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Manipulation with Andreev states in spin active mesoscopic Josephson junctions
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We investigate manipulation with Andreev bound states in Josephson quantum point contacts with magnetic
scattering. The Rabi oscillations in the two-level Andreev subsystems are excited by resonant driving the
direction of magnetic moment of the scatterer and by modulating the superconducting phase difference across
the contact. The Andreev level dynamics is manifested by the temporal oscillation of the Josephson current,
which is accompanied, in the case of magnetic manipulation, also by the oscillation of the Andreev states spin
polarization. The interlevel transitions obey a selection rule that forbids manipulations in a certain region of
external parameters and results from specific properties of Andreev bound states in magnetic contacts: 4�
periodicity with respect to the superconducting phase and strong spontaneous spin polarization.
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I. INTRODUCTION

Recent advances in the development and experimental in-
vestigation of nanowire based Josephson junctions1–3 attract
new attention to the rich physics of mesoscopic Josephson
effect. One of particularly interesting questions concerns the
possibility to employ Josephson quantum point contacts for
quantum information processing. Such contacts contain a
small number of generic two-level systems—Andreev bound
levels, whose quantum states can be selectively manipulated
and measured.4,5 By modulating the phase difference across
the junction, one is able to induce the Rabi oscillation in the
Andreev two-level system and therefore to prepare arbitrary
superposition of the Andreev states. A measurement of in-
duced oscillation of the Josephson current allows for the An-
dreev level readout. Thus, the pair of Andreev bound levels
belonging to the same conducting mode may serve as a
quantum bit.6,7

An interesting possibility to involve a spin degree of free-
dom in the contact quantum dynamics and to use it for qubit
application has been investigated by Chtchelkatchev and
Nazarov.8 They considered a Josephson quantum point con-
tact with spin-orbit interaction and showed how to manipu-
late with the spin of the Andreev state. The properties of the
Andreev bound states in spin-active mesoscopic junctions
and the equilibrium Josephson effect have been extensively
studied in recent literature;9–17 nonstationary aspects of the
interaction of individual magnetic scatterers with the Joseph-
son current have also been discussed.18–21

In this paper, we investigate the methods of manipulation
with the Andreev states in Josephson quantum point contacts
containing a magnetic scatterer, e.g., magnetic nanoparticle
situating between the superconducting electrodes.3,22,23 We
investigate two manipulation methods: �i� time variation of
the superconducting phase across the contact and �ii� time
variation of the direction of magnetic moment of the scat-
terer. We find that in both cases, the Josephson current ex-
hibits Rabi oscillation under the resonant drive within a cer-
tain interval of biasing superconducting phase. In the case of
magnetic manipulation, the effect may only exist if the An-
dreev states are initially spin polarized; then, the current os-
cillation is accompanied by oscillation of the Andreev states

spin polarization. The phase interval, where the Rabi oscil-
lation can be excited, decreases with increasing strength of
the magnetic scatterer and eventually disappears at a large
enough strength; in particular, in the �-junction regime, the
Rabi oscillation is completely forbidden. This selection rule
results from specific properties of the bound Andreev states
in magnetic junctions as we will show.

For a static scatter, the spin rotation symmetry around the
direction of its magnetic moment is preserved. This allows
for the contact description in terms of a two-component
Nambu spinor,24 which is similar to nonmagnetic junctions,
thus avoiding a double counting problem. Within such an
approach, the two bound Andreev levels per conducting
modes are only relevant, giving a complete quantitative de-
scription of the stationary Josephson effect as well as the
resonant two-level transitions and nonstationary current re-
sponse under the phase manipulation.6 Consideration of the
spin conjugated Nambu spinor gives a completely equivalent
physical description in terms of a reciprocal pair of Andreev
bound states; both of the pictures mirror each other.

Time variation of the direction of the magnetic moment of
the scatterer leads to a violation of the spin rotation symme-
try and induces coupling between the spin conjugated
Nambu spinors. This results in a unitary rotation in the ex-
tended space of the four Andreev bound states. It turns out,
however, that this rotation splits into two equivalent rotations
in invariant two-level subspaces, which mirror each other.
Thus, the contact response in this case can also be explained
in terms of the two-level Rabi dynamics. For the two differ-
ent ways of magnetic manipulation considered—instant
switching and small-amplitude resonant oscillation of the di-
rection of the magnetic moment of the scatterer, the Andreev
two-level dynamics has a physical meaning of precession
and nutation of the spin polarization of the Andreev levels,
respectively. Thus, the spin polarization of Andreev states
is required in order to observe a nontrivial dynamical
response.8 Such a possibility naturally exists, as we will
show, in the contact under consideration: the equilibrium An-
dreev states exhibit strong spin polarization, up to the maxi-
mum values of �1 /2 at low temperature, in certain regions
of the superconducting and Zeeman phases.
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II. CONTACT DESCRIPTION

Consider a one-mode quantum point contact with super-
conducting electrodes connected by a normally conducting
nanowire, as shown in Fig. 1. The left and right electrodes
�L ,R� are described with the BCS Hamiltonian,

HS = �
L,R

dx �
�=↑,↓

�̂�
†�x�� p2

2m
− ��x,t���̂��x�

+ ���x,t��̂↑�x��̂↓�x� + ��x,t��̂↓
†�x��̂↑

†�x� . �1�

Aiming to investigate the effect of time variation of the su-
perconducting phase difference � across the junction, we
consider the order parameter that has the form ��x , t�
=�ei��x,t�/2 and ��x , t�=��t�sgn x and the electrochemical
potential, ��x , t�, which has the form ��x , t�=EF−	�t� /2,
which provides the electroneutrality condition within the
electrodes.7

