Effect of active components of sintering atmosphere on reduction/oxidation processes during sintering of Cr-alloyed PM steels
Artikel i vetenskaplig tidskrift, 2015

Water atomised steel particles are covered by heterogeneous surface oxide, formed by thin (~6 to 8 nm) iron oxide layer covering most of the powder surface, and particulate features formed by thermodynamically stable oxides containing e.g. Cr and Mn with surface coverage about 5%. Development of sufficiently strong inter-particle necks requires as minimum full removal of the iron surface oxide layer that can be achieved by gaseous reducing agents as CO and H2 as well as by carbon typically admixed in the form of graphite. The study evaluates the effect of concentration of reactive components of the sintering atmosphere, with special focus on carbon monoxide, on the reduction/oxidation and carburization/decarburization processes taking place during the whole sintering process. Results of the thermal analysis, SEM analysis of oxide characteristics, metallographic and chemical analysis of the sintered compacts were correlated with thermodynamic simulation of the oxide stability in applied sintering atmospheres. High oxidation potential of the CO-containing atmospheres in case of Cr-alloyed PM steels was detected during heating stage until ~1000 °C. Oxidation potential is linearly increasing with the increasing content of the carbon monoxide in the processing atmospheres and rather severe oxidation is observed if CO-content exceeds 1 vol.%.

Författare

Eduard Hryha

Chalmers, Material- och tillverkningsteknik, Yt- och mikrostrukturteknik

Seshendra Karamchedu

Chalmers, Material- och tillverkningsteknik, Yt- och mikrostrukturteknik

Dmitri Riabov

Chalmers, Material- och tillverkningsteknik, Yt- och mikrostrukturteknik

Lars Nyborg

Chalmers, Material- och tillverkningsteknik

Sigurd Berg

Höganäs

Journal of the American Ceramic Society

0002-7820 (ISSN) 1551-2916 (eISSN)

Vol. 98 11 3561-3568

Drivkrafter

Hållbar utveckling

Styrkeområden

Produktion

Materialvetenskap

Ämneskategorier

Metallurgi och metalliska material

DOI

10.1111/jace.13607

Mer information

Senast uppdaterat

2018-11-22