., 1999).

In this paper the dynamics and control prob-

lems are studied for a new structure of manip-



ulator robot. In comparison with the well-known

SCARA robot the proposed structure is charac-

terized by incorporation of an additional link that

gives a closed-loop chain robot. Special emphasis

is put on a study of optimal load distribution and

interaction between controlling stimuli of powered

drives and torques exerted by the unpowered ac-

tuators.

2. STATEMENT OF THE PROBLEM

Consider the manipulator robot depicted in Fig. 1.

The robot comprises four links that are modeled

by the rigid bodies OA, AB, OD and EC. There

are one degree-of-freedom rotational joints at the

points O and A, and translational joints at the

point B.
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Fig. 1. The Sketch of the SCARA-Like Robot

Let OXYZ be a �xed rectangular Cartesian coor-

dinate system. It is assumed that the robot's links

OA, AB and OD moves in the horizontal plane

OXY under the action of the torques u1(t); u2(t)

and u3(t) applied to the links OA, AB, and OD,

respectively. The link EC moves along the direc-

tion of the axes OZ under the action of the force

F (t). The controlling stimuli ui(t); i = 1; 2; 3 and

F (t) are exerted by the powered drives of the

robot. The robotic system also comprises spring-

damper actuators at joints O and A. The torques

exerted by these actuators p1 , p2 and p3 act on

the links OA, AB and OD, respectively. They will

be treated as the controlling stimuli of unpowered

(passive) drives of the robot.

The following notations are employed: �1, �2 ,�3
and z are the angles and linear displacement that

determine the position of the links OA, AB, OD

and EC respectively (Fig. 1); li;mi; Ji; i = 1; 2; 3,

denote the length, the mass and the moment of

inertia of the links OA, AB and OD relative to the

vertical axis passing through their mass center,

respectively; r1; r2; r3 are the distances from the

points O, A and O to the center of mass of the

links OA, AB and OD, respectively; m4;mC ;mD

denote the mass of the link EC and the mass of

point-loads located at the end-e�ectors C and D

of the robot, respectively.

Let �1; �2 and z be the Lagrangian generalized co-

ordinates of the considered system. The equations

of motion for the robot are given by the following

expressions:

d

dt

�
@L

@ _qi

�
�

@L

@qi
= Qqi ; i = 1; 2; 3 (1)

Here the functions Qqi constitute the generalized

forces, L is refered to system Lagrangian L =

K � P , where K and P are kinetic and potential

energies of the robot, respectively; and q1 = �1,

q2 = �2, and q3 = z.

The kinetic and potential energies of the system,

and the generalized forces Qqi can be written as

follows:

K = KOA +KAB +KOD +KEC (2)

P = m4gz (3)

Q�1 = u1 + p1 + u3 + p3 (4)

Q�2 = u2 + p2 + b (�1; �2) (u3 + p3) (5)

Qz = F (6)

In formula (2) we denote:
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The inherent dynamics of the passive drives of the

robot can be modeled in di�erent ways, e.g. by the

di�erential constraints:

pi + ki�i(t) + ci _�i(t) = 0 (7)

where ki and ci are the spring and the damper

coe�cients of the i-th passive drive, i = 1; 2; 3.

The di�erential equations that are determined

by the formulas (1)-(7) describe the controlled

motion of the semi-passively actuated SCARA-

like robot.



An analysis of the robot (Fig. 1) shows that

the position, the velocity and the acceleration of

the robot's end-e�ectors (points C and D) can

be uniquely determined by speci�cation of the

functions l(t); �3(t) and z(t). The set of cyclic

pick-and-place operations of the robot can be

given by the following conditions:

f(0) = f(T ) = f0; _f(0) = _f(T ) = _f0 (8)

f(�) = f� ; _f(�) = _f� (9)

mC =

(
mC ; 0 � t � �

0 ; � < t � T
(10)

mD =

(
mD ; 0 � t � �

0 ; � < t � T
(11)

In formulas (8)-(11) f is a vector-function having

as its components l(t); �3(t) and z(t); t = 0 and

t = T are the times of the beginning and ending of

the pick-and-place operation, respectively; � is the

duration of transferring of the loads; f0; _f0; f� ; _f�
are given parameters that determine the initial

(�nal) and intermediate phase states of the end-

e�ectors.