To explore the spin properties of the Andreev states, we
assume that the contact nanowire contains a magnetic scat-
terer, e.g., magnetic nanoparticle �Fig. 1�. We assume for
simplicity that the magnetic field H�x , t� induced by the scat-
terer is localized within the nanowire on a distance l smaller
than the distance L between the electrodes, thus not affecting
the superconductivity within the electrodes; furthermore, we
will treat this magnetic field as a given external parameter,
neglecting the back action effect from the current. Then, the
Hamiltonian of the normal region of the junction has the
form

HN = �
−L/2

L/2

dx�
���

�̂�
†�x��� p2

2m
− EF + U�x��
���

+
1

2
�B����H�x,t���̂���x� , �2�

where U�x� is the scalar potential of the scatterer. We assume
symmetric with respect to x=0 spatial distributions of the
scalar potential and the magnetic field and also a fixed direc-
tion of the magnetic field, which will vary with time during
the manipulation.

In the stationary case, the Hamiltonian �2� preserves the
spin rotational symmetry around the direction of the mag-
netic field. By choosing the spin quantization axis along this
direction, we describe the electron propagation through the
normal region of the junction with a transfer matrix Te,

Te = d̂−1�ei�z��/2� ir̂

− ir̂ e−i�z��/2� � , �3�

where d̂=diag�d↑ ,d↓� and r̂=diag�r↑ , r↓�. Contact description
in terms of the spin active scattering matrix has been exten-
sively discussed in literature.11,25 The impurity scalar poten-
tial produces spatially symmetric scattering with transmis-
sion amplitudes, d↑ ,d↓, and reflection amplitudes, r↑ ,r↓,
which may be different for different spin orientations �spin
selection�. The scattering phase shift � between the opposite
spin orientations is induced by the Zeeman effect,

� =
�BHl

	vF
. �4�

The physical observables of interest, i.e., the Josephson
current and spin polarization, are described with a single
electron density matrix ��x ,x� , t� associated with a two-
component Nambu field26 �x , t�,

�x,t� = ��̂↑�x,t�

�̂↓
†�x,t�

�, ��x,x�,t� = 	�x,t�†�x�,t�
 �5�

�here, the angular brackets indicate statistical averaging�. An
alternative description is given by a density matrix,
�̃�x ,x� , t�, associated with the spin conjugated Nambu field,

̃�x , t�,

̃�x,t� = � �̂↓�x,t�

− �̂↑
†�x,t�

�, �̃�x,x�,t� = 	̃�x,t�̃†�x�,t�
 .

�6�

The two Nambu fields are connected via a fundamental sym-
metry relation imposed by the singlet nature of the BCS
pairing,

̃�x,t� = i�y�†�T. �7�

In what follows, we will use these two reciprocal repre-
sentations, i.e., � representation and �̃ representation, re-
spectively �see Appendix B�. This will allow us to avoid the
redundancy, which is introduced by Eq. �7�, of a commonly
used four-component Nambu formalism9–14,16 and to explic-
itly show that the stationary Josephson effect as well as non-
stationary response to the phase manipulation can be fully
understood within the framework of the two bound Andreev
states per conducting mode associated with either of these
two reciprocal representations.

III. ANDREEV STATE SUBSYSTEM

In this section, we outline the properties of the stationary
Andreev states, which are of importance for the discussion of
nonstationary effects. The details of derivations are presented
in Appendix A.

Within the two-component Nambu formalism,26 the qua-
siparticle states in the stationary contact are given by the
Bogoliubov–de Gennes equation,

FIG. 1. �Color online� Sketch of a magnetic Josephson point
contact: superconducting reservoirs are connected by a nanowire of
length L smaller than the coherence length and a magnetic nano-
particle creates a local classical magnetic field.
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h� = E�, h = �p2/2m − EF��z + ��x, �8�

which is supplemented with the boundary condition at the
contact, which for a short contact is given by the transfer
matrix, T=exp�i�z� /2�Te �Eq. �A3��. The energy spectrum
of the bound states consists of the two levels according to
Eq. �A9�,

Es = �s� cos�s� − �/2�, s = � , �9�

where �s=sgn�sin�s�−� /2�� and the parameter � is defined
through sin �=D sin�� /2�, where D is the contact transpar-
ency. This energy spectrum is asymmetric with respect to the
chemical potential, E=0, and is 4� periodic with respect to
the phase difference, as shown in Fig. 2, the spectral
branches cross at �=2�n. In Fig. 2, the energy levels of a

reciprocal Andreev level pair, Ẽs=−Es, are also shown,
whose wave functions, �̃s= �i�y��s

�, are associated with the
spin conjugated Nambu field �Eq. �6�� ��̃ representation, see
Appendix B�.

