SOx storage and release kinetics for ceria-supported Pt

Downloaded from: https://research.chalmers.se, 2021-11-07 16:32 UTC

Citation for the original published paper (version of record):
SOx storage and release kinetics for ceria-supported Pt
Applied Catalysis B: Environmental, 91(3-4): 679-682
http://dx.doi.org/10.1016/j.apcatb.2009.07.002

N.B. When citing this work, cite the original published paper.
SO$_x$ storage- and release kinetics for ceria supported platinum

Markus Happela, Lisa Kylhammarb,d, Per-Anders Carlssonb,d,*, Jörg Libudaa, Henrik Grönbeckc,d and Magnus Skoglundhb,d

aDepartment of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, D-91058 Erlangen, Germany
bDepartment of Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
cDepartment of Applied Physics, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
dCompetence Centre for Catalysis, Chalmers University of Technology, SE-412 96 Göteborg, Sweden

Abstract

The SO$_x$ storage- and release kinetics on CeO$_2$ have been studied by lean SO$_x$ adsorption and temperature programmed desorption for different pairwise configurations of individual monolith samples, i.e., Pt/CeO$_2$+SiO$_2$, Pt/SiO$_2$+CeO$_2$, CeO$_2$+Pt/SiO$_2$ and CeO$_2$+SiO$_2$. In the case of sole ceria, lean SO$_x$ adsorption proceeds both via SO$_2$ and SO$_3$ adsorption although the latter channel is kinetically favored. Hence, the rate of SO$_2$ oxidation is crucial for the overall SO$_x$ storage kinetics. It is found that physical contact between Pt and ceria is important for the storage process. This is attributed to efficient transport routes for SO$_x$ (surface
diffusion and spill-over processes) and/or specific adsorption sites at the platinum-ceria interface. The main route for SO\textsubscript{x} release is found to be thermal decomposition where the effect of platinum is minor, although, in similarity with the storage kinetics, an indirect role could be present. Different mechanistic scenarios for SO\textsubscript{x} adsorption are addressed and discussed which may serve as a guide for future experiments.

Key words: sulfur trap, adsorption, desorption, SO\textsubscript{2} oxidation, noble metal-support interaction, CeO\textsubscript{2}, Pt

1 Introduction

Energy-efficient solutions for propulsion within the transportation sector are likely to involve oxygen excess (lean) combustion [1]. A possible concept to reduce the NO\textsubscript{x} levels in the resulting (net-) lean exhausts is NO\textsubscript{x} storage catalysis [2]. However, the NO\textsubscript{x} storage catalyst (NSC) has a high affinity towards sulfur oxides (SO\textsubscript{x}) which poison the storage sites and lead to severe deactivation. Thus, the NSC should not be exposed to even small amounts of SO\textsubscript{x} originating from fuels and/or lubricants. It is challenging to find appropriate solutions to this durability issue as emission standards need to be fulfilled over an expected useful period [4]. One strategy is to prevent SO\textsubscript{x} from reaching the NSC by including a, so-called, sulfur trap upstream the NSC in the aftertreatment system. Two different types of upstream sulfur traps have been proposed earlier, i.e., disposable [3] and regenerable [5]. Here, the latter is considered to be used under continuously lean conditions.

* Corresponding author.

Email address: perc@chalmers.se (Per-Anders Carlsson).
Other concepts based on, for example, incorporation of SO\textsubscript{x} trapping materials in the NSC formulation that can store and release SO\textsubscript{x} under lean and rich conditions, respectively, have also been reported [6,7]. Such systems, however, are not treated here.

In a previous study [5] it has been found that for continuously lean conditions, CeO\textsubscript{2}-based materials are suitable for regenerable SO\textsubscript{x} traps. The design target in this case was to store SO\textsubscript{x} by adsorption below 500°C and release stored SO\textsubscript{x} by thermal desorption above 600°C. The addition of platinum was measured to significantly enhance the SO\textsubscript{x} storage. However, the actual role of platinum was not clarified although various scenarios were speculated on viz. importance of SO\textsubscript{2} oxidation and spill-over of SO\textsubscript{x} species.

In the present work, the influence of SO\textsubscript{2} oxidation and noble metal-support interaction on SO\textsubscript{x} adsorption- and desorption kinetics for Pt/CeO\textsubscript{2} is studied in more detail.

