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RASMUS REMPLING
Department of Civil and Environmental Engineering
Division of Structural Engineering
Concrete Structures
CHALMERS UNIVERSITY OF TECHNOLOGY

Abstract

The infrastructure of today depends heavily on concrete structures. Most of these struc-
tures are subjected to repeated loads, known as fatigue or cyclic loads: the loads weaken
the structure. As this phenomenon is of high cost to society, a deeper understanding of
the deterioration process of cyclic loading would be beneficial. The aim of this thesis is
to add to the knowledge of the deterioration phenomenon and to develop models that can
describe the response of concrete subjected to cyclic loading.

In analyses of structures of today, finite element modelling is gaining ground and is being
used more frequently in research and structural design. The investigations here use only
the finite element method.

Many structures incorporate details that are subjected to complicated loading, which re-
sults in complex crack patterns. A suitable tool for describing these crack patterns is
anisotropic damage material models. However, anisotropic models are difficult to imple-
ment and are often computationally inefficient. One of the investigations in this thesis
aims to find out what makes the anisotropic formulation suitable for complex crack pat-
terns. This is done by implementing a model which can control the amount of coupling
between volumetric- and deviatoric strains. It was found that this coupling is essential
for describing complex crack patterns.

To deepen the understanding of concrete subjected to cyclic loading, the phenomenon
was investigated on the meso-scale level. An interface model was developed and applied
to a three phase representation of concrete that incorporates: aggregates, cement paste,
and interfacial zones around the aggregate. The model in itself does not yield cyclic
behaviour, i.e. no hysteresis loops were generated at the constitutive level. Instead, the
cyclic response was generated by the meso-structure. It was found that the interfacial
transition zones are crucial in amount and strength.

Concrete subjected to cyclic loading was also investigated on the macro-level, with the
ambition to describe the response of concrete structures subjected to cyclic loading. Two
investigations were made: one aims to describe cyclic response in tension and the other
aims to cover tension and the transition to reasonable high states of compression. The
investigations are based on the theory of plasticity and damage mechanics, which are
combined in both a serial and a parallel fashion. In the serial configuration the nominal
stress is computed by adding the damage to the effective stress; for the parallel config-
uration, the damage stress and the effective stress are evaluated separately for the same
strain and then added to yield the nominal stress. Furthermore, both models use two
yield surfaces to describe the hysteresis loops. The result of the analyses show an overall
agreement with experimental observations.

Key words: concrete, plasticity, damage, cyclic loading, energy dissipation
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Sammanfattning

V̊ar infrastruktur är idag i viss mån beroende av betongkonstruktioner varav många
utsätts för upprepade laster. Upprepad last med miljontals repetitioner är mer känt
som utmattningslast, dvs att konstruktionen utmattas av den återkommande lasten. Om
repetitionerna däremot är f̊a till antalet benämns upprepad last ofta som cyklisk last.
Utmattning av konstruktioner är en kännbar ekonomisk kostnad för samhället, en kostnad
som skulle kunna begränsas av en djupare först̊aelse. Målet med denna avhandling är att
bidra till kunskapsuppbyggnad om utmattning av betongkonstruktioner och att utveckla
modeller som kan beskriva betongens cykliska respons.

Betongkonstruktioner inneh̊aller ofta detaljer som utsätts för komplexa belastningsmönster.
S̊adana fall kan ge komplicerade sprickmönster. Tidigare har det visat sig att man till-
fredsställande kan beskriva komplicerade sprickmönster med anisotropa skademodeller.
Dessvärre är anisotropa skademodeller ofta sv̊ara att implementera samtidigt som de
behöver stor datorkapacitet. I denna avhandling görs ett försök att identifiera vad som gör
den anisotropa formuleringen gynnsam för komplicerade sprickmönster. För den studien
utvecklades en konstitutiv modell där det är möjligt att kontrollera graden av koppling
mellan volumetriska och deviatoriska töjningar. Resultatet p̊avisar att den identifierade
kopplingen är avgörande för att kunna beskriva komplicerade sprickmönster.

För att fördjupa först̊aelsen för betong som utsätts för cyklisk belastning gjordes en studie
p̊a mesoskala. P̊a mesoskala definieras betong som ett material i tre faser: ballast, cement-
pasta, samt svaghetszoner som skiljer ballast fr̊an pasta. Den cykliska responsen är inte
beskriven p̊a konstitutiv niv̊a. Istället ges den cykliska responsen av materialstrukturen.
Resultaten p̊avisar att de svaga zonerna mellan ballast och cementpasta är avgörande för
att beskriva cyklisk belastning.

Mesoskala innebär ofta ett större krav p̊a datorkapacitet och är s̊aledes inte lämpligt
för studier av större konstruktioner. För studier av större konstruktioner är i dagsläget
makroskala ett bättre alternativ. P̊a makroskala definieras betong som ett homogent
material. Inledningsvis studeras cyklisk belastning i drag som därefter expanderas till
att ocks̊a omfatta tryck och lastväxling. B̊ada studierna baseras p̊a skademekanik och
plasticitet som kombineras dels i serie men ocks̊a parallellt. Resultatet p̊avisar god
överensstämmelse med experimentella observationer.

Nyckelord: betong, plasticitet, skada, cyklisk belastning, energidissipation
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1 Introduction

1.1 Problem description

A realistic description of concrete subjected to cyclic loading becomes increasingly im-
portant as detailed analyses are more frequently used for design and evaluation. Detailed
analyses of concrete structures subjected to cyclic loading are more and more made by
the finite element method. Thus, the method adopted for this study is solely the finite
element method, which involves material models that describe the material behaviour.
For cyclic loading these material models need to include several characteristics: hysteresis
loops, stiffness degradation, softening and high and low-cycle fatigue. Consequently, the
development of such a material model is a complex process and a deep understanding of
the phenomenon is important. Hence, to help the understanding it is natural to focus on
the essence of concrete subjected to cyclic loading, by investigating the phenomenon on
different levels of observation.

1.2 Aim

The main objective of this thesis is to deepen the understanding of the mechanisms and
the causes of concrete fatigue. For that purpose models were developed in meso and
macro-scale which, inserted in a finite element framework, make it possible to realistically
simulate and predict the load-carrying capacity and the structural behaviour of concrete
structures subjected not only to monotonic loads, but especially to cyclic ones. Cyclic
loads are, in other words, repeated loads that cyclically load, unload, and reload a struc-
ture. At a material point a loading cycle can be completed in tension, compression or as
a stress reversal: cycles from tension to compression and back or vice versa. The results
and methods will be of use in both existing and new structures, and to professionals such
as researchers and practising engineers.

1.3 Limitations

This study concerns the behaviour of the phenomenon known as cyclic loading of con-
crete. It is limited to the modelling of the response of concrete subjected to monotonic
and cyclic loading of a few cycles, whereas high cycle fatigue is not included. The study
is limited to relatively low compressive stresses and low confined stress states. No ex-
perimental investigations were made, though several experimental results were used for
calibrating and verifying numerical models. Experimental results also served as input for
understanding the phenomenon. Small deformations are assumed in all modelling.

CHALMERS, Civil and Environmental Engineering, Ny serie 2927 1



1.4 Scientific approach

The levels modelled in this thesis are meso and macro-scale. On meso-scale level, concrete
was described as a heterogeneous material consisting of three phases: aggregates, cement
paste and interfacial zones that bound the aggregates; on macro-scale level concrete was
described as a homogeneous material. Moreover, with some exceptions the input pa-
rameters used in the analysis are engineering ones which can be evaluated by standard
testing of materials, e.g. compressive tests. The macro-models can therefore be used for
structural analysis and design.

1.5 Original features

Anisotropic damage mechanics has proven to be better at describing complex crack pat-
terns than other types of theories; however, it is not yet known why. In this work it is
shown that the coupling between volumetric strains and deviatoric strains is important
for describing complex crack patterns on macro-scale.

In subjecting concrete to cyclic loading, the origin of the hysteresis loops seen in the
response has been debated. To pursue this question and to contribute to the debate, an
investigation on meso-scale was made. The method used was a numerical model, for a
lattice approach to concrete subjected to cyclic loading, developed for this purpose. To
the author’s knowledge this is pioneering work, as cyclic loading has not, to this extent,
been studied on the meso-level before. The model is configured so that the amount
of elastic and inelastic strain can be varied. This makes it possible to investigate the
differing parameters involved in concrete subjected to cyclic loading. The parameter that
was identified as important for describing the response is the interfacial strength between
aggregates and cement paste.

On macro-scale a model based on the bounding surface concept was developed. The model
can take into account the dissipation of energy due to hysteresis loops and then adjust the
response accordingly. Previous research on this by (Gylltoft, 1983) has been questioned
by (Hordijk, 1991). To further deepen and support this hypothesis on energy dissipation,
a material-model configuration not used before was developed and implemented. The con-
figuration is based on the standard theories: damage mechanics and plasticity. However,
the innovation is a parallel configuration with a material parameter which determines the
influence of each part on the nominal response.

2 CHALMERS, Civil and Environmental Engineering, Ny serie 2927



1.6 Outline

The thesis consists of six appended papers and an introductory part. The intention of the
introductory part is to give a more comprehensive background to the appended papers.

In Chapter 2 the main characteristics of concrete subjected to cyclic load are treated. The
question: “How does hardened concrete behave under tension, compression and fluctuat-
ing load?” is discussed. The basic theories used for the models introduced in Chapter
4 are given in Chapter 3. Furthermore, in Chapter 4 a short review of other “earlier”
macro-scale constitutive models is given. Finally, in Chapter 5 the main conclusions are
given together with suggestions for future research.

CHALMERS, Civil and Environmental Engineering, Ny serie 2927 3
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2 Characteristics of concrete cyclic response

Although, investigations of non-reinforced concrete subjected to cyclic loading in compres-
sion are widely represented in the literature, (Tepfers, 1978; Holmen, 1979; Gylltoft, 1983;
Gopalaratnam and Shah, 1985; Mier, 1986; Reinhardt et al., 1986; CEB, 1988; Thun,
2006; Gustafsson, 1985, among others), non-reinforced concrete subjected to cyclic load-
ing in tension is not so widely reported (Tepfers, 1978; Gylltoft, 1983; Reinhardt, 1984;
Gopalaratnam and Shah, 1985; Reinhardt et al., 1986; Hordijk, 1991, among others). As
regards concrete subjected to a fluctuating load, the reported knowledge is very scarce.
The first report about concrete subjected to a fluctuating load dates back to the 1920s,
with (Clemmer, 1922) followed by (Crepps, 1923). Thirty years later (Murdock and Kesler,
1958) and (Murdock, 1965) presented a modified Goodman-diagram for concrete sub-
jected to a fluctuating load. More recent reports found were (Tepfers, 1978; Gylltoft,
1983; Reinhardt, 1984; Reinhardt et al., 1986).

The rupture of a monotonically loaded concrete bar in tension, as shown in Figure 1,
is a continuous increase of deformation that localises at the weakest section of the bar.
At peak load the ultimate tensile strength of the bar is reached. In a load controlled
experiment, the localisation is fast and the rupture is sudden. However, experiments
with specific boundary conditions reveal a softening behaviour after peak-load, which is
characteristic for concrete. The softening response is defined as a reduction in stress as
deformation increases. The part that exhibits a softening behaviour is concentrated to
the region with localised deformation, while sections outside the localisation zone behave
differently. Outside the localisation zone, the material unloads elastically or with a small
inelastic deformation, depending on the distance from the part that softens. Due to stress
consistency, the stress in the softening part and the outside sections should be equal. The
measured stress-deformation response results in a curve that represents the stress state
for a given deformation of the material, when subjected to a monotonic load in tension.
The curve is called the envelope; the stress-deformation state of the material cannot be
outside the curve.

A

Cohesive zone

Envelope curveA

B

B

Æ
F F F
Figure 1: Response of a monotonic loaded concrete bar. A: localised zone; B: non-localised
zone.
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For cyclic loading the stress states do not follow the envelope curve of the monotonic
response because of the repeated unloading and reloading; nevertheless, the envelope
still bounds the admissible stress state. Low cycle fatigue is defined for concrete in the
softening region, while high cycle fatigue dominates the non-elastic region before peak-
load.

The response of high cycle fatigue in tension can only be initiated at the short interval of
non-linear response before the peak-load, see Figure 2. Thus, high cycle fatigue is mainly
dealt with in compression, for which the inelastic region before peak-load is essentially
larger than for tension. The response of high cycle fatigue in tension, as well as in compres-
sion, exhibits plastic deformation which causes hysteresis loops with consistent dissipation
of energy and stiffness degradation during the cycles. With an increased number of cycles
the total deformation increases until the envelope curve is reached, (Hordijk, 1991). For
tension this response is rather theoretical, as the non-linear region before peak-load is
small. (Reinhardt, 1984) made tests on high cycle fatigue in tension, but was unable
to find the non-linear region before peak-load, which should give irreversible deforma-
tion. Reinhardt chose the upper stress level initially at 85% of the tensile strength, which
resulted in 457 cycles without reaching fracture. The stress level was then raised, but
unfortunately the new stress level led directly to failure. Nevertheless, the phenomenon
is still accepted by (Reinhardt, 1984) and his followers. To explain this phenomenon of

Hysterisis loop
Dissipated energy�

Æ
�

Æ
Figure 2: Illustration of the response due to high cycle fatigue.

increasing irreversible deformation, the stress distribution in front of a crack (Figure 3)
can be interpreted before and after a loading cycle, assuming, at an applied load F , that
only the crack-tip is softening, while the rest of the cross-section is still elastic. Before
the loading cycle is initiated, the applied load F gives a stress distribution with a certain
extension of the softening zone. However, when unloading the deformation, the material
cannot unload the deformation totally because of the softened zone at the crack tip; still,
the elastic deformations unload. The part of the softened material which has deformed
beyond yielding must be compressed to follow the unloading deformation; this results
in a self-equilibrating residual stress distribution when the external stresses are released.
Consequently, the material is affected by unloading the deformation, and it is concluded
that the parts of the material that are already affected by damage cannot resist the same
stress when reloading the deformation. Therefore, the stress distribution is shifted into
the material and, furthermore, the crack is extended; see (Reinhardt, 1984).
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Cohesive zone
Crack

Compression

Loading

Unloading

Loading

Tension

fu

σ
σ(N)

σ(N + 1)

Figure 3: Illustration of the stress distribution at crack tip due to N cycles.

From investigations of the response of low cycle fatigue, such as (Gylltoft, 1983) and
(Gopalaratnam and Shah, 1985), it has been found that a load cycle in the softening
region causes energy to dissipate, so that the envelope of monotonic loading is not reached
at reloading (Figure 4). The energy dissipates due to damage caused by the alternating
plastic deformations, an idea initially introduced by (Gylltoft, 1983). This means that
the energy dissipated by a load cycle is in fact dissipation of fracture energy. In addition,
it has been shown that the stiffness decreases with every load cycle, (Reinhardt, 1984).
Furthermore, the reloading stiffness in a load cycle seems to be smaller than the unloading
stiffness of the same load cycle.

Dissipated energy
Hysterisis loop
�

Æ
Figure 4: Illustration of the response due to low cycle fatigue.

CHALMERS, Civil and Environmental Engineering, Ny serie 2927 7



The first hypothesis about the response of concrete subjected to cyclic loading from com-
pression to tension, (Clemmer, 1922) and (Crepps, 1923), claimed that the fatigue strength
is governed by the load which is the highest in comparison with the corresponding ultimate
strength. In other words, if the stress in tension is almost the ultimate tensile stress, while
the stress in compression is only a small portion of the ultimate compression strength,
then the stress in tension governs the fatigue life of the detail, while the stress in com-
pression is considered as zero. (Tepfers, 1978) put this hypothesis to the test and showed
that the tendency to fatigue failure increases if the lower stress in a direct tension test is
decreased to a relatively low state of uni-axial compression. This clearly contradicted the
first hypothesis. (Reinhardt, 1984) contributed to the findings of Tepfers by concluding
that the size of the hysteresis loops increases with increasing compression stress.

The response that concrete exhibits when subjected to a fluctuating load is clearly the
same for compression and tension, if one disregards the intermediate region, where the
active zone translates from one extreme to another. In the intermediate region the re-
sponse of a part of the softened material enters a state of compression at a level of total
deformation which depends on the amount of developed plastic deformation. More plastic
deformation in tension results in a higher total deformation, at which the material-point
changes state from tension to compression. During unloading the plastic deformation
decreases continuously, although with a very low stiffness. In the state of compres-
sion the stiffness increases more and more until the original stiffness is almost reached,
(Reinhardt et al., 1986).
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3 Theoretical framework

3.1 Thermodynamical admissibility

All constitutive formulation needs to be thermodynamically admissible, which means that
the energy dissipated from the model must be positive or the model generates energy. The
state potential is often based on strain formulation and can be stated on a general form
as

ρψψ(ε, x) = 0 (1)

where ρψ is the material density, ψ(ε, x) is the state potential, ε is the strain and x is
any state variable.

Normally, in constitutive modelling of brittle materials such as concrete, the thermal
aspects are ignored. Thermodynamical admissibility can be shown by the Clausius-Duhem
inequality. The dissipation rate of energy is often based on a strain formulation and is
generally stated as

Ḋ = σ : ε̇ − ρψψ̇ ≥ 0 (2)

where σ : ε̇ is the external work due to the nominal stress σ, ρψ is the material density,
and ψ̇ is the derivative of the state potential with respect to time.

If it is assumed that the state potential is linearised around the current value of every
state variable, the derivative of the state potential can be written as

ψ̇ =
∂ψ

∂ε
ε̇ +

i
∑

i=1

∂ψ

∂xi
ẋi. (3)

3.2 The theory of plasticity

A brief description of the theory of plasticity is given in this section. The theory of
plasticity is a formalisation of experimental observations on a deformable body, which
aims to set up a relationship between effective stress σ̄ and strain ε that can represent
the observed plastic deformations.

Plasticity models based on flow theory always consist of:

• a yield surface,

• a flow rule, and

• a hardening law,

which, together with the consistency condition, completely control the constitutive be-
haviour of the material. The consistency condition controls the loading and unloading
and is defined by three equations:

f ≤ 0 λ̇ ≥ 0 λ̇f = 0. (4)
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The yield surface f is defined by a set of stress states that satisfy the condition f(σ̄) = 0,
for which plastic flow is present; this means that stress states of f(σ̄) < 0 are elastic
stress states and f(σ̄) = 0 are plastic stress states.

The flow rule defines the plastic part of the strain (direction and quantity) when the yield
surface is reached; plastic strain is utilised for describing the observed plastic deformation.
The plastic strain direction is often defined by an associated flow rule ∂f

∂σ̄ , which results in
a flow direction normal to the yield surface. For some applications it is more convenient
to choose a non-associated flow rule ∂g

∂σ̄ . Then the direction is determined by what is
known as a plastic potential function, g(σ̄). An associated flow rule is normally stated in
general form as

ε̇p = λ̇
∂f

∂σ̄
; (5)

while a non-associated flow rule is defined as

ε̇p = λ̇
∂g

∂σ̄
, (6)

where λ̇ is the rate of the plastic multiplier.

The main types of hardening are isotropic and kinematic. For isotropic hardening the yield
surface expands uniformly, while kinematic hardening results in a rigid body movement in
stress-space without volumetric change. Hardening can often be represented by a single
parameter, especially for isotropic hardening.

3.3 Damage mechanics

Damage mechanics treats fracture of concrete mainly in tension, with the fundamental
assumption that the localised damage in the material can be represented by damage
variables. The simplest representation is by a scalar ω, which is attractive due to its
simplicity and because it is easy to implement. A simple isotropic damage model is
described by the basic equations:

σ = (1 − ω)De : ε (7)

ω = gD(κ) (8)

fD ≤ 0 κ̇ ≥ 0 κ̇fD = 0 (9)

where σ is the nominal stress tensor, ω is the damage parameter, κ is an internal softening
variable that drives the damage, and fD is the damage loading function.

The damage loading function describes the stress state when the micro-cracks are joining
to a macro-crack; this corresponds to the state at peak-load on the envelope curve and is
therefore closely related to physical properties. When the damage function is violated, κ
increases and damage evolves.
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Isotopic damage models are a simple way to describe a general multi-axial stress state.
The stiffness degradation is assumed to be isotropic and dependent on a single scalar
parameter ω. The damaged stiffness tensor (secant stiffness matrix) then becomes

Ds = (1 − ω)De. (10)

To trigger the damage evolution, a loading function is introduced. The loading function
is normally dependent on a history variable, κ, which is a physical representation of the
maximum strain the material has experienced. As κ is a scalar measure, the multi-axial
strain tensor, ε, must be represented by a scalar measure of the strain level: normally,
the equivalent strain, ε̃, is convenient as scalar measure. The loading function could then
be described according to

fD(ε, κ) = ε̃(ε) − κ. (11)

A standard type of definition of the equivalent strain is

ε̃ =
√

ε : ε. (12)

The evolution of damage, equation 8 is dependent on the applied strain and is represented
by a function gD which affects the softening branch of the stress-strain curve.

Instead of having the evolution of damage as a function of the current strain, it can
be more convenient to use the history variable, gD(κ). Then, it is possible to express
the loading and unloading conditions in the Kuhn-Tucker form according to equation 9.
Relating the first condition to the loading function (Equation 11) the meaning of the
Kuhn-Tucker statement can be transcribed as κ ≥ ε̃. The second condition is that κ
cannot be reduced and the third is that κ only can increase if fD = 0.

Though isotropic damage models are often used to represent the failure of concrete, there
are some typical known deficiencies.

• (Jirasek and Grassl, 2008) found, in their study of different kinds of damage models,
that an isotropic damage model is strongly sensitive to the mesh orientation; it is
therefore not suitable by itself for describing concrete failure in tension.

• Experimental observations of concrete in compression and shear show a volumetric
expansion in post-peak response that is not captured. The lacking volumetric ex-
pansion results from a constant ratio between strain components in a proportional
loading path in the stress space.

• For large deformation, the modelled material loses its stiffness in all directions.