The reason for the 4� periodicity and the level crossings
is the symmetry of the problem, which is reflected in the
property �Eq. �A12��. By introducing the parity operator P
that permutes the wave functions at the left and right sides of
the junction, P��x�0�=��x�0�, we write Eq. �A12� in the
following form:27

�̂�̂s�x� = s�s�̂s�x�, �̂ = P�− �x 0

0 �x
� . �10�

According to this equation, the Andreev level wave functions
are simultaneously the eigenfunctions of the symmetry op-

erator �̂ with eigenvalues s�s. Furthermore, the energy
branches, E− and E+, in the neighboring phase intervals in
Fig. 2 correspond to the different eigenvalues of the operator
�. The properties of the Andreev states are therefore quali-
tatively different within the phase intervals, where �s=�−s
and �s=−�−s. To emphasize the difference, we will refer to
the former ones as the regions of strong Zeeman effect �ZE�,
sin � /2�D sin � /2, and the latter ones as the regions of
weak ZE, sin � /2�D sin � /2. These regions are separated
by the points where the energy levels touch the continuum,
�=2�n��0, �0=2 arcsin�1 /D sin � /2�. At a sufficiently
large Zeeman phase, sin � /2�D, the weak ZE regions dis-

appear, while the strong ZE regions spread over the whole
superconducting phase axis. The bound energy levels,
E����, depart from the continuum forming “cigars” �see Fig.
3�; they belong to the orthogonal eigensubspaces of the op-

erator �̂ at all phases. The � contact is realized in this re-
gime, at �=�,28 when the reciprocal cigars coincide and
symmetrically situate with respect to E=0.

A qualitative difference between the regions of strong and
weak ZEs is illustrated by the properties of the Josephson
current. Starting with a general expression for the charge
current through the density matrix,

I�t� =
e	

2mi
��x − �x���
�x − x�� − Tr ��x,x�,t��x=x�=0, �11�

we truncate it to the Andreev level subspace,

IA�t� = �
ss�

Iss��1

2

s�s − �s�s�t�� . �12�

Here,

�ss��t� = 	�s���t���s�
 =� dxdx� Tr���x,x�,t��s��x���s
†�x��

�13�

is the density matrix in the Andreev level representation
�Eqs. �A11� and �A12��; the trace refers to the electron-hole
space. The current matrix Iss� reads

Iss� =
2e

	
����E+ 0

0 ��E−
�

+ �1 − �s�−s�RD sin
�

2

�+�−

2�
�0 1

1 0
�� . �14�

The diagonal elements give the expectation values of the
currents of Andreev states, while the off-diagonal part de-
scribes the current quantum fluctuation.7 The off-diagonal
part is finite in the weak ZE regions, where �s�−s=−1, while
it is zero in the strong ZE regions. This implies that the
current quantum fluctuation is fully suppressed in the strong
ZE regions: here, the current matrix commutes with the An-
dreev level Hamiltonian, which is diagonal in this represen-
tation hss�=
ss�Es.

0 2π 4π
ϕ

0

∆

-∆

E

����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������1

-1
0

E+

E-
E+

E-

θ+ θ−

ϕ0

E- E+

E-E+

FIG. 2. Andreev level energy spectrum for sin�� /2��D �D
=0.9,�=0.5�. Upper panel: � functions, as shown in the lower
panel, define the spectrum discontinuity points at 2�n��0. The
vertical dotted lines separate the regions of weak and strong Zee-
man effects.

0 2π 4π
ϕ

-∆

0

∆

E

E-

E+

E+

E-

FIG. 3. Andreev level energy spectrum for sin�� /2��D �D
=0.1,�=2.8�. The strong ZE region spreads over whole phase axis.
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In the equilibrium, �ss�=
ss�nF�−Es� and the Andreev cur-
rent in Eq. �12� takes the form

IA = −
e�

	
�

s

��Es tanh�Es/2T� . �15�

One can confirm by direct calculation that the current of
the continuum states vanishes, thus Eq. �15� represents the
total Josephson current. This equation coincides with the
result obtained by using the four-component Nambu
formalism,9–14,16 and it can also be obtained by working with
the reciprocal Nambu representation by using Eq. �B9�.

The spin polarization of the Andreev states plays an im-
portant role in magnetic manipulation. The asymmetry of the
Andreev spectrum with respect to the zero energy together
with the spectrum discontinuities result in a peculiar phase
dependence of the spin polarization of Andreev levels. The z
component of electronic spin density in the contact is given
by

S�x,t� =
1

2
�
�x − x�� − Tr ��x,x�,t��x=x�. �16�

By truncating this equation to the Andreev level subspace
and by integrating over x and using normalization condition
for the bound state wave functions, we find the spin polar-
ization of the Andreev level pair,

SA = �1/2��1 − f+ − f−� , �17�

where fs=�ss are the population numbers.
Thus, the spin polarization of the Andreev levels is en-

tirely determined by their �generally nonequilibrium� popu-
lation numbers: For an empty Andreev level pair, f�=0, the
spin polarization is S=1 /2, while for fully populated levels,
f�=1, it is S=−1 /2. For the single particle occupation of the
level pair, f++ f−=1, the spin polarization is zero, S=0. In
nonmagnetic contacts, the equilibrium spin polarization of
Andreev levels is always zero, S=0, by virtue of the identity,
nF�−E+�+nF�−E−�=1, that holds due to the spectrum sym-
metry, E+=−E−. In magnetic contacts, the spin polarization
sharply varies in the �−� parameter plane �see Fig. 4�. At
zero temperature, fs=��Es�, the spin polarization is zero in

the regions bound by the lines, sin�� /2�=sin�� /2� /D and
sin�� /2�=cos�� /2� /D; the first region corresponds to a
weak ZE. Outside these regions, the Andreev levels are
strongly polarized, S=1 /2. At small contact transparencies,
D�1 /2, the above mentioned lines do not overlap, while at
D�1 /2 they do, forming an island of strong negative polar-
ization, S=−1 /2, around the point, �=�, �=� /2 �see Fig.
4�. This island grows with increasing transparency, eventu-
ally touching the lines, �=0 and �=�, at D=1.