2 Experimental section

2.1 Sample preparation and characterization

The supported platinum samples were prepared by impregnating ceria and silica, respectively, with halogen-free platinum precursors. Ceria (99.5 H.S.A. 514, Rhône-Poulenc) was dispersed in distilled water and an aqueous solution of platinum(II)nitrate (Pt(NO\textsubscript{3})\textsubscript{2}, Heraeus GmbH) was gently added to the ceria slurry under continuous stirring. The slurry was, thereafter, instantly frozen with liquid nitrogen and freeze-dried. The resulting powder was calcined in air at 600°C for 1 h (heating rate of 4.8°C/min from 25 to 600°C). The corre-
sponding procedure was used to prepare the Pt/SiO$_2$ sample by impregnating colloidal silica (20 nm spherical particles, Nyacol 2034DI, Eka Chemicals) with an aqueous solution of tetraammineplatinum(II)nitrate (Pt(NH$_3$)$_4$(NO$_2$)$_2$, Degussa AG). The platinum load was for both catalysts 5% by weight.

Four types of monolith samples were prepared by immersing bare cordierite monoliths (⌀=20 mm, length=18 mm, 400 cpsi) in water slurries containing a binder and, respectively, Pt/CeO$_2$, Pt/SiO$_2$, CeO$_2$ and SiO$_2$ material. A colloidal ceria sol (10-20 nm spherical particles, Nyacol CeO$_2$(Ac), Nyacol Nano Technologies) and colloidal silica sol (20 nm spherical particles, Nyacol 2034DI, Eka Chemicals) was used as a binder for the ceria and silica materials, respectively. The coated monolith samples were then dried in air at 90°C for 2 min and calcined at 600°C for 5 min also in air. By repeating this procedure, 1 g of the respective coating was attached to each sample. All samples were calcined in air at 600°C for 90 min and stabilized in a mixture of 1% CO, 0.15% C$_3$H$_8$ and 2% O$_2$ (Ar as balance) using a total flow of 3000 ml/min.

2.2 SO_2 adsorption- and desorption experiments

The adsorption- and desorption experiments were carried out using a gas-flow reactor described elsewhere [5]. Briefly, it consists of a horizontal quartz tube surrounded by a metal coil for resistive heating of the gas flow and the samples. Gases are introduced via individual mass flow controllers and the gas temperature in front of the sample is controlled by a Eurotherm regulator. The reactor is equipped with a Fourier transform infrared spectrometer instrument (MultiGas 2030, MKS instruments) for simultaneous detection of gas phase SO$_2$ and SO$_3$ in the outlet stream.
Four different sample configurations as depicted in Figure 1 were evaluated by lean SO\textsubscript{x} adsorption (100 vol.-ppm SO\textsubscript{2} and 7% O\textsubscript{2} in Ar) at 250°C for 1h followed by a lean temperature programmed desorption (7% O\textsubscript{2} in Ar) by ramping the temperature from 250 to 700°C with a ramp rate of 10°C/min. The total flow was in both cases 3500 ml/min. This adsorption-desorption sequence was repeated three times.

3 Results and discussion

In a previous investigation with the same conditions as the ones used here [5], it was observed that ceria based regenerable SO\textsubscript{x} traps initially exhibit a certain (minor) degree of irreversible adsorption. This has been observed also by other authors [refs]. In order to concentrate on the regenerable and reproducible results, the same lean SO\textsubscript{x} adsorption-desorption sequence was carried out three times. As the basis for the discussion we use here only the second and third sequence.

In Figure 2 the results for lean SO\textsubscript{x} adsorption (third sequence) on the different sample configurations A-D are shown. It is clear that the adsorbed amount of SO\textsubscript{x} is much higher for the Pt/CeO\textsubscript{2} sample (A) as compared to bare CeO\textsubscript{2} (D). Note that the A geometry is not even saturated during the time frame of the experiment. Based on the second and third adsorption sequence, the average amount of adsorbed SO\textsubscript{x} is 406 and 106 µmol for the Pt/CeO\textsubscript{2} and CeO\textsubscript{2}, respectively. This is in accordance with previous observations [5] which intuitively were connected to different routes whereby SO\textsubscript{x} adsorbs on, respectively, Pt/CeO\textsubscript{2} and bare CeO\textsubscript{2}. However, based on previous results it is not clear whether or not the increased SO\textsubscript{x} adsorption is
thanks to the formation of gaseous SO_3 over Pt and subsequent adsorption of SO_3 on ceria or if SO_3 (or some other sulfur species) is transported from the platinum crystallites to ceria via surface diffusion and spill-over processes. **Similarly diffusion and spill-over of oxygen to ceria may be important steps.** To study the influence of sulphur carrier, here SO_2 and SO_3, on the SO_x storage, we use as a starting point for the analysis the comparison of present results for SO_x adsorption for the systems with physically separated platinum $i.e.$, configurations B and C. *These results are in turn compared with the Pt free system (configuration D).*