• No irreversible strains are generated. Unloading takes place towards the origin.
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Anisotropic damage models take into account the anisotropic state from which concrete
suffers when loaded in one direction: the direction that suffers from greater stretching
usually exhibits a larger degradation of stiffness. Generally, this is taken into account
by a tensorial representation of damage, and the new anisotropic state is accounted for
by changing the initial elastic stiffness to the damaged secant stiffness by an eight-order
tensor. The formulation of a damage-evolution law which takes this into account becomes
extremely difficult. Due to this increase in complexity, isotropic damage is used in the
present study.

To describe the localisation of deformation, the crack band approach of (Bažant and Oh,
1983) is used for all analyses in this thesis. For the crack band approach, a crack band is
introduced, which represents the width, Ls, of the actual fracture zone.

3.4 Coupling of plasticity and damage

The idea of coupling plasticity theory with damage mechanics seems promising at the
outset. The volumetric expansion and the irreversible deformation seen in experiments
are provided by the theory of plasticity, while the stiffness degradation is described by
damage mechanics. This is investigated in Paper I which shows that a model based
on plasticity in combination with damage is capable of describing curved crack patterns,
previously described only by anisotropic models and plasticity models, due to the coupling
between volumetric strains and deviatoric strains. Isotropic damage combined with ideal
plasticity is defined as

σ = (1 − ω)De : (ε − εp). (13)

This configuration, which is used for the constitutive relations developed in Papers I,
II and III, can be pictured as a serial combination of damage mechanics and plasticity,
Figure 5.

ε
σσ De εp

1 − ω

Figure 5: The serial configuration of damage and plasticity in combination.
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In contrast, in Paper V the combination of plasticity and damage mechanics is parallel,
Figure 6. The contribution of each part is controlled by a material parameter, αe, The
stress – strain relationship adopted in Paper V is

σ = (1 − αe)(1 − ω)De : ε + αeDe : (ε − εp). (14)

(1 − αe)De

ε
σD σD

σP σP

αeDe εp

1 − ω

Figure 6: The parallel configuration of damage and plasticity in combination.

3.5 The concept of a bounding surface

Plasticity models constructed with two yield surfaces were introduced to describe the non-
linear hardening behaviour for ductile solids with continuum models (Dafalias and Popov,
1975). Two-surface models were later renamed bounding surface models due to the en-
closing nature of the bounding surface in regard to the yield surface; see Figure 7a. The
purpose of bounding surface models is to describe the non-linear hardening and soften-
ing behaviour by prescribing the variation of the plastic modulus κp, i.e. as a way of
describing strain hardening. The plastic modulus is determined by the relation, between
the position of the actual plastic loading point and the bounding surface, as the distance
δ. A general definition of δ is

δ = 2

√

(σ̂ − σ̄)2 (15)

where σ̂ is the coordinates of the mirror point, point b or c in Figure 7, on the bounding
surface, and σ̄ is the actual stress point. In Paper II, σ̂ is determined by the intersection
of the normal to the yield surface and the bounding surface, (point b in Figure 7a). The
computation of σ̂ is done by a function M called the mapping rule:

σ̂ = M (σ̄, qn) (16)

where qn is an internal variable.
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The bounding surface is constructed in the same way as a yielding surface; the bounding
surface and the flow rule are generally described as

F = 0,
˙̂
L =

˙̂
λ
∂F

∂σ̄
, (17)

respectively, where
˙̂
λ is the rate of the plastic multiplier. The identity condition, σ̄ on

F = 0 so that σ̄ = σ̂ and ∂f

∂σ̄ = ∂F

∂σ̂ , introduces restrictions on the relative evolution of
the surfaces due to the fact that they can never intersect with each other.

In Figure 7 the enclosing concept of the bounding surface is shown:

• k and r are the centre points of the yield surface and the bounding surface, respec-
tively; and

• c is the point where the normal to the bounding surface, n, has the same direction
as the normal to the yield surface, w, for the actual plastic stress point, a.

r k ba
 wn
Yield surfa
e

Bounding surfa
e n w
 bakr
a b

Figure 7: Bounding surface relation to the yield surface, (Suresh, 1998). There exist two
ways to determine δ: as the distance from point a to c, or as the distance from a to b.

Bounding surface models make it possible for the plastic response to evolve according to
the distance from the actual effective stress state, σ̄, to the bounding surface itself.

14 CHALMERS, Civil and Environmental Engineering, Ny serie 2927



4 Modelling of concrete cyclic response

4.1 Meso-scale

4.1.1 Proposed meso-scale model

In the meso-scale study, Paper III, concrete is characterised by aggregates, mortar paste
and interfacial zones that surround the aggregates. The aggregates are interpreted as
stiff inclusions and are modelled as a linear elastic material, while the mortar and the
interfacial zones are modelled by an interfacial model. The interfacial model is based on
a combination of damage mechanics and the theory of plasticity.

The system of coordinates for the interface used in this study is defined by one normal and
two tangential directions, i.e. the strain is defined as ε = (εn, εs, εt). The stress–strain
relationship for this combination was defined above as

σ = (1 − ω)De(ε − εp), (18)

but the elastic stiffness was defined to fit the system of coordinates:

De =





E 0 0
0 γE 0
0 0 γE



 . (19)

The interfacial model is characterised by a parameter, µ, which determines the ratio
of plastic strain and total inelastic strain for tension, as well as compression; µ = 0
corresponds to a pure damage mechanics response, while on the other hand, µ = 1
corresponds to a pure plastic one. The responses for these two cases are shown in Figure 8.
The points of unloading for tension and compression are marked by (A,A’) and (B,B’),
respectively. Note the linear unloading response.

4.1.2 Applications

In Paper III the interface model was applied to a plane stress analysis ε = (εn, εs, 0),
see Figure 9, to investigate the effect of plastic deformations of the hysteresis loops. It
is shown in the paper that more aggregates and a higher ratio of plastic strains yield a
response with hysteresis loops such as those shown in Figure 10. As the interface model
itself does not describe hysteresis loops, the hypothesis is stated that the cyclic response
is due to a structural effect.

Paper IV continues this investigation with a parametric study of the mechanisms involved.
The study deals with their effect on the hysteresis loops of aggregate density and size,
the amount of irreversible displacements in the interfacial zones and the mortar, and the
interfacial zones. To investigate these parameters, the same model was used as for the
previous meso-scale study. The response and experimental observations are compared
in Figure 11. It can be concluded from this study that the amount and strength of the
interfacial zones contribute to the formation of hysteresis loops.
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Figure 8: Stress–strain response for normal strain: µ = 1 (solid line) and µ = 0 (dashed
line).
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Figure 9: Plane stress application, Paper III. (a) Geometrical setup; (b) Mesh; and (c)
Typical deformation pattern.
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Figure 10: Response of plane stress problem, Paper III.
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Figure 11: Stress–strain response obtained from the analysis compared with experimental
results (dotted line).
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4.2 Former macro-scale models

Four material models are presented in this chapter, selected from (Kessler-Kramer, 2002)
according to how much they increase the accuracy of describing the response of concrete
subjected to cyclic loading. A deeper analysis of these macro-models can be found in
(Kessler-Kramer, 2002).

4.2.1 The Rots model

Rots developed and used a traditional damage model for post-peak cyclic loading of
concrete in (Rots et al., 1985), see Figure 12. This model, in the sense of modelling of
cyclic response, does not aim at describing the hysteresis loops. Nevertheless, the model
responds to the closing and reopening of crack bands. Due to its simplicity, the response
to cyclic loading is linear, and it does not account for the reduction of the unloading
stiffness, nor for the development of plastic deformation. At the reopening of a crack the
model returns to the monotonic envelope. Thus, no energy is released by cyclic loops,
which is a consequence of the linear unloading-reloading response.

ε

σ

εf

ft

Figure 12: Illustration of the model by (Rots et al., 1985). εf is the final strain at which
no stress can be transferred

4.2.2 The Gylltoft model

Before the Rots publication, (Gylltoft, 1983) developed a model which introduced the
characteristics lacking in the Rots model. Gylltoft introduced an energy concept which
was adopted in Paper II: hysteresis loops dissipate energy from the fracture energy. How-
ever, the model is limited to post-peak cyclic loading in tension and does not account
for stiffness reduction due to damage generated during unloading and reloading on the
constitutive level, see Figure 13. The modelling of the cyclic response is based on three
material parameters, g0, gc, and εf , which control the sliding of crack surfaces. This slid-
ing is, according to Gylltoft, different for unloading and reloading. Although the stiffness
is the same, this concept yields a hysteresis loop that dissipates energy from the softening
branch.
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Figure 13: Illustration of the model by (Gylltoft, 1983)

4.2.3 The Hordijk model

With an increasing level of complexity, the race for a realistic description of the cyclic re-
sponse in tension is made by (Reinhardt et al., 1986; Yankelevsky and Reinhardt, 1987b,a,
1989). This chain of development ends with the Continuous-Function-Model by (Hordijk,
1991). Hordijk strongly states (page 85) that the energy approach by Gylltoft is a mis-
understanding in the interpretation of experimental observation; this discussion has con-
tinued since then. The energy approach by Gylltoft, adopted in this thesis, is among
other characteristics of cyclic response, investigated in Papers III and IV. The results of
that work support the approach by Gylltoft. The Continuous-Function-Model consists of
a set of continuous functions that are based on characteristic points in the stress–strain
response. Apart from the softening expression, the Continuous-Function-Model also in-
cludes expressions for: I, the unloading curve; II, the gap in the envelope curve; and III,
the reloading curve. The response is shown in Figure 14.

wc

σ

ft

II

III

I

Figure 14: Illustration of the model by (Hordijk, 1991)

CHALMERS, Civil and Environmental Engineering, Ny serie 2927 19



4.2.4 The Ožbolt and Bažant model

(Ožbolt and Bažant, 1992) inserted rules in the microplane model by (Bažant and Prat,
1988) to model unloading, reloading and cyclic loading. Their results show a capacity
to describe the response of concrete subjected to cyclic loading in shear, compression
and tension. In addition, data is presented for a fluctuating load. However, the plastic
deformation at unloading is not accounted for correctly, which makes the model unsuitable
for this kind of loading.

4.3 Macro-scale

4.3.1 Proposed macro-scale models

Three macro models were formulated and implemented in this thesis. The macro model of
Paper I, rather than aiming to describe cyclic loading, was used to investigate the effect
of coupling between deviatoric plastic strain and volumetric plastic strain. The model
was formulated as a serial combination of damage mechanics and the theory of plasticity,
which yields the possibility to control this coupling.

The first approach to a macro model of concrete subjected to cyclic loading in this thesis,
Paper II, uses the model of Paper I as a basis (Figure 5, page 12). Paper II aims to
describe cyclic loading of concrete in tension by means of the bounding surface concept.
To introduce the concept of a bounding surface is, in fact, to define a hardening law
based on surfaces that bound different states of stress. The plastic part of the model is
described by two such surfaces: one elastic bounding surface that limits the elastic domain
(i.e. inside this domain the response is linear elastic). On the edge of the elastic domain,
the material starts to yield. Thus, the elastic bounding surface is the same as a yield
surface. As soon as yielding starts, the stress point is repelled by the second bounding
surface which bounds all admissible states of stress. The repelled stress state finds a new
position of the elastic domain, and plastic strain develops. This continues until the outer
bounding surface is reached; thus, the actual stress point is positioned on both surfaces.
From this position, all strains that develop are plastic ones. At this point damage is
initiated.

The damage is determined by an isotropic damage variable which is driven by the devel-
oped plastic strain when the two bounding surfaces are in contact. The damage variable
decreases the outer bounding surface such that the admissible stress domain is reduced
with increased damage. If the deformation is reversed at this stage, the state of stress
leaves the surfaces; the response consequently becomes elastic until the border of the
elastic domain is reached at a different position. Again, when the state of stress is at the
elastic bounding surface, yielding is initiated and the stress point is repelled by the outer
bounding surface.

As an illustration, the process described above can be pictured as a point of stress inside
two rings that define the bounding surfaces. The inner ring can move inside the outer
ring in the direction of the movement. The outer ring repels the movement of the inner
ring which yields plastic strains.
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The second approach to a macro-model was, instead of a serial combination of damage
mechanics and the theory of plasticity, a parallel combination (Figure 6, page 13). The
theory of this model is given in Paper V. The fundamental part of the formulation of the
parallel combination is the variable, αe, which controls the contribution of each part to
the stiffness according to

σ = (1 − αe)(1 − ω)Deε + αeDe(ε − εp). (20)

The total nominal stress is thus achieved by adding the nominal stress of the sub-parts
which are evaluated separately. The basic idea was that the damage part should give the
overall response, while the plastic part gives the cyclic response. The formulation reveals
a need for a softening of both parts, as no damage is added to the plastic part.

The plastic part of the formulation is based on two yield surfaces defined by stress in-
variants: one outer and one inner yield surface. The outer one is based on the Ottosen
yield surface; the inner one is of the von Mises type. In the hydrostatic stress space, this
results in a curved outer yield surface while the inner yield surface is a line parallel to the
hydrostatic axis. However, in the deviatoric stress space, both yield surfaces are circular
(Figure 15). The fact that the inner yield surface is circular in the deviatoric section
causes a numerical problem, as the surface must be concave to yield a solution. To solve
this, the inner yield surface is not active until the stress state is inside the space enclosed
by the inner yield surface. This is achieved by computing the value of the distortional
energy. When the distortional energy is negative, the inner yield surface can be activated
and remains so as long as the distortional energy is negative. In Paper V, this is revealed
to correspond to the part of the unloading with low stress and stiffness.

Outer-yield surface Inner-yield surface

ρ

ξ

ρ

ξ

σ1

σ2σ3

σ1

σ2σ3

Figure 15: Illustration of the outer and inner-yield surfaces. Above, the volumetric stress
space (Haigh-Westergaard coordinates) is given and below the deviatoric stress space.
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4.3.2 Applications

The macro model for mainly monotonic loading in Paper I is applied in an analysis of two
well known experiments: the four-point shear test made by (Arrea and Ingraffea, 1982)
and a double-edge notched test made by (Nooru-Mohamed, 1992). These two tests assess
the capability of the material model to describe the response of a curved crack pattern.
In Figure 16 the responses of the analyses are shown for the tests with the crack pattern
observed during the experiment and for two examples of coupling between volumetric
and deviatoric inelastic strains. It is shown in Paper I that this coupling is essential for
describing a complex crack pattern. Paper I discusses this coupling which is provided

(a) (b) (c)

(d) (e) (f)

Figure 16: Results from analysis of a four-point shear test and a double-edged notched
test in Paper I. (a) Crack pattern of four point shear test; (b) Hp = 0; (c) Hp = 100E;
(d) Crack pattern of double-edged notched test; (e) Hp = 0; (f) Hp = 100E.

through the hardening modulus in the tangent stiffness matrix: the shear components
of the plastic part of the tangent stiffness matrix are non-zero for finite values of Hp.
Thereby, a shear strain results not only in shear stresses but also in normal stresses.
Since the total strain in the analyses is constrained, plastic strains arise which generate
compressive stresses. The compressive stresses generated increase the maximum shear
stress and the volume fracture energy. Thus, as the strain localises in zones close to the
state of uni-axial tension, rather than in the confined zones that are subjected to shear,
the crack paths become curved.

The macro models based on the bounding surface concept (Paper II) and the dual-model
(Paper V) were validated with a test, from (Gopalaratnam and Shah, 1985), which is a
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direct tension test of concrete subjected to cyclic loading. The specimen of the direct
tension test is rectangular (305 x 76 mm) with a thickness of 19 mm and notched at the
sides. The notches are 3 mm wide and 13 mm deep. To control the loading process clip
gauges are placed at the notches, together with extensiometers by a length of 83 mm
placed over the notched section which are used for reporting the result. The deformation
is applied at the edges by friction hooks. These hooks can rotate in the plane of the
specimen, as well as out of the plane. The experimental setup is presented in Figure 17.

F 76
F

305
[mm]

13

3

83

Figure 17: Experimental setup of the direct tension test. Thickness of specimen is 19 mm,
(Gopalaratnam and Shah, 1985).

The mesh and configuration of the analysis made by the bounding surface model is pre-
sented in Paper II. The result from that analysis is compared with the experimental
response in Figure 18. From the analysis, it is shown that the hysteresis loops are well
described, but it is also revealed that the stiffness reduction due to increase of damage is
not captured. This deficiency is a result of the localisation model chosen, which results in
mesh dependent unloading and reloading stiffness. To the author’s knowledge, this has
not been reported previously.
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Figure 18: Result from an analysis of concrete subjected to direct tension, Paper II.
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The dual-model is studied on the constitutive level in Paper V (Figure 6, page 13). The
parameters studied, which are important for the cyclic response, are αe and WD. The
influence of αe on the size of the hysteresis loops is shown. It is demonstrated that
when the influence of the plastic part is made greater, it generates larger hysteresis loops
(Figure 19d). The results also show the correspondence between a negative distortional
energy and the development of plastic deformation during unloading, Figure 19a-c. This
correspondence reveals the neatness of using the negative distortional energy to control
the state of plastic deformation at unloading.
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Figure 19: Analyses without lateral confinement for: αe = 0, αe = 0.3, αe = 0.5, αe = 0.7,
and αe = 1.0. (a) Stress-strain response; (b) evolution of the stress; (c) behaviour of
the distortional energy WD; and (d) response of an uniaxial deformation with αe = 0.7,
αe = 0.5 and αe = 0.3.

For the analyses of the direct tension test made by the dual-model the meshes consists
of tetrahedra four-node finite elements. As a direct tension test is complex, due to the
symmetry and instability of the experimental procedure (Figure 17), the analyses were
made from two different setups of mesh: one setup of a quarter of the bar and one of the
full bar. To reduce the symmetry problem the full bar was analysed with one notch only.
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(a)

(b)

Figure 20: (a) Mesh of the full bar analysis and (b) mesh of quarter of bar analysis.

The real response should be between these two approaches. The meshes of the direct
tension setups are shown in Figure 20 and the chosen material parameters for the model
are presented in Table 1. The fracture energy was adjusted in the analyses to account for
the different crack widths.

Table 1: Material parameters chosen for the analyses of the direct tension test by
(Gopalaratnam and Shah, 1985)

E ν ε0 εf H

30 MN/m2 0.18 9.5e−6 1.0e−3 0.1E

C1 αψ τ0 f ∅
y

0.50 0.01 5 MN/m2 1 kN/m2

The load of the direct tension test was applied by controlling the displacement at the
notch opening in both approaches. The load was applied at the end of the bar.

Boundary condition of the direct tension test of the full bar (Figure 21a).

• To avoid displacement in the direction of the thickness of the bar, one side of the
mesh was locked in the direction normal to the corresponding side.

• At one of the edges with friction hook, the bar was locked at its position in the
direction of the normal to the face. The faces at the edges were able to rotate so
that the edge sections remain plane.

• The bar was fixed for global rotation and kinematic movement.
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(a) (b)

Figure 21: (a) Boundary conditions of the full bar and (b) boundary conditions of the
quarter of a bar.

Boundary condition of the direct tension test of the quarter of a bar (Figure 21b).

• The specimen was locked at one side in the direction of its thickness.

• At the lines of symmetry of the full bar, the quarter was locked in the direction of
the normal to the face.

• The bar was fixed for global rotation and kinematic movement.

Next, the result of cyclic loading is given. As supposed, for the full bar and the quarter,
the pure damage analysis give an unloading towards origo. While, the pure plastic case
results in an unloading stiffness close to the initial elastic stiffness. The hysteresis loops
of both approaches are to some extent smaller than in the experiment.

Comparing the cyclic response (Figure 22c and d), the unloading stiffness is more correctly
described for the full bar. On the other hand, the size of the hysteresis loop is more correct
represented for the quarter of the bar.

An interesting discussion is how the plastic deformation would develop in the crack (micro-
crack) during a cycle. In Figures 23 and 24, for the analyses made by the dual-model, the
evolution of the volumetric and deviatoric parts of the plastic strain and the total strain
is given. For the outer-yield surface a non-associated flow rule was chosen; the chosen
configuration results in an evolution of volumetric and deviatoric plastic strains. Depend-
ing on the chosen plastic potential the relation between the volumetric and deviatoric
parts differ. The interesting part of the question is how these would develop at unloading,
i.e. crack closure. The plastic potential of the inner-yield surface was chosen so that no
volumetric plastic strain develops during unloading. This is given in Figures 23a and 24a;
at unloading, as the plastic volumetric strain remains constant, the elastic part of the
volumetric strain is negative. Hence, a state of compression is reached. On the contrary,
the deviatoric plastic strain develops alongside the total strain (Figures 23b and 24b).
The latter could be interpreted as sliding of irregular crack surfaces, while the first case
could be interpreted as volumetric closing of the crack. The development of the deviatoric
plastic strain (sliding of crack surfaces) seems to be a good interpretation of the reality.
However, the development of the volumetric plastic strain is not that easy to determine.
If the crack only opens and closes this may be a good approximation, but the development
would probably be different if the crack could not close due to irregularities at the crack
surfaces.
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Figure 22: Cyclic loaded analyses of direct tension test with different values of αe. (a)
αe = 0 (Quarter of a bar), (b) αe = 1 (Full sized bar), (c) αe = 0.3 (Quarter of a bar),
and (d) αe = 0.3 (Full sized bar).

The relative size of the evolution indicates, for the chosen configuration of the dual-model,
that the evolution of deviatoric plastic deformation is greater than the volumetric. In the
investigation at meso-scale (Paper III and IV), this is indicated as well. In conclusion, the
investigations indicate that the volumetric part of the plastic deformation at unloading
most likely influences the response.
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Figure 23: For the quarter of a bar analysis: (a) volumetric plastic strain – step, (b)
deviatoric plastic strain – step, (c) crack mouth opening displacement (CMOD) in the
direction of the load, and (d) load – deformation response (A is the location of the studied
element).
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Figure 24: For the full bar analysis: (a) volumetric plastic strain – step, (b) deviatoric
plastic strain – step, (c) crack mouth opening displacement (CMOD) in the direction of
the load, and (d) load – deformation response (A is the location of the studied element).
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5 Conclusions

5.1 General conclusions

The present work aims to describe and deepen understanding of the phenomenon of cyclic
loading of concrete. The main theories used for this are those of plasticity and damage
mechanics. These theories have proved to be useful for describing concrete subjected to
cyclic loading. However, some disadvantages were revealed. In the following these pros
and cons are stated.

