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Abstract  

In the last decades, an increasing attention has been 
paid to the study of different parallel structure 
mechanisms and their applications, mainly triggered 
by Stewart that presented an aircraft simulator system. 
Parallel structure features provide big advantages in 
potential applications. For example, parallel robots 
may give higher speed and acceleration, higher static 
and dynamic accuracy and higher stiffness than what 
is possible with the industrial robots used today. 

A typical limitation with many of the paral-
lel structures is that their workspace is small com-
pared to the serial structures. This paper presents a 
new parallel structure, the Gantry-Tau, which pro-
vides 3 degrees of freedom (DOF) translational mo-
tion with a large workspace. The structure of the ro-
bot is patented by ABB.  The Gantry-Tau robot is a 
six link parallel kinematic structure with the links 
configured according to 3-2-1. The 3-2-1 notation 
refers to how many links form each resulting kine-
matic cluster of the robot. Orientational DOF of the 
robot could be provided by a decoupled system.  

For a conventional 3 DOF serial gantry ro-
bot two of the actuators contribute to the moving 
mass. The Gantry-Tau can be constructed with ex-
ceptionally low moving mass since the actuators are 
stationary and the structure has inherently high stiff-
ness. The structure is thus ideal for many applications 

with demands on high accelerations, for instance for 
the pick and place operations.  

The nominal inverse and direct kinematics 
of the structure are developed and optimization is 
used to find a construction of Gantry-Tau with 
maximum workspace volume.  

1  Introduction 

Most of the robots used in the industry are serial 
manipulators. A serial manipulator has an open 
kinematic chain structure. This type of robots 
offers high generality and can be used for vari-
ous applications. However the serial manipula-
tors suffer from a low ratio between load capac-
ity and robot mass. The main reasons for this are 
that the robot’s actuators contribute to the mov-
ing mass and that each link is subjected to the 
weight of the following links. Thus the links 
have to be dimensioned with respect to large 
flexure torques, which means that the structure 
has to be stiffened, and thus become heavier. 
Accuracy is limited by the fact that the links 
magnify errors throughout the chain. For in-
stance a small angular error in a revolute joint 
early in the chain will induce a large error for 
the tool center point (TCP).   
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A parallel manipulator is a closed kine-
matic chain mechanism. There exist a variety of 
architectures designed for different applications. 
The parallel manipulator can be characterized 
with comparison to it serial counterpart as a sys-
tem with [4]: 

• higher ratio between load capacity 
and robot mass, 

• higher stiffness,  
• higher absolute accuracy, 
• simpler inverse kinematics, 
• more difficult direct kinematics, 
• smaller workspace.  

 
The higher ratio between load capacity and ro-
bot mass is due to that the actuators often are 
located on a fixed platform and for many of the 
structures the links are only subjected to axial 
forces and that the load is distributed over the 
chains. Higher stiffness is due to that the exter-
nal force is distributed over the chains. Higher 
absolute accuracy is due to non cumulative joint 
error and the higher stiffness. The inverse kine-
matics problem is often solved easily since the 
chains can be studied separately and that differ-
ent configurations are generally fixed in the de-
sign process. The solution of the direct kinemat-
ics problem is often difficult since in the general 
case there is no unique solution. The constant 
orientation workspace is also often limited for 
most 6 DOF fully parallel manipulators. One 
approach to get better workspace properties is to 
develop manipulators where the translational 
degrees of freedom are separated from the rota-
tional degrees of freedom or to design manipula-
tors that are not fully parallel.  

This paper presents a new parallel struc-
ture, the Gantry-Tau, which provides 3 DOF 
translational motions with a large workspace. 
The structure of the robot is patented by ABB [2] 
and early results indicate that the structure could 
outperform the serial gantry structure for many 
applications.    