In contrast to the charge density, the spin density in Eq.
�16� obeys the conservation equation, �tS�x , t�+�xIS�x , t�=0.
The consequence of this is the zero spin current of the An-
dreev states, ISA=0: under the stationary condition, the par-
tial spin current of the Andreev state must be constant in
space, and being proportional to the bound wave function, it
vanishes at infinity; thus, it is identically equal to zero.29

IV. PHASE MANIPULATION

Now, we turn to the discussion of the Andreev level dy-
namics under the time-dependent phase. Similar to nonmag-
netic junctions this dynamics involve only the bound levels
belonging to the same Nambu representation,4–6 as shown in
Fig. 5. The frequency of the phase time variation must be
small compared to the distance to the gap edges to prevent
the level-continuum transitions, ���− �Es�.

The time evolution of the contact density matrix, ��t�, is
governed by the Liouville equation, i	�t�= �h ,��, with the
Hamiltonian of Eq. �8�, which is supplemented with the non-
stationary boundary condition, T=exp�i�z��t� /2�Te. Now,
we truncate the density matrix using the instantaneous
Andreev eigenfunctions, �s���t�� �cf. Eq. �13��,

�ss��t� = 	�s�t����t���s��t�
 . �18�

This density matrix obeys the Liouville equation i	�t�
= �H ,�� with a truncated Hamiltonian, which in this basis is
given by

FIG. 4. Equilibrium spin polarization of Andreev levels at zero
temperature and at D�1 /2; the central region with S=−1 /2
emerges at D=1 /2 at �=� ,�=� /2 and grows with D, reaching the
lines �=0 and �=� at D=1.
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FIG. 5. Interlevel transitions induced by time oscillation of the
phase difference; the shadow regions indicate the forbidden regions;
transitions in �̃ representation �reduced-intensity lines� are equiva-
lent to the transitions in � representation �full-intensity lines�; D
=0.9 and �=0.5. Inset: transition matrix element as function of �.
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Hss� = 	�s�h��s�
 − 	�s�i	�t��s�
 = Es
ss� − 	�̇	�s�i����s�
 ,

�19�

where Es���t�� and �s���t�� are given by Eqs. �A9�, �A11�,
and �A12�, respectively.

The matrix element, 	�s�i����s�
, is found to be zero for
s�=s, while for the interlevel transitions, s�=−s, it reads

	�s�i����−s
 = is�1 − �s�−s�
����

2
,

���� =
RD

2
sin2�

2

�+�−

�2��+ + �−�
. �20�

From this, we find that in the weak ZE regions, �s�−s=−1,
the nonstationary Andreev level Hamiltonian has the form

H�t� = �E+ 0

0 E−
� + 	�̇�����0 − i

i 0
�, D sin

�

2
� sin

�

2
.

�21�

This equation provides generalization to a magnetic junction
of the Hamiltonian derived in Ref. 6: the level coupling co-
incides with the one in nonmagnetic junction when �=0 and
remains finite when ��0 but only inside the weak ZE re-
gion, decreasing toward the edges of this region �see inset in
Fig. 5�. In the strong ZE region, the matrix element is iden-
tically zero ��s�−s= +1�, and the Hamiltonian is diagonal,

H�t� = �E+ 0

0 E−
�, D sin

�

2
� sin

�

2
. �22�

Thus, we conclude that no operation with Andreev levels is
possible in the strong ZE regime.

Equation �21� is convenient for the calculation of Rabi
oscillation in the Andreev level system under the resonant
driving, ��t�=�+
 sin �t, where �= �E+−E−� /	. By insert-
ing this in Eq. �21�, we get

H =
	�

2
�z + 	�
� cos �t�y . �23�

By assuming a small amplitude of the phase oscillation, 

�1, and by using the rotating wave approximation, we find
the time-dependent density matrix in the rotating frame,

��t� = ��0� −
f+�0� − f−�0�

2
�1 − cos �
�t − sin �
�t�x� ,

�24�

where ��0�=diag�f+�0� , f−�0��. The Rabi oscillation of the
Andreev levels generates a time-dependent Josephson cur-
rent,

I�t� = I�0� −
2e

	
�f+�0� − f−�0��sin2�
�t

2 �
s

��Es. �25�

The Rabi oscillation �Eq. �24�� and the time oscillation of
the Josephson current �Eq. �25�� vanish if the Andreev levels
are initially fully spin polarized, S�0�= �1 /2, since f+�0�
= f−�0� in this case. Thus, an additional requirement for the

phase manipulation is to bias the contact in the region out-
side the negative-spin island in Fig. 4.

V. SPIN MANIPULATION

Now, we proceed with the discussion of the spin manipu-
lation. We consider the two ways of driving Andreev level
spin, which are presented in Fig. 6: �i� rapid change of the
direction of the magnetic moment of the scatterer �dc puls-
ing� and �ii� harmonic oscillation with resonance frequency
of the magnetic moment direction �rf pulsing�. In both cases,
the spin rotation symmetry is violated; therefore, the junction
dynamics cannot be described with only one Nambu pseu-
dospinor but involves both the spin conjugated Nambu pseu-
dospinors. The interlevel transitions in this case physically
describe a rotation of the Andreev level spin.