The theory of plasticity is suitable for describing cyclic loading because the strain can be
divided into elastic and inelastic parts. This division makes it possible to describe the
increase of plastic deformation, at the localisation of deformation, as well as the observed
response of unloading which exhibits low stress and stiffness. The plastic strain is also
essential for describing the hysteresis loops of pre and post-peak cyclic loading in tension
and compression. However, the theory of plasticity fails to describe the stiffness reduction
caused by an increasing number of cycles and damage.

Fortunately, damage mechanics is suitable for describing the stiffness reduction with in-
creasing damage. As long as the damage is evaluated as isotropic, the procedure of
computing the damage is efficient. However, damage mechanics alone is not sufficient to
describe the response of concrete subjected to cyclic loading.

Hence, a combination of these theories is a tempting approach. In this thesis two com-
binations are introduced and applied to concrete structures subjected to cyclic loading.
The combinations are somewhat modified to fit the two scales of observation and aim of
study, but they are intended to preserve the advantages of their essence.

In the appended papers the following conclusions are drawn.

• Constitutive models with volumetric-deviatoric coupling provide higher shear resis-
tance in simple shear than models without coupling. The increase in shear stress is
caused by the activation of compressive stresses due to constrained strains.

• In the simulation of curved cracks, the paths of localised strain zones are strongly
influenced by the amount of volumetric-deviatoric coupling. Only with volumetric-
deviatoric coupling can the curved crack patterns be reproduced, as has not been
shown before.

• The bounding surface model describes the cyclic response well, except for the stiff-
ness reduction due to increased numbers of cycles and consequent damage. The
deficiency in describing the stiffness reduction was traced back to the chosen local-
isation model.

• The meso-scale approach with the new interface model results in realistic failure pat-
terns in the form of shear bands. The amount of localised permanent displacement
has a strong influence on the material response for repeated loading. With localised
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permanent displacement, the stress–strain curves are characterised by hysteresis
loops and damage evolves during repeated loading.

• At meso-scale, five parameters were investigated. Their influence on the cyclic
response is summarised here.

◦ A decrease in the volume fraction of aggregates increases the ultimate strength
of concrete, since a smaller proportion of aggregates corresponds to a reduc-
tion of interfacial transition zones which weaken the material. The decrease
also reduces the size of the hysteresis loops, due to fewer interfacial transition
zones. Localised permanent displacements are the main reason for describing
hysteresis loops.

◦ The size range of aggregates does not strongly influence the response of concrete
subjected to monotonic and cyclic loading.

◦ Less permanent displacement in the interfacial transition zones results in a
reduction of the size of the hysteresis loops.

◦ A decrease of the number of permanent displacements in the mortar phase
results in a reduction of the size of the loops in the post-peak regime, which is
where localised permanent displacements occur in the mortar phase.

◦ The strength of the mortar and the interfacial transition zones have a strong
influence on both the monotonic and cyclic responses. An increase of the
strength of the interfacial zones leads to an increase of the compressive strength,
since the permanent displacements in the interfacial zones are reduced.

◦ Furthermore, the size of the hysteresis loops is described.

• The proposed material parameter, αe, influences the size of the hysteresis loops in
a direct fashion, making the model easy to calibrate.

• The distortional energy is related to the plastic deformation at unloading. During
plastic unloading the distortional energy is negative, which makes it useful as a
parameter for controlling this state.

5.2 Suggestions for future research

In finite element analyses of concrete subjected to cyclic loading, the computer time is an
important issue, especially for high cycle fatigue analyses in compression. If a variable
that can predict the fatigue life without going through the whole number of cycles can
be found, the computer time needed could be reduced. The distortional energy used as a
parameter for the unloading process of cyclic loading, in Paper V, could be such a variable;
as the negative value of the distortional energy decreases with every cycle that generates
plastic deformation at unloading, it could be convenient to determine the total value of
negative distortional energy to calculate fatigue life. If the prediction of fatigue life could
be made less time consuming, then high cycle fatigue could be better investigated.
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The investigation in Paper V initiated a discussion about the lateral behaviour of a micro-
cracked zone. The complete understanding of this would add to the description of the
cyclic response.

This work focuses on concrete. However, the reality is reinforced concrete structures.
Therefore, the natural step after this study is to investigate the cyclic behaviour of such
structures. Another thing that has caught the author’s attention is the fact that today the
fatigue life of a structure relies totally on the reinforcement. An interesting investigation
would be to examine how the concrete can contribute to the fatigue life of a structure and,
thereby, relieve the reinforcement by reduced stress. The benefit would be the reduced
amount of reinforcement needed, for which the cost today is high.
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Göteborg, Sweden, pp. 121.

Tepfers, R. (1979). Tensile Fatigue Strength of Plain Concrete, Journal of the ACI, pp.
919–933.

Tepfers, R. (1980a). Fatigue of plain concrete subjected to stress reversals, Contribution
to ACI Symposium at 1980 Fall Convention, SP 75-9, American Concrete Institute,
San Juan, Puerto Rico, pp. 195–215.

Tepfers, R. (1980b). Tensile Fatigue Strength of Plain Concrete, Journal of the ACI, pp.
203–205, discussion.

Tepfers, R. and Kutti, T. (1979). Fatigue Strength of Plain, Ordinary and Lightweight
Concrete, Journal of the ACI, pp. 635–652.

Thelandersson, S. (1974). Characteristics of Fire Exposure and Consequenses on Me-
chanical Behavior of Concrete., Doctoral thesis, Lund University of Technology, Lund,
Sweden, pp. 13.

Thelandersson, S. (1987). Modeling of combined thermal and mechanical action in con-
crete, Journal of engineering mechanics-ASCE, Vol. 113, No. 6, pp. 893–906.

Thun, H. (2006). Assessment of Fatigue Resistance and Strength in Existing Concrete
Structures, Doctoral thesis, Lule̊a University of Technology, Lule̊a, Sweden, pp. 48.

Ueda, T., Sato, Y., Kakuta, Y. and Tadokoro, T. (1998). A study on crack propagation
in concrete under cyclic loading, AEDIFICATIO Publishers, Fracture Mechanics of
Concrete Structures,, Vol. 1, pp. 655–663.

Voyiadjis, G. and Abulebdeh, T. (1994). Plasticity Model for Concrete Using the Bounding
Surface Concept, International Journal of Plasticity, Vol. 10, No. 1, pp. 1–21.

Voyiadjis, G. Z. and Abulebdeh, T. M. (1993). Damage Model for Concrete Using Bound-
ing Surface Concept, Journal of Engineering Mechanics-ASCE, Vol. 119, No. 9, pp.
1865–1885.

Willam, K., Hansen, E. and Kang, H. (2001). Performance evaluation of damage and
plasticity formulations for concrete, Shing, P. and Tanabe, T., eds., Modeling of inelastic
behavior of rc structures under seismic load, American Society of Civil Engineers, pp.
1–19.

42 CHALMERS, Civil and Environmental Engineering, Ny serie 2927



Willam, K., Rhee, I. and Shing, B. (2004). Interface damage model for thermomechanical
degradation of heterogeneous materials, Computer Methods in Applied Mechanics and
Engineering, Vol. 193, No. 30–32, pp. 3327–3350.

Winnicki, A. and Cichon, C. (1998). Plastic model for concrete in plane stress state. i.:
Theory, Journal of Engineering Mechanics, Vol. 124, pp. 591–602.

Yang, B., Dafalias, Y. F. and Herrmann, L. R. (1985). Bounding surface plasticity model
for concrete, Journal of Engineering Mechanics, Vol. 111, No. 3, pp. 359.

Yankelevsky, D. and Reinhardt, H. (1987a). Response of plain concrete to cyclic tension,
ACI Materials Journal, Vol. 84, pp. 365–373.

Yankelevsky, D. and Reinhardt, H. (1989). Uniaxial behaviour of concrete in cyclic tension,
ASCE Journal of Structural Engineering, Vol. 115, No. 1, pp. 166–182.

Yankelevsky, D. Z. and Reinhardt, H. W. (1987b). Model for cyclic compressive behaviour
of concrete, ASCE Journal of structural engineering, Vol. 113, No. 2, pp. 228–240.
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Abstract

The influence of volumetric–deviatoric coupling on the prediction of curved crack patterns in concrete fracture tests is
analyzed by using an elasto-plastic-damage model, for which the amount of volumetric–deviatoric coupling is controlled
by the hardening modulus of the plasticity model. First, the tangent stiffness matrix and the total stress–strain response for
simple shear are investigated. Then, two fracture tests reported in the literature are simulated with significantly varying
amounts of coupling. It is shown that volumetric–deviatoric coupling greatly improves the description of curved crack pat-
terns in mixed-mode fracture tests.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Constitutive models based on damage mechanics, plasticity and combinations of both are often used to
describe the fracture process of quasi-brittle materials, such as concrete, rock, tough ceramics or ice. In these
materials, fracture is characterized by the development of nonlinear fracture process zones, which can be
described macroscopically as regions of highly localized strains. The performance of constitutive models
for concrete is often evaluated by analyzing fracture tests with curved crack patterns [1–4]. The results of such
analysis have been reported in [5–11]. Anisotropic damage models have proved to be capable of reproducing
many of the often complex crack patterns, as reported in [8] and [10]. Isotropic damage models, on the con-
trary, often fail to describe realistically the crack patterns of these mixed-mode fracture tests. Anisotropic
damage models differ from isotropic ones in, among other things, that they provide volumetric–deviatoric cou-
pling, i.e. in a simple shear test, the shear strain generates not only a shear stress, but also compressive normal
stresses. Simple shear is defined as a state with three-dimensional constant volume strain. Willam et al. [12]
0013-7944/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

De isotropic elast ic stiffness tensor
Depd elasto-plastic-damage stiffness tensor
E Youngs modulus
Gf fracture energy
Hp plastic hardening modulus
P Applied force
Ps Applied shear force
Rd plastic part of the elasto-plastic-damage stiffness tensor
Rp damage part of the elasto-plastic-damage stiffness tensor
ft tensile strength
n1 normalized eigenvector
e total strain
ef model parameter
ep plastic strain
g Poisson’s ratio
jp plastic hardening parameter
_k rate of plastic multiplier
r nominal stress
�r effective stress
�r1 maximum principal value of effective stress
ry yield stress
x isotropic damage scalar
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have studied the volumetric–deviatoric coupling on the constitutive level for various plasticity models with
regard to loss of stability and uniqueness.

In the present paper the influence of the volumetric–deviatoric interaction on the modeling of curved crack
patterns in mixed-mode fracture tests is investigated. This is accomplished by using an isotropic elasto-plastic-
damage model, which permits one to vary the amount of volumetric–deviatoric interaction by controlling the
hardening law of the plasticity model. It is expected that this interaction is the key to an accurate description
of curved crack patterns observed in several fracture tests of plain concrete. This has not been shown before to
the knowledge of the authors. Thus, this study contains novel features, which help to understand the perfor-
mance of modeling techniques for concrete subjected to complex combinations of loading.

The fracture tests mentioned are often analyzed by assuming plane stress. Consequently, a modified simple
shear state is examined, where the condition of constant volume strain is limited to the in-plane strain com-
ponents, and the out-of-plane component is determined from the condition of zero stress in this direction.

The basic equations of the elasto-plastic-damage model are stated and the volumetric–deviatoric interaction
is illustrated with the elasto-plastic-damage tangent stiffness matrix for the onset of inelastic behavior in simple
shear. Next, the total stress–strain response for this state is analyzed with the model for four different degrees
of interaction. Finally, two fracture tests with curved crack patterns, reported in the literature, are analyzed
with significantly varying amounts of volumetric–deviatoric coupling.
2. The plasticity-damage model

The model consists of an elasto-plasticity part combined with isotropic damage that is determined by the
cumulative plastic strain. For the combined elasto-plastic-damage model, the stress–strain relation is given as
r ¼ ð1� xÞ�r ¼ ð1� xÞDe : ðe� epÞ ð1Þ
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where r is the nominal stress, x is the scalar describing the amount of isotropic damage, �r is the effective stress,
De is the isotropic elastic stiffness, e is the total strain and ep is the plastic strain.
2.1. Basic equations

The plasticity model, which is formulated on the assumption of small strains, is based on the effective stress,
�r, and consists of the yield function, the flow rule, the evolution law for the hardening variable and the load-
ing–unloading conditions. For plane stress:
Fig. 1.
strain
fpð�r; jpÞ ¼ �r1 � ryðjpÞ ¼ �r1 � ðft þ HpjpÞ ð2Þ
describes the Rankine yield function, where �r1 is the maximum principal value of the effective stress tensor �r,
ry is the yield stress, ft is the tensile strength, Hp is the plastic hardening modulus and jp is the plastic hard-
ening parameter. Plastic yielding is initiated when the maximum principal effective stress reaches the yield
stress ry. For equibiaxial tension, when both principal values are equal to the yield stress, the value of the sec-
ond principal stress also influences the yielding process. Only one active surface is dealt with here, since the
behavior is studied in biaxial tension and compression, see Fig. 1a.
For the structural analysis in Section 4, however, the case of two active yield surfaces for equibiaxial tension is
included.

For one active surface, the flow rule is given as
_ep ¼ _k
ofp

o�r
¼ _k

o�r1

o�r
¼ _kn1 � n1 ð3Þ
where n1 is the normalized eigenvector corresponding to the first principal eigenvalue of the effective stress
tensor, � denotes the dyadic product of two vectors, and _k is the rate of the plastic multiplier.

The evolution of the hardening parameter, jp, is given by the norm of the plastic strain rate,
_jp ¼ k_epk ¼ _k ð4Þ
Loading–unloading conditions complete the description of the plasticity part:
fp 6 0; _k P 0; _kfp ¼ 0 ð5Þ
The damage variable, x, is related to the plastic hardening parameter, jp, by
x ¼ gdðjpÞ ¼ 1� ft expð�jp=efÞ
ft þ jpHp

ð6Þ
a b

(a) Schematic drawing of the Rankine yield surface at the onset of yielding for pure shear. (b) Schematic drawing of the stress–
and effective stress–strain curve for uniaxial tension.
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which results in an exponential total stress–strain curve, see Fig. 1b. The model parameter, ef, controls the area
under the stress–strain curve and can be related to the fracture energy Gf. There is no plastic process without
damage evolution, since it is directly linked to the plastic process.

2.2. The tangent stiffness matrix

The tangent stiffness is studied to gain information on the form of the volumetric–deviatoric coupling,
which is introduced by the plastic-damage model. The rate form of the general stress–strain relation in
Eq. (1) is
_r ¼ ð1� xÞ _�r� _x�r ¼ ð1� xÞDe : _e� _k
o�r1

o�r

� �
� g0d _kDe : ðe� epÞ ð7Þ
where
g0d ¼
ogd

ojp

¼ ft=ef expð�jp=efÞðft þ jpH pÞ þ ft expð�jp=efÞH p

ðft þ jpH pÞ2
ð8Þ
The plastic multiplier, _k, is determined from the consistency condition of the plasticity part:
_f p ¼
o�r1

o�r
De : _e� _k

o�r1

o�r

� �
� _kH e ¼ 0 ð9Þ
as
_k ¼
o�r1

o�r
: De : _e

o�r1

o�r
: De : o�r1

o�r
þ H p

ð10Þ
By setting Eq. (10) in Eq. (7)
_r ¼ Depd : _e ð11Þ
is obtain, where
Depd ¼ ð1� xÞ De �
De : o�r1

o�r
� o�r1

o�r
: De

o�r1

o�r
: De

:
o�r1

o�r
þ H p

 !
� g0d

De : ðe� epÞ � o�r1

o�r
: De

o�r1

o�r
: De : o�r1

o�r
þ H p

 !
ð12Þ
is the tangent stiffness of the elasto-plastic-damage model for one active surface.
Now, the tangent stiffness for simple shear is analyzed. Before the onset of inelastic behavior the stress state

in simple shear is determined by the isotropic elastic stiffness matrix as
0

0

r12

0
B@

1
CA ¼ E

1� m2

1 m 0

m 1 0

0 0 1�m
2

2
64

3
75

0

0

c12

0
B@

1
CA ð13Þ
where E is Young’s modulus and m is Poisson’s ratio. The shear strain rate results in a shear stress rate only,
since the components (1,3) and (2,3) of the isotropic linear elastic stiffness matrix in Eq. (13) are equal to zero.
Thus, for isotropic elasticity, simple shear coincides with pure shear since the normal strain and stress com-
ponents are zero. The direction of the maximum principal stress component with respect to the Cartesian
coordinate system, for this stress state, is determined as
n1 ¼ 1=
ffiffiffi
2
p

1=
ffiffiffi
2
p� �T ð14Þ
Now, Eq. (3) is used to determine the derivative of the maximum principal stress, with respect to the effective
stress tensor, which results in engineering notation to
o�r1

or
¼ 1=2 1=2 1f gT ð15Þ
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Finally, we set Eqs. (15) and (8) into Eq. (12) and obtain, for the onset of the inelastic behavior
(jp = x = 0, ep = 0 and r12 = ft)
Depd ¼ De � Rp � Rd ð16Þ
where De is the elastic stiffness matrix in Eq. (13), Rp is the contribution of the plasticity part with
Rp ¼
1

hp

E2

4ð1� m2Þ2

ð1þ mÞ2 ð1þ mÞ2 1� m2

ð1þ mÞ2 ð1þ mÞ2 1� m2

1� m2 1� m2 ð1� mÞ2

2
64

3
75 ð17Þ
and Rd is the contribution of the damage part with
Rd ¼
g0d
hp

E
2ð1� m2Þ

0 0 0

0 0 0

ftð1þ mÞ ftð1þ mÞ ftð1� mÞ

2
64

3
75 ð18Þ
Furthermore,
hp ¼
Eð5þ 3mÞ
8ð1� m2Þ þ H p ð19Þ
and
g0d ¼
1

ef

þ Hp

ft

ð20Þ
The matrix, Rp, provides volumetric–deviatoric coupling, since the components (1,3) and (2, 3) of Rp are not
zero for finite values of Hp. A shear strain rate, _c12, results, therefore, not only in a shear stress rate _r12, but
also in two normal stress rates, _r11 ¼ _r22. The components (1, 3) and (2,3) of Rd, on the other hand, are zero,
so that the damage part does not provide any volumetric–deviatoric coupling. The value of hp in Eq. (19) de-
pends on the hardening modulus, Hp. Consequently, the amount of volumetric–deviatoric coupling given by
Rp is controlled by Hp. For the limit Hp =1, the components of Rp are zero and the volumetric–deviatoric
coupling vanishes.The components of matrix Rd, however, do not tend to zero for Hp!1, since g0d in Eq.
(20) depends also on Hp, so that
lim
Hp!1

g0d
hp

� �
¼ 1

ft

ð21Þ
Thus, the elasto-plastic-damage stiffness is reduced to a pure elasto-damage stiffness for Hp!1.

3. Elasto-plastic-damage simulation of a simple shear test in-plane stress

The total stress–strain response of the damage-plasticity model was analyzed, in particular the influence of
volumetric–deviatoric interaction on the simple shear response. Four values of the plastic hardening modulus,
Hp, ranging from 0 to 100E are used. The other model parameters chosen are E = 30 GPa, m = 0.18,
ft = 3.5 MPa and ef = 0.0004.

The influence of Hp is illustrated by the unloading behavior in uniaxial tension in Fig. 2. For Hp = 0, the
inelastic strain is mainly irreversible (ep � xep), while only a small amount of inelastic strain is reversible (xe).

The situation is different for Hp = 100E, where the plastic strain is nearly zero and the inelastic strains are
almost fully reversible. Thus, the model unloads almost back to the origin of the stress–strain curve in the
figure.

Also, the amount of volumetric–deviatoric coupling differs. This is illustrated by a simple shear test in-plane
stress. In this strain controlled test, the shear strain is increased, while the two normal strain components are
kept at zero. The shear stress–strain response is strongly influenced by the value of the plastic hardening mod-
ulus, Hp, which controls the amount of volumetric–deviatoric interaction, see Fig. 3. The maximum shear
stress for Hp = 0 (strong interaction) is nearly 1.4 times greater than for Hp = 100E (weak interaction). This
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difference is explained by the activation of normal compressive stresses when there is volumetric–deviatoric
interaction, see Fig. 4. When the plasticity model has a strong influence, normal plastic strain components
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develop; since the total strain in the normal direction is fixed, these lead to normal compressive stresses. For
Hp = 100E (weak influence) almost no normal compressive stresses are activated.

It should be stressed that the volumetric–deviatoric coupling not only depends on the hardening modulus,
which in the present study controlls the ratio of damage and plasticity, but also on the form of the yield surface
and flow rule of the plasticity model. However, in the present study only a Rankine plasticity model is con-
sidered for simplicity and coupling is only controlled by the hardening modulus.

4. Analysis of fracture tests

In the present section the results of finite element simulations of two fracture tests with curved crack pat-
terns are presented. The crack band approach, Bažant and Oh [13], is used to obtain a mesh independent
description of the dissipated energy. Two amounts of volumetric–deviatoric coupling, Hp = 0 and
Hp = 100E, are considered. The plastic hardening modulus of Hp = 0 corresponds to strong coupling, while
Hp = 100E corresponds to weak coupling. The specimens are discretized by a fine mesh of bilinear quadrilat-
eral elements assuming plane stress.

4.1. Four-point shear test

The first example is a four-point shear test of a single-edge-notched beam, conducted by Arrea and Ingraf-
fea [1], shown in Fig. 5. The material parameters chosen are E = 30 GPa, m = 0.18, ft = 3.5 MPa and
Gf = 140 J/m2 as used in [10]. The results are given as contour plots of the maximum principal strain
(Fig. 10), and load crack mouth sliding displacement (CMSD) curve (Fig. 6).
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Fig. 5. The experimental setup of the four-point shear test.
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4.2. Double-edge-notched (DEN) specimen

The second example is the double-edge-notched specimen tested by Nooru-Mohamed [2]. The experimental
setup is presented in Fig. 7.
Fig. 7. The geometry and the loading setup of the DEN specimen.