 
2 Kinematic description 
 
The Gantry-Tau is a six link parallel kinematic 
structure with the links configured according to 
3-2-1.  The 3-2-1 notation refers to how many 
links form each resulting kinematic arm. Gantry-

Tau belongs to the PRRS family of parallel ma-
nipulators with the HexaGlide as one of its clos-
est relative [4]. The PRRS notation describes the 
joints in the kinematic chains from actuation to 
the TCP. Thus each chain is formed by a pris-
matic joint with actuation (P), a universal joint 
(RR), and finally a spherical joint which con-
nects to the moving plate. These 6 chains form 
three kinematic clusters where the chains are 
organised as a double parallelogram, a single 
parallelogram and a single link which all con-
nect to the moving plate. The prismatic joints 
are three parallel linear tracks.  

Figure 1 shows a schematic for the Gan-
try-Tau structure. By moving A, B and C along 
the tracks from SA,B,C,0 to SA,B,C,1 the translational 
motion is controlled for the TCP while the ori-
entation of the moving plate is maintained.   

Fig: 1. Schematic Gantry-Tau. Global coordinate 
system is defined with the X-axis along the direction 
from SA,0 to SA,1. The black dots represent spherical 
joints. 
 
The vectors di i=1-6 define the locations for the 
universal joints PUi  i=1-6 from points A, B and 
C (figure 1).  The vectors ni i=1-6 define the 
relative locations for the TCP with respect to the 
spherical joints PSi i=1-6 (figure 2).  

 
Fig: 2. Schematic moving plate.  
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The length of the links li must be the same for 
links belonging to the same cluster. The vectors 
di i=1-5 and ni i=1-5 are prerequisite to fulfill 
the condition that the vector between PS1 and 
PS2 must be parallel to the vector between PU1 
and PU2, and that the vector between PS3 and 
PS4 must be parallel to the vector between PU3 
and PU4, and that the vector between PS4 and 
PS5 must be parallel to the vector between PU4 
and PU5. Another perhaps obvious prerequisite 
is that PS5 must be located outside the plane 
PS3PU3PS4.  

Spherical joints, allowing the links to 
spin around their principal axis, can of course 
replace the universal joints. For some applica-
tions it might be favourable to use only univer-
sal joints. This can be achieved by adding a 
revolute joint on each link that prevents the 
structure from being over constrained. A 4 DOF 
endless tool orientation arrangement can be 
achieved by adding a double cardan axis as 
shown in figure 3. This decoupled arrangement 
is used in the Delta robot design [3]. Another 
variant of the Gantry-Tau is shown in figure 4. 
This arrangement offers 5 DOF limited tool tilt 
and could be used for water jet cutting, plasma 
cutting and laser cutting. 
 
 
 
 

 
 
 
 
 
 
Fig: 3. 4 DOF Endless tool rotation. 
 

 
 
Fig:4. 5 DOF Tool tilt. 
 
 
2.1 Inverse kinematics 
 
For the considered parallel robot the inverse 
kinematics problem is formulated as follow. 
Calculate the location of points A, B and C along 
the linear tracks for a given TCP location. Let 
 

( ) 0,00 A
T

a SsA += , 

( ) 0,00 B
T

b SsB += , 

( ) 0,00 C
T

c SsC += ,  

( )TzyxTCP = . 

 
Here the parameters as , bs and cs are to be de-

termined and can be found as the intersection 
between spheres with midpoints at 

11 nd −−TCP  , 33 nd −−TCP  and 

66 nd −−TCP  and the respective linear track.  

The spherical equations can be written as fol-
lows: 
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Then we can determine the parameters 
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The sign before the root expression decides the 
configuration of the robot.  
 
 
2.2 Direct kinematics 
 
For the considered parallel robot the direct 
kinematics problem can be formulated as fol-
lows. Calculate the location of the TCP for 
given A, B and C.  

