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Recent demonstrations of macroscopic quantum coherence in Josephson junction based electronic
circuits have opened an entirely new dimension for research and applications in the established
field of Josephson electronics. In this article we discuss basic Josephson circuits for qubit appli-
cations, methods of quantum description of these circuits, and circuit solutions for qubit cou-
plings. Principles of manipulation and readout of superconducting qubits are reviewed and illus-
trated with recent experiments using various qubit types. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2780165�

I. INTRODUCTION

Practical implementation of quantum computation
algorithms1,2 requires the development of a special kind of
hardware, which can broadly be described as a controllable
many-body quantum network. The subject of this article—
superconducting electrical circuits containing Josephson
junctions—may serve as the elementary blocks of such a
network: quantum bits. The possibility of achieving quantum
coherence in macroscopic Josephson junction �JJ� circuits,
envisioned by Leggett in the early 1980s,3–5 came to reality
almost 20 years later in the experimental demonstration of
coherent quantum oscillation in a single Cooper pair box by
Nakamura et al.6 It would be fair to say that this break-
through experiment represents the “tip of the iceberg”: it
rests on a huge volume of advanced research on Josephson
junctions and circuits developed during the last 25 years.
Some of this work has concerned fundamental research on
Josephson junctions and superconducting quantum interfer-
ometers �SQUIDs�, aimed at understanding macroscopic
quantum tunneling �MQT�7–9 and macroscopic quantum co-
herence �MQC�,5,10 providing the foundation of the persis-
tent current flux qubit11–13 and the JJ phase qubit.14–16 How-
ever, there has also been intense research aimed at
developing superconducting flux-based digital electronics
and computers. Moreover, in the 1990s, based on the Cou-
lomb blockade theory of Josephson tunneling,17,18 the single
Cooper pair box �SCB� was developed experimentally19,20

and used to demonstrate the quantization of Cooper pairs on
a small superconducting island, which is the foundation of
the charge qubit.6,21

Since then there has been a steady development,22–26

with observation of microwave-induced Rabi oscillation of
the two-level populations in charge27–29 and flux30–33 qubits
and dc-pulse-driven oscillation of charge qubits with rf-SET
detection.34 An important step is the development of the
charge–phase qubit, a hybrid version of the charge qubit con-
sisting of an SCB in a superconducting loop,27,28 demonstrat-
ing Rabi oscillations with very long coherence time, of the
order of 1 �s, allowing a large set of basic and advanced
�“NMR-like”� one-qubit operations �gates� to be
performed.29 In addition, coherent oscillations have been
demonstrated in the “simplest” JJ qubits of them all, namely

a single Josephson junction,14,15,35,36 or a two-JJ dc
SQUID,16 where the qubit is formed by the two lowest states
in the periodic potential of the JJ itself.

Although a powerful JJ-based quantum computer with
hundreds of qubits remains a distant goal, systems with 5–10
qubits will be built and tested by, say, 2010. Pairwise cou-
pling of qubits for two-qubit gate operations is then an es-
sential task, and a few experiments with coupled JJ-qubits
with fixed capacitive or inductive couplings have been
reported,37–42 in particular the first realization of a
controlled-NOT gate with two coupled SCBs,38 used to-
gether with a one-qubit Hadamard gate to generate an en-
tangled two-qubit state.

For scalability and simple operation, the ability to con-
trol qubit couplings, e.g., switching them on and off, will be
essential. So far, experiments on coupled JJ qubits have been
performed without direct physical control of the qubit cou-
pling, but there are many proposed schemes for two�multi�-
qubit gates based on fixed or controllable physical qubit–
qubit couplings or tunings of qubits and bus resonators.

This article aims at describing the inner workings of su-
perconducting JJ circuits, how these can form two-level sys-
tems acting as qubits, and how they can be coupled together
to multi-qubit networks. Since the field of experimental qubit
applications is only five years old, it is not even clear
whether the field represents an emerging technology for
computers. Nevertheless, the JJ-technology is presently the
only example of a working solid state qubit with long coher-
ence time, with demonstrated two-qubit gate operation and
readout, and with potential for scalability. This makes it
worthwhile to describe this system in some detail.

It needs to be said, however, that much of the basic
theory for coupled JJ-qubits was worked out well ahead of
experiment,21,43,44 defining and elaborating the basic opera-
tion and coupling schemes. Several reviews on the subject
are currently available,24,25,44–46 which describe the basic
principles of a multi-JJ-qubit information processor, includ-
ing essential schemes for qubit–qubit coupling. The ambition
of the present article is to provide a both introductory and
in-depth overview of essential Josephson junction quantum
circuits, discuss basic issues of readout and measurement,
and connect to the recent experimental progress with JJ-
based qubits for quantum information processing.
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II. QUANTUM SUPERCONDUCTING CIRCUITS

Standard superconducting JJ circuits used for the qubit
application and readout are presented in Fig. 1 and include:
current-biased single JJ and dc SQUID, rf SQUID with one
or more JJ, and the single Cooper pair box. These circuits
consist of various combinations of the three basic elements:
capacitive elements including Josephson junction capacitors,
linear inductive elements of superconducting leads, and non-
linear inductances of Josephson tunnel junctions. All these
circuits exhibit dynamical properties of a network of nonlin-
ear oscillators.47

The possibility for macroscopic electrical circuits to ex-
hibit quantum behavior is rather counterintuitive. However, it
is, in fact, a consequence of the quantum origin of the elec-
tromagnetic field. The Kirchhoff equations used to describe
these circuits represent a lumped element approximation of
the Maxwell equations valid for the limit of small circuit size
compared to the electromagnetic wavelength. Typical super-
conducting qubits operate at frequencies of several GHz,
which correspond to wavelengths in the centimeter range,
while circuit elements are of a submillimeter size.

Quantum electrodynamics, translated to the language of
lumped element circuits, establishes the non-commutation
relations between the charges and the currents.

The quantum behavior of electrical circuits was appreci-
ated and discussed back in the 1950s, in the context of elec-
trical current fluctuation.48 However, the first observation of
a real quantum effect, macroscopic quantum tunneling
�MQT�, was made only in 1981, when quantum switching of
a tunnel junction from the Josephson regime to the dissipa-
tive regime was discovered.49

While having been convinced of the possibility of quan-
tization in electrical circuits, one might be surprised that
quantum effects are not commonly observed in conventional
normal metal and semiconducting circuits: Indeed, in high-
frequency applications, frequencies up to THz are available,
which correspond to a distance between quantized oscillator
levels of the order of 10 K; this should be observable at
temperature of tens of millikelvin. Furthermore, it is intu-
itively clear and follows from a rigorous analysis7 that the
dissipation effects, which destroy the quantum coherence,
are not efficient when the broadening of the energy levels
due to dissipation is smaller than the distance between the
levels.

This requirement can be easily fulfilled in resonators
with high quality factors. In fact, the real difficulty for the
observation of the quantum dynamics is related to the linear
oscillator character of high quality LC-circuits: by virtue of
the Ehrenfest theorem,50 the quantum dynamics and the clas-
sical dynamics of linear oscillators are not distinguishable.

For the quantum dynamics to be reliably observed, a nonlin-
ear nondissipative circuit element is required; this is pro-
vided by the nonlinear inductance of the Josephson tunnel-
ing. For an illuminative discussion of this issue we refer to
the paper by Martinis, Devoret, and Clarke.51

A basis for the quantum description of the qubit circuits
is the Hamilton formalism. In the classical limit, the dynami-
cal equations for the conjugate variables are equivalent to the
standard Kirchhoff rules. The building blocks for construct-
ing the circuit Hamiltonian are given by the kinetic energy
associated with the charging energy of the capacitive ele-
ments, K=CV2 /2, and the potential energy associated with
the Josephson inductance, UJ=−EJ cos �, and the inductance
of the superconducting leads, UL=�2 /2L.52–54 All these
quantities are to be expressed in terms of the superconduct-
ing phase difference � for a given circuit element, whose
connection to the voltage drop V and magnetic flux � is
established by the Josephson relations, V= �� /2e��̇ and �
= �� /2e�2�. In the Hamilton formalism, the kinetic energy is
expressed through the momentum conjugate to the phase co-
ordinate, conveniently defined as n=�K��̇� / ��� �̇�. This mo-
mentum obeys the Poissonian bracket relation, �� j ,nk�
= �1/��� jk, and has the physical meaning of the charge q
accumulated on the junction capacitor in units of the double
electronic charge, q=2en, i.e., the number of the Cooper
pairs stored on the capacitor. The circuit Hamiltonian is then
constructed by summing up the energies of all the circuit
elements,

H = � �K�nj� + U�� j�� .

If several circuit elements are connected in a closed
loop, the flux quantization equation imposes a constraint on
the phases of these elements: ��i+�e=2�n, where �e

= �2e /���e is the phase associated with the applied magnetic
flux.

The current-biased Josephson junction, Fig. 1a, is de-
scribed with the Hamiltonian,

H = EC n2 − EJ cos � −
�

2e
Ie� , �1�

where EC= �2e�2 /2C is the charging energy, EJ= ��2 /2e�Ic is
the Josephson energy, Ic is the critical Josephson current; Ie

indicates the applied current, which serves as a controlling
parameter. The small amplitude electromagnetic oscillation
in this circuit, plasma oscillation, has the frequency ��
=�2ECEJ �at Ie=0�.

The rf SQUID Hamiltonian, Fig. 1c, has the form,

H = EC n2 − EJ cos � + EL
�� − �e�2

2
; �2�

here EL=�2 / �2e�L
2, and �e plays the role of controlling pa-

rameter.
The dc SQUID, shown in Fig. 1b, has two degrees of

freedom, �1,2, and its Hamiltonian can be written by com-
bining Eqs. �1� and �2� in terms of the phases �±= �1/2�
���1±�2�. In the symmetric case we have

FIG. 1. Basic superconducting circuits for qubit applications: current-biased
Josephson junction �a�; dc SQUID �b�; rf SQUID �c�; single Cooper pair
box �d�; the crossed box indicates a combination of a Josephson tunneling
element and a junction capacitor connected in parallel.
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H = EC n+
2 + EC n−

2 − 2EJ cos �+ cos �−

+ EL
�2�+ − �e�2

2
+

�

2e
Ie�−. �3�

This circuit is often used for qubit measurements.
The single Cooper pair box, shown in Fig. 1d, consists

of a small superconducting island coupled to a massive elec-
trode via a small resistive JJ, and also capacitively coupled to
an electrostatic gate; the gate potential is controlled by a
voltage source Vg. The classical Hamiltonian for this circuit
has the form

H = EC�n − ng�2 − EJ cos � , �4�

where ng=−CgVg /2e plays the role of external controlling
parameter, and Cg is the gate capacitance. The name of the
circuit stems from the analogous normal metallic circuit, the
single electron box �SEB�.55,56 If the tunnel junction resis-
tance exceeds the quantum resistance Rq	26 K	, and the
temperature is small compared to the charging energy of the
island, the system is in the Coulomb blockade regime:57,58

the electrons can be transferred to the island one by one, the
number of electrons on the island being controlled by the
gate voltage. In the superconducting state, the number of
electrons on the island changes pairwise.18,19,59 To achieve
such a regime, one has to take into account the parity
effect,59 a difference between the energies of even and odd
numbers of electrons on the island. While an electron pair
belongs to the superconducting condensate and has the addi-
tional charging energy EC, a single electron forms an excita-
tion, and thus its energy consists of the charging energy EC /2
plus the excitation energy 
. To provide the SCB regime and
prevent the appearance of individual electrons on the island,
the condition 
�EC/2 must be fulfilled.