As follows from formulas (8)-(11) the proposed

set of pick-and-place operations of the robot is

speci�ed by the following parameters:

f0; _f0; f� ; _f� ; �; T;mC ;mD (12)

which are at disposal as input data.

The modeling task for the considered SCARA-like

robot can be formulated as follows.

Problem 1. The values of all structural param-

eters (li; ri;mi; Ji; ki; ci) of the robot and the in-

put data (12) of the pick-and-place operation are

given. Determine the motion:

�1(t); �2(t); z(t); t 2 [0; T ] (13)

and the controlling stimuli of the powered drives

of the robot

ui(t); t 2 [0; T ]; i = 1; 2; 3 (14)

which provide the execution of the given pick-

and-place operation subject to the di�erential

constraints (1) and (7).

Based on the solution of Problem 1 di�erent kind

of cost functions can be evaluated. This will make

it possible to study the sensitivity of dynamic and

energetic characteristics of the robot with respect

to the input data.

In the present paper the following functionals are

utilized:

E1 =

Z T

0

3X
i=1

jui(t)j dt (15)

E2 =

Z T

0

3X
i=1

u2i (t)dt (16)

E3 =

Z T

0

3X
i=1

���ui(t) _�i��� dt (17)

In many cases these functionals can be used to

estimate the energy consumption for the con-

trolled motion of mechanical systems (Athans et

al., 1963). The expressions for these cost functions

involve only the controlling stimuli of the powered

drives. This is one of the reasons why the control-

ling stimuli pi(t) is named passive.

3. METHODOLOGY

As follows from the description of the considered

robot the number of degrees-of-freedom is less

than the number of powered drives. It means that

the robot in question is an overactuated mechan-

ical system and the modeling task (Problem 1)

leads to dynamic redundancy.

To solve Problem 1 an approach is proposed that

is based on:

� solution of inverse kinematics for the initial,

intermediate and �nal phase states of the

robot end-e�ectors;

� path planning by means of polynomial and

Fourier series approximation of the robots

generalized coordinates;

� special regularization procedure of the dy-

namic redundancy of the system;

� and, �nally, solution of the inverse dynamics

problem.

An outline of the above approach is supported by

the following details.

For the input parameters f0; _f0; f� ; _f� of the pick-

and-place operation (8)-(11) the inverse kinemat-

ics problem is solved for the moments of time

t = 0; t = � and t = T . As a consequence the

following parameters are calculated:

�i0 = �i(0); _�i0 = _�i(0); i = 1; 2 (18)

�i� = �i(�); _�i� = _�i(�); i = 1; 2

z0 = z(0); _z0 = _z(0); z� = z(�); _z� = _z(�)

The path planning problem is solved using the

approximation of the generalized coordinates of

the robot by a sum of a �fth order polynomial

and a �nite Fourier series given by the following

formula:



q(t) =

5X
j=1

Cq�j(t� t0)
j (19)

+

Nq�X
k=1

[aq�k cos(!�(t� t0)) + bq�k sin(!�(t� t0))]

for both intervals of time t 2 [0; � ] and t 2 [�; T ].

Here q = (�1; �2; z); � = 1; t0 = 0; and !� =
2�
�

for t 2 [0; � ], and � = 2; t0 = � , and !� =
2�

(T��)

for t 2 [�; T ]; Nq� are given positive integers.

Taking into account the conditions (8) and (18),

from formula (19) follows that the parameters

Cq�4; Cq�5; aq�k ; bq�k; k = 1; 2; :::; Nq� (20)

can serve as independent variables.

To avoid the dynamic redundancy of the consid-

ered robot an additional constraint

G[u1(t); u2(t); u3(t)] = 0; t 2 [0; T ] (21)

is imposed on the controlling stimuli of the pow-

ered drives. The scalar function G can be used for

advanced optimization.

If the function G is chosen, the inverse dynamics

problem can be solved by using the equations of

motion (1), (7) and the constraint (21). This is

the �nal step of solving the modeling task for the

SCARA-like robot.

The proposed approach gives no unique solution

of Problem 1. The solution will depend on the

value of the parameters (20) and the function G.

4. ENERGY-OPTIMAL CONTROL FOR THE

GIVEN MOTION OF THE ROBOT

The considered robot is an overactuated mechani-

cal system. This makes it possible to optimize the

controlling stimuli ui(t) of drives for an arbitrary

given motion of the robot.