Three spheres with radius l1, l3 and l6 
describe all possible location for the TCP for 
fixed A, B and C. The intersection points be-
tween the spheres describe the location of the 
TCP. 
The midpoints of the spheres and the spherical 
equations are: 
 

[ ] [ ] 110,1111 001 ndsSzyxA T
aAaaa +++==  

 
[ ] [ ] 330,1111 001 ndsSzyxB T

bBbbb +++==  

 
[ ] [ ] 660,1111 001 ndsSzyxC T

cCccc +++==  
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3
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1
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2
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( ) ( ) ( ) 2

6
2

1
2

1
2

1 lzzyyxx ccc =−+−+−  
 
Mathematical symbolic software can solve the 
spherical equations, but produces a rather exten-
sive solution. Proficient use of simplification 
rules is needed in order to simplify the solution. 
This problem is avoided by solving the equa-
tions in two steps. First find the intersection be-

tween two of the spheres. The intersection is 
either a circle or a point. Ignore the point case 
for now. The intersection between the third 
sphere and one of the other forms of course also 
a circle. Derive the plane where this circle is 
located. Secondly the intersections of this plane 
and the first circle describe the possible location 
for the TCP.   
In the solution below the intersection circle be-
tween spheres with midpoints at A1 and C1 is 
calculated. All calculations are then done in a 
coordinate system with the z-axis pointing from 
A1 to C1.  
 
 
 
 
 
 
 
Fig:5. Intersection between two spheres. 
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The normal vector for the plane: 
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Deriving the rotation matrix: 
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The normal vector for the plane and points D 
and E are transformed into a coordinate system 
with the z-axis pointing from A1 to C1. 
 
( ) NRotNNN xz

T
zyx =  

 
( ) DRotzyx xz

T
ddd =  

 
( ) ERotzyx xz

T
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The spherical equations can now be written in 
the new coordinate system as the intersection 
between a circle and a sphere. 
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The configuration of the robot decides which 
solution is valid. 
 
3   Workspace optimization 
 
In order to characterize the workspace of the 
manipulator the following optimization problem 
is formulated. Find the distances between the 
tracks that give the largest cross-section work-
space for a manipulator with links of equal 
length l. Only symmetrical placements of the 
tracks are considered. The workspace is further 
restricted in three directions with the require-
ment that the workspace must be a part of the 
open rectangular area formed by the linear 
tracks. Two types of joints are considered both 
shown in figure 6. The cardan joint puts no re-
strictions on the cross-section workspace while 
the ball and socket joint limits the workspace 
along one direction. 

 
 

 
Fig: 6. Joints 
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The problem is solved independently from the 
vectors ni and di by imposing the parameteriza-
tion on the midpoints of the three spheres that 
intersect at the TCP. The optimization parame-
ters are q1 and q2 as shown in figure 7. When the 
ball and socket joint is used, the optimal orienta-
tion of the joint must also be considered.  
 

 
 
Fig:7. Optimization parameters. The dashed lines 
form the open rectangular area which restricts the 
workspace.  
 
The optimization problem is solved by using a 
non linear programming routine. The obtained 
optimal cross section area is shown in figure 8.     
 

 
Fig:8. Optimal cross section workspace. The straight 
lines show the limits for ball and socket joints with 
β= 32.86o. The circles show the maximum reachabil-
ity for each cluster without limitation imposed by the 
joints. 
 
As long as )1sin( 2 −≥ qβ  and the ball and 

socket joints are orientated as in figure 8 the 
optimal relations between link length l and the 
optimization parameters are the same for both 
joint types, namely: 
 

    9713020.97345833 1 ≈l
q

 

 

    3397980.45745029 2 ≈l
q  

 

86.32≥β         

 
The relation between optimal area and link 
length is as follows: 
 

2*6542350.90310315 lArea ≈   
 

4   Conclusions  
 
In the paper the solutions of the inverse kine-
matics and direct kinematics problems for the 
novel parallel structure robot have been obtained. 
The initial study of the Gantry-Tau structure has 
demonstrated good workspace properties of the 
robot. Further studies are needed in order to ex-
amine how competitive the considered structure 
is. 
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