Guiding-center transformation of the radiation-reaction force in a nonuniform magnetic field
Artikel i vetenskaplig tidskrift, 2015

In this paper, we present the guiding-center transformation of the radiation-reaction force of a classical point charge traveling in a nonuniform magnetic field. The transformation is valid as long as the gyroradius of the charged particles is much smaller than the magnetic field nonuniformity length scale, so that the guiding-center Lie-transform method is applicable. Elimination of the gyromotion time scale from the radiation-reaction force is obtained with the Poisson bracket formalism originally introduced by [A. J. Brizard, Phys. Plasmas 11 4429 (2004)], where it was used to eliminate the fast gyromotion from the Fokker-Planck collision operator. The formalism presented here is applicable to the motion of charged particles in planetary magnetic fields as well as in magnetic confinement fusion plasmas, where the corresponding so-called synchrotron radiation can be detected. Applications of the guiding-center radiation-reaction force include tracing of charged particle orbits in complex magnetic fields as well as kinetic description of plasma when the loss of energy and momentum due to radiation plays an important role, e.g., for runaway electron dynamics in tokamaks.

Författare

Eero Hirvijoki

Chalmers, Teknisk fysik, Nukleär teknik

Joan Decker

Chalmers, Teknisk fysik, Nukleär teknik

A Brizard

Ola Embréus

Chalmers, Teknisk fysik, Nukleär teknik

Journal of Plasma Physics

0022-3778 (ISSN) 1469-7807 (eISSN)

Vol. 81 5 475810504- 475810504

Drivkrafter

Hållbar utveckling

Fundament

Grundläggande vetenskaper

Ämneskategorier

Fusion, plasma och rymdfysik

DOI

10.1017/S0022377815000744

Mer information

Senast uppdaterat

2022-04-05