Below the motion of the robot is studied in the

horizontal plane OXY. The equations of the plane

motion of the robot can be written as follows:

f1(�i; _�i; ��i) = u1 + p1 + u3 + p3 (22)

f2(�i; _�i; ��i) = u2 + p2 + b (�i) (u3 + p3) (23)

Here the functions f1 and f2 are determined by

means of the formulas (1)-(6).

Problem 2. Assume that an arbitrary motion

of the robot is given, i.e. the functions (13) are

speci�ed. Find the control stimuli (14) which min-

imize the functional (16) subject to the di�erential

constraints (22) and (23).

It can be shown that the solution of Problem 2 is:

u�3(t) = (g1 + bg2) =
�
2 + b2

�
(24)

u�1 = g1 � u�3(t); u
�

2 = g2 � b (�i)u
�

3(t) (25)

Here the functions g1 and g2 have the expressions:

g1 = f1 � p1 � p3 (26)

g2 = f2 � p2 � b (�i) p3

The obtained controlling stimuli (24) and (25)

provide the execution of an arbitrary given motion

of the overactuated robot with minimal energy

consumption E�

2 .

The simplest way to reduce the overactuation

of the considered robot is to exclude one of the

powered drives. For instance, assuming that

u3(t) � 0; t 2 [0; T ] (27)

the unique solution for the functions u1(t) and

u2(t) can be obtained from the equations (22) and

(23). In this case the functional (16) is

E0
2 =

Z T

0

�
g21 + g22

�
dt (28)

where the functions g1 and g2 are given by the

formulas (26). Comparing the value E0
2 with the

value of the functional (16) for the obtained op-

timal controlling stimuli u�i (t), (i = 1; 2; 3), it is

easy to show the validity of the following expres-

sion

E0
2 �E�

2 =

Z T

0

(g1 + bg2)
2

2 + b2
dt (29)

The formula (29) shows that the energy consump-

tion needed to execute an arbitrary given motion

by the considered overactuated robot with ob-

tained optimal controlling stimuli (24) and (25)

is less than the energy consumption of the same

robot but without powered drive acting on the

link OD.

Problem 3. Assume that an arbitrary motion of

the robot is given. Determine the torques u1(t),

u2(t) and p3(t) which minimize the functional (16)

subject to the equations (22), (23), the constraint

(27) and the restrictions p1(t) = p2(t) � 0; t 2

[0; T ].

Solution of Problem 3 can be found explicitly and

it is determined by the formulas

p�3(t) = (f1 + bf2)=(1 + b2) (30)

u�1p3(t) = f1 � p�3; u
�

2p3
(t) = f2 � bp�3 (31)

The value of the functional (16) for the torques

(27) and (31) is equal to

E�

2p3
= E0

2 �

Z T

0

(f1 + bf2)
2

1 + b2
dt (32)

where E0
2 is determined by formula (28) and g1 =

f1, g2 = f2. Using the solutions of Problems 2 and

3 the following equality can be written

E�

2 �E�

2p3
=

Z T

0

(f1 + bf2)
2

(1 + b2) (2 + b2)
dt (33)

Analysis of formulas (32) and (33) demonstrates

that the energy consumption for an arbitrary mo-

tion of the semi-passively actuated robot having



optimal unpowered (passive) drive (30) is less

than the energy consumption of the fully actuated

robot. The same statement is also valid for the

energy consumption of the optimal overactuation

(24), (25).

Problem 4. Consider Problem 3 with an addi-

tional constraint

p3(t) = �k3�3(t); t 2 [0; T ] (34)

where k3 is the constant spring coe�cient of a

spring-like passive drive acting on the link OD of

the robot.

Taking into account this constraint it can be

shown that the solution of Problem 4 is deter-

mined by formula (31) and

p�3(t) = p�3S(t) = �
D2

D1

�3(t) (35)

D1 =

Z T

0

�
1 + b2

�
�23(t)dt (36)

D2 =

Z T

0

(f1 + bf2)�3(t)dt

The energy consumption E�

2S of the robot having

optimal spring-like passive drive (35) is equal to

E�

2S = E0
2 �D2

2=D1 (37)

where E0
2 is determined by the expression (28) and

g1 = f1, g2 = f2.

From formulas (36) and (37) follow that the robot

with the optimal spring-like passive drive has less

energy consumption than the fully actuated robot

executing the same given motion.

