Methanol Desorption From Cu-ZSM-5 Studied by In Situ Infrared Spectroscopy and First-Principles Calculations
Artikel i vetenskaplig tidskrift, 2017

The dynamic interaction of methanol and its derivatives with Cu-exchanged ZSM- 5 during methanol temperature programmed desorption from 30 to 450 ◦C has been investigated using in situ diffuse reflectance infrared Fourier transform spectroscopy and first-principles calculations. The results emphasize that defects in the framework structure of the zeolite and Brønsted acid sites constitute ion-exchange sites for Cu ions. The Cu sites introduced in ZSM-5 actively interact with methanol adsorbed at moderate temperature, i.e. below 250◦C, and take roles in further oxidation of the adsorbed species to formate and CO. Moreover, spectra recorded at higher temperatures, i.e. above 300◦C, after adsorption of methanol show strong interaction between methoxy groups and the zeolite framework, suggesting that under mild conditions proton extraction for methanol production during direct partial oxidation of methane to methanol over Cu-ZSM-5 is necessary.

Författare

Xueting Wang

Chalmers, Kemi och kemiteknik

Kompetenscentrum katalys

Adam Arvidsson

Chalmers, Fysik, Kemisk fysik

Kompetenscentrum katalys

Magdalena O. Cichocka

Stockholms universitet

Xiaodong Zou

Stockholms universitet

Natalia Mihaela Martin

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Kompetenscentrum katalys

Johan Nilsson

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Kompetenscentrum katalys

Stefan Carlson

Max IV-laboratoriet

Johan Gustafson

Lunds universitet

Magnus Skoglundh

Kompetenscentrum katalys

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Anders Hellman

Kompetenscentrum katalys

Chalmers, Fysik, Kemisk fysik

Per-Anders Carlsson

Chalmers, Kemi och kemiteknik, Tillämpad kemi

Kompetenscentrum katalys

Journal of Physical Chemistry C

1932-7447 (ISSN) 1932-7455 (eISSN)

Vol. 121 49 27389-27398

Tidsupplösta in situ metoder för design av katalytiska säten för hållbar kemi

Vetenskapsrådet (VR) (2013-567), 2013-01-01 -- 2016-12-31.

Drivkrafter

Hållbar utveckling

Styrkeområden

Nanovetenskap och nanoteknik

Transport

Energi

Materialvetenskap

Ämneskategorier

Kemiska processer

Materialkemi

Annan fysik

DOI

10.1021/acs.jpcc.7b07067

Mer information

Senast uppdaterat

2022-04-05