The single Cooper pair transistor (SCT), a useful modi-
fication of the SCB, is presented in Fig. 2; here the island is
connected to the electrode via two Josephson junctions. The
advantage of this circuit is the possibility of tuning the ef-
fective Josephson energy of the SCB by applying magnetic
flux to the circuit loop, similar to the dc SQUID. Also, the
charge on the island is related to the magnitude of the in-
duced persistent current circulating in the loop, which can be
used for the measurement of the charge state of the island.

The classical Hamiltonian for this circuit is a combination of
Eqs. �2� and �4�, and has the form

HSCT = EC�n− − ng�2 + EC n+
2 − 2EJ cos �+ cos �−

+ EL
�2�+ − �e�2

2
. �5�

Technically, the quantization of electrical circuits is in-
troduced by generalizing the Poisson bracket relation
�� j ,nk�= i� jk. This quantization rule is satisfied, as in the
Schrödinger quantum mechanics, by substituting the momen-
tum n with the operator n=−i� /�� in Eqs. �1�–�4�.52–54

The quantum dynamics of an isolated JJ is described
with the Mathieu–Bloch picture for a particle moving in a
periodic potential, similar to the electronic solid state
theory.17 Two limiting regimes are usually distinguished: the
phase regime, EJ�EC, is analogous to the tight-binding ap-
proximation, and the charge regime, EJ�EC, is analogous to
the nearly free particle approximation. In the phase regime,
the quantum particle representing the JJ is basically confined
to a single potential well; the well contains many energy
levels since ���EJ. This regime is the closest to the junc-
tion classical dynamics. For the lowest energy levels the
parabolic approximation for the junction potential is appro-
priate, giving the level spacing 
En	��. However, non-
equidistance of the energy spectrum is essential, allowing the
selection of two energy levels for qubit operation. Phase qu-
bits and flux qubits usually operate in this phase regime.

In the charge regime, the junction eigenstate wave func-
tions are close to the plane waves, exp�i�q /2e���, where q
has the meaning of the charge on the junction capacitor
�quasi-charge�. In the specific case of the SCB, this quantity
corresponds to the charge on the island, which must be equal
to an integer number of electron pairs. This charge quantiza-
tion requirement is fulfilled by imposing a periodic boundary
condition on the junction wave function,

���� = ��� + 2�� . �6�

This implies that an arbitrary state of the SCB is a superpo-
sition of charge states with integer numbers of Cooper pairs,

���� = �
n

an exp�in�� . �7�

For half-integer values of the gate charge, ng=n+1/2, the
two neighboring charge states are almost degenerate and
separated by a small energy interval EJ�EC. Charge qubits
usually operate in this charge regime, the two tight levels n
=0,1 in the vicinity of ng− =1/2, being usually selected as
the qubit states.

III. BASIC QUBITS

The quantum superconducting circuits considered above
contain a large number of energy levels, while for qubit op-
eration only two levels are required. Moreover, these two
qubit levels must be well decoupled from the other levels in
the sense that transitions between qubit levels and the envi-
ronment must be much less probable than the transitions be-
tween the qubit levels themselves. Typically that means that

FIG. 2. Single Cooper pair transistor �SCT�: SCB with loop-shape bulk
electrode connected to the island via two JJs; charge fluctuation on the
island produces current fluctuation in the loop.
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the qubit should involve a low-lying pair of levels, well sepa-
rated from the spectrum of higher levels, and not being close
to resonance with any other transitions.

Single Josephson junction qubit

The simplest qubit realization is a current-biased JJ with
large Josephson energy compared to the charging energy. In
the classical regime, the particle representing the phase either
rests at the bottom of one of the wells of the tilted cosine
potential �“washboard” potential�, or oscillates within the
well.

Due to the periodic motion, the average voltage across
the junction is zero: �=0. Strongly excited states, where the
particle may escape from the well, correspond to the dissipa-
tive regime with nonzero average voltage across the junction,
�̇�0.

In the quantum regime described by the Hamiltonian �1�,
particle confinement, rigorously speaking, is impossible be-
cause of MQT through the potential barrier; see Fig. 3. How-
ever, the probability of MQT is small and the tunneling may
be neglected if the particle energy is close to the bottom of
the local potential well, i.e., when E�EJ. To find the con-
ditions for such a regime, it is convenient to approximate the
potential with a parabolic function, U���
	�1/2�EJ cos �0��−�0�2, where �0 corresponds to the po-
tential minimum, EJ sin �0= �� /2e�Ie. Then the lowest en-
ergy levels, Ek=��p�k+1/2� are determined by the plasma
frequency, �p=21/4�J�1− Ie / Ic�1/4. It then follows that the
levels are close to the bottom of the potential if EC�EJ, i.e.,
when the JJ is in the phase regime, and moreover, if the bias
current is not too close to the critical value, Ie� Ic.

It is essential for qubit operation that the spectrum in the
well is not equidistant. Then the two lowest energy levels,
k=0,1, can be employed for the qubit operation. Truncating
the full Hilbert space of the junction to the subspace spanned
by these two states, 
0� and 
1�, we may write the qubit
Hamiltonian in the form

Hq = −
1

2
�z, �8�

where =E1−E2.
The interlevel distance is controlled by the bias current.

When bias current approaches the critical current, level
broadening due to MQT starts to play a role, Ek→Ek

+ i�k /2. The MQT rate for the lowest level is given by60

�MQT =
52�p

2�
�Umax

��p
exp�−

7.2Umax

��p
 , �9�

where Umax=2�2��0 /2���1− Ie / Ic�3/2 is the height of the
potential barrier at given bias current.

Flux qubit

An elementary flux qubit can be constructed with an rf
SQUID operating in the phase regime, EJ�EC. Let us con-
sider the Hamiltonian �2� at �e=�, i.e., at half-integer bias
magnetic flux. The potential U��� shown in Fig. 4 has two
identical wells with equal energy levels when MQT between
the wells is neglected �phase regime, �J�EJ�. These levels
are connected with current fluctuations within each well
around averaged values corresponding to clockwise and
counterclockwise persistent currents circulating in the loop
�the flux states�. Let us consider the lowest, doubly degener-
ate, energy level. When the tunneling is switched on, the
levels split, and a tight two-level system is formed with the
level spacing determined by the MQT rate, which is much
smaller than the level spacing in the well.

In the case that the tunneling barrier is much smaller
than the Josephson energy, the potential in Eq. �2� can be
approximated as

U��� = EJ�1 − cos �� + EL
�� − �e�2

2

	 EL�− �
�̃2

2
− f�̃ +

1 + �

24
�̃4 , �10�

where �̃=�−�, f =�e−�, and where the parameter �
= �EJ /EL�−1�1 determines the height of the tunnel barrier.

The qubit Hamiltonian is derived by projecting the full
Hilbert space of the Hamiltonian �2� on the subspace
spanned by these two levels. The starting point of the trun-
cation procedure is to approximate the double-well potential
with Ul and Ur, as shown in Fig. 4, to confine the particle to
the left or to the right well, respectively. The corresponding
ground-state wave functions 
l� and 
r� satisfy the stationary
Schrödinger equation

Hl
l� = El
l�, Hr
r� = Er
r� . �11�

The averaged induced flux for these states, �l and �r,
has opposite sign, manifesting opposite directions of the cir-
culating persistent currents. Let us allow the bias flux to
deviate slightly from the half-integer value, �e=�+ f , so that
the ground-state energies are not equal but still close to each

FIG. 3. Quantized energy levels in the potential of a current-biased JJ; the
two lower levels form the JJ qubit, the dashed line indicates a leaky level
with higher energy.

FIG. 4. Double-well potential of the rf SQUID with degenerate quantum
levels in the wells. Macroscopic quantum tunneling through the potential
barrier introduces a level splitting 
, and the lowest level pair forms a qubit
�a�; truncation of the junction Hamiltonian, dashed lines indicate potentials
of the left and right wells with ground energy levels �b�.
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other, El	Er. The tunneling will hybridize the levels, and
we can approximate the true eigenfunction 
E�,

H
E� = E
E� , �12�

with a superposition, 
E�=a 
 l�+b 
r�. The qubit Hamiltonian
is given by the matrix elements of the full Hamiltonian, Eq.
�12�, with respect to the states 
l� and 
r�:

Hll = El + �l
U − Ul
l�, Hrr = Er + �r
U − Ur
r� ,

Hrl = El�
r
l� + �r
U − Ul
l� .

In the diagonal matrix elements, the second terms are
small because the wave functions are exponentially small in
the region where the deviation of the approximated potential
from the true potential is appreciable. The off diagonal ma-
trix element is exponentially small because of small overlap
of the ground-state wave functions in the left and right wells,
and also here the main contribution comes from the first
term. Since the wave functions can be chosen real, the trun-
cated Hamiltonian is symmetric, Hlr=Hrl. Then introducing
=Er−El� f and 
 /2=Hrl, we arrive at the Hamiltonian of
the flux qubit,

H = −
1

2
��z + 
�x� . �13�

The energy spectrum of the flux qubit is given by the
equation,

E1,2 = �
1

2
�2 + 
2, �14�

as shown in Fig. 5. The energy levels are controlled by the
bias magnetic flux. The dashed lines refer to the persistent
current states in the absence of macroscopic tunneling. These
states, 
l� and 
r�, form the basis of the qubit Hamiltonian in
Eq. �13�, and correspond to certain values of the induced
flux, �l and �r. Far from the degeneracy point �=0, corre-
sponding to a half-integer bias flux, �e=�� the qubit eigen-
states are almost pure flux states. At the flux degeneracy
point, the expectation value of the induced flux is equal zero,
and the qubit eigenstates are given by equal-weight superpo-
sitions of the flux states, 
E1� , 
E2�= 
l�� 
r� �cat states�. The
level spacing at this point is determined by the small ampli-

tude of the tunneling through the macroscopic potential bar-
rier.