5. COMPUTER SIMULATIONS

Several numerical results are now presented that

illustrate the e�ectiveness of the proposed method-

ology. In all presented variants the following input

data for the pick-and-place operation are used:

T = 6 s; � = 4 s; l(0) = l(T ) = 2 m; l(�) =

1:5 m; _l(0) = _l(�) = _l(T ) = 0; �3(0) = �3(T ) =

�
�
4
; �(�) = �

3
; _�3(0) = _�3(�) = _�3(T ) =

0; mC = 5 kg; mD = 0 kg. It is assumed that the

links OA, AB and OD of the robot in question are

homogeneous bars and that their centre of mass

is located at the midpoint of the links. The length

and mass of links are as follows: l1 = 1 m, l2 = 1:5

m, l3 = 3 m, m1 = 5 kg, m2 = m3 = 10 kg.

Using the above input data the inverse kinematics

problem was solved for the moments of time t = 0,

t = � and t = T . Then, the formula (19) was used

to approximate the generalized coordinates �1(t)

and �2(t) for both intervals of time: t 2 [0; � ] and

t 2 [�; T ]. This gives the set of functions �1(t) and

�2(t) which depends on the variable parameters

(20). The results are presented for one of the above

mentioned pick-and-place operations, namely for

the operation with the following values of the

parameters (20): aq�k = bq�k = 0, q = (�1; �2);

� = 1; 2; k = 1; 2; :::; Nq� . The parameters Cq�4
and Cq�5 were determined by using formula (19)

and the boundary conditions: �l(0) = �l(�) =
�l(T ) = 0, ��3(0) = ��3(�) = ��3(T ) = 0. The pick-

and-place operation of the robot is then uniquely

determined by the formula (19).

The path of the end-e�ector C which correspond

to the path of the point B is depicted in Fig. 2

for the given pick-and-place operation. The time-

history of the torques acting on the links OA, AB

and OD of the robot are presented in Figure 3-

5, respectively. The thin solid, heavy solid, thin

dashed and heavy dashed curves correspond to

the solution of Problem 1 with restriction (27) and

Problems 2-4, respectively. Analysis of Figures 3-4

shows that the time-history of the control torques

u1(t) and u2(t) have the same character for the

fully actuated robot (thin solid curves) and for

the robot with optimal overactuation (heavy solid

curves).
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Fig. 2. The path of the end-e�ector C of the robot.
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Fig. 3. The torque acting on the link OA.

The obtained values of the functionals (15)-(17)

for the given motion of the robot are presented in

Table 1. The data of columns 1-4 correspond to

the solutions of Problem 1-4, respectively. Analy-

sis of the data of Table 1 gives us the possibility

to estimate quantitatively the gain in energy con-

sumption of the considered robot due to optimal

overactuation (formula (29)), incorporation of the

optimal passive drive (formulas (32) and (33)),
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Fig. 4. The torque acting on the link AB.
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Fig. 5. The torque acting on the link OD.

Table 1. Energy Consumption

Problem# 1 2 3 4

E1 442 337 48 268

E2 27122 11065 362 10988

E3 181 183 24 101

and due to utilization of the optimal spring-like

passive drive (formula (37)).

6. CONCLUSION

The controlled motion of a SCARA-like closed-

loop manipulator robot has been analytically and

numerically studied with special emphasis on the

interaction between controlling stimuli of powered

drives and torques exerted by unpowered drives

of the robot. Dynamic redundancy is utilized to

perform energy optimization. Di�erent elements

and strategies in terms of arrangements of the

powered and unpowered drives is investigated.

The e�ectiveness of the proposed methodology

has been validated through computer simula-

tions of a pick-and-place operation. The analytical

study and the numerical results of the simula-

tions show that the energy consumption of the

given arbitrary motion in case of optimal over-

actuation is less than in case of full actuation.

More importantly the energy consumption is even

lower in the case of semi-passively actuation using

a spring-like passive drive. This indicates that

the semi-passively actuation might be a preferred

alternative to overaction and full actuation not

only for the manipulator robot in question but

also for more general mechanical systems. The

energy consumption with optimal passive drive

also suggests that there is a potential to gain even

more in terms of energy saving using advanced

passive actuators, e.g. passive drive with switching

of sti�ness parameters.

Future work will involve a more detailed study of

the e�ect of semi-passively actuation of the robot.

In particular it is of interest to study the set of

motion where semi-passively actuation is superior

to overactuation. It is also of interest to study the

e�ect of more advanced passive actuators.
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