A. dc pulsing

Suppose the Andreev levels are initially prepared in a sta-
tionary state with nonzero spin, which points along the ap-
plied magnetic field �z axis�. Such states were discussed in
Secs. II and III. Let us now suppose that the magnetic field is
rapidly rotated by an angle � around the y axis, as shown in
Fig. 6�a�. Such a manipulation is described by the rotation of
the electronic T matrix in Eq. �3�,

Te → UTeU
†, U =� cos

�

2
sin

�

2

− sin
�

2
cos

�

2
� , �26�

and it mixes the Nambu pseudospinors  and ̃. To describe
the effect of this manipulation, we introduce the extended

four-component Nambu space, � ,̃�T, and the correspond-
ing single particle density matrix,

��x,x�,t� = �	�x,t�†�x�,t�
 	�x,t�̃†�x�,t�


	̃�x,t�†�x�,t�
 	̃�x,t�̃†�x�,t�

� .

�27�

This density matrix operates in the Hilbert space spanned by
the extended eigenbasis,

FIG. 6. �Color online� Sketch of manipulation with magnetic
field. �a� Instant switching of direction of magnetic field. �b� Small-
amplitude oscillation of magnetic field with resonant frequency
�electron spin resonance�.
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���x� = ����x�
0

�, ��̃�x� = � 0

�̃��x� .
� . �28�

The transformation U induces rotation of the extended basis,

���x� → U���x�, � � ��, �̃� . �29�

The eigenenergies, however, remain the same since such a
rotation just corresponds to changing the spin quantization
axis.

The wave functions �Eq. �28�� form a complete set in the
extended space, and thus, any operator can be expressed
through them,

A�x,x�� = �
�,�

���x���
†�x��A��. �30�

In particular, for a stationary system with a spin rotational
invariance, we have for the density matrix,

��x,x�� = �
�

���x���
†�x��f�, �31�

and the Hamiltonian,

H�x� = �
�

���x���
†�x�E�. �32�

However, one has to remember that this description is redun-
dant, and rigorous constraints hold in the occupation num-

bers, f̃�=1− f�, and eigenenergies, Ẽ�=−E�.
We now write down the Hamiltonian after the magnetic

field rotation in the form

H�x� = �
�

U���x�E���
†�x�U†, t � 0. �33�

In the initial basis, this Hamiltonian is represented with the
matrix,

H�� = �
�

	���U���
E�	���U†���
, t � 0, �34�

or explicitly,

H��� = cos2�

2
E�
��� − sin2�

2 �
���,��

	����̃�
E�	�̃�����
 ,

H�̃�̃� = − cos2�

2
E�
��� + sin2�

2 �
���,��

	�̃����
E�	����̃��
 ,

H��̃� = − sin �	����̃��

E� + E��

2
. �35�

Here, the orthogonality relations were used, 	�� ���

= 	�̃� � �̃�
=
�� and 	�� ���
=0, Eq. �B5�.

At this point, we restrict ourselves to the Andreev level
subspace and present the truncated Hamiltonian in the

following form �by using the symmetries Es=−Ẽs and
	�+ � �̃−
=−	�− � �̃+
�:

H�4� =�
E0 + W 0 0 V

0 − E0 + W − V 0

0 − V − E0 − W 0

V 0 0 E0 − W
� , �36�

where

E0,W = �cos2�

2
− sin2�

2
�M�2�E+ � E−

2
,

V = − M sin �
E+ + E−

2
, �37�

and the interlevel matrix element,

M = 	�+��̃−
 = ��s − �−s�cos
�

2

�+�−

�+ + �−
. �38�

The matrix element �38� equals to zero in the strong ZE
region ��s=�−s�; thus, the manipulation does not produce any
effect there, which is similar to the phase manipulation �see
the inset in Fig. 7�.

The Hamiltonian �36� has a block-diagonal form, describ-
ing identical rotations in the two orthogonal subspaces,
which are spanned by the eigenvectors ��+ , �̃−� and ��− , �̃+�.
Thus, the problem reduces to solving for two physically
equivalent two-level systems. By choosing the subspace
��+ , �̃−�, we have the two-level Hamiltonian,

H�2� = �W V

V − W
� . �39�

By introducing the projection operators on the eigensub-
spaces,

H�2� = �
�=�

�	�P�, P� =
1

2
�1 + �

�zW + �xV

	�
� ,

����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������
����������������������������������������

0 π 2π
ϕ

-∆

0

∆

E

0 π 2π
0

0.5

1

E+

E-

E+

E-

FIG. 7. Interlevel transitions induced by magnetic manipulation;
the shadow regions indicate the forbidden regions; transitions be-

tween the levels �E− , Ẽ+� �reduced-intensity lines� are equivalent to

the transitions �E+ , Ẽ−� �full-intensity lines�; D=0.9 and �=0.5. In-
set: transition matrix element as a function of �.
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	� = W2 + V2 =
�E+ + E−�

2
�cos2�

2
+ sin2�

2
�M�2� , �40�

where �	� are the eigenenergies, we have for the time evo-
lution of the two-level density matrix,

��2��t� = e−i�Ht/	���2��0�ei�Ht/	� = �
���

ei���−���tP��
�2��0�P��.

�41�

By assuming the initial density matrix to be stationary �not
necessarily equilibrium� and by expressing it through the
level occupation numbers of the � representation,

��2��0� = � f+�0� 0

0 1 − f−�0�
� , �42�

we obtain

��2��t� = ��2��0� + 2SA�0���a�t��2 b�t�
b�t�� − �a�t��2

� ,

a�t� = − i
V

	�
sin �t, b�t� = a�t��cos �t + i

W

	�
sin �t� ,

�43�

where SA�0�= �1 /2��1− f+�0�− f−�0�� is the initial spin polar-
ization of the Andreev levels, as given by Eq. �17�. Thus, no
rotation is induced for spin unpolarized Andreev levels. Fur-
thermore, the frequency of the rotation is proportional to the

level splitting, 	��E+− Ẽ−=E++E−, i.e., to the magnetic
field.