The possibility of achieving quantum coherence of mac-
roscopic current states in an rf SQUID with a small capaci-
tance Josephson junction was first pointed out in 1984 by
Leggett.4 However, successful experimental observation of
the effect was achieved only in 2000, by Friedman et al.13

Flux qubit with 3 junctions

The main drawback of the flux qubit with a single Jo-
sephson junction �rf SQUID� described above concerns the
large inductance of the qubit loop, the energy of which must
be comparable to the Josephson energy to form the required
double-well potential profile. This implies a large size of the
qubit loop, which makes the qubit vulnerable to dephasing
by magnetic fluctuations of the environment. One way to
overcome this difficulty was pointed out by Mooij et al.:11

replacing the large loop inductance by the Josephson induc-
tance of an additional tunnel junction, as shown in Fig. 6.

The design employs three tunnel junctions connected in
series in a superconducting loop. The inductive energy of the
loop is chosen to be much smaller than the Josephson energy
of the junctions. Two junctions are identical, while the third
junction has a smaller area, and therefore a smaller Joseph-
son and a larger charging energy. The Hamiltonian has the
form

H = EC�n1
2 + n2

2 +
n3

2

1/2 + 
� − EJ�cos �1 + cos �2

+ �1/2 + �cos �3� . �15�

To explain the idea, let us consider the potential energy. The
three phases are not independent and satisfy the relation �1

+�2+�3=�e. Let us suppose that the qubit is biased at half-
integer flux quantum, �e=�. Then introducing the new vari-
ables �±= ��1±�2� /2, we have

U��+,�−� = − EJ�2 cos �− cos �+ − �1/2 + �cos 2�+� .

�16�

The two-dimensional periodic potential landscape of this
circuit contains the double-well structures near the points
��+ ,�−�= �0,0�mod 2�. An approximate form of the poten-
tial energy structures is given by

FIG. 5. Energy spectrum of the flux qubit versus bias flux �solid lines�: it
results from hybridization of the flux states �dashed lines�.

FIG. 6. Persistent current flux qubit with 3 junctions �bold line� connected
inductively �left�, and galvanically �right� to a measurement dc SQUID.
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U��+,0� 	 EJ�− 2�+
2 +

�+
4

4
 . �17�

Each well in this structure corresponds to clockwise and
counterclockwise currents circulating in the loop. The ampli-
tude of the structure is given by the parameter EJ, and for
�1 the tunneling between these wells dominates. Thus this
qubit is qualitatively similar to the single-junction qubit de-
scribed above, but the quantitative parameters are different
and can be significantly optimized.

Charge qubit—SCB

An elementary charge qubit can be made with the SCB
operating in the charge regime, EC�EJ. Neglecting the Jo-
sephson coupling implies complete isolation of the island of
the SCB, with a specific number of Cooper pairs trapped on
the island. Correspondingly, the eigenfunctions,

EC�n − ng�2
n� = En
n� , �18�

correspond to the charge states n=0,1 ,2. . ., with the energy
spectrum En=EC�n−ng�2, as shown in Fig. 7. The ground-
state energy oscillates with the gate voltage, and the number
of Cooper pairs in the ground state increases. There are,
however, specific values of the gate voltage, e.g., ng=1/2,
where the charge states 
0� and 
1� become degenerate.
Switching on a small Josephson coupling will then lift the
degeneracy, forming a tight two-level system.

The qubit Hamiltonian is derived by projecting the full
Hamiltonian �4� on the two charge states, 
0� , 
1�, leading to:

HSCB = −
1

2
��z + 
�x� , �19�

where =EC�1−2ng�, and 
=EJ. The qubit level energies
are then given by the equation

E1,2 = �
1

2
�EC

2 �1 − 2ng�2 + EJ
2, �20�

the interlevel distance being controlled by the gate voltage.
At the degeneracy point, ng=1/2, the diagonal part of the
qubit Hamiltonian vanishes, the levels being separated by the
Josephson energy, EJ, and the qubit eigenstates correspond-
ing to the cat states, 
E1� , 
E2�= 
0�� 
1�. For these states, the
average charge on the island is zero, while it changes to �2e
far from the degeneracy point, where the qubit eigenstates
approach pure charge states.

The SCB was first experimentally realized by Lafarge et
al.,19 who observed a Coulomb staircase with steps of 2e and
a superposition of the charge states; see also Ref. 20.

Realization of the charge qubit by manipulation of the
SCB and observation of Rabi oscillations was first achieved
by Nakamura et al.,6,61,62 and further investigated theoreti-
cally by Choi et al.63

Charge–phase qubit SCT

In the SCB, the charge fluctuation on the island gener-
ates fluctuating current between the island and bulk elec-
trode. In the two-junction setup, Fig. 2, an interesting ques-
tion concerns how the current is distributed between the two
junctions.

Answering to this question is apparently equivalent to
evaluating the persistent current circulating in the SCT loop.
For small but nonzero inductance of the loop, the amplitude
of the induced phase is small, �̃=2�+−�e�1, and the co-
sine term in Eq. �5� containing �+ can be expanded, yielding
the equation

HSCT = HSCB��−� + Hosc��̃� + Hint. �21�

HSCB��−� is the SCB Hamiltonian �4� with the flux-
dependent Josephson energy, EJ��e�=2EJ cos��e /2�.
Hosc��̃� describes the linear oscillator associated with the
variable, Hosc��̃�=4ECñ2+EL�̃2 /2, and the interaction term
reads: Hint=EJ sin��e /2�cos��−��̃. Thus the circuit consists
of the nonlinear oscillator of the SCB linearly coupled to the
linear oscillator of the SQUID loop. This coupling gives the
possibility of measuring the charge state of the SCB by mea-
suring the persistent currents and the induced flux.

Truncating Eq. �21�, we finally arrive at the Hamiltonian
which is formally equivalent to the spin-oscillator Hamil-
tonian:

HSCT = −
1

2
��z + 
��e��x� + ��̃�x + Hosc. �22�

In this equation, 
��e�=2EJ cos��e /2�, and �
=EJ sin��e /2�.

Potential superconducting qubits

The superconducting qubits that have been discussed in
previous Sections exploit the fundamental quantum uncer-
tainty between electric charge and magnetic flux. There are,
however, other possibilities. One of them is to delocalize
quantum information in a JJ network by choosing global
quantum states of the network as a computational basis. Re-
cently, some rather complicated JJ networks have been dis-
cussed, which have the unusual property of a degenerate
ground state, which might be employed for efficient qubit
protection against decoherence.64,65

An alternative possibility is to replace the macroscopic
tunnel Josephson junction with a single-mode quantum point
contact �QPC�, and to take advantage of quantum fluctuation
of microscopic bound Andreev states controlling the Joseph-
son current.66,67

FIG. 7. SCB energy spectrum �bold� versus gate potential: it results from
hybridization of the charge states �dashed� due to Josephson tunneling; level
anticrossings occur at ng=n+1/2.
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Andreev level qubit

To explain the physics of this type of device, let us con-
sider an rf SQUID, Fig. 1c, with a point contact junction that
has such a small cross section that the quantization of elec-
tronic modes in the direction perpendicular to the current
flow becomes pronounced. In such a QPC junction the Jo-
sephson current is carried by a number of independent con-
ducting electronic modes, each of which can be considered
an elementary microscopic Josephson junction characterized
by its own transparency.

The number of modes is roughly proportional to the ratio
of the junction cross section and the area of the atomic cell
�determined by the Fermi wavelength� of the junction mate-
rial. In an atomic-size QPC with only a few conducting
modes, the Josephson current can be appreciable if the con-
ducting modes are transparent open modes. If the junction
reflectivity is zero �R=0� then current is a well-defined quan-
tity. This will correspond to a persistent current with certain
direction circulating in the qubit loop. On the other hand, for
a finite reflectivity, R�0, the electronic backscattering will
induce hybridization of the persistent current states, giving
rise to strong quantum fluctuation of the current.

Such a quantum regime is distinctly different from the
macroscopic quantum coherence regime of the flux qubit,
where the quantum hybridization of the persistent current
states is provided by the charge fluctuation on the junction
capacitor. In QPC the leading role belongs to the micro-
scopic mechanism of electron backscattering, while charging
effects do not play any essential role. On the other hand, in
the large-area junctions of macroscopic qubits, the micro-
scopic quantum fluctuation of the Josephson current is neg-
ligibly small, since the current here is carried by a large
number ��104� of statistically independent conducting
modes.

In a QPC, the Josephson effect is associated with micro-
scopic Andreev levels, localized in the junction area, which
transport Cooper pairs from one junction electrode to the
other.68,69 As shown in Fig. 8, the Andreev levels lie within
the superconducting gap and have the phase-dependent en-
ergy spectrum

Ea = 
�cos2��/2� + R sin2��/2� , �23�

�here 
 is the superconducting order parameter in the junc-
tion electrodes�. For very small reflectivity, R�1, and phase
close to � �half-integer flux bias� the Andreev two-level sys-
tem is well isolated from the continuum states. The expecta-

tion value for the Josephson current carried by the level is
determined by the Andreev level spectrum,

Ia =
2e

�

dEa

d�e
, �24�

and it has different sign for the upper and lower level. Since
the state of the Andreev two-level system is determined by
the phase difference and is related to the Josephson current,
the state can be manipulated by driving magnetic flux
through the SQUID loop, and read out by measuring the
circulating persistent current.70,71

This microscopic physics underlies a proposal for an An-
dreev level qubit.66,67 The qubit is similar to the macroscopic
flux qubits with respect to how it is manipulated and mea-
sured, but the great difference is that the quantum informa-
tion is stored in the microscopic quantum states. This differ-
ence is reflected in the more complex form of the qubit
Hamiltonian, which consists of the two-level Hamiltonian of
the Andreev levels strongly coupled to the quantum oscilla-
tor describing phase fluctuations,

H = 
e−i�x
�R�/2�cos

�

2
�z + �R sin

�

2
�y + Hosc��� , �25�

Hosc���=ECn+ �EL /2���−�e�2. Comparing this equation
with, e.g., the SCT Hamiltonian �21�, we find that the trun-
cated Hamiltonian of the SCB is replaced here by the An-
dreev level Hamiltonian.

Bound Andreev levels in a QPC offer yet another inter-
esting possibility for the qubit.72 In the presence of a Zeeman
magnetic field, Andreev levels may undergo spin polariza-
tion, which gives the possibility of exciting the spin dynam-
ics using NMR-type technique. Similar to the Andreev level
qubit, transitions between the spin polarized Andreev states
induce oscillation of the Josephson current and thus can be
detected.