Fig. 8. Influence of the volumetric–deviatoric interaction on the crack pattern in the DEN test: (a) experiments, (b) strong interaction
(Hp = 0), and (c) weak interaction (Hp = 100E).
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normal displacement for the double-edge-notched specimen.
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The non proportional loading path 4c is chosen. This is the most challenging test of the entire program,
because the final crack pattern consists of two cracks with a relatively strong curvature, see Fig. 8a. During
the first stage, the specimen is loaded by an increasing ‘‘shear force’’, Ps, until the maximum force that the
specimen can carry is reached. Then, in the second stage, this force is kept constant and a ‘‘normal’’ force,
P, is applied in the vertical direction. The material parameters chosen are E = 30 GPa, m = 0.2, ft = 3 MPa
and Gf = 110 J/m2 as used in [6] and [10]. The contour plots of the maximum principal strain for strong
and weak coupling are compared with the experimental crack patterns in Fig. 8. Furthermore, the load–
displacement curves for ‘‘shear’’ and ‘‘normal’’ loading are compared with the experimental results in
Fig. 9, where the simulated load–deflection curve for the normal and shear directions are shown.
4.3. Discussion of the results

For strong volumetric–deviatoric coupling (Hp = 0), the experimental crack patterns are well represented
by the elasto-plastic-damage model for both the four-point shear tests and the DEN test, see Figs. 10b and
8b. With weak coupling (Hp = 100E), on the other hand, the crack patterns cannot be captured. The zone
of localized strains in the four-point shear test is strongly attracted by the direction of the mesh lines, see
Fig. 10c. For the DEN test, the results are even worse. A horizontal localization zone forms as soon as the
Fig. 10. Influence of the volumetric–deviatoric interaction on the crack pattern in the four-point shear test: (a) experiments, (b) strong
interaction (Hp = 0), and (c) weak interaction (Hp = 100E).

Fig. 11. Detail of the crack pattern of the four-point shear test obtained with strong interaction (Hp = 0).
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tensile load is applied in the second stage of the test, see Fig. 8c. This does not agree with the curved crack
patterns observed in the experiments. The results of the simulation of the mixed-mode fracture tests were fur-
ther interpreted by the evaluation of the stress–strain history of an integration points close to the zones of
localized strains where the profiles of the simulation with and without coupling deviate (see Fig. 11). The
results in the form of the shear stress versus the shear strain and the normal stress versus the shear strain
are presented in Fig. 12 and 13, respectively. With strong coupling negative normal stresses are present and
the area below the shear stress–shear-strain curve is greater than without coupling. The findings in Section
3 and the stress–strain histories shown in Figs. 12 and 13 suggest that the maximum shear stress and the vol-
ume fracture energy in simple shear are increased by volumetric–deviatoric coupling, because of the restrained
normal strains that generate normal compressive stresses. The strain localizes in regions where the stress state
is close to uniaxial tension, since zones subjected to shear are confined and resist, therefore, higher stresses.
This is the reason why, for volumetric–deviatoric coupling, the curved crack patterns can be represented,
but not without coupling.

5. Conclusions

The study of the influence of volumetric–deviatoric coupling on modeling curved crack patterns leads to the
following conclusions.
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• Constitutive models with volumetric–deviatoric coupling provide higher shear resistance in simple shear
than models without coupling. The increase in shear stress is caused by the activation of compressive stres-
ses due to constrained strains.

• In the simulation of curved cracks, the paths of localized strain zones are strongly influenced by the amount
of volumetric–deviatoric coupling. Only with volumetric–deviatoric coupling can the curved crack patterns
be reproduced.

Coupling can be provided by the theory of plasticity or anisotropic damage models.
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[9] Ožbolt J, Reinhardt HW. Numerical study of mixed-mode fracture in concrete. Int J Fracture. 2002;118:145–61.
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ABSTRACT

This paper deals with modelling of concrete subjected
to cyclic loading in tension. A model based on the the-
ory of plasticity combined with the theory of damage
mechanics was developed. To describe the non-linearity
that concrete exhibits during cyclic loading, the concept
of bounding surface is used as a hardening function. An
evolution law for the elastic domain is proposed that
depends on the consumption of fracture energy in hys-
teresis loops. In addition, an energy balance equation
is proposed, which deals with the consumption of frac-
ture energy by completing hysteresis loops. Finally, a
drawback in the smeared crack approach for combined
damage and plasticity is identified and presented.
Keywords: plasticity theory; damage mechanics;

bounding surface; concrete; fracture; cyclic load-
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1 INTRODUCTION

Cyclic loading is one of the deterioration processes of great importance for concrete struc-
tures such as piles, sleepers, machinery foundations, parts of bridges, etc. The deterioration
of concrete structures entails heavy costs for the society. These costs can be cut down by
an increased understanding of the cyclic-loading phenomenon and by the development of
constitutive models with an increased accuracy.

Due to the non-linear stress-strain response that concrete exhibits, cyclic loading can be
divided into two main characteristic responses: pre-peak cyclic loading and post-peak cyclic
loading. Pre-peak cyclic loading is cyclic loading before maximum load is reached, while
post-peak cyclic loading is cyclic loading after maximum load and localization of deforma-
tion. These phenomena are equally important as parts of cyclic loaded structures may be
in pre-peak state, while other parts are in post-peak state.

The work presented here deals with concrete subjected to cyclic loading in biaxial tension
with focus on improving the analysis methods for such cases and increasing the understand-
ing of the deterioration processes related to repeated loading.

Plasticity, damage mechanics, and the combination of both, are often used to describe the
non-linear response of concrete, e.g. models [1]-[3]. Moreover, the concept of bounding
surface, introduced by [4], has been proved to be useful to describe the hysteresis loops
that concrete exhibits when subjected to cyclic loading: [5]-[10]. Research that identifies
the characteristic hysteresis loops has been conducted by [11]-[30]. The combination of
plasticity and damage mechanics used in this investigation was previous investigated by e.g.
[31]-[33] and [34], and shows good results for complex crack patterns.

The model presented here is based on the theory of plasticity combined with the theory
of damage mechanics, using the concept of bounding surface to describe the non-linearity
seen when hysteresis loops from experiments are examined. The basic equations for the
plasticity-damage model are presented together with the hardening rule that is based on the
bounding surface concept. An evolution law for the elastic domain is proposed that describes
the increasing non-linearity with increasing damage. Moreover, an energy balance equation
is stated and motivated, which considers the dissipated fracture energy while completing a
loading cycle in biaxial tension (Figure 1).

The crack band approach of [35] is used to control the mesh dependence of the softening
branch of the stress-strain curve. The crack band approach makes it possible to consider
the crack strain as the average over a characteristic crack band width wc of the fracture
process zone.

2 THE CONCEPT OF BOUNDING SURFACE

Plasticity models with two yield surfaces were introduced by [36] to describe the non-linear
hardening behaviour for ductile solids with continuum models. Two surface models have
later been renamed as bounding surface models due to the enclosing nature of the bounding
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Figure 1: Illustration of the observed mechanisms related to fatigue.
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Figure 2: Illustration of the enclosing nature of the bounding surface with regard to the yield
surface and the actual stress σ̄, with the corresponding mirror stress σ̂.

surface with regard to the yield surface. The concept of bounding surface models is to
describe the non-linear hardening and softening behaviour by prescribing the variation of
the plastic modulus Kp, i.e. another way of describing strain hardening. The plastic modulus
is determined by the distance between the position of the actual plastic loading point and
the mirror point on the bounding surface δ. A general definition of δ is

δ =
√

(σ̂ − σ̄)2 (1)

where σ̂ contains the coordinates of the mirror point on the bounding surface and σ̄ is the
actual plastic stress point; in this study the actual plastic stress is the effective stress, i.e.
the stress in the undamaged stress space. σ̂ is determined along the normal to the bounding
surface (Figure 2). The computation of σ̂, is done with a function, M , called the mapping
rule:

σ̂ = M (σ̄). (2)

The bounding surface is constructed in the same way as a yield surface; thus the bounding
surface and the flow rule are generally described, respectively as

F = 0,
˙̂
L =

˙̂
λ

∂F

∂σ̂
(3)

where
˙̂
λ is the rate of the plastic multiplier. The identity condition, σ̄ on F = 0 so that



σ̄ = σ̂ and ∂f

∂σ̄ = ∂F

∂σ̂
, introduces restrictions on the relative evolution of the surfaces due

to the fact that they can never intersect with each other.

Bounding surface models make it possible for the plastic response to evolve depending on
the distance from the actual stress state σ̄ to the bounding surface itself. An evolution law
Kpf for the plastic modulus Kp can be stated as

Kp = Kpf(δ). (4)

Equation (4) expresses the main feature of the bounding surface, i.e. the plastic deformation
is calculated by Kp, with a magnitude based on δ.

3 THE PLASTICITY-DAMAGE MODEL

Experimental observation of concrete subjected to cyclic loading reveals a non-linear stress-
strain response with increasing plastic deformation during loading, as well as a degradation
of the material due to damage. Therefore, it is convenient when developing a constitutive
model to use the theory of plasticity to describe the plastic deformation and at the same
time describe the evolution of damage with damage mechanics.

The model presented here is a combination of plasticity and damage with a kinematic
hardening rule based on the theory of bounding surface. The damage is determined by the
accumulated plastic strain and a fracture energy consumption law. To deal with localization
the deformation in the softening regime, the crack width wc, is smeared over the element
length. The stress-strain relationship is given as

σ = (1 − ω)σ̄ = (1 − ω)Ee : (ε − εp + εp,∅) (5)

where: σ is the nominal stress,
ω is the isotropic damage parameter,
σ̄ is the effective stress,
Ee is the isotropic elastic stiffness,
ε is the total strain,
εp is the plastic strain at loading and
εp,∅ is the plastic strain at unloading.

3.1 Plasticity model

The plasticity model is based on the effective stress and consists of: a yield function based
on the Rankine criterion, a flow rule, a hardening rule, an evolution law for the elastic
domain and the loading-unloading conditions.

The elastic domain is a crucial issue for concrete subjected to cyclic loading. In experimental
observations it is observed that during cyclic loading a non-linear state is exhibited during
loading as well as unloading. In between these non-linear states the response is elastic



with a stiffness that corresponds to the level of damage. This can be understood as the
elastic domain moves with the non-linear response without changing shape. This rigid body
movement is described by the hardening function of the model presented below. At the
same time, energy is released by the completion of a hysteresis loop, which can be observed
in experiments as an increase of the non-linear response. This increase of non-linearity is
done at the cost of the elastic domain, i.e. the elastic domain decreases in size during cyclic
loading. This is considered in the model by the evolution law for the elastic domain that is
based on the energy balance equation stated below.

3.1.1 Loading

For loading in plane stress the yield function becomes

f(σ̄1, δ) = σ̄1 − σN,n
y,1 (δ) (6)

where σ̄1 is the maximum principal value of the effective stress tensor σ̄, σN,n
y,1 = σ

N,(n−1)
y,1 +

H(δ) is the yield stress, updated from the previous step (n − 1) and H(δ) is the hardening
rule.

When the stress state violates the yield condition f = 0, plastic flow is initiated. The flow
rule is associated and given as

ε̇p = λ̇
∂f

∂σ̄
(7)

where λ̇ is the rate of the plastic multiplier.

The evolution of the yield surface during plastic flow, Figure 3, is controlled by the hardening
rule. The hardening rule H(δ) is linearly dependent on the maximum principal effective
stress (δ = σ̂1− σ̄1) and to achieve a practical hardening rule, δ is normalized with σ̂1−σN,n

y,1 .

σN,n
y,1 is the yield stress at the initiation of plastic flow for the actual cycle N , which initially

is set at input with the parameter σyin. Then, the hardening rule yields

H(δ) = E
σ̂1 − σ̄1

σ̂1 − σN,n
y,1

(8)

where σ̂1 is the mirror stress of the actual stress.

For loading the elastic domain is constant, though it translates in stress space during plastic
flow. Therefore, the lower yield surface σN,n

y,∅,1
must be updated for δ ≥ 0 (Figure 4). The

updating is done according to

σN,n

y,∅,1
= σ

N,(n−1)

y,∅,1
+ H(δ). (9)

3.1.2 Unloading

For unloading the equations differ slightly.



σN
y

σ̂

σ̄1

δ

κp

σ̄

ε

Figure 3: Evolution of the yield surface due to plastic loading.
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Figure 4: The hardening is kinematic which represents a rigid body movement of the elastic
domain.

The yield function is stated as

f∅(σ̄1, δ∅) = −σ̄1 + σN,n

y,∅,1
(δ∅) (10)

where σ̄1 is the maximum principal value of the effective stress σ̄ and

σN,n

y,∅,1
= σ

N,(n−1)

y,∅,1
− H∅(δ∅) (11)

is the yield stress, updated from the previous step (n − 1), for the lower bound and H∅(δ∅)
is the unloading hardening rule.

The flow rule is

ε̇p,∅ = λ̇∅

∂f∅
∂σ̄

(12)

where λ̇∅ is the rate of the plastic multiplier for unloading.

The evolution law for the unloading plastic multiplier is calculated as

κ̇p,∅ = ‖ε̇p,∅‖ = λ̇∅. (13)

The hardening rule together with the normalization of δ∅ (δ∅ = σ̄1− σ̂∅,1) give the unloading
hardening rule

H∅(δ∅) = E
σ̄1 − σ̂∅,1

σN,n

y,∅,1
− σ̂∅,1

(14)



where σ̂∅,1 is the unloading mirror stress, considered as a material parameter.

According to the rigid body movement of the elastic domain the upper yield surface is
updated during plastic flow. This is considered by the consistent equation for the elastic
domain at unloading and is defined according to

σN,n
y,1 = σ

N,(n−1)
y,1 − H∅(δ∅). (15)

3.1.3 Loading-unloading conditions

The loading-unloading conditions conclude the plasticity part. The yield function must
remain negative in the elastic regime at the same time as the rate of the plastic multiplier
initially must be zero, or remain constant at reloading. In the plastic regime the yield
function must be zero and the rate of the plastic multiplier must be positive. The conditions
are stated as follows:

• Loading:

f ≤ 0 λ̇ ≥ 0 λ̇f = 0 (16)

• Unloading:

f∅ ≤ 0 λ̇∅ ≥ 0 λ̇∅f∅ = 0 (17)

These last conditions in Equations 16 and 17 are the conditions that separate the elastic
regime from the plastic regime. The conditions state that when f = 0 then λ̇ ≥ 0, and if
f ≤ 0 then λ̇ = 0 (for loading and unloading).

3.2 Damage model

The damage model consists of a fracture surface determined by the damage function and an
isotropic damage variable ω(κD). The damage variable is determined so that the resulting
stress-strain relation for monotonic loading will be an exponential function for loading in
the softening region. Damage evolves with two different cases:

1. When the maximum principal value of the effective stress reaches the bounding surface:
this is checked by the damage function.

fD = σ̄1 − σ̂1 (18)

2. When the damage history variable increases the damage history variable is computed
by the current plastic strain εp,1 and the plastic strain at initiation of damage ε0,p.

κD = max(εp,1 − ε0,p). (19)



If damage is present the isotropic damage parameter is calculated according to

ω(κD) =
1 − ε0

κD

1 − ε0

εf

(20)

where ε0 = fu/E is the strain that corresponds to the initiation of damage, εf is the final
strain and fu is the ultimate strength given at input.

Because the yield surface initially is separated from the bounding surface, strain hardening
of the effective stress σ̄ is present after yielding has been initiated; but only to some extent
as the effective stress converges rapidly with the bounding surface. In addition, the amount
of strain hardening is small compared to the total crack strain.

3.3 Energy dissipation

In cyclic loading the loading pattern produces hysteresis loops which make energy dissipate.
There are three main mechanisms that dissipate energy: temperature, the cohesive zone,
and shear friction. In the biaxial tension region, crack sliding is a minor issue. Thus, the
energy dissipation in the cohesive zone and the temperature increase are in main focus.
Based on the discussions about energy dissipation at cyclic loading found in [37], [24], [38],
and [14], there should be an energy dissipation when a load cycle is completed, considering
the total energy that should be released as constant regardless of the loading history. From
this statement it is possible to set up a balance equation: between the energy inside a loop
E1 and the dissipated fracture energy E2 so that the fracture energy Gf remains constant
(Figure 5). If plasticity is initiated while unloading, energy is released; this dissipation of
energy appears for pre-peak- as well as post-peak unloading. In the model the energy release
for post-peak hysteresis loops is accounted for by reducing the softening branch, related to
the energy dissipated by the cyclic loop E1. The energy released by the cyclic loop can be
estimated in a simplified way by computing the area that is bound by the current loading
yield stress and the actual effective stress during unloading-plastic flow

E1 = (σN
y,1 − σ̄1)κp,∅. (21)

In Equation 21 and the following equations equilibrium is assumed and therefore n is omit-
ted.

The fracture energy is depending on the current yield surface as the fracture energy is known
as the area under the softening curve. Therefore, the decrease in fracture energy can be
calculated as an evolution of the elastic domain, i.e. the yield surfaces are adjusted with
E1 and a factor B. The material parameter B reflects the fact that the two areas are not
equal due to temperature release, i.e. E2 = B E1 (0 ≤ B ≤ 1). The reason for dealing with
this in the effective stress space is related to the hypothesis that the energy release due to
hysteresis loops is related to plastic flow. Even though this is done in the effective-stress
space, a corresponding response in the nominal-stress space is achieved.

σN+1
y,1 = σN

y,1 − B
E1

Gf

σN
y,1 (22)
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Figure 5: Illustration of the energy balance between a produced hysteresis loop and the re-
leased energy.

σN+1
y,∅,1

= σN
y,∅,1 + B

E1

Gf

σN
y,1 (23)

To consider energy release for pre-peak cyclic loading the bounding surface is decreased
during unloading plastic flow:

σ̂N+1 = σ̂N − A
E1

Gf

σN
y,1 (24)

where σ̂N is the mirror stress related to the previous cycle (σ̂N is initially set to fu). The
bounding surface is updated for every loading cycle N . The material parameter A is similar
to B, besides that it controls the energy balance of pre-peak cyclic loading.

4 ANALYSIS OF DIRECT TENSION TEST

A finite element simulation of a tension test is described in the present section. The example
is a tension test of a double-edge-notched plate, conducted by [12], shown in Figure 6.
The specimen is discretized by a fine mesh of triangular three-node elements, Figure 7,
assuming plane stress. For simplicity, the specimen is modelled as a quarter of the real
specimen, fixing the boundaries of symmetry in the normal direction. The deformation
of the specimen is applied along the edge at the right hand side in Figure 7. Until the
first unloading, the deformation is applied by controlling the deformation over the notch.
Thereafter, deformation is controlled at the same point where it is applied. The crack band
approach is used to obtain a mesh independent description of the dissipated energy. For the
element row at the notch, the smearing distance is chosen as the width of the notch, 3mm,
and for the rest of the elements as the size of the elements. The given material parameters,
from the experiment, are presented in Table 1 and the chosen material parameters for the
model are presented in Table 2.



Table 1: Material parameters given from experiment by [12].

E 30 GPa ν 0.18
Gf 58 Nm/m2 fu 3.7 MPa

Table 2: Material parameters chosen for the model.

σyin
3.7 MPa

A 0.05
B 0.05

4.1 Discussion of the results

The result from the analysis is compared to test results by [12] in Figure 8. The simulation
shows a loading pattern of three cycles in the post-peak regime. The general response of the
experiment is well described by the numerical simulation. The important hysteresis loops
are well represented, as is the reduction of the softening branch. However, the simulated
hysteresis loops show a slightly increasing deviation in unloading-reloading stiffness with
increasing damage, which can be explained as a limitation of the chosen localization model,
explained in the following.

By looking at the unloading stiffness of a bar of length L the limitation can be identified
(see Figure 9). The decrease of the deformation is defined as

∆u = (L − Le)∆εunloc + Le∆εloc (25)

where ∆εunloc is the strain decrement in the zones without strain localization and ∆εloc is
the strain decrement in the zone with localized deformation. The localization zone is for
the chosen localization model chosen as the element length Le.

The corresponding stress decrements can be expressed as

∆σunloc = E∆εunloc (26)

∆σloc = E(1 − ω)∆εloc (27)

where ∆σunloc is the stress decrement in the zone without localization and ∆σloc is the stress
decrement in the zone with localization (Figure 9). As equilibrium applies, these stresses

F 76
F
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Figure 6: Experimental setup for the direct tension test. The thickness of the specimen is
19mm.



Figure 7: Finite element mesh and boundary conditions of the specimen.
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shall be equal. Thus, the decrease of deformation, Equation 25, can be expressed as

∆u = (L − Le)
∆σ

E
+ Le

∆σ

E(1 − ω)

=
∆σ

E

L(1 − ω) + ωLe

1 − ω

(28)

The unloading stiffness is identified as

Ku =
∆σ

∆u
=

(1 − ω)E

(1 − ω)L + ωLe

. (29)

Therefore, the unloading stiffness depends on the element length. Furthermore, from Equa-
tion 29 it can be seen that if Le approaches zero, the unloading stiffness approaches the
initial stiffness

Ku =
E

L
(30)

which concludes the problem.

