Direct immobilization of cholesteryl-TEG-modified oligonucleotides onto hydrophobic SU-8 surfaces
Artikel i vetenskaplig tidskrift, 2007

We introduce a rapid, simple one-step procedure for the high-yield immobilization of cholesteryl- tetraethyleneglycol-modified oligonucleotides ( chol- DNA) at hydrophobic sites made of SU-8 photoresist. Topographic structures of SU-8 were microfabricated on microscope glass coverslips sputtered with a Ti/Au layer. Upon application, chol-DNA adsorbed to the SU-8 structures from solution, leaving the surrounding gold surface free of chol- DNA. chol-DNA immobilization is complete within 15 min and yields a surface coverage in the range of 20- 95 pmol/ cm(2), which corresponds to a film density of 10(12)- 10(13) molecules/cm(2). chol-DNA immobilization is stable and can be sustained despite rinsing, drying, dry storage for several hours, and rehydration of chips. Furthermore, complementary DNA in solution hybridizes efficiently to immobilized chol-DNA. We introduce a rapid, simple one-step procedure for the high-yield immobilization of cholesteryl-tetraethyleneglycol-modified oligonucleotides (chol-DNA) at hydrophobic sites made of SU-8 photoresist. Topographic structures of SU-8 were microfabricated on microscope glass coverslips sputtered with a Ti/Au layer. Upon application, chol-DNA adsorbed to the SU-8 structures from solution, leaving the surrounding gold surface free of chol-DNA. chol-DNA immobilization is complete within 15 min and yields a surface coverage in the range of 20-95 pmol/cm(2), which corresponds to a film density of 10(12)-10(13) molecules/cm(2). chol-DNA immobilization is stable and can be sustained despite rinsing, drying, dry storage for several hours, and rehydration of chips. Furthermore, complementary DNA in solution hybridizes efficiently to immobilized chol-DNA.

Författare

Yavuz Erkan

Chalmers, Kemi- och bioteknik, Fysikalisk kemi

Ilja Czolkos

Chalmers, Kemi- och bioteknik, Fysikalisk kemi

Aldo Jesorka

Chalmers, Kemi- och bioteknik, Fysikalisk kemi

Marcus Wilhelmsson

Chalmers, Kemi- och bioteknik, Fysikalisk kemi

Owe Orwar

Chalmers, Kemi- och bioteknik, Fysikalisk kemi

Langmuir

07437463 (ISSN) 15205827 (eISSN)

Vol. 23 10 5259-5263

Ämneskategorier

Kemi

DOI

10.1021/la7005502

Mer information

Skapat

2017-10-08