IV. QUBIT OPERATION AND DECOHERENCE

Qubit operation

Quantum computation basically means allowing the
N-qubit state to develop in a fully coherent fashion through
unitary transformations acting on all N qubits.1 The differ-
ence from the conventional many-body problem is that this
evolution must be controlled according to the prescriptions
of a quantum algorithm. An arbitrary quantum algorithm can
be implemented through a set of elementary operations—
universal gates—with single qubits and coupled qubit pairs.2

Therefore a universal quantum computer is represented by
the Hamiltonian of a pseudospin-1/2 array with controllable
spin-spin interactions subject to a variable local “magnetic”
field:

H = −
1

2�
i

�i�t��iz + 
i��t��ix + 
i��t��iy�

+
1

2�
ij

�ij
� �t�;�i�� j�. �26�

A set of universal single qubit gates include qubit rota-
tions around 3 axes, x ,y ,z, allowing the pseudospin to reach
any point on the Bloch sphere; see Fig. 9. For superconduct-

FIG. 8. Energy spectrum of microscopic bound Andreev levels; the level
splitting is determined by the contact reflectivity.
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ing qubits, such rotations can be achieved by pulsing the
controlling physical parameters: the applied current for the JJ
phase qubits, applied magnetic flux for the flux qubits, and
electrostatic gate potential for the charge qubits. Defining the
z axis as pointing along the energy eigenstate direction, we
find that the z rotation is simply realized by free qubit evo-
lution. Rotations around perpendicular axes are usually per-
formed by applying rf pulses with small amplitudes and reso-
nance frequency with respect to the free qubit rotation,
inducing Rabi oscillation between the qubit eigenstates
�NMR-type operation�.73

Decoherence of qubit systems

Ideally, a quantum computer is supposed to evolve main-
taining a pure entangled state of N qubits under a unitary
transformation. However, in practice, the quantum coherence
is destroyed by qubit environment. For macroscopic super-
conducting qubits, the environment basically consists of
various dissipative elements in external circuits which pro-
vide bias, control, and measurement of the qubit. The “off-
chip” parts of these circuits are usually kept at room tem-
perature and produce significant noise. Examples are the
fluctuations in the current source producing magnetic field to
bias flux qubits and, similarly, fluctuations of the voltage
source to bias gate of the charge qubits. Electromagnetic
radiation from the qubit during operation is another dissipa-
tive mechanism. There are also intrinsic microscopic mecha-
nisms of decoherence, such as fluctuating trapped charges in
the substrate of the charge qubits, and fluctuating trapped
magnetic flux in the flux qubits, believed to produce danger-
ous 1/f noise. Other intrinsic mechanisms concern the losses
in the dielectric layer of the tunnel junction.35,74–76

Various kinds of environment are commonly modeled
with an infinite set of linear oscillators in thermal equilib-
rium �thermal bath�, linearly coupled to the qubit �Caldeira–
Leggett model7,10�. The extended qubit-plus-environment
Hamiltonian has the following form in the qubit energy
eigenbasis:60

H = −
1

2
E�z + �

i

��iz�z + �i����Xi

+ �
i
� Pi

2

2m
+

m�i
2Xi

2

2
 . �27�

The physical effects of the two coupling terms in Eq. �27� are
quite different. The “transverse” coupling term proportional

to �� induces interlevel transitions and eventually leads to
relaxation. The “longitudinal” coupling term proportional to
�z commutes with the qubit Hamiltonian and thus does not
induce interlevel transitions. However, it randomly changes
the level spacing, which eventually leads to the loss of phase
coherence: dephasing.

The effect of both processes, relaxation and dephasing,
are referred to as decoherence. The time evolution of a qubit
coupled to a bath is given, in the simplest approximation, by
the Bloch–Redfield equations:73,77

�t�z = −
1

T1
��z − �z

�0��, �t�12 =
i

�
E�12 −

1

T2�12. �28�

The first equation describes relaxation of the level population
to the equilibrium form, �z

�0�=−�1/2� tanh�E /kT�, T1 being
the relaxation time. The second equation describes disap-
pearance of the off-diagonal matrix element during a charac-
teristic time T2—dephasing. The relaxation time is deter-
mined by the spectral density of the environmental
fluctuations at the qubit frequency, 1 /T1= ���

2 /2�S���=E�.
The particular form of the spectral density depends on the
properties of the environment, which are frequently ex-
pressed via the impedance �response function� of the envi-
ronment. The most common environment consists of a pure
resistance; in this case S������ at low frequencies. The
dephasing time consists of two parts, 1 /T2=1/2T1+1/T�.
The first part is generated by the relaxation process, while
the second part results from the pure dephasing due to the
longitudinal coupling to the environment. This pure dephas-
ing part is proportional to the spectral density of the fluctua-
tion at zero frequency: 1 /T�= ��z

2 /2�S���=0�. There is al-
ready a vast recent literature on decoherence and noise in
superconducting circuits, qubits, and detectors, and how to
engineer the qubits and environment to minimize decoher-
ence and relaxation.44,67,76–100

V. QUBIT READOUT

In this Section we present a number of proposed and
realized schemes for measuring quantum states of various
superconducting qubits. The ultimate objective of a qubit
readout device is to distinguish the eigenstates of a qubit in a
single measurement “without destroying the qubit,” a so-
called “single-shot” quantum non-demolition �QND� projec-
tive measurement. This objective is essential for several rea-
sons: state preparation for computation, readout for error
correction during the calculation, and readout of results at
the end of the calculation. Strictly speaking, the QND prop-
erty is only needed if the qubit must be left in an eigenstate
after the readout. In a broader sense, readout of a specific
qubit must of course not destroy any other qubits in the
system.

It must be carefully noted that one cannot “read out the
state of a qubit” in a single measurement—this is prohibited
by quantum mechanics. It takes repeated measurements on a
large number of replicas of the quantum state to characterize
the state of the qubit—“quantum tomography.”101

The measurement connects the qubit with the open sys-
tem of the detector, which collapses the combined system of
qubit and measurement device to one of its common eigen-
states. If the coupling between the qubit and the detector is

FIG. 9. The Bloch sphere: the Bloch vector S represents the states of the
two-level system; the vector H represents the two-level Hamiltonian; the
Bloch vector of the energy eigenstate is parallel �antiparallel� to the vector
H �a�; free evolution of the Bloch vector �precession� �b�; rotation of the
Bloch vector under a time dependent perturbation—Rabi oscillation �c�.
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weak, the eigenstates are approximately those of the qubit. In
general, however, one must consider the eigenstates of the
total qubit–detector system and manipulate gate voltages and
fluxes so that the readout measurement is performed in a
convenient energy eigenbasis �see, e.g., Refs. 44 and 102�.

Even under ideal conditions, a single-shot measurement
can only determine the population of an eigenstate if the
system is prepared in an eigenstate: then the answer will
always be either “0” or “1.” If an ideal single-shot measure-
ment is used to read out a qubit superposition state, e.g.,
during Rabi oscillation, then again the answer can only be
“0” or “1.” To determine the qubit population �i.e., the 
a1
2
and 
a2
2 probabilities� requires repetition of the measure-
ment to obtain the expectation value. During the intermediate
stages of quantum computation one must therefore not per-
form a measurement on a qubit unless one knows, because of
the design and timing of the algorithm, that this qubit is in an
energy eigenstate. Then the value is predetermined and the
qubit left in the eigenstate �Stern–Gerlach-style�.

On the other hand, to extract the desired final result it
may be necessary to create an ensemble of calculations to be
able to perform a complete measurement to determine the
expectation values of variables of interest, performing quan-
tum state tomography.101

Direct qubit measurement

Direct destructive measurement of the qubit can be illus-
trated with the example of a single JJ phase qubit. After the
manipulation has been performed �e.g., Rabi oscillation�, the
qubit is left in a superposition of the upper and lower energy
states. To determine the probability of the upper state, one
slowly increases the bias current until it reaches such a value
that the upper energy level equals �or gets close to� the top of
the potential barrier �see Fig. 3�. Then the junction, being at
the upper energy level, will switch from the Josephson
branch to the dissipative branch, and this can be detected by
measuring the finite average voltage appearing across the
junction �voltage state�. If the qubit is in the lower energy
state the qubit will remain on the Josephson branch and a
finite voltage will not be detected �zero-voltage state�. An
alternative method to activate switching14 is to apply an rf
signal with resonant frequency �instead of tilting the junction
potential� in order to excite the upper energy level and to
induce the switching event; see Fig. 3 �also illustrating a
standard readout method in atomic physics�.

It is obvious that, in this example, the qubit upper energy
state is always destroyed by the measurement. Single-shot
measurement is possible provided the MQT rate for the
lower energy level is sufficiently low to prevent the junction
switching during the measurement time. It is also essential to
keep a sufficiently small rate of interlevel transitions induced
by fluctuations of the bias current and by the current ramp-
ing.

A similar kind of direct destructive measurement was
performed by Nakamura et al.6 to detect the state of the
charge qubit. The qubit operation was performed at the
charge degeneracy point, ug=1, where the level splitting is
minimal. An applied gate voltage then shifted the SCB work-
ing point �Fig. 5�, inducing a large level splitting of the pure
charge states 
0� and 
1� �the measurement preparation

stage�. In this process the upper 
1� charge state went above
the threshold for Cooper pair decay, creating two quasiparti-
cles which immediately tunneled out via the probe junction
into the leads. These quasiparticles were measured as a con-
tribution to the classical charge current by repeating the ex-
periment many times. Obviously, this type of measurement is
also destructive.

Measurement of charge qubit with SET

Nondestructive measurement of the charge qubit has
been implemented by connecting the qubit capacitively to a
SET electrometer.103 The idea of this method is to use a qubit
island as an additional SET gate �Fig. 10�, controlling the dc
current through the SET depending on the state of the qubit.
When the measurement is to be performed, a driving voltage
is applied to the SET, and the dc current is measured. An-
other version of the measurement procedure is to apply rf
bias to the SET �rf-SET103–106� in Fig. 10, and to measure the
dissipative or inductive response. In both cases the transmis-
sivity will show two distinct values correlated with the two
states of the qubit. Yet another version has recently been
developed by the NEC group107 to perform single-shot read-
out: the Cooper pair on the SCB island then tunnels out onto
a trap island �instead of the leads� used as a gate to control
the current through the SET.

The physics of the SET-based readout has been exten-
sively studied theoretically �see Refs. 44, 108, and 109 and
references therein�. A similar idea of controlling the trans-
mission of a QPC �instead of an SET� capacitively coupled
to a charge qubit has also been extensively discussed in the
literature.110–114

The induced charge on the SET gate depends on the state
of the qubit, affecting the SET working point and determin-
ing the conductivity and the average current. The develop-
ment of the probability distributions of counted electrons
with time is shown in Fig. 11.