5 CONCLUSIONS

A model for concrete subjected to cyclic loading in tension was presented. The model
combines plasticity theory and damage mechanics and uses the concept of bounding surface
to describe the hardening, making it possible to produce hysteresis loops representing loading
and unloading. The model was tested with a direct tension test conducted by [12] and
shows possibilities of simulating a series of unloadings and reloadings. The numerical result
represents the experiment well; the important hysteresis loops are reproduced as well as
the decrease in the softening branch, although the numerical result shows larger unloading-
reloading stiffness than experimental results. A drawback in the used localization model is
identified: the unloading stiffness is depending on the length of the element in which the
deformations localize.
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NOTATIONS

˙ Superscript: Denoting the rate form of a variable

δ Euclidean distance

∆ε Strain increment

ε0,p Plastic strain at the initiation of damage

ε0 Strain at initiation of damage

εf Final strain at a fully opened crack

ε Strain

εp∅ Plastic strain lower bound

εp Plastic strain

∅ Subscript: unloading variables

κD Damage history variable

κp Plastic hardening parameter

λ Plastic multiplier

λ̂ Plastic multiplier, bounding surface

ν Poisson ratio

ω Damage parameter

1 Subscript: Maximum value of the principal directions

σ̄ Effective stress

∆σ Stress increment

σ̂ Stress on boundary surface

σyin Initial yield stress

σy Yield stress

σ Nominal stress

A Material parameter

B Material parameter

Ee Elastic stiffness tensor

E Youngs modulus



E1 Energy inside a hysteresis loop

E2 Consumed energy by a hysteresis loop

F Bounding surface function

f Yield function

fD Damage function

fu Ultimate tensile stress

Gf Fracture energy

H Hardening function

Kpf Plastic modulus function

Kp Plastic modulus

Ku Decrease of deformation

L̂ Flow rule, bounding surface

loc Subscript: Zone with localization of deformation

L Length of a bar

Le Element length

M Mapping function

N Superscript: Number of cycles

n Superscript: Number of iterations

∆u Decrease of deformation

unloc Subscript: Zone without localization of deformation

w Deformation
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a b s t r a c t

Concrete is characterised by stiff inclusions in a soft matrix separated by weak interfacial
transition zones (ITZs). Subjected to cyclic loading, this material exhibits a strongly nonlin-
ear response, which is characterised by the occurrence of hysteresis loops. Furthermore, for
cyclic loading, failure may occur before the equivalent strength for monotonic loading is
reached. The present work investigates, whether the occurrence of permanent displace-
ments in different phases of the meso-structure of quasi-brittle heterogeneous materials,
such as concrete, leads to damage evolution during repeated loading.

A new three-dimensional interface model based on a combination of damage mechanics
and the theory of plasticity is proposed, which allows one to control the ratio of permanent
and total inelastic displacements. The model is based on only a few material parameters,
which can be directly determined by experiments.

The interface model is applied to the plane-stress analysis of an idealised heterogeneous
material with cylindrical inclusions and ITZs subjected to cyclic compressive stresses.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The mechanical response of quasibrittle heterogeneous materials, such as concrete, is complex and strongly nonlinear.
Many of the nonlinearities are caused by the heterogeneity of the material characterised by stiff inclusions in a soft matrix
separated by weak interfacial transition zones (ITZ). Debonding and slip between inclusions and matrix, as well as cracks and
shear bands in the matrix and inclusions can contribute to the nonlinear fracture process of these heterogeneous materials.
For repeated mechanical loading, the stress–strain curves exhibit hysteresis loops and failure may occur before the equiva-
lent strength for monotonic loading is reached [1–14].

Over the last 30 years many phenomenological macroscopic constitutive models for the mechanical response of concrete
subjected to cyclic and repeated loading have been developed. Selected examples are bounding surface models [15–20],
models with viscosity [21] and specially designed damage and damage-plasticity models [22–25]. Although many of these
macroscopic approaches can describe the hysteresis loops and the fatigue of concrete, our knowledge of the mechanisms of
hysteresis loops and concrete fatigue is still limited, since the models are phenomenological.

A better understanding of the mechanics of concrete subjected to cyclic loading might be obtained by studying the meso-
scale behaviour of the material. The meso-scale of concrete can be idealised by stiff inclusions and a soft matrix separated by
weak ITZs. Each of the three phases has a complex heterogeneous microstructure, which again requires numerical modelling
by means of phenomenological models or multiscale analysis in which the mechanical response of the three phases is deter-
mined by their microstructure [26–28]. Meso-scale approaches to modelling fracture of heterogeneous quasi-brittle
. All rights reserved.
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materials can be divided into continuum models, discrete models and combinations of the two. In previous decades, many
discrete and continuum/discrete hybrid models were proposed for the modelling of fracture [29–42], with only a few studies
focused on the damage evolution under repeated loading.

The present study investigates, whether the occurrence of permanent displacements in different phases of the meso-
structure of quasi-brittle heterogeneous materials leads to damage evolution during repeated loading. For this, an interface
model is required which allows one to control the ratio of permanent and total inelastic displacements in the different
phases. A suitable framework for such a model is the combination of damage mechanics and the theory of plasticity [43–
45]. Thus, the aim of the present work is to develop a damage-plasticity interface constitutive model, which permits one
to describe accurately the ratio of permanent and total inelastic displacements. The model should be based on only few
material parameters, which could be directly determined by experiments. Furthermore, it is intended to demonstrate the
influence of localised permanent displacements on the damage evolution for repeated loading of heterogeneous materials.
The interface model itself does not exhibit any hysteresis loops for unloading and reloading. Instead the hysteresis loops and
the damage evolution should be modelled as a structural effect caused by localised permanent displacements.

2. Damage-plasticity interface model

In the present section the new interface model based on a combination of damage mechanics and the theory of plasticity
is presented. The model is discussed in detail in Section 3.

A three-dimensional displacement jump uc = (un,us,ut)T at an interface is considered, which is transformed into strains
e = (en,es,et)T by means of the length h as
e ¼ uc

h
ð1Þ
The three subscripts n, s and t denote the normal and two tangential directions in the local coordinate system of the interface
(Fig. 1a). The length h is the thickness of the interface (Fig. 1b).

The strains are related to the nominal stress r = (rn,rs,rt)T as
r ¼ ð1�xÞDeðe� epÞ ¼ ð1�xÞ�r ð2Þ
where x is the damage variable, De is the elastic stiffness, ep = (epn,eps,ept)T is the plastic strain and �r is the effective stress.
The elastic stiffness is
De ¼
E 0 0
0 cE 0
0 0 cE

8><
>:

9>=
>; ð3Þ
where E and c are model parameters controlling both Young’s modulus and Poisson’s ratio of the material.
The plasticity model is based on the effective stress and thus independent of damage. The model is described by the yield

function (Eq. (4)), the flow rule (Eq. (5)), the evolution law for the hardening variable (Eq. (6)) and the loading unloading
conditions (Eq. (7)):
f ¼ Fð�r;jÞ ð4Þ

_ep ¼ _k
og
o�r

ð5Þ

_j ¼ _khj ð6Þ
f 6 0; _k P 0; _kf ¼ 0 ð7Þ
a b

Fig. 1. Interface. (a) Tangential plane of interface. (b) Cross-section of interface.
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Here, f is the yield function, j is the plastic hardening variable, g is the plastic potential, hj is the evolution law for the hard-
ening parameter and _k is the rate of the plastic multiplier. The yield surface (f = 0), shown in Fig. 2, which is a function of two
stress variables rn and rq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

s þ r2
t

p
, is defined as
f ¼ r2
n þ rnqðc � 1Þft þ r2

q
c
s
� cf 2

t q2 ¼ 0 ð8Þ
where ft is the interfacial tensile strength, and s and c are the ratios of shear and tensile, and compressive and tensile
strength, respectively. Furthermore, q is the hardening law defined as
q ¼ 1þ Hpj ð9Þ
where
Hp ¼
Eð1� lÞ � f 2

t
2Gft

h

lft
ð10Þ
The model parameter l controls the ratio of permanent and total inelastic strains, and Gft is the fracture energy in uniaxial
tension defined as the area under the linear stress-crack opening curve (Fig. 3).

The function hj in the evolution law of the plastic hardening parameter in Eq. (6) is chosen, for reasons described below,
as
hj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hm1i2 þ

m2

w

� �2

þ �m1

w

� �2
s

ð11Þ
where m1 ¼ og
orn

, m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
og
ors

2 þ og
ort

2
q

and
w ¼ cGfcðf 2
t hþ 2EGftðl� 1ÞÞ

Gftðc2f 2
t hþ 2EGfcðl� 1ÞÞ ð12Þ
The parameter Gfc in Eq. (12) is the fracture energy under compression.
Finally, the damage parameter
x ¼ fthjd1 þ 2Gftðq� 1Þ
2Gftq� fthjd2

ð13Þ
in Eq. (2) is defined by the two history variables jd1 and jd2.
The history variable jd1 is defined incrementally by the rate equation
_jd1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h_epni2 þ

_e2
ps þ _e2

pt

n2
1

þ h�_epni2

n2
1

s
ð14Þ



Fig. 3. Linear softening law: nominal stress r versus inelastic displacement w for uniaxial tension. The stress is reduced to zero at the critical crack opening
wf.
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where
n1 ¼
Gfc

Gftc
ð15Þ
The second history variable is defined as
_jd2 ¼ _q
ft

En2
ð16Þ
with the initial condition
jd2 ¼
ft

En2
ð17Þ
and
n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h_epni2 þ

n2
1 _e2

psþ_e2
ptð Þ

c2 þ n2
1h�_epni2

c2

r
k_epk

ð18Þ
The implementation and thermodynamical validity of the proposed model is described in Appendices A and B.

3. Discussion of the interface model

The proposed damage-plasticity interface model is calibrated by 8 input parameters. The elastic response is determined
by the parameters E and c, which are explicitly related to the elastic macroscopic Young’s modulus Em and Poisson’s ratio m
for regular arrangements of lattice elements [46]. The strength envelope is defined by the tensile strength ft, shear strength
sft and compressive strength cft. The inelastic deformations are controlled by the fracture energies Gft and Gfc for uniaxial
tension and uniaxial compression, respectively. Furthermore, the amount of permanent inelastic strains is controlled by
the factor l. These parameters are determined from tensile, shear and compressive tests of the material phases.

In the following, the meaning of the model parameters l is illustrated for the case of pure tension and compression. For
rq = 0, the yield surface in Eq. (8) has the form
r2
n þ rnqðc � 1Þft � cf 2

t q2 ¼ 0 ð19Þ
For pure tension (rn > 0), this quadratic equation gives
f ¼ rn � ftq ¼ 0 ð20Þ
According to Eqs. (5) and (6), the rates of the only non-zero plastic strain rate component _epn and the rate of the hardening
parameter _j are
_epn ¼ _j ¼ _k ð21Þ
The consistency conditions ( _f ¼ 0) has the form
_f ¼ _rn � ft _q ¼ E _en � _k
� �

� ftHp
_k ¼ 0 ð22Þ
which gives with Hp in Eq. (10) the rate of the plastic multiplier
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_k ¼ 2_enEGftl
2EGft � f 2

t h
ð23Þ
Hence, the total plastic strain for a monotonic increase of en > ft/E is
epn ¼
2 enE� ftð ÞGftl

2EGft � f 2
t h

ð24Þ
The first history variable jd1 is equal to the plastic strain epn, since eps = ept = 0 (Eq (14)). The second history variable jd2 in Eq.
(16) is
jd2 ¼
ft

E
ð1þ HpepnÞ ¼ en � epn ð25Þ
For x = 1, Eq. (13) gives
2Gft

fth
¼ jd1 þ jd2 ð26Þ
With jd1 = epn and jd2 = en � epn, this reduces to
2Gft

fth
¼ en ð27Þ
Hence, the ratio of the plastic strain in Eq. (24) and the total inelastic strain for x = 1 in Eq. (27) is
epn

en
¼ l ð28Þ
Thus, the parameter l determines the ratio of the plastic strain and total inelastic strain in uniaxial tension, which can be
determined from a tensile experiment with unloading close to complete failure (x � 1). The parameter l is independent
of the interface thickness h, which is achieved by introducing h in the expression of Hp in Eq. (10).

Now, the case of pure compression (rn < 0 and rq = 0) is considered. The yield surface in Eq. (8) gives
f ¼ rn þ cftq ¼ 0 ð29Þ
The plastic strain rate is
_epn ¼ � _k ð30Þ
The hardening parameter, according to Eqs. (6) and (11), is equal to
_j ¼ _khj ¼
_k
w

ð31Þ
The consistency condition _f ¼ 0 has the form
_f ¼ _rn þ cft _q ¼ Eð_en þ _kÞ þ cftHp

_k
w
¼ 0 ð32Þ
which gives with Hp in Eq. (10) and w in Eq. (12)
_k ¼ � E _en

Eþ cftHp
w

¼ � 2_enEGfcl
2EGfc � c2f 2

t h
ð33Þ
The total plastic strain for a monotonic decrease of en < � cft/E is
epn ¼
2 enEþ cftð ÞGfcl
2EGfc � c2f 2

t h
ð34Þ
The history variables jd1 and jd2 have the form
jd1 ¼ �
epn

n1
¼ �2cðenEþ cftÞGftl

2EGfc � c2f 2
t h

ð35Þ
and
jd2 ¼
ft

En2
1þ Hp

ð�epnÞ
w

� �
¼ � cG ften

Gfc
þ 2cGftlðenEþ cftÞ

2EGfc � c2f 2
t h

ð36Þ
For the compression case, Eq. (13) reduces to
2Gft

fth
¼ jd1 þ jd2 ¼ �

cenGft

Gfc
ð37Þ
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Hence, for x = 1 the inelastic strain is equal to the total strain
en ¼ �
2Gfc

cfth
ð38Þ
The ratio of plastic strain in Eq. (34) and inelastic strain in Eq. (38) is
ep

en
¼ l ð39Þ
Again, the model parameter l controls the ratio of plastic and total inelastic strain. For compression this ratio is more dif-
ficult to determine experimentally, since the post-peak response in uniaxial compression in experiments is strongly influ-
enced by the boundary conditions. Therefore, the model was constructed so that this ratio is the same for uniaxial
tension and compression. Combinations of normal and shear loading are modelled by Eqs. (12), (15) and (18).

The constitutive response of the interface model is demonstrated by the stress–strain response for fluctuating normal
strains for l = 1 and l = 0 (Fig. 4). The normal strain is increased to point A (A0). Then the strain is reduced to point B (B0)
and again increased to point C (C0). The parameter l controls the amount of plastic strains. For l = 0 a pure damage-mechan-
ics response is obtained and the stress–strain curve is unloaded to the origin. For l = 1, on the other hand, a pure plasticity
model is obtained. The unloading is elastic and the compressive strength is reached sooner than for l = 0. However, the
magnitude of the compressive strength is similar for l = 1 and l = 0, since the plasticity model is based on the effective
stress.
4. Two-dimensional analysis of heterogeneous materials subjected to cyclic loading

The interface model is applied to the two-dimensional plane stress analysis of an idealised heterogeneous material, which
consists of inclusions, matrix and interfacial transition zones separating the inclusions and the matrix. The present analyses
should be extended to 3D analysis in future work, since the two-dimensional analysis is a strong idealisation of the response
of concrete subjected to compression. A special lattice-type model developed by Refs. [29,47,33] is used to discretise the do-
main. The domain is decomposed into polygons by means of the Voronoi tesselation [48] (Fig. 5a). The lattice elements con-
nect the nodes of the polygons.

Each node possesses two translations and one rotation shown in the local coordinate system in Fig. 6. The degrees of free-
dom ue = {u1,v1,/1,u2,v2,/2}T of the two nodes of the lattice element are related to the displacement discontinuities
uc = {uc,vc}T at the mid-point C of the interface by
uc ¼ Bue ð40Þ
where
B ¼
�1 0 e 1 0 �e

0 �1 �he=2 0 1 �he=2

	 

ð41Þ
In Eq. (41), the variable he is the element length and e is the eccentricity, defined as the distance between the mid-points of
the lattice element and the corresponding polygon facet (Fig. 5).

In the present work, the element length he was chosen to be equal to the interface thickness h introduced in Eq. (1).



a b

Fig. 5. Discretisation: (a) Lattice elements (dashed lines) connecting nodes within Voronoi cells (solid lines). (b) Degrees of freedom l1, m1, /1, l2, m2 and /2

of the lattice element of length h in the local coordinate system. The point C at which the interface model is evaluated is in the center of the polygon facet at
a distance e from the center of the lattice element.

Fig. 6. Test specimens. (a) Geometry and loading setup, (b) lattice, (c) Voronoi polygons and (d) boundaries of the inclusions.
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The displacements uc at the point C are transformed into strains e = {en,es}T = uc/he (Fig. 5b). The strain e is related to the
stress r = {rn,rs}T by means of the two-dimensional version (rt = 0) of the damage-plasticity interface model presented ear-
lier. The element stiffness is
Table 1
Model p

Matrix
ITZ
Inclusio
Ke ¼
A
he

BT DB ð42Þ
where A is the length of the facet.
The nodes of the lattice elements are placed sequentially in the domain to be analysed. The coordinates of each node are

determined randomly and a minimum distance dm = 3 mm is enforced iteratively between the nodes [30]. For this iterative
process, the number of nodes n for a chosen domain Ad and the minimum distance dm determine the distribution of lengths
of lattice elements. This relationship can be expressed in the form of a density
q ¼ nd2
m

Ad
ð43Þ
For a regular arrangement of lattice elements resulting in equilateral triangles, the density results in q ¼
ffiffiffi
3
p

=2. In the present
study a smaller density of q = 0.6 was used.

The resulting irregular arrangement of lattice elements is more suitable for fracture analysis, since the fracture patterns
obtained are less sensitive to the arrangement of the lattice elements [49,50]. This is also known from continuum models
[51,52].
arameters

E (GPa) c ft (MPa) q c Gft (J/m2) Gfc

30 0.33 5 2 20 400 400000
48 0.33 1 2 20 80 80000

n 120 0.33 – – – – –
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The meso-structure of the heterogeneous material is discretised by lattice elements perpendicular to the boundary be-
tween the cylindrical inclusions and the matrix. The diameters of the inclusions are determined randomly from a cumulative
distribution function of the occurrence of the inclusion diameter d. A pseudo-random number generator is used to generate
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Fig. 7. (a) Experimental results reported in [2]. Stress–strain response obtained from the analysis for (b) l = 1 and (c) l = 0 for monotonic (dashed line) and
cyclic loading (solid line). Open circles in (b) and (c) mark the stages of the loading process for which the deformation patterns are shown in Fig. 8. Open
squares in (b) mark the stages in the first hysteresis loops for which the crack patterns are shown in Fig. 9.
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probabilities from which the diameter d is determined. This procedure is repeated until the chosen volume fraction qa of
circular inclusions is reached. The inclusions are placed sequentially by means of randomly generated coordinates within
the area of the specimen. For each set of generated coordinates, it is checked that no overlap with previously placed inclu-
sions occurs. However, overlap with boundaries is permitted, i.e. no boundary effect is considered. In the present analysis,
the inclusion distribution was obtained with a maximum and minimum diameter dmax = 32 mm, dmin = 10 mm, respectively,
and a aggregate volume fraction qa = 0.3.

The geometry, loading setup and the mesh of the plane stress analyses are shown in Fig. 6. The analyses were controlled
by the top displacement Dum. The strain in the axial direction is defined as em = Dum/L, where L is the height of the specimen.
The axial stress is defined as rm = P/Am, where P is the axial force and Am is the cross-section of the specimen. Furthermore,
the lateral expansion and rotation of the specimen ends was chosen to be restrained.

Three different types of analyses were performed. Firstly, the specimen was subjected to a uniform compressive load con-
trolled by the top displacement Dum. Secondly, the strain was increased in steps to em = 1%, 2%, 3%, 4%, with the strain being
reversed after each step so that rm = 0. Finally, the specimen was subjected to a fluctuating compressive stress rm with a
mean compressive strength of 0.5 fcm and an amplitude of 0.3fcm, where fcm is the macroscopic compressive strength of
the material. The values l = 1 and l = 0 were used to simulate materials with different ratios of permanent and total inelastic
displacements. For simplicity, the plastic potential was chosen to be equal to the yield surface f = g. All other material param-
eters were kept constant according to Table 1. The stiffness of the elastic inclusions was chosen to be four times greater than
the stiffness of the matrix. The stiffness of the lattice elements crossing the ITZ is the mean of the stiffness of the matrix and
the inclusions assuming that the size of the ITZ is significantly smaller than the size of the lattice elements. Furthermore, the
Fig. 8. Deformations magnified by a factor of five shown in the form of Voronoi polygons for (a) l = 1 and (b) l = 0 for the monotonic loading marked by
open circles in Fig. 7a and b.

Fig. 9. Active cracks for an (a) unloading and (b) reloading stage in the first hysteresis loop marked in Fig. 7a by open squares for l = 1. Black lines mark
polygon facets at which the damage variable increases at this stage of the analysis. For l = 0 no active cracks are visible.



Fig. 10. (a) Lattice and (b) Voronoi polygons for the test specimen without inclusions.
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strength and fracture energy of the ITZ are five times less than of the matrix. The parameter c = 0.33 corresponds to a Pois-
son’s ratio of m = 0.25 for the case of a regular lattice [46]. The tensile fracture energy of the matrix Gft is greater than nor-
mally used for concrete, since the two-dimensional analysis results in a less ductile response than a 3D analysis [40].
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Fig. 11. Stress–strain response without (a) inclusions and (b) ITZs for monotonic (dashed line) and cyclic loading (solid line) for l = 1. The tensile strength of
the matrix was reduced to 2.1 MPa.
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Experimental results reported in [2] are shown in Fig. 7a. The stress–strain responses for monotonic and cyclic loading for
l = 1 and l = 0 are presented in Fig. 7b and c. The deformation patterns for the post-peak stage for the monotonic loading
marked in Fig. 7 are shown in Fig. 8. Furthermore, crack patterns are shown in Fig. 9 for the unloading and reloading in the
first loop of the cyclic analysis in Fig. 7.

The monotonic response for l = 1 exhibits a greater strength and peak strain than the monotonic response for l = 0. This
difference is caused by the presence of volumetric–deviatoric coupling provided by the plasticity part of the present damage-
plasticity interface model [51]. Plastic flow in the shear direction leads to normal plastic strains, which, if restrained, activate
normal compressive stresses. These normal compressive stresses increase the shear capacity.

For l = 1, the stress–strain response shows strong hysteresis loops during unloading and reloading (Fig. 7a). The cyclic
loading leads to a reduction of the capacity of the structure so that the strength envelope obtained from the monotonic com-
pression test cannot be reached. The crack patterns in Fig. 9a show that the fracture process evolves during unloading and
reloading.

On the other hand, for l = 0, no hysteresis loops are visible in Fig. 7b and the unloading occurs to the origin. No active
cracks are visible during unloading and reloading. These results indicate that the hysteresis loops obtained with l = 1 are
caused by localised permanent displacements.

Two additional analyses were carried out to strengthen this hypothesis. Firstly, a specimen of the geometry shown in
Fig. 6a without inclusions and ITZs was analysed with l = 1. Secondly, an analysis with inclusions (Fig. 6d), but without ITZs,
was analysed with l = 1.