The time evolution of the occupation numbers fs�t� of the
Andreev levels in the � representation is extracted from Eq.
�43�,

fs�t� = fs�0� + 2SA�0�
V2

�	��2sin2 �t . �44�

This relation illustrates the nonunitary evolution of the An-
dreev levels in this representation, f+�t�+ f−�t��const. Equa-
tion �44� allows us to obtain the time dependence of the spin
polarization of the Andreev levels,

SA�t� =
1

2
�1 − f+�t� − f−�t�� = SA�0��1 −

2V2

�	��2sin2 �t� .

�45�

To calculate the Josephson current, we use the expression
through the current matrix in the � representation �Eqs. �12�
and �14��,

I�t� = �
ss�

Iss��1

2

s�s − �s�s�t�� . �46�

The diagonal elements of the density matrix �ss are given by
Eq. �44�. On the other hand, the off-diagonal elements �ss�
equal zero because the spin manipulation does not induce
transitions between the eigenstates of the same �either � or
�̃� representation. Therefore,

I�t� =
2e

	
�

s

��Esfs�t� = I�0� +
4e

	
SA�0�

V2

�	��2sin2 �t�
s

��Es.

�47�

In summary, the conditions for the observation of the non-
stationary contact response, biasing in a weak ZE region
with a finite spin polarization, can be only fulfilled in the
central island region in Fig. 4 with negative polarization.
This constraint can be relaxed by pumping the initial level
populations away from equilibrium, as suggested in Ref. 8.

To conclude this section, we note that the dc pulsing of
the magnetic field does not allow one to reach every point on
the Bloch sphere: this is due to the fact that U is not an
invariant operation on the Andreev level subspace of the ex-
tended Nambu space, which physically means a leakage to
the continuum �similar effect exists also for the phase ma-
nipulation with dc pulses30�. However, for small rotation
angles and not close to the edges of the weak ZE region, the
matrix element M is close to unity, and the leakage is small;
it can be further reduced by using rapid adiabatic change of
the magnetic field, i.e., rapid on the time scale of the An-
dreev level splitting but slow on the time scale of the dis-
tance of the Andreev levels to the continuum. This shortcom-
ing does not exist for the resonant rf pulsing.

B. rf pulsing

Now, let us consider a time-dependent rotation of the
magnetic field,

T → U���t��TU†���t�� ,

where ��t�, as before, is the angle of rotation around the y
axis �see Fig. 6�b��. We can now define the instantaneous
eigenstates as

U�t����x� , �48�

satisfying the instantaneous boundary condition �Eq. �3��,
with Te→UTeU

†. The time-dependent Hamiltonian can then
be written similar to Eq. �33�,

H�x,t� = �
�

U�t����x�E���
†�x�U†�t� . �49�

Since the energy eigenvalues do not depend on the direction
of the quantization axis, they remain time independent. Now,
similar to Eq. �31�, we can expand the density matrix in
terms of these instantaneous eigenfunctions,

��x,x�,t� = �
�,�

U�t����x���
†�x��U†�t�����t� . �50�

The matrix ����t� satisfies the Liouville equation with the
Hamiltonian

H���t� =� dx��
†�x�U†�t��H�x� − i	�t�U�t����x�

= E�
�� − i		���U†�t��tU�t����
 . �51�

By inserting Eq. �48�, we get
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i	U†�t��tU�t� = −
	

2
�t��0 − i

i 0
� . �52�

By truncating to the Andreev level subspace, we have the
Hamiltonian

H =�
E+ 0 0 − ig

0 E− ig 0

0 − ig − E+ 0

ig 0 0 − E−

�, g =
	

2
�t�M . �53�

This Hamiltonian can again be presented in a block-diagonal
form, describing two equivalent two-level systems. Choosing
the subspace spanned by ��+ , �̃−� and driving the magnetic

field at exact resonance, �=E+− Ẽ−=E++E−, with small am-
plitude, ��t�=�0 sin �t, where �0�1, we have the two-level
Hamiltonian,

H2 = � E+ − i	�r cos �t

i	�r cos �t − E−
�, �r =

1

2
�0�M ,

�54�

from which we obtain the Rabi oscillation of the population
numbers of the � representation,

f+�t� = f+�0�cos2�rt

2
+ �1 − f−�0��sin2�rt

2
,

�1 − f−�t�� = �1 − f−�0��cos2�rt

2
+ f+�0�sin2�rt

2
, �55�

or explicitly introducing the Andreev level spin,

fs�t� = fs�0� + 2SA�0�sin2�rt

2
. �56�

This equation again illustrates the nonunitary evolution of
the Andreev levels in the � representation. The time evolu-
tion of the spin polarization and the Josephson current then
become, respectively,

SA�t� = SA�0��1 − 2 sin2�rt

2
� ,

I�t� = I�0� +
4e

	
SA�0�sin2�rt

2 �
s

��Es. �57�

VI. DISCUSSION

Manipulations with the Andreev levels generate strongly
nonequilibrium states, whose lifetime is restricted by relax-
ation processes. Let us qualitatively discuss the relaxation
mechanisms relevant for the nonequilibrium states induced
by the discussed manipulation methods.