FIG. 10. Single electron transistor �SET� capacitively coupled to an SCB.

FIG. 11. Probability distributions P of counted electrons as functions of
time after the turning on of the measurement beam of electrons. Courtesy of
G. Johansson, Chalmers.
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As the number of counted electrons grows, the distribu-
tions separate and become distinguishable, the distance be-
tween the peaks developing as �N and the width as ��N.
Detailed investigations114 show that the two electron-number
probability distributions correlate with the probability of
finding the qubit in either of two energy levels. The long-
time development depends on the intensity and frequency
distribution of the back-action noise from the electron cur-
rent. With very weak detector back action, the qubit can relax
to during the natural relaxation time T1. With very strong
back-action noise at the qubit frequency, the qubit may be-
come saturated in a 50/50 mixed state.

Measurement via coupled oscillator

Another method of qubit readout that has attracted much
attention concerns the measurement of the properties of a
linear or nonlinear oscillator coupled to a qubit. This method
is employed for the measurement of induced magnetic flux
and persistent current in the loop of flux qubits and charge–
phase qubits, as well as for charge measurement on charge
qubits. With this method, the qubit affects the characteristics
of the coupled oscillator, e.g., changes the shape of the os-
cillator potential, after which the oscillator can be probed to
detect the changes. There are two versions of the method:
resonant spectroscopy of a linear tank circuit/cavity, and
threshold detection using a biased JJ or SQUID magnetome-
ter.

The first method uses the fact that the resonance fre-
quency of a linear oscillator weakly coupled to the qubit
undergoes a shift depending on the qubit state. The effect is
most easily explained by considering the SCT Hamiltonian,
Eq. �5�,

HSCT = −
1

2
��z + 
��e��x� + ���e��̃�x + 4ECñ2 +

1

2
EL�̃2.

�29�

Let us proceed to the qubit energy basis, in which case the
qubit Hamiltonian takes the form −�E /2��z, E= �2+
2�1/2.
The interaction term in the qubit eigenbasis will consist of
two parts, the longitudinal part, �z�̃�z, �z= �
 /E��, and the
transverse part, �x�̃�x, �z= � /E��. In the limit of weak cou-
pling the transverse part of interaction is the most essential.
In the absence of interaction ��e=0� the energy spectrum of
the qubit+oscillator system is

En� = ±
E

2
+ ���n +

1

2
 , �30�

where ��=�8ECEL is the plasma frequency of the oscillator.
The effect of weak coupling is enhanced in the vicinity of the
resonance, when the oscillator plasma frequency is close to
the qubit level spacing, ��	E. Let us assume, however, that
the coupling energy is smaller than the deviation from reso-
nance, �x� 
��−E
. Then the spectrum of the interacting
system in the lowest perturbative order will acquire a shift,

�En± = ± �n + 1�
�x

2��

EL��� − E�
. �31�

This shift is proportional to the first power of the oscil-
lator quantum number n, which implies that the oscillator

frequency acquires a shift �the frequency of the qubit is also
shifted115–119�. Since the sign of the oscillator frequency shift
is different for the different qubit states, it is possible to
distinguish the state of the qubit by probing this frequency
shift.

In the case of the SCT, the LC oscillator is a generic part
of the circuit. It is equally possible to use an additional LC
oscillator inductively coupled to a qubit. This type of device
has been described by Zorin120 for SCT readout, and was
recently implemented for flux qubits by Il’ichev et al.33,41

Figure 12 illustrates another case, namely a charge qubit
capacitively coupled to an oscillator, again providing energy
resolution for discriminating the two qubit levels.121 Analysis
of this circuit is similar that discussed below in the context of
qubit coupling via oscillators, Section VII. The resulting
Hamiltonian is similar to Eq. �50�, namely,

H = HSCB + ��y� + Hosc. �32�

In comparison with the case of the SCT, Eq. �32� has a
different form of the coupling term, which does not change
during rotation to the qubit eigenbasis. Therefore the cou-
pling constant � enters Eq. �31� directly. Recently, this type
of read out has been implemented for a charge qubit by ca-
pacitively coupling the SCB of the qubit to a superconduct-
ing strip resonator.122–124

The measurement method described has turned out to be
particularly useful for the charge qubits. The experimental
data demonstrate the clear advantage of the degeneracy
point, ng=1/2, from the standpoint of decoherence: the co-
herence time drastically decreases with departure from this
operating point,125 presumably due to fluctuating offset
charges. On the other hand, the measurement of the charge at
degeneracy is not efficient because the charge expectation
values are the same for the both qubit states. The measure-
ment via oscillator is efficient at degeneracy since it distin-
guishes the qubit energy levels. At small oscillator frequen-
cies, the qubit adiabatically follows the oscillation of the gate
voltage, and the qubit response can be expressed126,127 in
terms of the second derivative of the qubit energy with re-
spect to the gate voltage, d2E /dug

2. The corresponding mea-
sured quantity can be thus interpreted as a quantum capaci-

FIG. 12. SCT qubit coupled to a readout oscillator. The qubit is operated by
input pulses u�t�. The readout oscillator is controlled and driven by ac mi-
crowave pulses Vg�t�. The output signal will be ac voltage pulses Vout�t�, the
amplitude or phase of which may discriminate between the qubit “0” and
“1” states.

Low Temp. Phys. 33 �9�, September 2007 G. Wendin and V. S. Shumeiko 733



tance of the qubit. The measurement of the quantum
capacitance was proven to be a quantum limited
measurement.128

Threshold detection

To illustrate the threshold-detection method, let us con-
sider an SCT qubit with a third Josephson junction inserted
in the qubit loop, as shown in Fig. 13.

When the measurement of the qubit state is to be per-
formed, a bias current is sent through the additional junction.
This current is then added to the qubit-state dependent per-
sistent current circulating in the qubit loop. If the qubit and
readout currents flow in the same direction, the critical cur-
rent of the readout JJ is exceeded, which induces the junction
switching to the resistive branch, sending out a voltage pulse.
This effect is used to distinguish the qubit states. The method
has been extensively used experimentally by Vion et
al.27–29,129

To describe the circuit, we add the Hamiltonian of a
biased JJ, Eq. �1�, to the SCT Hamiltonian �5�. The phase
quantization condition will now read: 2�++�=�e+ �̃. The
measurement junction will be assumed in the phase regime,
EJ

m�EC
m, and, moreover, the inductive energy will be the

largest energy in the circuit, EL�EJ
m. The latter implies that

the induced phase is negligibly small and can be dropped
from the phase quantization condition. We also assume that
�e=0, and thus 2�++�=0. Then, after having omitted the
variable �+, the kinetic energy term of the qubit can be com-
bined with the much larger kinetic energy of the measure-
ment junction, leading to insignificant renormalization of the
measurement junction capacitance. As a result, the total
Hamiltonian of the circuit will take the form

H = EC�n− − ng�2 − 2EJ cos��

2
cos �− + EC

mn2

− EJ
m cos � −

�

2e
Ie� . �33�

Since the measurement junction is supposed to be almost
classical, its phase is fairly close to the minimum of the
junction potential. During qubit operation, the bias current is
zero; hence the phase of the measurement junction is zero.
When the measurement is made, the current is ramped to a
large value close to the critical current of the measurement
junction, Ie= �2e /��EJ

m−�I, tilting the junction potential and

shifting the minimum towards � /2. Introducing a new vari-
able �=�+�, we expand the potential with respect to small
��1 and, truncating the qubit part, we obtain

H = −


2
�z −




2
�1 −

�

2
�x + EC

mn2 − EJ
m�3

6
+

�

2e
�I� , �34�

where 
=2�EJ. The ramping is supposed to be adiabatic, so
the phase remains at the minimum point. Let us analyze the
behavior of the potential minimum by omitting a small ki-
netic term and diagonalizing the Hamiltonian �34�. The cor-
responding eigenenergies depend on �,

E±��� = �
E

2
− EJ

m�3

6
+ � �

2e
�I ±


2

4E
� , �35�

as shown in Fig. 14. Then within the interval of bias currents

�I 
 �−�2e /���
2 /4E�, the potential energy corresponding
to the ground state has a local minimum, while for the ex-
cited state it does not. This implies that when the junction is
in the ground state, no voltage will be generated. However, if
the junction is in the excited state, it will switch to the resis-
tive branch, generating a voltage pulse that can be detected.

In the setup discussed, the direction of the persistent
current is measured. It is also possible to arrange the mea-
surement of the flux by using a dc SQUID as a threshold
detector. Such a setup is suitable for the measurement of flux
qubits. Let us consider, for example, the three-junction flux
qubit inductively coupled to a dc SQUID �Fig. 6�. Then,
under certain assumptions, the Hamiltonian of the system
can be reduced to the following form:

H = −
1

2
��z + 
�x� + EC

s n2 − �EJ
s + ��z�cos � −

�

2e
�I� ,

�36�

where EJ
s is an effective �bias flux dependent� Josephson en-

ergy of the SQUID, and � is an effective coupling constant
proportional to the mutual inductance of the qubit and the
SQUID loops.

VI. EXPERIMENTS WITH SINGLE QUBITS AND READOUT
DEVICES

In this Section we shall describe a few experiments with
single-qubits that represent the current state of the art and
quite likely will be central components in the development of
multi-qubit systems during the next five to ten years. The
first experiment presents Rabi oscillations induced and ob-
served in the elementary phase qubit and readout oscillator

FIG. 13. SCT qubit coupled to a JJ readout quantum oscillator. The JJ
oscillator is controlled by dc/ac current pulses Ib�t� adding to the circulating
currents in the loop due to the SCT qubit. The output will be dc/ac voltage
pulses Vout�t� discriminating between the qubit “0” and “1” states.

FIG. 14. Josephson potential energy of the measurement junction during the
measurement �left�: for the “0” qubit eigenstate there is a well �solid line�
confining a level, while for the “1” qubit state there is no well �dashed line�.
Switching event on the current–voltage characteristic �right�.
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formed by a single JJ.14–16,35,36 The next example describes a
series of recent experiments with a flux qubit30 coupled to
different kinds of SQUID oscillator readout devices.31,32,130

A further example will discuss the charge–phase qubit
coupled to a JJ-junction oscillator27 and the recent demon-
stration of extensive NMR-style operation of this qubit.29

The last example will present the case of a charge qubit
�SCB� coupled to a microwave stripline
oscillator,117,118,122,123 representing a solid-state analog of
“cavity QED.”

Before describing experiments and results, however, we
will discuss in some detail the measurement procedures that
give information about resonance line profiles, Rabi oscilla-
tions, and relaxation and decoherence times. The illustrations
will be chosen from Vion et al.27 for the case of the charge–
phase qubit, but the examples are relevant for all types of
qubits, representing fundamental procedures for studying
quantum systems.