The materials without ITZs are expected to be stronger but more brittle than the three-phase material. Hence, the tensile
strength of the matrix material was reduced to ft = 2.1 MPa to reduce the elastic energy stored in the material and to avoid
numerical problems in the post-peak regime of the analyses. All other parameters are the same as in Table 1. The mesh for
the first analysis is shown in Fig. 10. For the analysis with inclusions, the mesh shown in Fig. 6b was used. The stress–strain
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Fig. 12. Stress–strain response obtained from fatigue analysis compared to monotonic analysis for (a) l = 1 and (b) l = 0.
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responses for cyclic loading (Fig. 11) exhibits significant permanent displacements, but no hysteresis loops. Hence, the hys-
teresis loops for the case with inclusions in Fig. 7a are caused by localised permanent displacements.

In addition, a fluctuating compressive stress was applied with a mean compressive stress of 0.5fcm and an amplitude of
0.3fcm, where fcm is the macroscopic compressive strength obtained from the monotonic analysis. The material parameters in
Table 1 were used. The stress–strain responses l = 1 and l = 0 are compared to the monotonic responses in Fig. 12. For l = 1,
failure of the specimen is obtained after 45 fluctuations. On the other hand, for l = 0 no fracture evolution is visible after 90
fluctuations.

5. Conclusions

In the present work, a new damage-plasticity interface model was proposed which enables one to control the ratio of per-
manent and reversible inelastic displacement occurring during the fracture process. The eight model parameters are directly
related to physical quantities.

The interface model was applied to the plane-stress analysis of an idealised heterogeneous material with cylindrical
inclusions and ITZ subjected to cyclic compressive stresses. The meso-scale approach with the new interface model results
in realistic failure patterns in the form of shear bands, as it is known from materials such as concrete. The amount of localised
permanent displacements has a strong influence on the material response for repeated loading. With localised permanent
displacements, the stress–strain curves are characterised by hysteresis loops and damage evolves during repeated loading.
Without ITZs the permanent displacements do not localise. Thus, for this case no hysteresis loops and no damage evolution
during repeated loading is obtained. Furthermore, without permanent displacement, unloading occurs to the origin and nei-
ther hysteresis loops nor damage evolution during repeated loading can be obtained.

Hence, the proposed interface model has the potential to model the cyclic response of heterogeneous materials by means
of a meso-scale approach, since the interface model permits one to control the ratio of permanent and total inelastic dis-
placements. Current work focuses on a detailed study of the influences of the other model parameters on the response of
concrete subjected to cyclic loading [53] and an extension of the meso-scale analysis to triaxial stress states.
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Appendix A. Thermodynamical aspects

The response of concrete in cyclic compression is characterised by hysteresis loops that occur during repeated unloading
and reloading. During these loading cycles, energy is dissipated. Macroscopic models, which describe these loops phenom-
enologically have to be carefully designed to ensure thermodynamical admissibility. The present modelling approach is dif-
ferent since the loops are a structural result of localised irreversible strains on the constitutive level. Therefore, the unloading
and reloading path on the constitutive level is identical, i.e. no hysteresis loops are prescribed. Nevertheless, it is useful to
check whether the model satisfies the dissipation inequality.

The free energy of the present damage-plastic model is chosen to be
qwðe; ep;xÞ ¼
1
2
ð1�xÞðe� epÞDeðe� epÞ ð44Þ
Here, q is the density (specific mass) and w is the Helmholtz free energy per unit mass. Furthermore, isothermal processes
are considered, so that the temperature remains constant and is not explicitly listed among the state variables.

The dissipation rate per unit volume is defined as
_D ¼ r_e� q _w ¼ r_e� oqw
oe

_eþ oqw
oep

_ep þ
oqw
ox

_x
� �

ð45Þ
The derivative of the free energy with respect to the strain results in the stress–strain relation
oqw
oe

_e ¼ ð1�xÞðe� epÞDe _e ¼ r_e ð46Þ
Therefore, the dissipation rate in Eq. (45) reduces to
_D ¼ _Dp þ _Dd ¼ oqw
oep

_ep þ
oqw
ox

_x ð47Þ
where the term
_Dp ¼ oqw
oep

_ep ¼ ð1�xÞðe� epÞDe _ep ð48Þ
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and
_Dd ¼ oqw
ox

_x ¼ 1
2
ðe� epÞDeðe� epÞ _x ð49Þ
are the plastic and damage dissipation, respectively. The damage dissipation in Eq. (49) is always positive, since the rate of
the damage parameter x is defined to be positive. For f = g, the plastic dissipation
_Dp ¼ ð1�xÞðe� epÞDe _ep ¼ _kð1�xÞ�r of
o�r

ð50Þ
fulfils Drucker’s postulate and is guaranteed to be positive as well.

Appendix B. Implementation

The constitutive model has been implemented within the lattice framework. The continuous loading process is replaced
by incremental time steps. In each step, the boundary value problem (global level) and integration of the constitutive laws
(local level) are solved. For the boundary value problem on the global level, the usual incremental-iterative solution strategy
is used, either in the form of the standard Newton–Raphson iteration with the algorithmic tangent stiffness, or in the mod-
ified form with the tangent stiffness replaced by the secant stiffness
Ds ¼ ð1�xÞDe ð51Þ
In the former case, the convergence rate is quadratic, but divergence may occur in steps, during which localisation of the
inelastic deformation occurs. On the other hand, the secant stiffness is more robust. However, the convergence rate is only
linear.

For the local problem, the updated values of the stress and the internal variables at the end of the step are obtained by a
fully implicit integration of the rate form of the constitutive equations, starting from their known values are the beginning of
the step and applying the given strain increment De = en+1 � en. The integration scheme is divided into two sequential steps,
corresponding to the plastic and damage parts of the model. In the plastic part, the plastic strain ep and the effective stress r
at the end of step are obtained.

The plasticity part of the integration scheme is based on an elastic trial and a plastic corrector step. At the end of the step
the following residuals should vanish
R1 ¼ �eðnþ1Þ
p þ eðnÞp þ Dk

og
o�r

ð52Þ

R2 ¼ �jðnþ1Þ þ jðnÞ þ Dkhðnþ1Þ
j ð53Þ

f ðnþ1Þ ¼ f ð�rðnþ1Þ;Dk;jðnþ1ÞÞ ð54Þ
The iterative change of the plastic strain is related to the iterative change of the stress by the linear relation
�dep ¼ D�1
e d�r ð55Þ
The linearisation of the residuals in Eqs. (52)–(54) around the state (n + 1) leads to the following set of linear equations for
the unknown iterative corrections d�r and dj:
R1 þ D�1
e d�rþ dk

og
o�r
þ Dk

o2g
o�r2 þ

o2g
o�roj

 !
¼ 0 ð56Þ

R2 � djþ dkhj þ Dk
ohj

o�r
þ ohj

oj

� �
¼ 0 ð57Þ

f þ of
o�r

d�rþ of
oj

dj ¼ 0 ð58Þ
Using the first two equations, the iterative correction d�r and dj can be expressed in terms of the correction of the plastic
multiplier, dk:
d�r

dj

� �
¼ �N

R1

R2

� �
þ dk

og
o�r

hj

( ) !
ð59Þ
where the matrix N is defined as
N ¼
D�1

e þ Dk o2g
o�r2 Dk o2g

o�ro�j

Dk ohj
o�r

�1þ Dk ohj
oj

 !�1

ð60Þ
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Substituting Eq. (59) into Eq. (58) and solving for the correction of the plastic multiplier, we obtain
dk ¼
f � of

o�r
hj

n o
N

R1

R2

� �

of
o�r

of
oj

n o
N

of
o�r

hj

( ) ð61Þ
In Eqs. (56)–(61) the superscript (n + 1) was omitted since all terms in question are evaluated at (n + 1). The corrections d . . .

in Eq. (59) are used to update the cumulative increments D . . . and the final values at the end of the step. The iteration is
repeated until the residuals Rðnþ1Þ

1 , Rðnþ1Þ
2 and f(n+1) vanish.

The integration of the damage part is very efficient since the rate forms of the two history variables jd1 and jd2 are eval-
uated without an iterative procedure. Once the history variables are determined, the damage parameter x is evaluated and
the nominal stress is computed as
r ¼ ð1�xÞ�r ð62Þ
The algorithmic stiffness is determined by differentiating the stress-return algorithm with respect to the strain increment
[57]. We consider an incremental step from the initial strain en to the final strain e = en + De, for which the stress-evaluation
procedure provides the final stress r. If the strain increment is changed by de, the step from e(n) to e(n) + De + de leads to the
final stress r. The aim is to find dr on de provided that de is infinitesimal but De is finite. The change of the nominal stress
dr ¼ ð1�xÞd�r� �rdx ð63Þ
follows from the linearised form of Eq. (2).
The change d�r is determined from Eq. (59) and the change of of the damage parameter x = gd(jd1,jd2) results in
dx ¼ dgd

djd1

djd1

dep
dep þ

dgd

djd2

djd2

de
deþ djd2

dj
dj

� �
ð64Þ
where dj is determined from Eq. (59) and dep is obtained from Eq. (55).
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Abstract

The present parametric study deals with the meso-scale modelling of concrete subjected to cyclic com-
pression, which exhibits hysteresis loops during unloading and reloading. Concrete is idealised as a two-
dimensional three-phase composite made of aggregates, mortar and interfacial transition zones (ITZs).
The meso-scale modelling approach relies on the hypothesis that the hysteresis loops are caused by
localised permanent displacements, which result in nonlinear fracture processes during unloading and
reloading. A parametric study is carried out to investigate how aggregate density and size, amount of
permanent displacements in the ITZ and the mortar, and the ITZ strength influence the hysteresis loops
obtained with the meso-scale modelling approach.

1 Introduction

Concrete subjected to cyclic compressive loading is characterised by a strongly nonlinear response. Un-
loading and reloading is accompanied by nonlinear fracture processes on the meso-scale, such as debonding
and slip between inclusion and matrix, which result in hysteresis loops [1, 2, 3, 4]. Furthermore, repeated
loading of concrete subjected to cyclic loading may lead to failure although the stress applied is below
the strength obtained for monotonic loading.

Many phenomenological constitutive models were developed over the last 30 years, which can describe
the hysteresis loops and the fatigue strength observed in experiments. Examples are constitutive models
based on bounding surface models [5, 6, 7] or special combinations of damage and plasticity [8]. These
phenomenological constitutive models have only limited predictive capabilities since they are based on
curve fitting and not on the mechanics of the underlying physical processes. Therefore, they cannot
predict reliably the response of concrete outside the range of experimental results available.

Recently, the present authors have proposed a damage-plasticity interface model to describe the response
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of concrete subjected to cyclic loading [9]. In this approach concrete was idealised as a three phase-
composite consisting of aggregates, mortar and interfacial transition zones (ITZs). A special lattice
model was used to descretise the different phases [10, 11]. The meso-scale modelling of hysteresis loops
and fatigue strength was based on the assumption that the nonlinear fracture processes during unloading
and reloading are caused by localised permanent displacements. The amount of permanent displacements
was controlled by a damage-plasticity interface model which was applied to the mortar and ITZ phase.
Aggregates were assumed to respond elastically. This meso-scale modelling approach may have better
predictive qualities than macroscopic phenomenological models, since the macroscopic response can be
designed by changing the response of the meso-scale constituents. Nevertheless, each of the three phases
has a complex heterogeneous microstructure, which again requires numerical modelling by means of
phenomenological models or multiscale analysis in which the mechanical response of the three phases is
determined by their micro-structures [12, 13, 14].

In the present work, this meso-scale modelling direction is further pursued and a parametric study is
performed to investigate the influence of several model parameters on the description of hysteresis loops.
The first two parameters are the volume fraction of aggregates and the aggregate size, which are related
to the random discretisation of the composite. Furthermore, three material parameters, which influence
the amount of permanent displacements in the mortar and the ITZ and control the ratio of the strength
of mortar and interfacial transition zone, are investigated. This parametric study is similar to other
parametric studies presented in the literature on the modelling of concrete [15, 16]. Nevertheless, the
present work is focused on the meso-scale modelling of concrete subjected to cyclic loading. This is a
direction which has not been pursued before to the authors knowledge.

2 Modelling approach

In the present study the response of concrete subjected to cyclic loading is analysed with a damage-
plasticity interface model, which was developed in [9]. In the following paragraphs, the modelling approach
is briefly reviewed to introduce the parameters, which are investigated in the present study. The interface
model relies on a combination of a plasticity model formulated in the effective stress space and isotropic
damage mechanics. For the two-dimensional version of the model, the displacement jump uc = (un, us)

T

at an interface is considered, which is transferred into strains ε = (εn, εs)
T by means of the length h as

ε =
uc

h
(1)

The strains are related to the nominal stress σ = (σn, σs)
T

as

σ = (1 − ω)De (ε − εp) = (1 − ω) σ̄ (2)

ω is the damage variable, De is the elastic stiffness, εp = (εpn, εps)
T is the plastic strain and σ̄ = (σ̄n, σ̄s)

T

is the effective stress. The elastic stiffness is

De =

{

E 0
0 γE

}

(3)

where E and γ are model parameters controlling both the Young’s modulus and Poisson’s ratio of the
material.

The small strain plasticity model is based on the effective stress σ̄ and consists of the yield surface,
flow rule, evolution law for the hardening parameter and loading and unloading conditions. A detailed
description of the components of the plasticity model is presented in [9]. The initial yield surface is
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Figure 1: Stress-strain response for fluctuating normal strains for µ = 1 (solid line) and µ = 0 (dashed
line).

determined by the tensile strength ft, by the ratio s of the shear and tensile strength, and the ratio c of
the compressive and tensile strength. The evolution of the yield surface during hardening is controlled by
the model parameter µ, which is defined as the ratio of permanent and reversible inelastic displacements.
The scalar damage part is chosen so that linear stress inelastic displacement laws for pure tension and
compression are obtained, which are characterised by the fracture energies Gft and Gfc.

The eight model parameters E, γ, ft, s, c, Gft, Gfc and µ can be determined from a tensile, shear and
compressive test of the material phase.

The constitutive response of the interface model is demonstrated by the stress-strain response for fluctu-
ating normal strains for µ = 1 and µ = 0 (Figure 1). The normal strain is increased to point A (A

′

). Then
the strain is reduced to point B (B

′

) and again increased to point C (C
′

). The parameter µ controls the
amount of plastic strains. For µ = 0 a pure damage-mechanics response is obtained and the stress-strain
curve is unloaded to the origin. For µ = 1, on the other hand, a pure plasticity model is obtained.
The unloading is elastic and the compressive strength is reached sooner than for µ = 0. However, the
magnitude of the compressive strength is similar for µ = 1 and µ = 0, since the plasticity model is based
on the effective stress. The constitutive model describes the loss of stiffness and permanent strains, but
it does not represent the hysteresis loops for unloading and reloading. Instead, these loops are obtained
from the structural analysis, which is discussed in the following section.

The interface model is applied to the two-dimensional plane stress meso-scale analysis of concrete. A
special lattice-type model developed by [17, 18, 10] is used to discretise the domain. The domain is
decomposed into polygons by means of the Voronoi tessellation [19] (Figure 2a). The lattice elements
connect the centroids of the polygons. Each node possesses two translations and one rotation shown in
the local coordinate system in Figure 2b. The degrees of freedom ue = {u1, v1, φ1, u2, v2, φ2}T

of the

two nodes of the lattice element are related to the displacement discontinuities uc = {uc, vc}T
at the

mid-point C of the interface by
uc = Bue (4)

where

B =

[

−1 0 e 1 0 −e
0 −1 −h/2 0 1 −h/2

]

(5)

In Eq. (5), the variable h is the element length and e is the eccentricity, defined as the distance between
the mid-points of the lattice element and the corresponding polygon facet, respectively (Figure 2). The
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displacements uc at the point C are transformed into strains ε = {εn, εs}T = uc/h (Figure 2b). The

strain ε is related to the stress σ = {σn, σs}T
by means of the two-dimensional version (σt = 0) of the

damage-plasticity interface model presented earlier. The element stiffness is

Ke =
A

h
B

T
DB (6)

where A is the length of the facet.

The nodes of the lattice elements are placed sequentially in the domain to be analysed. The coordinates of
each node are determined randomly and a minimum distance dm = 3 mm is enforced iteratively between
the nodes [20]. For this iterative process, the number of vertices n for a chosen domain Ad and the
minimum distance dm determine the distribution of lengths of lattice elements. This relationship can be
expressed in the form of a density

ρ =
nd2

m

Ad

(7)

The resulting irregular arrangement of lattice elements is more suitable for fracture analysis, since the
fracture patterns obtained are less sensitive to the arrangement of the lattice elements.

The meso-structure of the heterogeneous material is discretised by lattice elements perpendicular to
the boundary between the cylindrical inclusions and the matrix. The diameters of the inclusions are
determined randomly from the cumulative distribution function

Pf =

1 −
(

φmin

d

)2.5

1 − α−2.5
(8)

where Pf is the probability of the occurrence of the inclusion diameter d. Furthermore, α = φmax/φmin,
where φmin and φmax are the minimum and maximum diameters, respectively [21]. A pseudo-random
number generator is used to generate probabilities from which the diameter d is determined by means
of the inverse of Eq. (8). This procedure is repeated until the chosen volume fraction ρa of circular
inclusions is reached. The inclusions are placed sequentially by means of randomly generated coordinates
within the area of the specimen. For each set of generated coordinates, it is checked that no overlap with
previously placed inclusions occurs. However, overlap with boundaries is permitted, i.e. no boundary
effect is considered.

Figure 2: Discretisation: (a) Lattice elements (dashed lines) connecting centroids obtained with the
Voronoi tesselation (solid lines). (b) Degrees of freedom u1, v1, φ1, u2, v2 and φ2 of the lattice element
of length h in the local coordinate system. The point C at which the interface model is evaluated is in
the center of the polygon facet at a distance e from the center of the lattice element.

4



(a) (b) (c) (d)

Figure 3: Concrete in uniaxial compression: a) Geometry and loading setup, (b) Lattice (c) Voronoi
polygons (d) Boundaries of the inclusions.

Table 1: Model parameters.

Phase E [GPa] γ ft [MPa] s c Gft [J/mm2] Gfc [J/mm2] µ
Mortar 30 0.33 5 2 20 400 40000 1

Interface 48 0.33 1 2 20 80 8000 1
Aggregate 120 0.33 - - - - - -

3 Parametric study

The present parametric study deals with the modelling of concrete subjected to cyclic loading. A three-
dimensional concrete cylinder subjected to cyclic uniaxial compression tested by Sinha, Gerstle and Tulin
[1] was idealised by means of a two-dimensional meso-scale plane stress model. Concrete was represented
by a three-phase composite consisting of mortar, aggregates and interfacial transition zones between the
two phases.

The meso-structure was discretised by means of a random lattice based on the Voronoi tesselation of the
domain. The mesh was generated with a vertex density of ρ = 0.6 and a minimum distance of dm = 3 mm.
This vertex density is close to the saturated vertex density which was determined by Bolander and Saito
in [10] as ρ = 0.68. The aggregate distribution was obtained with dmax = 32 mm, dmin = 10 mm and
ρa = 0.3. The geometry, loading setup and one exemplary mesh are shown in Figure 3.

The concrete specimen subjected to monotonic and cyclic compression was analysed with the model
parameters shown in Table 1. The axial average stress was determined as σ = P/d, where P is the axial
force, ∆u is the axial displacement and d is the width of the specimen. Correspondingly, the axial average
strain was defined as ε = ∆u/L, where L is the height of the specimen. The analysis results in the form of
the average stress-strain curves for monotonic and cyclic loading are compared to the experimental results
in Figure 4. A reasonable qualitative agreement between the modelling response and the experimental
results is obtained. The deformation pattern in the post-peak regime are presented in Figure 5.
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Figure 4: Stress-strain responses obtained from (a) the meso-scale analysis and from (b) experiments
reported in [1].
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Figure 5: Deformations magnified by a factor of five shown for the monotonic loading.

Five parameters, which are likely to have a strong influence on the modelling of concrete subjected to
cyclic loading, are studied:

1. Volume fraction of aggregates.

2. Aggregate size.

3. Ratio of permanent and total inelastic displacements in the ITZ phase.

4. Ratio of permanent and total inelastic displacements in the mortar phase.

5. Ratio of the mortar and interface strength.

The first two parameters, which are related to the aggregate distribution, require random lattice gener-
ations. Random meshes and the random positions of the aggregates influence the average stress-strain
response. Therefore, the influence of different discretisations on the response of monotonic and cyclic
compressive loading is initially analysed by means of five analyses with the same aggregate size and
distribution, but with random geometry. The five different meshes are presented in Figure 6.

The response for both monotonic and cyclic compressive loading was analysed. For cyclic loading, the
specimens were subjected to four cycles. The strain was increased in steps to εm = 0.5%, 1%, 1.5%, 2%,
with the strain being reversed after each step so that σm = 0. The same loading history was applied for all
the analyses in the present parametric study. The results for the influence of the random positions of the
aggregates and the random orientation of the lattice elements are presented in Figure 7 for monotonic and
in Figure 8 for cyclic loading in the form of average stress-strain relations. The random discretisation has
a small influence on the pre-peak regime, whereby the peak and post-peak regime is strongly influenced.
Nevertheless, the scatter of the simulations is reasonable compared to the one obtained experimentally
by van Mier in [3].

The first of the five parameters is the volume fraction ρa. The response for three volume fractions
ρa = 0.3, 0.15 and 0 were analysed. For ρa = 0 the resulting, stress-strain curves exhibit snap-back in the
post-peak regime. To avoid numerical problems, the tensile strength of the mortar phase was reduced to
ft = 2.1 MPa. The other model parameters are the same as in Table 1. The distribution of the randomly
placed aggregates is presented in Figure 9.

The average stress-strain response for the different aggregate volume fractions is presented in Fig-
ures 10 and 11 for monotonic and cyclic loading, respectively. For the monotonic response, a decrease
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Figure 6: Five random meshes with the same aggregate density and size distribution. Lattice elements
which describe the ITZs between aggregates and mortar are not shown to improve the clarity of the
illustration.