The phase manipulation affects the difference of the popu-
lations of the Andreev levels belonging to the same Nambu
representation while keeping the total population of the An-
dreev level pair unchanged. At zero temperature and for rela-

tively small frequency of the qubit rotation compared to the
superconducting gap, the states of the continuum spectrum
are either empty or fully occupied, and therefore, the
exchange between the continuum and the Andreev levels
is exponentially weak.7 Therefore, the relaxation predomi-
nantly occurs within the Andreev level system. In the strong
ZE regions, the interlevel relaxation caused by interaction
with electromagnetic environment should be suppressed due
to the vanishing transition matrix element �Eq. �20��, i.e., for
the same reason that prevents the phase manipulation. One
may expect to prolong lifetime of the excited states by taking
advantage of this property and by adiabatically shifting the
phase bias into the strong ZE region after the manipulation
has been performed. Such an operation, however, requires
a passage through one of the singular points, �=2�n��0,
where the Andreev levels touch the continuum; at this point,
the quantum state escapes in the continuum and quantum
information is lost.

The absence of the interlevel relaxation in the strong ZE
regions has interesting implications for the observation of 4�
periodicity of the Andreev level spectrum, as discussed in
Sec. III. The equilibrium Josephson current �Eq. �15�� is 2�
periodic and does not reveal the 4�-periodicity property of
the Andreev states. This may change under nonequilibrium
condition, when a small voltage is applied to the junction. In
this case, superconducting phase becomes time dependent,
�=2 eV /	, and the Andreev levels adiabatically move along
the � axis, keeping a constant level population during a long
time �limited by a weak level-continuum quasiparticle ex-
change�. If the magnetic effect is weak while contact is trans-
parent, sin�� /2��D, the levels touch the continuum every
Josephson cycle, and the level population will be periodi-
cally reset,27 leading to the 2� periodicity of the Josephson
current. However, in the cigars regime, sin�� /2��D, as
depicted in Fig. 3, the levels are isolated from the continuum,
and the level population may remain unchanged during the
time greatly exceeding the Josephson period. This will lead
to the 4� periodicity of the ac Josephson current and could
be experimentally detected by observing anomalous Shapiro
effect with only even Shapiro steps present. The effect would
be the most pronounced for the � junctions, �=�. A similar
effect has been discussed in a different context of unconven-
tional superconductor junctions.31

Manipulation with the Andreev level spin affects the spin
polarization of the Andreev levels, and thus, at first glance, a
relevant relaxation mechanism would require some spin ac-
tive scattering. Since the magnetic interactions in supercon-
ductors are usually rather small compared to nonmagnetic
interactions, e.g., with electromagnetic environment, one
would expect a long lifetime of Andreev spin excitations.8

However, one should take into account the relation between
the spin polarization and population of the Andreev level pair
Eq. �B9�: The nonequilibrium spin polarization is associated
with nonequilibrium population of the Andreev level pair,
which can be relaxed by any nonmagnetic interaction. Con-
sider, for example, the process of approaching the equilib-
rium state in magnetic contact after the phase bias has been
suddenly changed. This will first create a nonequilibrium
state in the Andreev level system, both in terms of individual
level populations, and the total population of the level pair,
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which then will rapidly relax to local equilibrium via the
interlevel, and level-continuum quasiparticle transitions in-
duced by �presumably� strong nonmagnetic interaction.7

Such an interaction does not change the total spin polariza-
tion of contact electrons since it preserves the spin rotation
symmetry; however, it is able to transfer the polarization
from the Andreev levels to the continuum states. The total
polarization is maintained in the local equilibrium by shifting
the energy argument in the Fermi distribution function by an
energy independent constant. This constant will slowly relax
to the zero value in a second relaxation stage due to spin-flip
processes.

Thus, we conclude that decoherence of the states gener-
ated by the magnetic manipulations basically results from the
same physical interactions that destroy excited states pro-
duced by the phase manipulations, and therefore, one should
not expect significant differences of the respective lifetimes.

VII. CONCLUDING REMARKS

In conclusion, we studied the properties of Andreev
bound level system and various ways of manipulation with
them in Josephson quantum point contacts containing mag-
netic scatterers. In practice, such contacts can be realized by
attaching magnetic nanoparticles or molecules to the contact
bridge;22 another possibility is to insert magnetic macromol-
ecules, e.g., doped metallofullerene, in the contact.23 Cou-
lomb blockade regime in molecular dots offers additional
possibility due to the uncompensated spin of odd electronic
configurations on the dot.1–3,15

In the studied cases of resonant driving the superconduct-
ing phase difference and the direction of magnetic scatterer,
the contact response consists of a time oscillation of the Jo-
sephson current, and for the magnetic drive, also oscillation
of the Andreev level spin polarization. We identified the re-
gions of external parameters, where these oscillations can be
excited. The corresponding selection rule results from spe-
cific symmetry properties of the bound Andreev states in
magnetic contacts: 4� periodicity of the level spectrum and
strong spontaneous spin polarization.

In all of the studied cases, the nonstationary contact re-
sponse results from resonant dynamics of two physically
identical two-level systems �for one conducting mode�,
whose evolutions mirror each other. This is the manifestation
in a nonstationary regime of the redundancy �double count-
ing� of the four-component Nambu description of the Joseph-
son effect in magnetic contacts. Due to the fundamental con-
straint �Eq. �7��, which is imposed by the singlet pairing, the
four-component Nambu field possesses the algebraic struc-
ture of Majorana fermion,32 thus describing only 2 physical
degrees of freedom rather than 4. In contacts with magnetic
impurities under discussion, these 2 physical degrees of free-
dom relevant for the stationary Josephson effect correspond
to the two Andreev bound states per conducting mode, which
is similar to the case of nonmagnetic contacts.33–35
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APPENDIX A: BOUND STATE WAVE FUNCTIONS

To explicitly construct the wave functions of the Andreev
states, we consider a quasiclassical approximation for ��x�
by separating rapidly oscillating factors e�ikFx and slowly
varying envelopes ���x�,

��x� = �+�x�eikFx + �−�x�e−ikFx. �A1�

The envelopes ��
� satisfy a quasiclassical Bogoliubov–de

Gennes �BdG� equation,36

i	�t�
� = ��vFp̂�z +

	

2
�t��z + ��xe

−i�z� sgn x/2���.