A. Readout detectors

Before discussing some of the actual experiments, it is
convenient to describe some of basic readout-detector prin-
ciples which more or less the same for the SET, rf-SET, JJ
and SQUID devices. Atypical pulse scheme for exciting a
qubit and reading out the response is shown in Fig. 5: the
readout control pulse can be a dc pulse �DCP� or ac pulse
�ACP�. A DCP readout most often leads to an output voltage
pulse, which may be quite destructive for the quantum sys-
tem. An ACP readout presents a much weaker perturbation
by probing the ac-response of an oscillator coupled to the
qubit, creating much less back action, best representing QND
readout.

Spectroscopic detection of Rabi oscillation

In the simplest use of the classical oscillator, it does not
discriminate between the two different qubit states but only
between energies of radiation emitted by a lossy resonator
coupled to the qubit. In this way it is possible to detect the
“low-frequency” Rabi oscillation of a qubit driven by con-
tinuous �i.e., not pulsed� high-frequency radiation tuned in
the vicinity of the qubit transition energy. If the oscillator is
tunable, the resonance window can be swept past the Rabi
line. Alternatively, the Rabi frequency can be tuned and
swept past the oscillator window by changing the qubit
pumping power.33

Charge qubit energy level occupation from counting
electrons: rf-SET

In this case, the charge qubit is interacting with a beam
of electrons passing through a single-electron transistor
�SET� coupled to a charge qubit �e.g., the rf SET,103�, as
discussed in Section IV and illustrated in Fig. 10. In these
cases the transmissivity of the electrons will show two dis-
tinct values correlated with the two states of the qubit.

Coupled qubit–classical-oscillator system: switching
detectors with dc-pulse output

In Sec. IV we analyzed the case of an SCT qubit current-
coupled to a JJ-oscillator �Fig. 13� and discussed the Hamil-
tonian of the coupled qubit–JJ-oscillator system. The effect

of the qubit was to deform the oscillator potential in different
ways depending on the state of the qubit. The effect can then
be probed in a number of ways, by input and output dc and
ac voltage and current pulses, to determine the occupation of
the qubit energy levels.

Using nonlinear oscillators like single JJs or SQUIDS
one can achieve threshold and switching behavior where the
JJ/SQUID switches out of the zero-voltage state, resulting in
an output dc-voltage pulse.

Switching JJ

The method is based on the dependence of the critical
current of the JJ on the state of the qubit, and consists of
applying a short current DCP to the JJ at a value Ib during a
time 
t, so that the JJ will switch out of its zero-voltage state
with a probability Psw�Ib�. For well-chosen parameters, the
detection efficiency can approach unity. The switching prob-
ability then directly measures the qubit’s energy level popu-
lation.

Switching SQUID

In the experiments on flux qubits by the Delft group, two
kinds of physical coupling of the SQUID to the qubit have
been implemented, namely inductive coupling �Fig. 6
�left��12,130 and direct coupling �Fig. 6 �right��:30–32 The criti-
cal current of the SQUID depends on the flux threading the
loop, and therefore is different for different qubit states. The
problem is to detect a two percent variation in the SQUID
critical current associated with a transition between the qubit
states in a time shorter than the qubit energy relaxation time
T1. The SQUID behaves as an oscillator with a characteristic
plasma frequency �p= ��L+LJ�Csh�−1/2. This frequency de-
pends on the bias current Ib and on the critical current IC via
the Josephson inductance LJ=�0 /2�IC

�1− Ib
2 / Ic

2 �a shunt ca-
pacitor with capacitance Csh and lead inductance L is used to
“tune” �p�. Thus the plasma frequency takes different values
��

�0� or ��
�1� depending on the state of the qubit, representing

two different shapes of the SQUID oscillator potential.
In the dc-pulse-triggered switching SQUID,12,30,31 a dc-

current readout pulse is applied after the operation pulse�s�
�Fig. 15�, setting a switching threshold for the critical cur-
rent. The circulating qubit current for one qubit state will
then add to the critical current and make the SQUID switch

FIG. 15. Control pulse sequences involved in quantum state manipulations
and measurement. Top: microwave voltage pulses u�t� are applied to the
control gate for state manipulation. Middle: a readout dc pulse �DCP� or ac
pulse �ACP� Ib�t� is applied to the threshold detector/discriminator a time td

after the last microwave pulse. Bottom: output signal V�t� from the detector.
The occurrence of a output pulse depends on the occupation probabilities of
the energy eigenstates. A discriminator with threshold Vth converts V�t� into
a boolean 0/1 output for statistical analysis.
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to the voltage state, while the other qubit state will reduce
the current and leave the SQUID in the zero-voltage state.

In an application of ac-pulse-triggered switching
SQUID,32 readout relies on resonant activation by a micro-
wave pulse at a frequency close to �p, with the power ad-
justed so that the SQUID switches to the finite voltage state
by resonant activation if the qubit is in state 
0�, whereas it
stays in the zero-voltage state if it is in state 
1�. The resonant
activation scheme is similar to the readout scheme used by
Martinis et al.14,15,35,36

Coupled qubit–classical-oscillator system: ac-pulse non-
switching detectors

This implementation of ACP readout uses the qubit–
SQUID combination12 shown in Fig. 6 �left�, but with ACP
instead of DCP readout, implementing a nondestructive dis-
persive method for the readout of the flux qubit.130 The de-
tection is based on the measurement of the Josephson induc-
tance of a dc SQUID inductively coupled to the qubit. Using
this method, Lupascu et al.130 measured the spectrum of the
qubit resonance line and obtained relaxation times around
80 �s, much longer than observed with DCP.

A related readout scheme was recently implemented by
Siddiqi et al.131 using two different oscillation states of the
nonlinear JJ in the zero-voltage state.

B. Operation and measurement procedures

A number of operation and readout pulses can be applied
to a qubit circuit in order to measure various properties. The
number of applied microwave pulses can vary depending on
what quantities are to be measured: resonance line profile,
relaxation time, Rabi oscillation, Ramsey interference, or
spin echo, as discussed below.

Resonance line profiles and T2 decoherence times

To study the resonance line profile, one applies a single
long weak microwave pulse with given frequency, followed
by a readout pulse �Fig. 16�. The procedure is then repeated
for a spectrum of frequencies. The Rabi oscillation ampli-
tude, the upper state population, and the detector switching
probability p�t� will depend on the detuning and will grow
towards resonance. The linewidth gives directly the total in-

verse decoherence lifetime 1/T2=1/2T1+1/T�. The
decoherence-time contributions from relaxation �1/T1� and
dephasing �1/T�� can be �approximately� separately mea-
sured, as discussed below.

T1 relaxation times

To determine the T1 relaxation time one measures the
decay of the population of the upper 
1� state after a long
microwave pulse saturating the transition, varying the delay
time td of the detector readout pulse �Figs. 17 and 18�. The
measured T1=1.8 microseconds is so far the best value for
the quantronium charge–phase qubit.

Rabi oscillations and T2,Rabi decoherence time

To study Rabi oscillations �frequency 	−u, the ampli-
tude of driving field� one turns on a resonant microwave
pulse for a given time t�w and measures the upper 
1� state
population �probability� p1�t� after a given �short� delay time
td. If the systems is perfectly coherent, the state vector will
develop as cos 	t 
0�+sin 	t 
1�, and the population of the
upper state will then oscillate as sin2	t between 0 and 1. In
the presence of decoherence, the amplitude of the oscillation
of p1�t� will decay on a time scale TRabi towards the average
value p1�t= � �=0.5. This corresponds to incoherent satura-
tion of the 0 to 1 transition.

FIG. 16. Qubit energy level scheme. The qubit working point and transition energy is marked by the dashed line. The arrow marks the detuned microwave
excitation �a�. Population of the upper level as a function of the detuning; the inverse of the half-width of the resonance line gives the total decoherence time
T2 �b�.

FIG. 17. Decay of the switching probability of the charge–qubit readout
junction as a function of the delay time td between the excitation and readout
pulses. Courtesy of D. Esteve, CEA-Saclay.
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Ramsey interference, dephasing and T2,Ramsey decoherence
time

The Ramsey interference experiment measures the deco-
herence time of the non-driven, freely precessing, qubit. In
this experiment a � /2 microwave pulse around the x axis
induces Rabi oscillation that tips the spin from the north pole
down to the equator. The spin vector rotates in the xy plane,
and after a given time 
t, another � /2 microwave pulse is
applied, immediately followed by a readout pulse �Fig. 19�.

Since the � /2 pulses are detuned by � from the qubit

0�→ 
1� transition frequency, the qubit will precess with fre-
quency � relative to the rotating frame of the driving field.
Since the second microwave pulse will be applied in the
plane of the rotating frame, it will have a projection cos �t on
the qubit vector and will drive the qubit towards the north or
south poles, resulting in a specific time-independent final su-
perposition state cos �t 
0�+sin �t 
1� of the qubit at the end
of the last � /2 pulse. The readout pulse then catches the
qubit in this superposition state and forces it to decay if the
qubit is in the upper 
1� state. The probability will oscillate
with the detuning frequency, and a single-shot experiment
will then detect the upper state with this probability. Repeat-

ing the experiment many times for different � /2 pulse sepa-
ration 
t will then give 
0� or 
1� with probabilities cos2�t
and sin2�t. By taking the average and then varying the pulse
separation, one will trace out the Ramsey interference oscil-
latory signal. Dephasing will make the signa decay on the
time scale T�.

Spin-echo

The spin-echo and Ramsey pulse sequences differ in that
a � pulse around the x axis is added in between the two � /2
pulses in the spin-echo experiment. As in the Ramsey experi-
ment, the first � /2 pulse makes the Bloch vector start rotat-
ing in the equatorial xy plane with frequency E /�=�01. The
effect of the � pulse is now to flip the entire xy plane with
the rotating Bloch vector around the x axis, reflecting the
Boch vector in the xz plane. The Bloch vector then continues
to rotate in the xy plane in the same direction. Finally a
second � /2 pulse is applied to project the state on the z axis.

If two Bloch vectors with slightly different frequency
start rotating at the same time in the xy plane, they will move
with different angular speeds. The effect of the � pulse at
time 
t will be to permute the Bloch vectors, and then let the
motion continue in the same direction. This is similar to
reversing the motion and letting the Bloch vectors back-
trace. The net result is that the two Bloch vectors re-align
after time 2
t.