-30

-25

-20

-15

-10

-5

 0

-5 -4 -3 -2 -1  0

st
re

ss
 σ

 [M
P

a]

strain ε [mm/m]

Figure 7: Stress-strain responses obtained for monotonic loading for five meshes with different aggregate
arrangements and discretisations.
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Figure 8: Stress-strain responses obtained for cyclic loading for five meshes with different aggregate
arrangements and discretisations.

(a) (b) (c)

Figure 9: Lattices for aggregate densities of (a) ρa = 0.3, (b) ρa = 0.15, (c) ρa = 0. Lattice elements
which describe the interface between aggregates and mortar are not shown to improve the clarity of the
illustration.
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Figure 10: Stress-strain responses for monotonic loading for three aggregate densities of ρa = 0.3, 0.15
and 0. The tensile strength of the mortar phase for the specimen with ρa = 0 was reduced to ft = 2.1 MPa
to avoid snap-back in the post-peak regime.
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Figure 11: Stress-strain responses for cyclic loading for three aggregates densities ρa = 0.3, 0.15 and 0.
The tensile strength of the mortar phase for the specimen with ρa was reduced to ft = 2.1 MPa to avoid
snap-back in the post-peak regime.
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(a) (b) (c)

Figure 12: Lattice elements for the size range of (a) dmax/dmin = 3.2, (b) dmax/dmin = 2.1, (c)
dmax/dmin = 1.3.

of the aggregate fraction results in an increase of the compressive strength. This strong influence of
the aggregate fraction is explained by the weak interfaces. With an increasing number of interfaces, the
strength of the composite is reduced. For the cyclic response, a decrease of the aggregate volume fraction
leads to a decrease of the size of the hysteresis loops. The occurrence of hysteresis loops is based on the
existence of weak zones, in which permanent displacements localise. If the number of these localised zones
of permanent displacements is reduced, the nonlinear fracture processes during unloading and reloading
is decreased and the resulting hysteresis loops are smaller.

The second parameter studied is the ratio of the maximum and minimum aggregate size dmax/dmin. Three
size ratios of dmax/dmin = 3.2, 2.1 and 1.3 were chosen. For all three cases, the maximum aggregate size
was dmax = 32 mm. The meshes are displayed in Figure 12.

The average stress-strain curves for monotonic and cyclic compressive loading for the different aggregate
size ratios is shown in Figures 13 and 14. The difference between the curves is small and falls in the range
of scatters obtained by the initial study of the influence of the discretisation. Thus, the size ratio does
not influence the monotonic and cyclic response strongly. The remaining three parameters are related
to the material response and are independent of the discretisation used. Therefore, the results for these
parameters are obtained with the same discretisation.

The next two parameters studied are related to the ratio of permanent and total inelastic displacements in
the ITZ and mortar phase. This ratio is equal to the model parameter µ. The present meso-scale approach
for cyclic loading is based on the hypothesis that the occurrence of localised permanent displacements
is the main cause for the presence of the hysteresis loops. Consequently, a reduction of the permanent
displacements (decrease of µ) should result in smaller hysteresis loops. The ratios µ = 1, 0.95 and 0.9
were used. The monotonic and cyclic stress-strain curves for the three ratios of the ITZ phase are shown
in Figure 15 and Figure 16, respectively. The size of the hysteresis loops decreases with increasing ratio
of permanent and total inelastic displacements. This corresponds to the hypothesis that the hysteresis
loops are caused by localised permanent displacement.

Furthermore, the influence of the permanent displacements in the mortar phase is studied. Again, the
same values of µ = 1, 0.95, 0.9 were used. The average stress-strain relations for monotonic and cyclic
loading are presented in Figures 17 and 18. The ratio of the mortar phase has almost no influence on
the pre-peak regime, since almost all nonlinearities result from the nonlinearities at the ITZs. However,
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Figure 13: Stress-strain responses for monotonic loading for three aggregate-size ranges of dmax/dmin =
3.2, dmax/dmin = 2.1 and dmax/dmin = 1.3.

-30

-25

-20

-15

-10

-5

 0

-5 -4 -3 -2 -1  0

st
re

ss
 σ

 [M
P

a]

strain ε [mm/m]

Size 10-32
Size 15-32
Size 25-32

Figure 14: Stress-strain responses for cyclic loading for three aggregate-size ranges of dmax/dmin = 3.2,
dmax/dmin = 2.1 and dmax/dmin = 1.3.

12



-30

-25

-20

-15

-10

-5

 0

-5 -4 -3 -2 -1  0

st
re

ss
 σ

 [M
P

a]

strain ε [mm/m]

µ=0.9
µ=0.95
µ=1

Figure 15: Stress-strain responses for monotonic loading for µ = 1, 0.95 and 0.9 of the ITZ phase.

-30

-25

-20

-15

-10

-5

 0

-5 -4 -3 -2 -1  0

st
re

ss
 σ

 [M
P

a]

strain ε [mm/m]

µ=0.9
µ=0.95
µ=1

Figure 16: Stress-strain responses for cyclic loading for µ = 1, 0.95 and 0.9 of the ITZ phase.
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Figure 17: Stress-strain responses for monotonic loading for µ = 1, 0.95 and 0.9 of the mortar phase.

in the post-peak regime nonlinear displacements occur in the mortar phase.

Finally, the influence of the ratio of the strength of ITZ and mortar was investigated. Three strength
ratios of fi/fm = 0.1, fi/fm = 0.2 and fi/fm = 0.3 were considered. The average stress-strain relations
for monotonic and cyclic loading are shown in Figures 19 and 20.

The strength ratio of ITZ and mortar has a strong influence on the monotonic and cyclic response. The
compressive strength increases with an increased ITZ/mortar strength ratio, since the strength of the
weak zones (ITZs) is increased. For the cyclic response, the size of the hysteresis loops decreases with
increasing interface strength, since less permanent displacements take place at the interfaces between
mortar and aggregates.

4 Conclusions

In the present work a meso-scale modelling approach developed in [9] was used for a parametric study
of the modelling of concrete subjected to cyclic compression. Concrete was idealised by a three-phase
composite consisting of mortar, aggregates and interfacial transition zones. Five parameters were investi-
gated: aggregate volume fraction, aggregate size, ratio of the permanent and total inelastic displacements
in the ITZ and mortar phase ,and the ratio of the strength of the interfacial transition zone and the mortar
phase. The influences of the different parameters are summarised as following:

• A decrease of the volume fraction of aggregate increases the ultimate strength of concrete, since
fewer aggregates correspond to a reduction of ITZs, which weaken the material. A decrease of
volume fraction reduces also the size of the hysteresis loops, since the number of ITZs, at which
permanent displacements take place, are reduced. Localised permanent displacements are the main
reason for the occurrence of hysteresis loops in the present meso-scale modelling approach.

• The size range of aggregates does not strongly influence the response of concrete subjected to
monotonic and cyclic loading.
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Figure 18: Stress-strain responses for cyclic loading for µ = 1, 0.95 and 0.9 of the mortar phase.
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Figure 19: Stress-strain responses for monotonic loading for interface-mortar strength ratios of fti/ftm =
0.1, 0.2 and 0.3.
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Figure 20: Stress-strain responses for cyclic loading for interface-mortar strength ratios of fti/ftm = 0.1,
0.2 and 0.3.

• A decrease of the amount of permanent displacements in the ITZ phase results in a reduction of
the size of the hysteresis loops.

• A decrease of the amount of permanent displacements in the mortar phase results in a decrease of
the size of the loops in the post-peak regime, in which localised permanent displacements occur in
the mortar phase.

• Finally, the ratio of the strength of the interfacial transition zone and the mortar has a strong
influence on both the monotonic and cyclic response. An increase of the strength of ITZ leads to
an increase of the compressive strength, since the amount of permanent displacements in the ITZs
is reduced. Furthermore, the size of the hysteresis loops is decreased as well.
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Abstract

Lately, it has become important to analyse existing concrete structures subjected
to cyclic loading. A structures designed lifetime is often based on cyclic loads.
Therefore, it is of importance to develop analysing methods that are accurate and
reliable. The purpose of this report is to increase the understanding of the response
of concrete subjected to cyclic loading. The model is a dual-model based on two sub-
models: a damage sub-model and a plasticity sub-model. Their individual responses
are rationed by a material parameter. The resulting constitutive response describes
mechanisms observed in experimental results: hysteresis loops, non-linear unloading,
low-stiffness unloading and energy dissipation due to hysteresis loops.

Key words: cyclic loading, fatigue, concrete, damage, plasticity, energy dissipation.
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1 Introduction

Cyclic loading of concrete is one of many deterioration mechanisms that cause large
economical costs for the society. With an increased understanding these costs can be
cut. To reach better knowledge it is of importance to study the complex phenomenon
of underlying mechanisms that generate the response of concrete subjected to cyclic
loading, i.e. low cycle fatigue and normal state of confinement. In addition, the
complexity increases if the cycles exhibit stress reversal, meaning that the stress
is reversed during a cycle. In applications including reinforcement, the concrete is
often cracked already in working conditions. Therefore, it is of interest to study the
behaviour of cracked concrete. The response of concrete subjected to cyclic loading is
highly non-linear after cracking as well as during crack closure of cyclic unloading. In
addition, the increased damage of a softened concrete decreases the cyclic unloading-
and cyclic loading stiffness. However, the characteristic hysteresis loops related to
cyclic loading remain and exists in all stages for tension and compression.

Research that identifies these characteristic hysteresis loops has been done (among
others, (Gopalaratnam and Shah, 1985; Plizzari et al., 1997; Gylltoft, 1983; Karsan
and Jirsa, 1969; Sinha et al., 1964; Holmen, 1979; Reinhardt et al., 1986)) and models
based on the concept of bounding surface, introduced by (Dafalias, 1986), have been
used to model the phenomenon on macro-level: (Voyiadjis and Abulebdeh, 1993,
1994; Yang et al., 1985; Winnicki and Cichon, 1998; Pandolfi and Talercio, 1998;
Abu-Lebdeh and Voyiadjis, 1993). Some models use plasticity, damage mechanics,
and the combination of both to describe the non-linear response of concrete, e.g.
models (Papa and Taliercio, 1996; Ragueneau et al., 2000; Desmorat et al., 2007).
The knowledge about concrete subjected to fluctuating load is not extensive, though
some attempts have been made (Reinhardt et al., 1986; Gylltoft, 1983; Tepfers,
1978; Clemmer, 1922; Crepps, 1923; Murdock and Kesler, 1958; Murdock, 1965;
Reinhardt, 1984). (Grassl and Rempling, 2008) and (Rempling and Grassl, 2008)
gave an interpretation of the mechanisms involved in cyclic loading of concrete by
means of a meso-scale study. This investigation adds to these findings by reaching
for larger structures on macro-level. The purpose of this study is to develop a model
that is based on the physical understandings of concrete subjected to cyclic loading
in the post-peak region. Moreover, mechanisms of cyclic loading are identified and
investigated to present their contribution to the characteristic response.

2 Physical background of proposed model

Next, the response of cyclic loading is discussed to motivate the development and
choices made during the development of the proposed model.

From experiments of concrete subjected to cyclic loading it is observed that the
response is highly non-linear in compression as well as in tension for loading and
unloading. The non-linear response stems from plastic sliding deformation in the
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weak zones around the aggregates, see (Grassl and Rempling, 2008) and (Rempling
and Grassl, 2008). In the continuation of the loading, micro-cracks form in the
cement paste. These micro-crack bands bridge the aggregate-weak zones causing
larger continuous damage zones. The damage zones cause the plastic deformation
to increase. Finally, macro-cracks develop from the damage zones that generate
irregular crack surfaces. These irregular surfaces are an important factor for the
non-linear response of loaded concrete when observed at the unloading state. At
unloading, the response is initially elastic, but as the irregular surfaces of the macro-
crack meet, the fit of the surfaces is not perfect and sliding of the surfaces is forced
to recover the plastic deformations of the loaded concrete.

Also, from deformation controlled uniaxial test of concrete in tension (Reinhardt
et al., 1986; Gopalaratnam and Shah, 1985; Gylltoft, 1983; Tepfers, 1978; Reinhardt,
1984; Hordijk, 1991), a highly non-linear response is observed that exhibit increased
level of damage after peak-load with increasing deformation. The same process as
for cyclic loading is identified: plastic deformation increases in the localised zone
with increased deformation. These two characteristic parts of the response call for a
model that is based on damage mechanics and the theory of plasticity. Damage and
plasticity have earlier been coupled, e.g. (Simo and Ju, 1987; Lee and Fenves, 1998;
Grassl and Rempling, 2006; Jason et al., 2004), to describe concrete. In this study a
dual-model is proposed which is a parallel combination of damage mechanics and the
theory of plasticity (Figure 1). Furthermore, a material parameter is introduced that
controls their relative contribution to the stiffness of the modell. The purpose of the

(1 − αe)De

ε
σD σD

σP σP

αeDe εp

1 − ω

Figure 1: Rheological model of the dual-model.

parallel combination is that the plastic part should reflect the plastic deformation
between aggregate and mortar; while, the damage part should reflect the overall
softening response. This parallel combination calls for a softening of both parts as
no residual stress can be transferred over a localised crack. Therefore, the plastic
part softens with a softening modulus after peak-load while the damage part softens
by an isotropic damage parameter.
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The sliding of crack surfaces of concrete subjected to cyclic loading motivates the
choice of a plastic part that consists of two yield surfaces: one outer-yield surface and
one inner-yield surface. The outer-yield surface bounds the admissible stress state
and is a yield surface of standard fashion. When violated, plastic flow is present,
which increases the plastic deformations in the localised zones. On the contrary, at
unloading, the stress is bound close to zero to represent the closure of the irregular
crack surfaces. A hypothesis is presented that suggests that this sliding of crack
surfaces is related to an energy that is released due to the change of shape, but not
the change in volume.

This paper also investigates the concrete subjected to stress reversal and a variable
that determines the state of stress is proposed. When a loaded state in tension
unloads the initial unloading response is elastic. The response is elastic until a
stress state close to zero is reached. This response is understood as the closure of
micro-cracks. When the crack surfaces meet, sliding of the irregular crack surfaces
is initiated. This sliding continues until the crack surfaces are completely closed.
Then, the stiffness is recovered and the stress state is considered as compression.

3 Thermodynamic configuration

According to Clasius-Duheim Inequality, for an isotermic system (∇T = 0, where T
is the temperature) with the mass density ρψ and the free energy ψ, the dissipation
rate of energy is

Ḋ = σ : ε̇ − ρψψ̇ ≥ 0 (1)

in which σ : ε̇ is the external work due to the stress σ and the strain ε.

The free energy depends on the reversible elastic strains εD
e and εP

e . In addition,
the free energy depends on the irreversible damage ω and the plastic hardening
parameter κp

ψ(εD
e , ε

P
e , ω, κp). (2)

Hence, the rate of the free energy is obtained as

ψ̇ =
∂ψ

∂εD
e

: ε̇D
e +

∂ψ

∂εP
e

: ε̇P
e +

∂ψ

∂ω
ω̇ +

∂ψ

∂κp

κ̇p. (3)

In the proposed model the reversible strain for the damage part of the dual-model
is identical to the total strain

εD
e = ε. (4)

However, for the plastic part of the dual-model the reversible strain is obtained in
standard fashion according to

εP
e = ε − εp. (5)

By using Equations 1, 3, 4 and 5, the dissipated energy rate can be derived as
(

σ − ρψ
∂ψ

∂εD
e

− ρψ
∂ψ

∂εP
e

)

: ε̇ + ρψ
∂ψ

∂εP
e

: ε̇P
p − ρψ

∂ψ

∂ω
ω̇ − ρψ

∂ψ

∂κp

κ̇p ≥ 0. (6)
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This relation should always be valid even if the inelastic strain or damage have not
evolved; thereby, the nominal stress σ is defined as (Figure 1)

σ = σD + σP = ρψ
∂ψ

∂εD
e

+ ρψ
∂ψ

∂εP
e

. (7)

Using Equation 7 in Equation 6 the Clasius-Duheim-Inequality can be rewritten to

Dωω̇ +
(

σP : ε̇p +Dκκ̇p

)

≥ 0 (8)

where the energy conjugates Dω and Dκ are introduced

Dω = −ρψ
∂ψ

∂ω
(9)

and

Dκ = −ρψ
∂ψ

∂κp

. (10)

In the proposed model the free energy can be split in a damage- and a plastic part
as

ψ(εD
e , ε

P
e , ω, κp) = ψD(εD

e , ω) + ψP(εP
e , κp). (11)

The proposed damage part has a scalar damage

ρψψ
D(εD

e , ω) =
1

2
(1 − αe)(1 − ω)εD

e : De : εD
e (12)

where De is the elastic stiffness tensor and αe is a material parameter that defines
the distribution of free energy between the damage- and the plastic part. The free
energy of the plastic part can be defined by the elastic response together with linear
hardening, assuming rate-independent inelastic stress-strain behaviour of the plastic
part:

ρψψ
P

(

εP
e , κp

)

=
1

2
αeε

P
e : De : εP

e +
1

2
κpHκp (13)

where H is the hardening modulus for yielding.

The stress in Equation 7 can now be determined as

σD = ρψ
∂ψ

∂εD
e

= ρψ
∂ψD

∂εD
e

= (1 − αe)(1 − ω)De : εD
e = (1 − αe)(1 − ω)De : ε (14)

and

σP = ρψ
∂ψ

∂εP
e

= ρψ
∂ψP

∂εP
e

= αeDe : εP
e . (15)

Now, consider the dissipation of energy by expanding the terms of the rewritten
dissipation equation (Equation 8), which gives the following:
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• For the plastic term assuming a non-associated flow rule

σP : ε̇p +Dκκ̇p = σP : λ̇
∂g

∂σP
+Hκpλ̇

∂qh
∂κp

≥ 0 (16)

where λ̇ is the rate of the plastic multiplier and qh is the hardening function;

• while, for the damage term

Dωω̇ =
1

2
ω̇(1 − αe)ε : De : ε ≥ 0. (17)

To assure a thermodynamic admissibility Equations 16 and 17 can conservatively
be evaluated separately, so that each one is assured to dissipate energy from the
system.

3.1 Dissipation of energy in the damage part

First, consider loading of the inequality that regards the damage variable, Equation
17. For loading, the dissipation due to damage is assured as ω̇ only can increase by
definition which gives positive values for all states of stress and strain. However, at
unloading, when changing from tension to compression, ω̇ is negative. Although,
the volumetric part of the stress is zero in this point the deviatoric stress may not.
This drawback is a consequence of the decoupled variant of the plastic and damage
parts.

3.2 Dissipation of energy in the plastic part

Normally, the yield surface is defined by stress invariants. Thereby, Equation 16 can
be rewritten by Haigh-Westergaard coordinates (σP = [ξ ρ]) according to

σP : λ̇
∂g

∂σP
+Hκpλ̇

∂qh
∂κp

= λ̇

(

ξ

[

∂g

∂σP

]

1

+ ρ

[

∂g

∂σP

]

2

+Hκp

∂qh
∂κp

)

≥ 0 (18)

and the characteristics of the individual components can be identified. The charac-
teristics depend on the fact that fluctuating load is considered, i.e. different char-
acteristics for compression and tension. These characteristics can be summarised
as:

• λ̇ – is positive by definition, Equation 35.

• ξ – is positive for tension loading, but negative for compression loading.

•
[

∂g

∂σP

]

1
– determines the amount of plastic strain in the volumetric direc-

tion (ξ).

• ρ – is positive by definition for tension as well as compression.
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•
[

∂g

∂σP

]

2
– determines the amount of plastic strain in the deviatoric direction (ρ).

• H is the hardening/softening modulus.

• κp is the plastic hardening parameter.

• qh is the hardening function. The derivative of the hardening function by
the plastic hardening parameter is assumed to be: for tension ∂qh

∂κp

= 1 and

compression ∂qh
∂κp

= 0.

Assume a plastic potential that defines the direction of the plastic flow according to
the Drucker-Prager definition:

g(ξ, ρ) = αψξ + ρ (19)

where αψ is the dilatancy coefficient which controls the volumetric part of the plastic
strain.

Three cases are identified and evaluated below for the plastic part: A, the outer-yield
surface in compression; B, the outer-yield surface in tension; and C, the inner-yield
surface in compression and tension.

A Consider the outer-yield surface in compression to define
[

∂g

∂σP

]

1
. For com-

pression, ∂qh
∂κp

= 0. Hence, the first component of the plastic potential can be

defined by the relation between the volumetric and deviatoric stresses accord-
ing to

[

∂g

∂σP

]

1

=
−ρ
ξ

(20)

B Consider the outer-yield surface in tension (ξ ≥ 0). In accordance with, A,
the first term of the plastic potential is defined as

[

∂g

∂σP

]

1

=
−ρ−Hκp

∂qh
∂κp

ξ
(21)

and
[

∂g

∂σP

]

2
= 1, according to Equation 19. Hence, H can be stated as

H ≥
−ξ

[

∂g

∂σP

]

1
+ ρ

κp
∂qh
∂κp

. (22)

C Consider the inner-yield surface in tension and compression with H = 0. As-
suming a plastic potential with no volumetric evolution, i.e.

g∅(ρ) = ρ. (23)

Then,
[

∂g∅

∂σP

]

1
= 0 and

[

∂g∅

∂σP

]

2
= 1, which yields a positive dissipation for all

states of ρ.
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Figure 2: Different values of αψ for the plastic potential with regard to the outer-
yield surface.

As given above there may exist states of stress where the model is not thermody-
namical admissible. Those states are dependent on the choice of αψ. In Figure 2
different plastic potential functions are plotted, to identify for which compressive
states a certain value of αψ is valid. The value of αψ = 0.86 corresponds to biaxial
compression.

λ̇ ≥ 0 according to the loading/unloading conditions in Equation 35.

This satisfies the Clausius-Duheim inequality and assures that choices made within
the given limits result in a thermodynamical admissible model.

4 Constitutive configuration

The nominal stress σ is composed by a damage- and a plastic part as presented in
Equation 7. Consequently, the nominal-stress – strain relationship can be presented
as

σ = σD + σP = (1 − αe)(1 − ω)De : εD
e + αeDe : εP

e . (24)

Next follows the constitutive configuration of these parts.