It is found that the amount of adsorbed SO_x on ceria is higher in the case of the Pt/SiO$_2$ positioned upstream of the ceria (configuration B) as compared to either the downstream position (configuration C) or, even more clearly, the configuration D without Pt. For configuration B, SO_x is adsorbed during the entire 60 min period of SO_2 exposure, although the SO_x adsorption is minor at the end of the period, as reflected by increasing concentration of outlet SO_2. The average amount of adsorbed SO_x is 286 μmol. Contrary, for configuration C, the outlet SO_2 concentration reaches a steady level at about $t=40$ min. The total SO_x concentration (sum of SO_2 and SO_3) is close to the inlet SO_2 concentration of 100 vol.-ppm which indicates negligible SO_x adsorption at the end of the measurement. Here the average adsorbed amount of SO_x is 174 μmol. Similarly, for bare ceria (D) the outlet SO_2 concentration reaches a steady level even earlier at about $t=30$ min.

The main difference in SO_x adsorption between configuration B and C is likely owing to the different SO_2 oxidation kinetics for Pt and CeO$_2$. Provided that the gas phase concentration of SO_3 is sufficiently stable (this assumption is supported by thermodynamic calculations not shown here), the present results
support the earlier suggestion in Refs. [5,13,14] that oxidation of SO$_2$ into SO$_3$ over Pt is important for the overall SO$_x$ adsorption. **At the temperature used here, the SO$_2$ oxidation and subsequent sulphate formation on ceria are negligible** [5]. Based on results for configuration B and C, a few scenarios can be envisioned as depicted in Figure 3. For example, given that SO$_2$ and SO$_3$ compete for the same adsorption sites on ceria (scenario I versus scenario II), the present results indicate that SO$_3$ adsorption is kinetically favored. **Another explanation could be that the additional SO$_x$ adsorption observed for configuration B occurs solely via the formation of SO$_3$ thanks to specific adsorption sites for SO$_3$ on the ceria.**

Consider again the SO$_x$ adsorption onto the Pt/CeO$_2$ sample. Likely, the observed high adsorption is only partly explained by the formation of gaseous SO$_3$. The comparison with the corresponding results for physically separated Pt and ceria (configuration B) shows the Pt/CeO$_2$ adsorbs significantly more SO$_x$. Assuming that the rate of SO$_2$ oxidation into gaseous SO$_3$ is not too different in the two cases (this is supported by the fact that the same amount of Pt was used in both cases) and that SO$_3$ is sufficiently stable in gas phase, the ceria is in both cases exposed to similar gas composition. Thus, the results indicate that physical contact between platinum and ceria is important for the overall SO$_x$ adsorption process. Although the mechanistic details are difficult to deduce from the present results, we may speculate on different scenarios. If SO$_3$ is not stable in the gas phase under the conditions used here, then SO$_2$ oxidation close to the ceria is important (scenario III). However, as mentioned above, SO$_3$ is probably stable and, thus, a scenario where the SO$_3$ formed on Pt may diffuse on the Pt surface and spill-over to ceria (scenario IV) is possible. The SO$_3$ adsorbed on the ceria may then continue to diffuse
on the ceria surface as well as into the ceria bulk as was indicated by previous IR spectroscopy experiments [5]. In this case, the corresponding activation barriers for spill-over and diffusion are lower than the energy required for desorption. An expected crucial parameter in this respect is the length of the circumferential Pt-ceria interface. Another scenario that also involves the Pt-ceria interface as an important parameter, is the assumption of specific adsorption sites at the interface accessible for SO$_x$ either directly from gas phase (scenario V) and/or via the platinum or ceria surface (scenario VI).