In NMR experiments, the different Bloch vectors corre-
spond to different spins in the ensemble. In the case of a
single qubit, the implication is that in aseries of repeated
experiments, the result will be insensitive to small variations
�E of the qubit energy between measurements, as long as the
energy �rotation frequency� is constant during one and the
same measurement. If fluctuations occur during one mea-
surement, then this cannot be corrected for. The spin-echo
procedure can therefore remove the measurement-related
line-broadening associated with slow fluctuations of the qu-
bit precession and allow observation of the intrinsic coher-
ence time of the qubit.

VII. PHYSICAL COUPLING SCHEMES FOR TWO QUBITS

A. General principles

A generic scheme for coupling qubits is based on the
physical interaction of linear and nonlinear oscillators con-
stituting a superconducting circuit. In a multi-qubit system
the induced gate charge in the SCB, or the flux through the
SQUID loop, or the phase in the Josephson energy, will be a
sum of contributions from several �in principle, all� qubits.
The energy of the system therefore cannot be described as
the sum of two independent qubits because of the quadratic
dependence, and the cross terms represent interaction ener-
gies of different kinds: capacitive, inductive, and phase/
current.

Moreover, using JJ circuits as nonlinear coupling ele-
ments we have the advantage that the direct physical cou-
pling strength may be controlled, e.g., by tuning the induc-
tance via current-biased JJs, or tuning the capacitance by a
voltage-biased SCB.

FIG. 18. Rabi oscillations of the switching probability measured just after a
resonant microwave pulse of duration �left�; measured Rabi frequency �dots�
varies linearly with microwave amplitude �voltage� as expected �right�.
Courtesy of D. Esteve, CEA-Saclay.

FIG. 19. Ramsey fringes of the switching probability after two phase-
coherent microwave � /2 pulses separated by the time delay t. The continu-
ous line represents a fit by exponentially damped cosine function with time
constant T2

*=T�=0.5 �s. The oscillation period coincides with the inverse of
the detuning frequency �here �−�01=20.6 MHz�. Courtesy of D. Esteve,
CEA-Saclay.
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Inductive coupling of flux qubits

A common way of coupling flux qubits is the inductive
coupling: magnetic flux induced by one qubit threads the
loop of another qubit, changing the effective external flux
�Fig. 20�. This effect is taken into account by introducing the
inductance matrix Lik, which connects flux in the ith loop
with the current circulating in the kth loop:

�i = �
k

LikIk. �37�

The off-diagonal element of this matrix, L12, is the mu-
tual inductance, which is responsible for the interaction. By
using the inductance matrix, the magnetic part of the poten-
tial energy in Eq. �2� can be generalized to the case of two
coupled qubits,

1

2
� �

2e
2

�
ik

�L−1�ik�� − �ei���k − �ek� . �38�

Then, following the truncation procedure leading to the flux
qubit, we calculate the matrix elements,

�l
�̃ − f 
l�, �r
�̃ − f 
r�, �l
� − f 
r� , �39�

for each qubit. The last matrix element is exponentially
small, while the first two are approximately equal to the
minimum points of the potential energy, �l and �r, respec-
tively. This implies that the truncated interaction basically
has the zz form,

Hint = ��z1�z2,

� =
1

8
� �

2e
2

�L−1�12��l − �r�1��l − �r�2. �40�

Capacitive coupling of charge qubits

One of the simplest coupling schemes is the capacitive
coupling of charge qubits. Such a coupling is realized by
connecting the islands of two SCBs via a small capacitor, as
illustrated in Fig. 21.

This will introduce an additional term in the Lagrangian
of the two noninteracting SCBs, namely the charging energy
C3 of the capacitor, �L=C3V3

2 /2. The voltage drop V3 across
the capacitor is expressed via the phase differences across
the qubit junctions, V3= �� /2e���̇1− �̇2�, and thus the kinetic
part of the Lagrangian will take the form

K��̇1,�̇2� =
1

2
� �

2e
2

�
i,k

Cik�̇i�̇k −
�

2e
�

i

2

CgiVgi�̇i, �41�

where the capacitance matrix elements are Cii=C�i+C3, and
C12=C3. Then proceeding to the circuit Hamiltonian, we find
the interaction term,

Hint = 2e2�C−1�12n1n2. �42�

This interaction term is diagonal in the charge basis, and
therefore leads to the zz interaction after truncation,

Hint = ��z1�z2, � =
e2

2
�C −1�12. �43�

The qubit Hamiltonians are given by Eq. �19� with
charging energies renormalized by the coupling capacitor.

JJ phase coupling of charge qubits

Instead of the capacitor, the charge qubits can be con-
nected via a Josephson junction.132 In this case, the Joseph-
son energy of the coupling junction EJ3 cos��1−�2� must be
added to the Lagrangian in addition to the charging energy.
This interaction term is apparently off-diagonal in the charge
basis and, after truncation, gives rise to the so-called xy cou-
pling,

Hint = ���x1�x2 + �y1�y2�, � =
EJ3

4
. �44�

Capacitive coupling of single JJs

Capacitive coupling of JJ qubits, illustrated in Fig. 22, is

FIG. 20. Fixed inductive �flux� coupling of elementary flux qubit. The loops
can be separate, or have a common leg like in the figure. FIG. 21. Fixed capacitive coupling of charge qubits.

FIG. 22. Capacitive coupling of single JJ qubits.
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described in a way similar to the charge qubit, and the re-
sulting interaction Hamiltonian has the form given in Eq.
�42�.

Generally, in the qubit eigenbasis, 
0� and 
1�, all matrix
elements of the interaction Hamiltonian are nonzero. How-
ever, if we adopt a parabolic approximation for the Joseph-
son potential, then the diagonal matrix elements turn to zero,
n00=n11=0, while the off-diagonal matrix elements remain
finite, n01=−n10=−i�EJ /EC�1/4. Then, after truncation, the
charge number operator n turns to �y, and the qubit–qubit
interaction takes the yy form,

Hint = ��y1�y2, � = 2e2��2�p1�p2

EC1EC2
�C−1�12. �45�

B. Coupling via oscillators

Besides the direct coupling schemes described above,
several schemes of coupling qubits via auxiliary oscillators
have been considered.44 Such schemes provide more flexibil-
ity, e.g., to control qubit interaction, to couple two remote
qubits, and to connect several qubits. Moreover, in many
advanced qubits, the qubit variables are generically con-
nected to the outside world via an oscillator �e.g., the Delft
and Saclay qubits�. To explain the principles of such a cou-
pling, we consider the coupling scheme for charge qubits
suggested by Shnirman et al.21

Coupling of charge „SCB, SCT… qubits

In this circuit the island of each SCB is connected to
ground via a common LC oscillator, as illustrated in Fig. 23.
The kinetic energy of a single qubit should now be modified
to take into account the additional phase difference � across
the oscillator,

K��̇−,i,�̇� =
1

2
� �

2e
2

�2C�−,i
2 + Cg�Vgi − �̇ − �̇−,i�2� . �46�

The cross term in this equation can be made to vanish by
a change of qubit variable,

�−,i = �i − a�, a =
Cg

C�

. �47�

The kinetic energy will then split into two independent parts,
the kinetic energy of the qubit, and an additional quadratic
term,

1

2
� �

2e
2CCg

C�

�̇2, �48�

which should be combined with the kinetic energy of the
oscillator, leading to renormalization of oscillator capaci-
tance.

Expanding the Josephson energy, after the change of
variable, gives

EJi cos��i − a�� 	 EJi cos �i − EJia� sin �i. �49�

provided the amplitude of the oscillations of � is small. The
last term in this equation describes the linear coupling of the
qubit to the LC oscillator.

Collecting all the terms in the Lagrangian and perform-
ing quantization and truncation procedures, we arrive at the
following Hamiltonian of the qubits coupled to the oscillator
�this is similar to Eq. �32� for the SCT�,

H = �
i=1,2

�HSCB,i + �i�yi�� + Hosc, �50�

where HSCB
�i� is given by Eq. �19�, and

�i =
EJiCg

C�

, �51�

is the coupling strength.
The physics of the qubit coupling in this scheme is the

following: quantum fluctuation of the charge of one qubit
produces a displacement of the oscillator, which perturbs the
other qubit. If the plasma frequency of the LC oscillator is
much larger than the frequencies of all qubits, then virtual
excitation of the oscillator will produce a direct effective
qubit–qubit coupling, the oscillator staying in the ground
state during all qubit operations. To provide a small ampli-
tude of the zero-point fluctuations, the oscillator plasma fre-
quency should be small compared to the inductive energy, or
ECosc�EL. Then the fast fluctuations can be averaged out.
Noticing that the displacement does not change the oscillator
ground-state energy, which then drops out after the averag-
ing, we finally arrive at the Hamiltonian of the direct effec-
tive qubit coupling,

Hint = −
�1�2

EL
�y1�y2 �52�

for the oscillator-coupled charge qubits in Fig. 23.

Current coupling of SCT qubits

Charge qubits based on SCTs can be coupled by con-
necting loops of neighboring qubits by a large Josephson
junction in the common link,133–139 as illustrated in Fig. 24.

The idea is similar to the previous one: to couple qubit
variables to a new variable, the phase of the coupling Joseph-
son junction, then to arrange the phase regime for the junc-
tion with large plasma frequency �ECcoupl�EJcoupl�, and then
to average out the additional phase. Technically, the circuit is
described using the SCT Hamiltonian, Eqs. �5� and �21�, for
each qubit,

FIG. 23. Two charge qubits coupled to a common LC oscillator.
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HSCT = EC�n− − ng�2 + ECn+
2 − 2EJ cos � + cos �−

+ EL
�2�+ − �e�2

2
, �53�

and adding the Hamiltonian of the coupling junction,

Hc = EC,cnc
2 − EJ,c cos �c. �54�

The phase �c across the coupling junction must be added to
the flux quantization condition in each qubit loop; e.g., for
the first qubit 2�+,1+�c=�e,1+ �̃1 �for the second qubit the
sign of �c will be negative�. Assuming small inductive en-
ergy, EL�EJ,c, we may neglect �̃; then, assuming the flux
regime for the coupling Josephson junction, we adopt a para-
bolic approximation for the junction potential, EJ,c�c

2 /2.
With these approximations, the Hamiltonian of the first

qubit plus coupling junction will take a form similar to Eq.
�53�, where EJ,c will substitute for EL and �c will substitute
for 2�+−�e. Finally, assuming the amplitude of the �c os-
cillations to be small, we proceed as in the previous subsec-
tion, i.e., expand the cosine term, obtaining a linear coupling
between the SCB and the oscillator, truncate the full Hamil-
tonian, and average out the oscillator. This will yield the
following interaction term:

Hint =
�1�2

EJ,c
�x1�x2, �i = EJ sin

�i

2
. �55�

This coupling scheme also applies to flux qubits: in this
case, the coupling will have the same form as in Eq. �40�, but
the strength will be determined by the Josephson energy of
the coupling junction, cf. Eq. �55�, rather than by the mutual
inductance.