4.1 Damage part

The damage variable ω is a scalar, thus the damage model is an isotropic damage
model. Though, the damage variable is only valid for tension, which results in a
stiffness recover at deformation reversal, understood as at unloading of a localised
crack the stiffness is recovered at complete closure of the crack. The evolution of
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damage is defined by the loading function

fD = ε̃− κD (25)

where the equivalent strain is determined according to

ε̃ =
√

εD
e : εD

e =
√

ε : ε; (26)

κD is the damage-history variable which is computed as the maximum equivalent
strain that the model has experienced according to

κD = max(ε̃). (27)

At a completely localised and opened crack no stress transfer is possible. This is
considered by a material parameter εf that defines, for uniaxial tension, a linear
softening law which is dependent on the ultimate strength ft and the strain

σD = (1 − κD

εf

)ft. (28)

The linear softening law and the damage stress (Equation 14) is used for deriving
the damage function

ω(κD) =







0 ε0 ≥ κD

1−
ε0

κ
D

1−
ε0

ε
f

ε0 < κD ≤ εf
(29)

where ε0 is the strain at the onset of damage. Equation 29 is used for computing the
damage parameter in tension (σv > 0), while for compression (σv ≤ 0) the damage
parameter is set to zero.

To consider localisation the smeared crack approach is used, i.e. the crack width
is smeared over the length of the element in the direction of the largest principal
strain.

4.2 Plastic part

The plastic stress of the dual-model was derived in Equation 15. The plastic part
of the dual-model consists of an outer- and an inner-yield surface. These control
if yielding is present for loading or unloading, respectively. The yield surfaces are
illustrated in Figure 3. The presence of an inner-yield surface is of fundamental art
when describing cyclic loading, as it has been observed in experiments that plastic
flow evolve during unloading (Reinhardt et al., 1986; Gylltoft, 1983, among others).

The choice of the shape of the outer-yield surface depends on the physical interpre-
tation of concrete in compression and tension. It is observed in experiments (e.g.
(Imran, 1994)) that the shape of the final strength varies along the hydrostatic axis
as illustrated in Figure 3. For limitations to reasonably high confined stress states
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this shape can be considered as open, as illustrated to the upper-left in Figure 3.
The outer-yield surface has the shape of a circle in the deviatoric stress space, as
shown to the lower-left in Figure 3. For high hydrostatic pressure the shape of a
circle in the deviatoric stress space is considered as a correct interpretation (Jirasek
and Bazant, 2001). However, at low hydrostatic pressure the shape of a triangle
is more correct. Thus, experiments show that there is an evolution of the shape
during increasing hydrostatic pressure from a triangular- to a circular shape in the
deviatoric stress space. Though, for simplicity the shape of an circle is assumed in
this work.

On the opposite, the choice of the shape of the inner-yield surface is only dependent
on the fact that it should bound the stress and exhibit plastic flow during unloading;
therefore, a shape of von Mises was chosen as it was considered to be suitable. This
is shown to the right in Figure 3. As unloading starts from a loaded state, there is a
need for activation of the inner-yield surface for stress states inside the inner-yield
surface.

Outer-yield surface Inner-yield surface

ρ

ξ

ρ

ξ

σ1

σ2σ3

σ1

σ2σ3

Figure 3: Illustration of the outer- and inner-yield surfaces. Above, the volumetric
stress space (Haigh-Westergaard coordinates) is given and below the deviatoric stress
space.

Next follows a deeper presentation of the outer- and inner-yield surface.

4.2.1 Outer-yield surface

The stress state is bound by the outer-yield surface chosen according to the Ottosen
yield surface proposed by (Ottosen, 1977). The Ottosen yield surface has the shape
as illustrated to the left in Figure 3 and is therefore limited to reasonable high
confined stress states in compression. The Ottosen yield surface is stated as

fP =
C1

fc

(ξ −H∗
P) +

C2

fc

ρ+
C3

f 2
c

ρ2 − 1 (30)
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∂qh
∂κp

σv

Figure 4: Evolution of the plastic-strain-history variable.

where C1, C2 and C3 are material parameters given at input and H∗
P is the softening

function.

In Chapter 3 a non-associated flow rule is assumed. For the outer-yield surface a
potential from the Drucker-Prager criterion was chosen according to

g(ξ, ρ) = αψξ + ρ (31)

The evolution of the plastic strain consequently becomes

ε̇p = λ̇
∂g

∂σP
. (32)

Softening of the plastic part of the model is needed to achieve a stress-free, fully
opened crack. This is introduced in the plastic part by a linear softening function
H∗

p which is valid for tension, while for compression it is equal to zero, i.e. perfect
plasticity is applied for compressive states. To achieve a stress-free, fully opened
crack the plastic stress must soften in accordance with the damage stress. The
softening function is driven by the plastic-strain-history variable κp that evolves
with its evolution function ∂qh

∂κp

(Figure 4) according to

κ̇p =

{

λ̇ ∂qh
∂κp

if σv ≥ 0

0 if σv ≤ 0
(33)

The evolution of κp depends on the stress state that is defined by the volumetric
stress σv. This is a fundamental issue of cyclic loading, why it is discussed last in
this section (Chapter 4.3).

Finally, the softening function is defined as

H∗
p = Hκp (34)

where H is the softening modulus.

The Kuhn-Tucker loading/unloading conditions of the outer-yield surface are defined
in standard fashion. The yield function must remain negative in the elastic regime at
the same time as the rate of the plastic multiplier must be zero, or remain constant
at reloading. However, in the plastic regime the rate of the plastic multiplier must
be positive. The loading/unloading conditions for compression and tension are

fP ≤ 0 λ̇ ≥ 0 λ̇fP = 0 (35)
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4.2.2 Inner-yield surface

As discussed in the introduction, a non-linear unloading response is observed for
compression as well as for tension due to the sliding of crack zones/surfaces. This is
treated by an inner-yield surface chosen according to von Mises, which bounds the
deviatoric stress states close to zero.

f ∅ = ρ− f ∅
y ; (36)

f ∅
y is the inner-yield stress.

As commented sliding of crack surfaces happens for a stress state close to zero
during unloading. Therefore, the inner-yield surface can not be active during the
whole unloading process, as the unloading starts from a loaded state. This calls for
an activation rule of the inner-yield surface. The authors define unloading by the
increment of the largest principal strain according to ∆ε1 ≤ 0 and propose negative
distortional energy (WP

D ≤ 0) as an activation rule of the inner-yield surface. The
distortional energy corresponds to the deviatoric part of the energy according to

WP
D =

1

2
sP : e (37)

where sP = σP − σP
v δ is the deviatoric stress and

e = ε − εvδ is the deviatoric strain.

As commented the evolution of the plastic deformation during unloading of concrete
is an important issue to consider. Before, it was derived for a non-associated flow rule
that there exists a conservative limitation of the evolution of plastic strain. However,
for the chosen inner-yield surface the derivation corresponds to an associated flow
rule

ε̇p = λ̇
∂f ∅

∂σP
(38)

that restrains the volumetric rate of the plastic strain to zero due to the nature of
the inner-yield surface.

The loading/unloading conditions of the inner-yield surface are the same as for the
outer-yield surface

f ∅ ≤ 0 λ̇ ≥ 0 λ̇f ∅ = 0. (39)

4.3 Stress reversal – determination of stress state

To consider stress reversal in a 3-dimensional stress state, there stems a need of a
variable that determines the state of tension or compression. The volumetric stress
σv = σ : δ is proposed as variable for determine the stress state. The choice of
σv limits the model to only consider volumetric-stress reversal as deviatoric-stress
reversal is not defined by σv. Thus, cyclic-stress reversal is defined parallell to the
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hydrostatic axis only. Voyiadjis and Abulebdeh ((Voyiadjis and Abulebdeh, 1994))
make a different approach. They define plastic unloading in the deviatoric plane
by means of the distance from the current stress point to the tensile meridian.
This distance is normalised with the current distance between the hydrostatic axis
and the yield surface. That concept introduces complexities which are not easily
penetrated and hide limitations of the formulation. The dual-model instead intend
to always change sign of the stress close to zero, which makes the current stress
state well defined as well as whether it is loading, unloading or reloading in tension
or compression.

5 Implementation

The present model is implemented in the framework of finite elements and the
loading process is divided into discrete time steps. At the end of each step the
boundary value problem and the integration of the constitutive model are solved.

For the global problem (boundary value problem) the tangent-stiffness matrix

Dep = (1 − αe)(1 − ω)De + De −
(1 − αe)(1 − ω) + αe

αe

De : ∂g

∂σ ⊗ ∂f

∂σ : De

∂f

∂σ : De : ∂g

∂σ
(40)

is used, where the gradient of the yield law is defined as:

• For the outer- and inner-yield surfaces, respectively

∂fP

∂σ
=
C1√

3
δ + C2 + 2C3J2

√
2

2
√
J2

s (41)

and
∂f ∅

∂σ
= J2

√
2

2
√
J2

s. (42)

• The gradient of the plastic potential of the outer- and the inner-yield surface,
respectively

∂g

∂σ
=

α√
3
δ +

√
2

2
√
J2

s. (43)

and
∂g∅

∂σ
=
∂f ∅

∂σ
. (44)

In the above equations J2 = 1/2s : s is the second stress invariant.

For the case of pure damage αe = 0 a problem of division by zero arises in the
definition of the tangent-stiffness matrix, Equation 40. This problem is avoided by
using the secant-stiffness matrix

Ds = (1 − ω)De (45)
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ε(n)
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∂κp

ε(n)
p
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v
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else(return ω)
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Figure 5: Flow chart of the major steps of the implemented dual-model.
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for the case of pure damage.

The solving is divided into sequential steps of (Figure 5): Firstly, solving the plastic
part that generates the plastic strain εp and the plastic-stress σP and secondly,
solving the damage part that generates the isotropic damage variable ω and the
damage-stress σD. The stresses are then added to yield the nominal stress at the
end of the step n.

5.1 Damage part

The solving of the local problem of the damage part is efficient as the equivalent
strain ε̃ is determined by the total strain ε according to Equation 26.

5.2 Plastic part

The stress return algorithm computes the stress coordinates on the yield surface by
the direction defined by the plastic flow potential, starting from the trial stress, i.e.
the stress on the yield surface is the projection of the trial stress on the yield surface.
This is a procedure which consists of solving a number of non-linear equations. The
method of closest point projection is used for solving these non-linear equations.
The shape of the plastic potential in the deviatoric plane determines the lode angle
of the trial stress and the stress on the yield surface. If the lode angle is the same
for both cases the number of non-linear equations are significantly reduced, which
is the case for the proposed dual-model. Then, the number of non-linear equations
to solve is reduced to four; each of the non-linear equations has a residual that
should be zero at equilibrium. Thus, when the norm of the residuals is close to zero
convergence is reached. The following residuals are identified for the stress return
algorithm used for the dual-model:

R
(n+1)
1 = −ε(n+1)

p,ξ + ε
(n)

p,ξ + ∆λ

(

∂g

∂ξ

)(n+1)

(46)

R
(n+1)
2 = −||ε(n+1)

p,ρ || + ||ε(n)
p,ρ|| + ∆λ

(

∂g

∂ρ

)(n+1)

(47)

R
(n+1)
3 = −κ(n+1)

p + κ(n)
p + ∆λ

(

∂qh
∂κp

)(n+1)

(48)

f (n+1) = f(ξ(n+1), ρ(n+1),∆λ, κp). (49)

In the above first two equations the plastic strains correspond to the volumetric
plastic strain (εp,ξ = 1/3(εp,1 + εp,2 + εp,3)) and the length of the deviatoric plastic
strain, respectively.
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6 Constitutive response

The constitutive response was used to evaluate the involved parameters that are
important for the cyclic response. For the analyzes the presented material param-
eters in Table 1 was used. First, a general response of three different cyclic loads
are presented. Second, the influence of αe is discussed and finally the distortional
energy WD for different cases of loading is presented and discussed.

Table 1: Material parameters chosen for the analyses

E ν ε0 εf H αψ
30 MN/m2 0.18 0.0095 %� 1.0 %� 0.1E 0.1

C1 C2 C3 fc f ∅
y

5.25 3.55 0.5 16.5 MN/m2 1 kN/m2

6.1 General response

For the general response on constitutive level three different loadings are considered
to be interesting because they capture the most likely loadings to occur:

1. Three cycles after peak-load in uniaxial tension, unloaded to a nominal stress
0.2 MPa (Figure 6)

2. Three cycles after peak-load in uniaxial tension, unloaded to a nominal stress
−3.0 MPa (Figure 7)

3. Three cycles after peak-load in uniaxial tension, unloaded to a strain of −11.0 %�,
−10.75 %� and −10.50 %� (Figure 8)

For the analyses αe = 0.3 was chosen as this was evaluated during the analyses to
be a reasonable value, see Section 6.2.

The stress-strain response of cyclic loading after peak-load in tension is presented in
Figure 6. Initially the response is elastic, but after peak-load damage deteriorates
the stiffness and the response softens. At 1.70 %� the first unloading is performed.
The response is elastic, but the stiffness has been reduced by the damage. At
approximately 1.1 %� unloading plastic flow is initiated. When a stress of 0.2 MPa
is reached reloading is performed with the same stiffness as for unloading. At the
completeness of a hysteresis loop softening once again is initiated and the stiffness
deteriorate.

In Figure 7 and 8 the unloading is continued so that a stress reversal is achieved.
The low stiffness at unloading is recovered when the model enters a stress state of
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compression. In Figure 7 the response in compression is elastic, while in Figure 8 the
unloading is continued to initiate plastic flow in compression. The perfect plastic
response assumed in compression is shown in Figure 8.

-3

-2

-1

 0

 1

 2

 3

 0  0.5  1  1.5  2  2.5

St
re

ss
 [

M
Pa

]

Strain [‰]

αe=0.3

Figure 6: Response of an uniaxial deformation with αe = 0.3. Three cycles (1,2,3)
are loaded to a strain of: 1.70 %�, 2.0 %� and 2.25 %�, respectively and unloaded to
a stress of 0.2 MPa.
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Figure 7: Response of an uniaxial deformation with αe = 0.3. Three cycles are
loaded to a strain of: 1.70 %�, 2.0 %� and 2.25 %�, and unloaded to a stress of
−3.0 MPa.
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Figure 8: Response of an uniaxial deformation with αe = 0.3. Three cycles are
loaded to a strain of: 1.70 %�, 2.0 %� and 2.25 %�, and unloaded to a strain of
−11.0 %�, −10.75 %� and −10.50 %�.

6.2 The influence of αe on the stress-strain response

In Figure 9 the extremities of αe that corresponds to a pure plastic- or damage
response of the dual-model is shown for one cycle in uniaxial tension unloaded to
−3.0 MPa. During the elastic- and softening phase the response is similar, but at
unloading the pure damage configuration unloads with a damaged stiffness to the
origin; while the pure plastic response unloads with the same stiffness as the initial.
When the plastic configuration reach zero stress plastic flow at unloading is initiated
and evolves as long as the distortional energy is negative or the stress is reversed.
To present the influence of αe on the hysteresis loops three values are presented in
Figure 10 for one cycle unloaded to −3.0 MPa. It shows that a value of αe which
corresponds to higher contribution of the damage part leads to a reduced size of the
hysteresis loops, because of the reduction of plastic flow. It can also be observed
that the deviation from the initial softening branch differs for different values of αe:
a higher contribution of the plastic part results in a larger deviation. This increased
deviation is motivated by the larger sized hysteresis loop and is a consequence of a
larger plastic flow; hence, further development on the softening branch of the plastic
part. From this discussion a reasonable value of αe =∼ 0.3 is extracted for further
application.

6.3 Study of the distortional energy WD

One of the most important variables in the dual-model is the distortional energy
WD as it controls the duration of yielding at unloading. WD is studied for one cycle
that ends at 0 deformation. In Figure 11 and 11 c the stress-strain response and the
distortional energy is shown for the earlier considered values of αe, respectively. To
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Figure 9: Response of an uniaxial deformation with αe = 1.0 and αe = 0.0.
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Figure 10: Response of an uniaxial deformation with αe = 0.7, αe = 0.5 and αe =
0.3.

get an idea of a pure response no confinement is added at this stage. In the stress-
strain response (Figure 11) the consequence of increased contribution of the plastic
part is observed as increased unloading stiffness and amount of plastic deformation
of unloading. There is a small difference in the response after peak-load, but before
unloading. This difference shows that the softening branch depends on αe through
the term αeω found in the stress-strain relationship (Equation 24). Observing the
evolution of distortional energy in Figure 11 c shows that no negative energy is
produced for the case of pure damage. While, for an increased contribution of
plasticity the duration of negative distortional energy is approximately the same.

In the next step confinement is added with fixed lateral boundaries, which intro-
duce a lateral state of tension that decreases the elastic phase of loading as well
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Figure 11: Analyses without lateral confinement for: αe = 0, αe = 0.3, αe = 0.5,
αe = 0.7, and αe = 1.0. a/ Stress-strain response, b/ evolution of the stress and c/
behaviour of the distortional energy WD.

as unloading (Figure 12 a). In contrast to the unconfined response the confined
unloading unloads towards a confined state due to the volumetric-plastic expansion
during yielding of loading. A plastic unloading state is observed for all cases with
αe ≥ 0 and is very dominant for the pure plastic case. At this point the stiffness
changes since the plastic deviatoric stress component has reached the inner-yield sur-
face. The deviatoric stress component decreases rapidly during unloading because of
the high lateral stress components. Thus, when all the nominal-stress components
intersect the inner-yield surface is reached. For fixed boundaries the distortional
energy decreases rapidly after peak-load which results in a larger phase of negative
distortional energy compared to the response of free boundaries (Figure 11).

In Figure 13 the response from the case with fixed boundaries (Figure 12) is pre-
sented in stress-invariants. The figures explain the change of stiffness at unloading
seen in Figure 12 a. The change of stiffness is related to the plastic flow. As plastic
flow occurs for αe ≥ 0 the point of stress-return shifts along the yield surface. This
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Figure 12: Analyses with fixed boundaries for: αe = 0, αe = 0.3, αe = 0.5, αe = 0.7,
and αe = 1.0. a/ Stress-strain response, b/ evolution of the stress and c/ behaviour
of the distortional energy WD.

shift is dependent on a load direction that is not normal to the yield surface; thus,
nor is the elastic predictor. However, the plastic corrector is evaluated along the
normal to the plastic potential. This type of plastic flow consequently yields the
shift along the yield surface. In Figure 13 it is seen that for αe = 0 there is no
change of stiffness and no sliding along the yield surface; while, for αe ≥ 0 this
sliding increases and the stress drops consequently during plastic flow.

In Figure 14 the evolution of distortional energy of two confinement states are com-
pared to the above presented states of free- and fixed boundaries. The results are
concluded as:

• An increase in duration of negative distortional energy is observed for states of
positive lateral strain. This is due to increased volumetric-plastic strain when
loading and unloading is applied.

• For negative lateral strain the amount of produced distortional energy is in-
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Figure 13: Haigh-Westergaard coordinates for fixed boundaries: a αe = 0, b/ αe =
0.5, and c/ αe = 1.0.

creased compared to positive lateral strain. This is related to smaller volumetric-
plastic strain.
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Figure 14: Behaviour of the distortional energy WD = 1/2s : e for: αe = 0.3.

7 Conclusions

A constitutive model was developed that aims at describing the response of concrete
subjected to cyclic loading in tension with stress reversal to reasonable high com-
pression stress. The proposed model is based on a parallel combination of plasticity
and damage mechanics. The following parameters are proposed and considered to
be decisive for describing concrete subjected to cyclic loading:
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• A parameter that controls the contribution to the overall stiffness of the two
theories, αe. This parameter also influences the size of the characteristic hys-
teresis loops of cyclic loaded concrete: a value that corresponds to more dam-
age decreases the size of the hysteresis loops.

• A parameter that controls the stress state, σv. This choice limits the model
to only consider volumetric cyclic-unloading, i.e. stress reversal parallel to
the hydrostatic axis. The benefit of this choice is that the stress state is well
defined.

• A parameter that determines the duration of yielding of cyclic-unloading, WD,
which is influenced by αe and lateral confinement.

Thus, it can be concluded that the constitutive response of the model agrees
with the physical reality: The over-all softening response is described with
the damage part, while the plastic deformation at cyclic-loading as well as
-unloading is described by the plastic part. In addition, the damage part de-
creases the cyclic-unloading stiffness. Moreover, completed hysteresis loops de-
creases the remaining fracture energy so that a new softening trend is achieved.
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Nomenclature

˙ Superscript: Rate of ...

n Superscript: Number of iterations

D Superscript: ... of the damage part

P Superscript: ... of the plastic part

Trial Superscript: Trial state

∅ Superscript: ... of inner yield surface

e Subscript: Elastic part of ...

p Subscript: Plastic part of ...

1 Subscript: First variable of principal direction

ρ Subscript: Deviatoric part of ...

ξ Subscript: Volumetric part of ...

C1, C2, C3 Ottosen yield surface material parameter

Dep Tangential stiffness matrix

Ds Secant stiffness matrix

D Dissipation of energy

Dκ Energy conjugate

Dω Energy conjugate

e Deviatoric part of the strain

f Loading- and yield function

fy Yield stress

gΩΩ Second derivative of the plastic potential
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gΩ First derivative of the plastic potential

G Elastic shear modulus

g Plastic potential

H Hardening modulus for yielding

H∗
P Softening function of the plastic part in tension

J2 Second stress invariant

K Elastic bulk modulus

qh Hardening function

R1,2,3 Residuals for the plastic part

s Deviatoric part of the stress

T Temperature

W Energy

WD Distortional energy

WV Volumetric part of the energy

αe Distribution of free energy between damage and plastic part

αφ Dilatancy coefficient of the outer-yield surface potential

δ Iterative change

δ Kronecker delta

ε̃ Equivalent strain

ε0 Uniaxial strain at the onset of damage

εf Uniaxial strain for which no stress transfear is possible

εv Volumetric part of the strain

ε Strain tensor

κ History variable

λ PLastic multiplier

ψ Free energy

ρ Haigh-Westergaard coordinate for the deviatoric stress
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ρψ Mass density

σv Volumetric part of the stress tensor

σ Stress tensor

ξ Haigh-Westergaard coordinate for the volumetric stress
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