Hitherto it has been shown that the inclusion of Pt preferable in direct contact with ceria enhances the overall SO$_x$ adsorption on ceria. Turning to the corresponding results for lean SO$_x$ desorption (Figure 4), the role of Pt is not as pronounced. One obstacle is that for the four geometries the total amount of stored SO$_x$ is different. This may influence the SO$_x$ desorption spectra, especially the peak SO$_x$ desorption. However, despite this issue, a few remarks can be made. The SO$_x$ desorption starts at about 500°C for all samples indicating that thermal decomposition of SO$_x$ adsorbed on ceria is important for the release process. Furthermore, comparing configuration A and B (and assuming that the effect of different stored amounts of SO$_x$ is negligible) the peak SO$_x$ desorption occurs at a temperature only about 20°C lower for Pt/CeO$_2$. This indicates that physical contact between Pt and ceria has a minor influence on the desorption and that, again, thermal decomposition of SO$_x$ adsorbed on ceria is the main route. The present results differ from our previous study [5] where SO$_x$ desorption occurred at higher temperatures for ceria samples without Pt. The reason for this is probably due to different sample preparation in the two studies. In the previous study, ceria and Pt/CeO$_2$, respectively, was attached to monoliths
using Boehmite as a binder. During sample calcination Boehmite forms alumina which is known to store SO$_x$ also at relatively high temperatures [5]. Thus in the case of the ceria sample where a low amount of SO$_x$ was stored, SO$_x$ desorbed from ceria at low temperatures could be temporarily adsorbed on the alumina until higher temperatures was reached. In the case of Pt/CeO$_2$, this effect is likely negligible due to the much higher amounts of stored SO$_x$. In the present study a ceria sol was used instead of Boehmite in order to prepare ceria samples with as few components as possible. It should be noted, however, that an indirect effect of Pt on the SO$_x$ release kinetics for platinum-ceria systems could be observed in the present results. The desorption spectra for configuration A and B as well as for C and D are similar. For A and B, SO$_x$ was stored mainly via SO$_3$ adsorption, whereas for C and D, storage proceeds mainly via SO$_2$ adsorption. Intuitively, adsorption of SO$_3$ may lead to formation of SO$_4$ species whereas SO$_2$ adsorption may lead to formation of SO$_3$ species in the ceria structure [5]. This indicates that the route for SO$_x$ adsorption is important for the corresponding desorption and, thus, inclusion of platinum has an indirect effect on the SO$_x$ release kinetics for platinum-ceria systems.

4 Concluding remarks

In summary we have shown that lean SO$_x$ storage on platinum-ceria systems occurs both via adsorption of SO$_2$ and SO$_3$, where the latter is kinetically favored. Thus, the rate of SO$_2$ oxidation is important for the overall SO$_x$ storage kinetics. Moreover, physical contact between platinum and ceria is important
for the overall SO\textsubscript{x} storage kinetics possibly by providing new transport routes (diffusion and spill-over) and/or adsorption sites at the platinum-ceria interface for SO\textsubscript{x}. Thermal decomposition of SO\textsubscript{x} species seems to be the main route for SO\textsubscript{x} desorption and thus platinum plays a minor role. However, platinum may play an indirect role as the route for SO\textsubscript{x} storage, \textit{i.e.}, via SO\textsubscript{2} or SO\textsubscript{3} adsorption, seems to influence the SO\textsubscript{x} desorption kinetics.

\section*{Acknowledgments}
Support from COST Action D41 and the Swedish EMFO program, and the financial support from Knut and Alice Wallenberg Foundation, Dnr KAW 2005.0055, is gratefully acknowledged. Markus Happel and Jörg Libuda thank the Deutsche Forschungsgemeinschaft (DFG) for support and also acknowledge additional support of the DFG within the Excellence Cluster “Engineering of Advanced Materials” in the framework of the excellence initiative. The Competence Centre for Catalysis is hosted by Chalmers University of Technology and financially supported by the Swedish Energy Agency and the member companies AB Volvo, Volvo Car Corporation, Scania CV AB, GM Powertrain Sweden AB, Haldor Topsøe A/S, and The Swedish Space Corporation.

\section*{References}

series 2003-01-3245.

Fig. 1. Schematic picture of the four (A-D) pairwise configurations 5%Pt/CeO$_2$, 5%Pt/SiO$_2$ and bare CeO$_2$ and SiO$_2$ monolith samples used to study SO$_x$ adsorption- and desorption kinetics.
Fig. 2. Outlet SO$_2$ and SO$_3$ concentration traces during lean SO$_x$ adsorption (100 vol.-ppm SO$_2$/7%O$_2$/N$_2$) at 250°C for different sample configurations.
Fig. 3. Schematic picture showing possible routes for adsorption of SO$_x$ on bare ceria and platinum-ceria systems.
Fig. 4. Outlet SO$_2$ and SO$_3$ concentration traces during lean temperature programmed desorption of SO$_x$ (7% O$_2$/N$_2$) for different sample configurations. Ramp rate 10$^\circ$C/min. The two vertical lines show the SO$_2$ peak desorption for configuration A and C, respectively.