C. Variable coupling schemes

Computing with quantum gate networks basically as-
sumes that one- and two-qubit gates can be turned on and off
at will. This can be achieved by tuning qubits with fixed,
finite coupling in and out of resonance, in NMR-style
computing.140

Here we shall discuss an alternative way, namely to vary
the strength of the physical coupling between nearest-
neighbor qubits, as discussed in a number of recent
papers.133,134,136–138,141–144

Variable inductive coupling

To achieve variable inductive coupling of flux qubits one
has to be able to control the mutual inductance of the qubit
loops. This can be done by different kinds of controllable
switches �SQUIDS, transistors�141 in the circuit. In a recent
experiment, a variable flux transformer was implemented as
a coupling element �see Fig. 25� by controlling the trans-
forming ratio.145 The flux transformer is a superconducting
loop strongly inductively coupled to the qubit loops, which
are distant from each other so that the direct mutual qubit
inductance is negligibly small. Because of the effect of quan-
tization of magnetic flux in the transformer loop,146 a local
variation of the magnetic flux �1 induced by one qubit will
affect the local magnetic flux �2 in the vicinity of the other
qubit, creating effective qubit–qubit coupling. When a dc
SQUID is inserted in the transformer loop, as shown in Fig.
25, it will short-circuit the transformer loop, and the trans-
former ratio �2 /�1 will change. The effect depends on the
current flowing through the SQUID and is proportional to the
critical current of the SQUID. The latter is controlled by
applying a magnetic flux �cx to the SQUID loop, as shown
in Fig. 25. Quantitatively, the dependence of the transformer
ratio on the controlling flux is given by the equation145

�2

�1
= �1 +

EJ

EL
cos

��cx

�0
−1

, �56�

where EJ is the Josephson energy of the SQUID junction,
and EL is the inductive energy of the transformer.

Variable Josephson coupling

A variable Josephson coupling is obtained when a single
Josephson junction is substituted by a symmetric dc SQUID
whose effective Josephson energy 2EJ cos��e /2� depends on
the magnetic flux threading the SQUID loop. This property is
commonly used to control level spacing in both flux and
charge qubits, and it can also be used to switch qubit–qubit
couplings on and off. For example, the coupling of the
charge–phase qubits via the Josephson junction in Fig. 24
can be made variable by substituting the single coupling
junction with a dc SQUID.133,134

The coupling scheme shown in Fig. 23 is made control-
lable by using a dc SQUID design for the SCB. Indeed, since
the coupling strength depends on the Josephson energy of the
qubit junction, Eq. �51�, this solution provides variable cou-
pling of the qubits. Similarly, the coupling of the SCTs
shown in Fig. 24 can be made controllable by employing a

FIG. 24. Charge �charge–phase� qubits coupled via a common Josephson
junction providing phase coupling of the two circuits.

FIG. 25. Flux transformer with variable coupling controlled by a SQUID.
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dc SQUID as a coupling element. A disadvantage of this
solution is that the qubit parameters will vary simultaneously
with varying of the coupling strength. A more general draw-
back of the dc SQUID-based controllable coupling is the
necessity of applying magnetic field locally, which might be
difficult to achieve without disturbing other elements of the
circuit. This is, however, an experimental question, and what
are practical solutions in the long run remains to be seen.

Variable phase coupling

An alternative solution for varying the coupling is based
on the idea of controlling the properties of the Josephson
junction by applying external dc current,136–138 as illustrated
in Fig. 26. The coupling strength here depends on the plasma
frequency of the coupling Josephson junction, which in turn
depends on the form of the local minimum of the junction
potential energy. This form can be changed by tilting the
junction potential by applying external bias current. The role
of the external phase bias, �e, will now be played by the
minimum point �0 of the tilted potential determined by the
applied bias current, EJ,c sin �0= �� /2e�Ie. Then the interac-
tion term will read,

Hint = ��x1�x2, � =
EJ

2 sin2��0/2�
EJ,c cos �0

, �57�

and local magnetic field biasing is not required.

Variable capacitive coupling

Variable capacitive coupling of charge qubits based on a
quite different physical mechanism of interacting SCB
charges has been proposed in Ref. 143. The SCBs are then
connected via the circuit presented in Fig. 27.

The Hamiltonian of this circuit, including the charge qu-
bits, has the form

H = �
i

HSCB,i + EC�n − q�n1 + n2��2 − EJ cos � , �58�

where EC and EJ�Ec are the charging and Josephson ener-
gies of the coupling junction, and n and � are the charge and
the phase of the coupling junction. The function q is a linear
function of the qubit charges, n1 and n2, and it also depends
on the gate voltages of the qubits and the coupling junction.

In contrast to the previous scheme, here the coupling junc-
tion is not assumed to be in the phase regime; however, it is
still supposed to be fast, EJ�EJi. Then the energy gap in the
spectrum of the coupling junction is much bigger than the
qubit energy, and the junction will stay in the ground state
during qubit operations. Then after truncation, and averaging
out the coupling junction, the Hamiltonian of the circuit will
take the form

H = �
i

HSCB,i + 0��z1 + �z2� , �59�

where the qubit Hamiltonian is given by Eq. �19�, and the
function 0 is the ground-state energy of the coupling junc-
tion. The latter can generally be presented as a linear com-
bination of terms proportional to �z1�z2 and �z1+�z2,

0��z1 + �z2� = � + ��z1�z2 + ���z1 + �z2� , �60�

with coefficients depending on the gate potentials. The sec-
ond term in this expression gives the zz coupling �in the
charge basis�, and the coupling constant � may, according to
the analysis of Ref. 143, take on both positive and negative
values, depending on the coupling junction gate voltage. In
particular, it may turn to zero, implying qubit decoupling.

Two qubits coupled via a resonator

In the previous discussion, the coupling oscillator plays
a passive role, being enslaved by the qubit dynamics. How-
ever, if the oscillator is tuned into resonance with a qubit,
then the oscillator dynamics will become essential, leading to
qubit–oscillator entanglement. In this case, the approxima-
tion of direct qubit–qubit coupling is not appropriate; in-
stead, manipulations explicitly involving the oscillator must
be considered.

Let us consider, as an example, operations with two
charge qubits capacitively coupled to the oscillator. Assum-
ing the qubits to be biased at the degeneracy point and pro-
ceeding to the qubit eigenbasis �phase basis in this case�, we
write the Hamiltonian in the form

H = − ��
i

2
�zi − �i�x�i + Hosc��� . �61�

Let us consider the following manipulation involving the
variation of the oscillator frequency:142 at time t=0, the os-
cillator frequency is off-resonance with both qubits, ���0�
�
1�
2. Then the frequency is rapidly ramped so that the

FIG. 26. Coupled charge qubits with current-controlled phase coupling: the
arrow indicates the direction of the controlling bias current.

FIG. 27. Variable capacitance tuned by a voltage-controlled SCB.
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oscillator becomes resonant with the first qubit, ���t1�=
1,
the frequency remaining constant for a while. Then the fre-
quency is ramped again and brought into resonance with the
second qubit, ���t2�=
2. Finally, after a certain time it is
ramped further so that the oscillator gets out of resonance
with both qubits at the end, ���t� t3��
2.

When passing through the resonance, the oscillator is
hybridized with the corresponding qubit, and after passing
the resonance, the oscillator and qubit have become en-
tangled. For example, let us prepare our system at t=0 in the
excited state ��0�= 
100�= 
1� 
0� 
0�, where the first number
denotes the state of the oscillator �first excited level�, and the
last numbers denote the �ground� states of the first and sec-
ond qubits, respectively. After the first operation, the oscilla-
tor will be entangled with the first qubit, ��t1� t� t2�
= �cos �1 
10�+sin �1ei� 
01�� 
0�. After the second manipula-
tion, the state 
100� will be entangled with state 
001�,

��t � t3� = cos �1�cos �2
100� + sin �2ei�
001��

+ sin �1ei�
010� .

To ensure that there are no more resonances during the ma-
nipulations described, it is sufficient to require ���0��
2

−
1.
If the controlling pulses are chosen so that �2=� /2, then

the initial excited state will be eliminated form the final su-
perposition, and we’ll get entangled states of the qubits,
while the oscillator will return to the ground state

��t � t3� = 
0��cos �1ei�
01� + sin �1ei�
10��. �62�

The manipulation should not necessarily be step-like; it
is sufficient to pass the resonance rapidly enough to provide
the Landau–Zener transition, i.e. the speed of the frequency
ramping should be comparable to the qubit level splittings.

A somewhat more complex pulse sequence is required to
realize a universal entangling two-qubit gate; the way to do it
is explained, e.g., in Ref. 147.

VIII. CONCLUSION AND PROSPECTIVES

Within 5 years, engineered JJ quantum systems with
5–10 qubits will most likely begin seriously to test the scal-
ability of solid state QI processors.

For this to happen, a few decisive initial steps and break-
throughs are needed and expected: The first essential step is
to develop JJ-hardware with long coherence time to study the
quantum dynamics of a two-qubit circuit and to perform a
“test” of Bell’s inequalities �or rather the JJ-circuitry� by cre-
ating entangled two-qubit Bell states and performing simul-
taneous projective measurements on the two qubits.

A first breakthrough would be to perform a significant
number of single- and two-qubit gates on a 3-qubit cluster to
entangle three qubits. Combined with simultaneous projec-
tive readout of individual qubits, not disturbing unmeasured
qubits, this would form a basis for the first solid-state experi-
ments with teleportation, quantum error correction �QEC�,
and elementary quantum algorithms. This will provide a plat-
form for scaling up the system to 10 qubits.

This may not look very impressive but nevertheless
would be an achievement far beyond expectations only a
decade ago. The NMR successes, e.g., running Shor-type al-

gorithms using a molecule with 7 qubits,148 are based on
technologies developed during 50 years using natural sys-
tems with naturally long coherence times. Similarly, semi-
conductor technologies have developed for 50 years to reach
today’s scale and performance of classical computers. It is
therefore to be expected that QI technologies will need sev-
eral decades to develop truly significant potential. Moreover,
in the same way as for the classical technologies, QI tech-
nologies will most probably develop slowly step by step,
“qubit by qubit,” which in itself will be an exponential de-
velopment.

Moreover, in future scalable information processors, dif-
ferent physical realizations and technologies might be com-
bined into hybrid systems to achieve fast processing in one
system and long coherence and long-time information stor-
age in another system. In this way, solid state technologies
might be combined with ion trap physics to build large mi-
crotrap systems,149 which in turn might be coupled to super-
conducting Josephson junctions processors via microwave
transmission lines.150
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