�A2�

Furthermore, the superconducting phase can be elimi-
nated from this equation and moved to the boundary
condition by means of the gauge transformation, �
→exp�i�z� sgn x /4��.

The boundary condition at the contact for the quasiclassi-
cal envelopes, ��

��0�, follows from the electronic transfer
matrix in Eq. �3�. For simplicity, we assume the short contact
limit, L� 0, where  0 is the superconducting coherence
length, thus neglecting the energy dispersion of the scattering
amplitudes. Then, it is easy to establish that the transfer ma-
trix for holes has the same form as that for the electrons.
Thus, the boundary condition connecting the left �L� and
right �R� electrode wave functions can be written in the form

��+

�− �
L

= ei�z��/2�Te��+

�− �
R

. �A3�

Elementary solutions to a stationary BdG equation,
��vFp̂�z+��x���=E��, have the form for given energy
�E���,

��
��x� =

1
2

�e�i�!/2

e�i�!/2 �e−���/	vF�x, � = � , �A4�

where

cos ! =
E

�
, sin ! =

�

�
, � = �2 − E2. �A5�

Index � is defined by the zero boundary condition at infinity.
The matching condition �Eq. �A3�� then reads

�A+�+

A−�− �
�=−

= ei�z��/2�T�B+�+

B−�− �
�=+

, �A6�

where the coefficients A� ,B� are to be determined by this
equation and the normalization condition. The solvability of
this matching requires

cos�2! + �� = R + D cos � , �A7�

where R=r↑r↓ and D=d↑d↓ play the role of effective spin-
symmetric reflection and transmission coefficients11 �cf. Ref.
37 where a more general form of this equation has been
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derived�. By introducing a phase � through the relation,
cos 2�=R+D cos �, we obtain a solution for the quantity !,

!s = s� −
�

2
+ �ns, s = � , �A8�

from which the energies of the Andreev bound states are
found,

Es = �s� cos�s� − �/2�, �s = sgn�sin�s� − �/2�� .

�A9�

The factor �s= �1 is fixed for each state by the condition
sin !�0, which guarantees the exponential decay of the
bound state wave functions into the superconducting leads.
To simplify the further discussion, we assume the absence of
spin selection, d↑=d↓, r↑=r↓. In this case, the relation D+R
=1 holds, and the parameter � can be chosen as follows:

sin � = D sin
�

2
. �A10�

To write down an explicit form of the Andreev level wave
functions, it is convenient to combine the envelopes �Eq.
�A1�� in a four vector �̂s= ��s

+ ,�s
−�, then

�̂s�x � 0� = �vs 0

0 vs
� �� Fs

i�sF−s
�Gs�x� , �A11�

�̂s�x � 0� = s�s�− �x 0

0 �x
��̂s�x � 0� , �A12�

where

vs =
1
2

� ei!s/2

e−i!s/2 � , �A13�

and

Fs =� − sD cos
�

2
,

Gs�x� = �s

2	vF�
e−��s/	vF��x�,

� = 1 − D sin2��/2� . �A14�

APPENDIX B: SYMMETRY RELATIONS

The symmetry relation �Eq. �7�� generates the relations
between the density matrices � and �̃,

�̃�x,x�,t� = 
�x − x�� − �i�y����x,x�,t��i�y�†, �B1�

which extends to the respective single particle Hamiltonians
by virtue of the Liouville equation,

h̃ = − �i�y�h��i�y�†. �B2�

Furthermore, Eq. �B2� generates the symmetry relation be-
tween the respective eigenstates,

�̃��x� = �i�y���
��x� , �B3�

and eigenenergies,

Ẽ� = − E�. �B4�

Equations �B3� and �B4� establish mapping between the Hil-
bert spaces of the reciprocal Nambu representations, i.e., �

representation and �̃ representation. The eigenstates of these
representations form complete orthogonal sets, 	�� ,���

= 	�̃v , �̃v�
=
���. Furthermore, they obey an additional or-
thogonality relation,

	��,�̃�
 = 0, �B5�

which straightforwardly follows from the local identity,
����x� , i�y��

��x��=0; the brackets here denote a scalar prod-
uct of two vectors.

The matrix elements of the reciprocal density matrices,
��x ,x� , t� and �̃�x ,x� , t�, in the respective eigenbases �cf. Eq.
�13��,

�����t� = 	���,��t���
, �̃����t� = 	�̃��, �̃�t��̃�
 , �B6�

obey the symmetry relation,

�̃��� = 
��� − ����
� . �B7�

In particular, the relation between the population numbers,

f�=��� and f̃�= �̃��, reads

f̃� = 1 − f�. �B8�

The Andreev charge current and spin polarization are identi-
cal in both representations,

IA =
e

	
�
s=�

��Es�1 − 2fs� =
e

	
�
s=�

��Ẽs�1 − 2 f̃ s� ,

SA =
1

2
�1 − f+ − f−� = −

1

2
�1 − f̃+ − f̃−� . �B9�
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